STUDIO DI FUNZIONE

1) Studiare le seguenti funzioni e disegnarne il grafico:

a)
$$f(x) = x^4 + 2x^3 - 2x - 1$$
; b) $f(x) = x^{\frac{4}{3}} - 8x^{\frac{1}{3}}$; c) $f(x) = 2x + 2 - 3\sqrt[3]{(x+1)^2}$;

d)
$$f(x) = x^2 - 2x + 2\log|1 + x|$$
; e) $f(x) = e^{ax} - a^2x$ (per $x \ge 0$); f) $y = \frac{k^2}{x} - kx$.

- 2) Studiare la funzione $f(x) = \min \left\{ 5, \frac{x^2}{|x-1|} \right\}$ e disegnarne il grafico.
- 3) Trovare il numero di soluzioni dell'equazione $2x^3$. $3x^2$ $36x + \alpha = 0$, $(\alpha \in R)$.
- 4) Studiare la funzione $f(x) = x \cdot e^{-\frac{x}{x}}$, determinando dominio, segno, limiti agli estremi del campo di esistenza, intervalli di monotonia, intervalli di concavità, eventuali massimi e minimi locali. Dopo aver determinato l'equazione dell'asintoto obliquo, stabilire in quali intervalli il grafico della curva sta al di sopra dell'asintoto obliquo e in quali sta al di sotto.
- 5) Data la funzione $f(x) = \frac{x(2-x)}{8+2x^2}$, disegnarne l'andamento qualitativo e determinare al variare di $T \in R$ il numero di soluzioni dell'equazione f(x) = T.
- 6) Data la funzione $f(x) = 3x^5 50x^3 + 135x$, determinare il numero di radici reali dell'equazione f(x) + k = 0, al variare di $k \in R$.
- 7) Trovare, al variare di $k \in \mathbb{R}$, il numero di soluzioni dell'equazione: $x^4 + 3x^3 5x^2 = 3x + k$.
- 8) Determinare, al variare del parametro a ∈ R, il numero di soluzioni delle seguenti equazioni:

a)
$$e^{\frac{1}{x}} - ax = 0$$
 ; b) $\frac{2}{3}x^3 + a - 2\log x = 0$

- 9) Dimostrare che il grafico della funzione $f(x) = x^{100} + ax + b$ interseca l'asse delle ascisse al massimo in due punti .
- 10) Al variare di a \in R, determinare le soluzioni della disequazione: $e^x \ge |ax|$.

RISULTATI:

1) a) $\min(1/2, -27/16)$, $F_1(-1, 0)$, $F_2(0, -1)$; b) $\min(2, -6\sqrt[3]{2})$, $F_1(-4, 12\sqrt[3]{4})$, $F_2(0, 0)$; c) $\min(0, -1)$, cuspide in (-1, 0), d) $F_1(-2, 8)$, $F_2(0, 0)$; e) per a > 1 $\min((1/a)\log a$, $a \cdot (1 - \log a))$, per a < 0 funzione decrescente, per $0 < a \le 1$ funzione crescente; f) per k < 0 $\min(\sqrt{-k}, -2k\sqrt{-k})$ e $\max(-\sqrt{-k}, 2k\sqrt{-k})$, per k < 0

> 0 funzione decrescente; 2)
$$\min_1 (0, 0)$$
, $\min_2 (2, 4)$, funzione costante $f(x) = 5$ per $x \le \frac{-5 - 3\sqrt{5}}{2}$,

per
$$\frac{-5+3\sqrt{5}}{2} \le x \le \frac{5-\sqrt{5}}{2}$$
 e per $x \ge \frac{5+\sqrt{5}}{2}$; 3) 1 soluz. per $\alpha < -44$ e per $\alpha > 81$, 2 soluz. per $\alpha = -44$ e

per
$$\alpha = 81$$
, 3 soluz. per $-44 < \alpha < 81$; **4)** asintoto $y = x - 2$, max $(-2, -2e)$; **5)** asintoto $y = -1/2$,

$$\min\left(-2-2\sqrt{2},-\frac{1+\sqrt{2}}{4}\right), \max\left(-2+2\sqrt{2},\frac{\sqrt{2}-1}{4}\right), 1 \text{ soluz. per } T=-\frac{1+\sqrt{2}}{4}, T=\frac{\sqrt{2}-1}{4}, T=-\frac{1}{2}, T=-\frac$$

2 soluz. per
$$-\frac{1+\sqrt{2}}{4} < T < -1/2$$
 e per $-1/2 < T < \frac{\sqrt{2}-1}{4}$; 6) 1 soluz. per $k < -216$ e per $k > 216$, 2 soluz. per

 $k = -216 \ e \ per \ k = 216 \ , \ 3 \ soluz. \ per \ -216 < k < -88 \ e \ per \ 88 < k < 216 \ , \ 4 \ soluz. \ per \ k = -88 \ e \ per \ k = 88 \ , \ 5 \ soluz. \ per \ -88 < k < 88 \ ; \ 7) \ 1 \ soluz. \ per \ k = -36 \ , \ 2 \ soluz. \ per \ -36 < k < -4 \ e \ per \ k > 101/256 \ , \ 3 \ soluz. \ per \ k = -4 \ e \ per \ k = -4 \ e \ per \ k = -4 \ e \ per \ k > 101/256 \ , \ 3 \ soluz. \ per \ a = -1/e \ e \ per \ a > 0 \ ;$ b) 1 \ soluz. \ per \ a = -2/3 \ , 2 \ soluz. \ per \ a < -2/3 \ ; \ 10) \ -1/a < x < 0 \ .