Cognome			
Nome		Non scrivere qui	
MATRICOLA			
Laurea	CIV AMB GEST INF ELN TLC MEC	1 2 3 4 5	

Università degli Studi di Parma

Dipartimento di Ingegneria e Architettura

Esame di Analisi Matematica 2

A.A. 2021-2022 — PARMA, 18 NOVEMBRE 2022

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di due ore e mezza. Al momento della consegna, inserite tutti i fogli compreso questo dentro ad uno dei fogli protocollo.

Esercizio 1. Siano $f \in C^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ un campo vettoriale di componenti $f = (f^1, f^2)$ tale che

$$f(0,0) = (0,0)$$
 e $Df(0,0) = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$

e $g \in C^{\infty}(\mathbb{R}^2)$ una funzione tale che Dg(0,0)=(1,-2). Calcolate il gradiente $\nabla h(0,0)$ della funzione $h(x,y)=g\circ f(x,y)=g\left(f^1(x,y),f^2(x,y)\right),\qquad (x,y)\in\mathbb{R}^2.$

Esercizio 2. Calcolate l'integrale curvilineo del campo vettoriale $f \in C^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$ di componenti $f = (f^1, f^2, f^3)$ definite da

$$f^1(x,y,z) = -\frac{y}{x^2 + y^2};$$
 $f^2(x,y,z) = \frac{x}{x^2 + y^2};$ $f^3(x,y,z) = xyz;$

per ogni $(x, y, z) \in \mathbb{R}^3$ lungo la curva parametrica liscia $\gamma(t) = (\cos t)e_1 + (\sin t)e_2 + te_3, t \in [0, 2\pi].$

Esercizio 3. Sia Γ la curva piana di equazione $5x^2 + 6xy + 5y^2 = 208$.

- (a) Verificate che Γ è una curva (1-superficie) regolare e compatta in \mathbb{R}^2 .
- (b) Calcolate il massimo ed il minimo globale su Γ della funzione

$$f(x,y) = x + 2y, \qquad (x,y) \in \mathbb{R}^2.$$

Esercizio 4. Sia

$$K = \left\{ (x, y, z) : 0 \le z \le \min \left\{ (x^2 + y^2)^{3/2}, 2\sqrt{x^2 + y^2} - (x^2 + y^2) \right\} e \ x \le y \le \sqrt{3}x \right\}.$$

- (a) Descrive l'insieme K.
- (b) Calcolate $I = \int_K x \, d(x, y, z)$.

Esercizio 5. (a) Utilizzando il metodo di variazione delle costanti arbitrarie, determinate una soluzione dell'equazione differenziale

$$x''(t) + 2x'(t) + 2x(t) = e^{-t} \cos^2 t.$$

(b) Determinate la soluzione del problema di Cauchy

$$\begin{cases} x''(t) + 2x'(t) + 2x(t) = 4t + e^{-t}\cos^2 t \\ x(0) = 0 \ e \ x'(0) = 1. \end{cases}$$