Cognome Nome					Scrivete qui le risposte	COMPITO
MATRICOLA						1
Corso	Acerbi	Belloni	Mucci	AB		

Università di Parma— Facoltà di Ingegneria

Esame scritto di Analisi matematica 1 - Prima parte

A.A. 2012-2013 — PARMA, 14 GENNAIO 2013

Riempite immediatamente questo foglio scrivendo IN STAMPATELLO cognome, nome e numero di matricola, e fate una barra sul Corso. Scrivete cognome e nome (in stampatello) su ogni foglio a quadretti.

Il tempo massimo per svolgere la prova è di un'ora. Non potete uscire se non dopo avere consegnato il compito, al termine della prova.

È obbligatorio consegnare sia il testo, sia tutti i fogli ricevuti; al momento della consegna, inserite tutti gli altri fogli, compreso quello con il testo, dentro uno dei fogli a quadretti.

Potete usare solo il materiale ricevuto e il vostro materiale di scrittura (in particolare è vietato usare appunti, calcolatrici, foglietti ecc.). Non usate il colore rosso.

Riportate le risposte ai quiz nelle apposite caselle in alto a destra (risposta esatta +3, risposta errata - 1, risposta non data 0, sufficienza 10), e copiatele sul foglietto che vi sarà consegnato, per controllo; su questo foglietto copiate anche il numero del vostro compito (lo trovate nella casella grande in alto a destra).

- (1) Sia $w = \frac{z^2 \overline{z}^2}{(z+1)(\overline{z}-1)+1}$. Quando $z = 1+\mathrm{i}$, quale tra le seguenti affermazioni è vera?
- (A) $\Im w = 0$.

- (B) Nessuna delle altre risposte è vera.
- (2) Sia $f:[0,1] \to \mathbb{R}$ una funzione continua tale che $\int_0^1 f(x) dx = 1$, f(0) = 0 e f(1) = 1. Quale tra le seguenti affermazioni è vera?
- (A) Nessuna delle altre risposte è vera.
- (C) $f(x) \ge 0$ per ogni $x \in [0, 1]$.
- (B) Esiste $x_0 \in]0, 1[$ tale che $f(x_0) > 1$.
- (D) f(x) è debolmente crescente.
- (3) Sia A l'insieme delle soluzioni della disequazione $\sqrt{2x^2+1} < |x+1|$. Quale tra le seguenti affermazioni è vera?
- (A) $\left[\frac{1}{2}, \frac{3}{2}\right] \subset A$.

(C) A non è un intervallo. (D) $-1/2 \in A$.

(B) $[-3, -1] \subset A$.

- (4) Un bambino gioca con 3 pietre rosse, 4 verdi e 2 blu. In quanti modi le può allineare, conservando sempre una pietra verde in posizione centrale?

(B) 8!.

- (5) Sia $f(x) = x 3e^{-2x}$. Quale è il valore di $\left(f^{-1}\right)'(-3)$?
- (A) -1/2.

- (C) Nessuna delle altre risposte è vera.
- (B) Non esiste: f^{-1} non è derivabile in -3.
- (D) 1/5.
- (6) Sia $a_n = \frac{2^n}{|\alpha 6|^n + 2^n}$. Posto $A \subset \mathbb{R}$ l'insieme degli $\alpha \in \mathbb{R}$ per cui converge la serie numerica $\sum_n a_n$, quale tra le seguenti affermazioni è vera?
- (A) $]2, 6[\subseteq A]$.

- (C) $]-\infty, 4[\cup]8, +\infty[=A]$. (D)]5, 7[=A].
- (B) Nessuna delle altre risposte è vera.
- (7) Siano date $\{a_n\}$ e $\{b_n\}$ tali che $-3 < a_n \cdot b_n < 5$. Quale tra le seguenti affermazioni è vera?
- (A) Se $\lim_{n\to+\infty}a_n=-3$, allora $\lim_{n\to+\infty}b_n=5$. $\Big|$ (C) Se $\lim_{n\to+\infty}a_n=1$, allora $\{b_n\}$ è limitata.
- (B) Se $\{a_n\}$ è debolmente crescente, allora $\{b_n\}$ è strettamente decrescente.
- (D) Se $a_n > 0$ per ogni n, allora $b_n \le 0$ per ognin.