Analisi Matematica C - a.a. 2008/09

Esercitazione del 23 aprile 2009

April 27, 2009

Esercizio (1)

Considerate la funzione

$$f(x,y) = x^2 + y^2 - 2y + 1.$$

- a) Determinate i punti stazionari di f studiandone la natura.
- b) Determinate il massimo M ed il minimo m di f sull'insieme

$$A = \{(x, y) \in \mathbb{R}^2 : 0 \ge y \ge -\sqrt{4 - x^2}\}$$

Suggerimento

Per il punto b), conviene

- parametrizzare la frontiera $\partial A = C_1 \cup C_2$, con $C_1 = \{\varphi(t) : a \le t \le b\}$ e $C_2 = \{\gamma(t) : c \le t \le d\}$;
- ullet studiare f(arphi(t)) quando $t \in [a,b]$ e determinarne massimi e minimi
- ullet studiare $f(\gamma(t))$ quando $t \in [c,d]$ e determinarne massimi e minimi
- confrontare i massimi sulla frontiera con i massimi locali interni e determinare il più grande tra questi
- analogamente si procede per il minimo

Soluzione (Esercizio 1)

(i) L'unico punto stazionario è(0,1), che è un minimo relativo interno, infatti

$$H_f(0,1)=\left(egin{array}{cc} 2 & 0 \ 0 & 1 \end{array}
ight).$$

Essendo poi $f(x,y) = x^2 + (y-1)^2 \ge f(0,1) = 0$, questo è pure punto di minimo assoluto della funzione su \mathbb{R}^2 .

(ii) Si osservi che il punto $(0,1) \notin A$. La frontiera $\partial A = C_1 \cup C_2$ è unione di due curve regolari di parametrizzazione

$$\begin{array}{lcl} C_1 & = & \{\varphi(t) = (-t,0) \ : \ t \in [-2,2]\} \\ C_2 & = & \{\gamma(t) = (2\cos t, 2\sin t) \ : \ t \in [\pi,2\pi]\}. \end{array}$$

Studiando $g(t) = f(\varphi(t)) = t^2 + 1$ quando $t \in [-2, 2]$, si trova t = 0, punto di minimo per g su [-2, 2], ovvero $(0, 0) = \varphi(0)$.

Studiando successivamente $h(t) = f(\gamma(t)) = 5 - 4 \sin t$ al variare di $t \in [\pi, 2\pi]$, si trova $t = 3\pi/2$ punto di massimo per h su $[\pi, 2\pi]$, ovvero $\gamma(3\pi/2) = (0, -2)$.

Esercizio (2)

Considerate la funzione

$$f(x,y)=y-x^2.$$

a) Determinate il massimo M ed il minimo m di f sull'insieme

$$A = \{(x, y) \in \mathbb{R}^2 : |x| \le |y| \le 2\}$$

b) Se il punto P_M (P_m) di massimo (minimo) di f su A cade su ∂A e se in questo punto la frontiera ammette una parametrizzazione regolare $\varphi(t)$, cosa si può dire del prodotto scalare $\langle \nabla f(P_M), \varphi'(t_M) \rangle$ dove $\varphi(t_M) = P_M$ (ovvero del prodotto $\langle \nabla f(Pm), \varphi'(t_m) \rangle$ dove $\varphi(t_m) = P_m$)?

Soluzione (Esercizio 2)

- (i) $\nabla f(x,y) = (1,-2x) \neq (0,0)$ per ogni $(x,y) \in R^2$, e quindi non esistono punti stazionari interni all'insieme A
- (ii) Il massimo di f è raggiunto in (0,2), e si ha

$$M = f(0,2) = 2 = \max_{\partial A} f = \max_{A} f,$$

mentre il minimo è raggiunto in (-2, -2) e (-2, 2), e si trova

$$m = f(-2, -2) = -6 = \min_{\partial A} f = \min_{A} f.$$

(iii) Nel caso del massimo, si trova che il prodotto scalare è nullo. Nel caso del minimo non si può concludere nulla in quanto non esiste univocamente determinato il vettore tangente alla frontiera nei punti (-2, -2) e (-2, 2).

Esercizio (3)

Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ la funzione definita da $f(x,y) = x^4 + 2y^2 - 4x^2 + 4y + 5$ per ogni $(x,y) \in \mathbb{R}^2$.

