Cognome		Scrivete qui le risposte	
Nome Matricola		1 2 3 4 5 6	COMPITO 1
Corso	AMB-CIV GEST MEC ELN-TCOM INF	7 8 9 10 11	

Università di Parma— Facoltà di Ingegneria

Esame scritto di Analisi matematica 1 - Prima parte

A.A. 2030-2031 — PARMA, 31 FEBBRAIO 2030

Riempite immediatamente questo foglio scrivendo IN STAMPATELLO cognome, nome e numero di matricola, e fate una barra sul Corso. Scrivete cognome e nome (in stampatello) su ogni foglio a quadretti.

Il tempo massimo per svolgere la prova è di un'ora e mezza. Non potete uscire se non dopo avere consegnato il compito, al termine della prova.

È obbligatorio consegnare sia il testo, sia tutti i fogli ricevuti; al momento della consegna, inserite tutti gli altri fogli, compreso quello con il testo, dentro uno dei fogli a quadretti.

Potete usare solo il materiale ricevuto e il vostro materiale di scrittura (in particolare è vietato usare appunti, calcolatrici, foglietti ecc.). Non usate il colore rosso.

Riportate le risposte ai quiz nelle apposite caselle in alto a destra (risposta esatta +3, risposta errata - 1, risposta non data 0, sufficienza 14), e copiatele sul foglietto che vi sarà consegnato, per controllo; su questo foglietto copiate anche il numero del vostro compito (lo trovate nella casella grande in alto a destra).

- (1) L'integrale $\int_0^2 |x(x-1)| dx$
- (A) è uguale a 1.
- (B) è uguale a 2/3.

- (C) non esiste.
- (D) nessuna delle altre risposte è vera.
- (2) Sia $z \in \mathbb{C}$ tale che |z| = 1. Allora,
- (A) Im (1/z) = -Im (z).
- (B) Im (1/z) = -Re (z).

- (C) Re (1/z) = -Im (z).
- (D) nessuna delle altre risposte è vera.
- (3) La serie $\sum |2x-1|^n$ converge se e solo se
- (A) 0 < x < 1.

(C) -1/2 < x < 1/2. (D) 0 < x < 1/2.

(B) |x| < 1.

- (4) Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x \cos x$. La retta tangente al grafico di f in corrispondenza al punto di ascissa $x_0 = \pi$
- (A) ha equazione $y + \pi = \pi(x \pi)$.
- (C) nessuna delle altre risposte è vera.

(B) ha equazione $y = x - \pi$.

(D) ha equazione y = -x.

(5) Sia $\alpha > 0$, l'integrale generalizzato	$\int_{1}^{+\infty}$	$\frac{1}{x^{\alpha} \log^2 \left(1 + \sqrt{x}\right)}$	dx	converge
--	----------------------	---	----	----------

- (A) per ogni $\alpha > 0$.
- (B) mai.

- (C) se solo se $\alpha > 1$.
- (D) se solo se $0 < \alpha < 1$.
- (6) Sia $f:[0,1]\to\mathbb{R}$ una funzione continua tale che f(0)f(1)<0. Allora
- (A) f è strettamente decrescente.
- (B) l'equazione $e^{f(x)} = 1$ ha almeno una soluzione.
- (C) l'equazione $e^{f(x)} = 0$ ha almeno una soluzione.
- (D) $e^{f(0)}e^{f(1)} = e^{f(0)f(1)}$.
- (7) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile due volte, per la quale $x_0 = 0$ è punto di minimo locale. Quale tra le seguenti può essere la formula di Taylor centrata in $x_0 = 0$?
- (A) Nessuna delle altre risposte è vera.
- (B) $f(x) = 2 + x^2 + o(x^2)$.

- (C) $f(x) = 2 x^2 + o(x^2)$
- (D) $f(x) = 2 + x x^2 + o(x^2)$.
- (8) Partecipano a una gara 10 corridori, con i pettorali numerati da 1 a 10. Qual è la probabilità che l'ordine di arrivo sia esattamente l'ordine dei pettorali?
- (A) 9/10!.

- (C) 1.
- (B) Nessuna delle altre risposte è vera.
- (D) 1/10!.
- (9) Sia $A \subset \mathbb{R}$ un insieme illimitato inferiormente. Allora,
- (A) esiste $x \in \mathbb{R}$ tale che x > a per ogni $a \in A$.
- (B) per ogni successione $\{x_n\}_n$ di punti di A si ha $x_n \to -\infty$.
- (C) per ogni $n \in \mathbb{N}$ esiste $x \in A$ tale che x < -n.
- (D) esiste $x \in \mathbb{R}$ tale che a > x per ogni $a \in A$.
- (10) La successione $a_n = \frac{3n + \log(n^{2n})}{2n + \log(n^{3n})}$ tende a
- (A) 0.

(C) 2/3

(B) $+\infty$.

(D) 3/2

- (11) Il limite $\lim_{x\to 0} \frac{\sqrt{1+3x}-1}{\sin 2x}$
- (A) è uguale a 3/4.

- (C) è uguale a 3/2.
- (B) Nessuna delle altre risposte è vera.
- (D) non esiste.