- Determinare gli eventuali punti stazionari di f in R² e studiarne la natura.
- **②** Dopo averne giustificato l'esistenza, determinare il massimo e il minimo assoluti di f nell'insieme $E = [0, 2] \times [-2, 0]$.

Soluzione (Esercizio 3)

• I punti stazionari di f su R^2 sono $A_1=(0,-1)$, $A_2=(-\sqrt{2},-1)$ e $A_3=(\sqrt{2},-1)$. Si ha

$$H_f(A_1)=\left(egin{array}{cc} -8 & 0 \ 0 & 4 \end{array}
ight), \qquad H_f(A_2)=H_f(A_3)=\left(egin{array}{cc} 16 & 0 \ 0 & 4 \end{array}
ight).$$

Quindi

- A₁ è un punto di sella,
- A₂ e A₃ sono punti di minimo relativo interno e $f(A_2) = f(A_3) = -1$
- L'insieme E è un rettangolo con vertici nei punti (0,0), (2,0), (2,-2) e (0,-2). Poiché E è chiuso e limitato e f è continua su E, il Teorema di Weierstrass garantisce che f ammette massimo e minimo assoluti in E. Il bordo di E può essere parametrizzato attraverso le curve
 - $\varphi_1(t) = (t,0)$, per ogni $t \in [0,2]$
 - $\varphi_2(t) = (2, t) \text{ per ogni } t \in [-2, 0],$
 - ▶ $\varphi_3(t) = (t, -2)$, per ogni $t \in [0, 2]$
 - $\varphi_4(t) = (0, t) \text{ per ogni } t \in [-2, 0],$

Studiando le funzioni $f \circ \varphi_j$ (j = 1, ..., 4) si ottiene che $\min_{\partial E} f = f(\sqrt{2}, 0) = f(\sqrt{2}, -2) = 1$ e $\max_{\partial E} f = f(0, 0) = f(0, -2) = f(2, -2) = f(2, 0) = 5$. Si conclude che $\min_E f = f(A_2) = f(A_3) = -1$ e $\max_E f = 5$.

Esercizio (4)

Data la funzione $f(x,y) = (x^2 + y^2 - 2y)y$, determinare

- i punti stazionari di f in R^2 e la loro natura;
- 2 il massimo ed il minimo assoluti di f nell'insieme

$$E = \{(x, y) \in \mathbb{R}^2 : |x| \le y \le 2\}.$$

Soluzione (Esercizio 4)

1 I punti stazionari della funzione f su R^2 sono: A=(0,0) e $B=(0,\frac{4}{3})$. Si ha

$$H_f(A) = \left(egin{array}{cc} 0 & 0 \\ 0 & -4 \end{array}
ight), \qquad H_f(B) = \left(egin{array}{cc} rac{8}{3} & 0 \\ 0 & 4 \end{array}
ight).$$

- ▶ la natura del punto A non si ottiene dallo studio dell'Hessiana,
- ▶ il punto B è di minimo relativo interno e $f(B) = -\frac{32}{27}$.

Valutiamo il segno di f(x,y) - f(0,0) = f(x,y) intorno a (0,0). Poiché $f(x,x^3) = x^5 - 2x^6 + x^9$ cambia segno in un intorno di x = 0, (0,0) non è né di massimo né di minimo per f.

- ullet E è il triangolo di vertici (0,0), (2,2) e (-2,2). Il bordo di E si può parametrizzare con
 - ▶ $\varphi_1(t) = (t,2)$ per ogni $t \in [-2,2]$,
 - $\varphi_2(t) = (-t, t) \text{ per ogni } t \in [0, 2],$
 - $\varphi(t) = (t, t) \text{ per ogni } t \in [0, 2].$

Si trova che la restrizione di f a ∂E ha massimo assoluto 8 = f(2,2) = f(-2,2) e minimo assoluto $-\frac{8}{27} = f(-\frac{2}{3},\frac{2}{3}) = f(\frac{2}{3},\frac{2}{3})$. Essendo $-\frac{8}{27} > -\frac{32}{27}$, si conclude che

$$\max_{E} f = \max_{\partial E} f = 8 \qquad \min_{E} f = \min_{E \setminus \partial E} f = -\frac{32}{27}.$$