CHAPTER 1

Introduction
to Compiling

The principles and techniques of compiler writing are so pervasive that the

ideas found in this book will be used many times in the carcer of a computer

scientist. Compiler writing spans programming languages, machine architec-

ture, language theory, algorithms, and software engineering. Fortunately, a

few basic compiler-writing techniques can be wsed to construct translators for

a wide variety of languages and machines. In this chapter, we introduce the

subjcct of compiling by describing the components of a compiler, the environ-
ment in which compilers do their job, and some software tools that make it

easier to build compilers,

1.1 COMPILERS

Simply stated, a compiler is a program that reads a program wrillen in one
language — the source language — and translates it info an equivalent program
in another language - the target language (see Fig. 1.1). As an important part
of this translation process, the compiler reports to its user the presence of
errors in the source program.

source : target
s compiler -
Progranm progeam
error
mCssIges

Fig. 1.1. A compiler.

At first glance, the varicty of compilers may appear overwhelming. There
arc thousands of source languages, ranging from traditional programming
languages such as Fortran and Pascal to specialized languages that have arisen
in virtually every area of computer application. Target languages are equally
as varied: a target language may be another programming language, or the
machine language of any computer between a microprocessor and a

2 INTRODUCTION T COMPILING sEC. 0.1

supercomputer, Compilers are sometimes classilied as single-pass, multi-pass,
load-and-go, debugging, or optimizing, depending on how they have been con-
structed or on what function they sre supposed to perform. Despite this
apparcnt complexity, the basic tasks that any compiler must perform are
essentially the same. By understanding these tasks, we can construct com-
pilers for a wide variety of source languages and target machines using the
same basic technigues.

Our knowledge about how 1o organize and write compilers has increased
vastly since the first compilers started 1o appear in the carly 1950's, It is diffi-
cult to give an cxact date for the first compiler becausc initially a great deal of
experimentation and implementation was done independently by several
groups. Much of the carly work on compiling dealt with the translation of
arithmetic formulas into machine code.

Throughout the 1950°s, compilers were considercd notoriously difficull pro-
grams to write. The firsi Foriran compiler, for example, ok 18 staff-years
to implement (Backus ct al. [1957]). We have since discovered systematic
techniques for handling many of the important tasks that occor during compi-
lation. Good implementation languages, programming environments, and
software tools have also been developed. With these advances, a substantial
compiler can be implemented cven as a student project in @ onc-semesier
compiler-design course.

The Analysis-Synthesis Model of Compilation

There are two parts (o compilation: analysis and synthesis. The analysis part
breaks up the source program into conslituent picces and creates an intermedi-
ate representation of the source program. The synthesis part constructs the
desired target program from the intermediate representation. OF the two
parts, synthesis requires the most specialized technigues. We shall consider
analysis informally in Section 1.2 and outling the way targel code is syn-
thesized in a standard compiler in Section 1.3,

During analysis, the operations implicd by the source program are deter-
mined and recorded in a hicrarchical structure called a tree. Ofien, a special
kind of tree called a syntax tree is used, in which each node represents an
operation and the children of 8 node represent the arguments of the operation,
For cxample, a syntax tree for an assignment statement is shown in Fig. 1.2,

H
I
position +

- .
initial -

A~ N
rate &0

Fig. 1.2. Syntax trec for position:einitial+rates&0.

SEC. 1.1 COMPILERS 3

Many software tools that manipulate source programs first perform some

kind of analysis. Some examples of such tools include:

Structure editors. A structurc cditor takes as inpul a sequence of com-
mands to build a source program. The structure cditor pot only performs
the text-creation and modification functions of an ordinary text editor,
but it also analyzes the program teat. putting an appropriate hierarchical
structure on the source program. Thus, the structure editor can perform
additional tasks that wre useful in the preparation of programs. For
example, it can check that the input is correctly formed, can supply key-
words automatically (e_g., when the user types while, the editor supplies
the matching do and reminds the user that a conditional must come
between them), and can jump from a begin or lelt parcnthesis (o its
matching end or right parenthesis. Further, the output of such an edilor
is often similar to the output of the analysis phase of a compiler,

Pretty printers. A pretty printer analyzes a program and prints it in such
a way that the structure of the program becomes clearly visible, For
example, comments may appear in a special lonl, and statements may
appear with an amount of indentation proportional Lo the depth of their
nesting in the hierarchical organization of the statements. '

Static checkery. A static checker reads a program, analyzes it, and
attempts to discover potential bups without running the program. The
analysis portion is often similar to that found in optimizing compilers of
the type discussed in Chapter 10. For cxample, a static checker may
detect that parts of the source program can never be executed, or that a
certain variable might be used before being defined. In addition, it can
catch logical errors such as trying to use a real variable as a pointer,
employing the typechecking techniques discussed in Chapter 6.

Interpreters. Instead of producing a target program as a translation, an
interpreter performs the operations implied by the source program. For
an assignment statement, for ¢cxample, an interpreter might build a tree
like Fig. 1.2, and then carry out the operations at the nodes as it “walks™
the tree. At the root it would discover it had an assignment to perform,
so0 it would call a routine to evaluate the expression on the right, and then
store the resulting value in the location associated with the identifier
position. At the right child of the root, the routine would discover it
had to compute the sum of two expressions. It would call itsell recur-
sively to compute the value of the expression rate » 60. It would then
add that value to the value of the variable initial.

Interpreters are frequently used o execute command languages, since
each operator executed in @ command language is usually an invocation of
a complex routine such as an editor or compiler. Similarly, some “very
high-level” languages, like APL, are normally interpreted because there
arc many things about the data, such as the size and shape of arrays, that

4 INTRODUCTION TO COMPILING seC, 1.1

cannot be deduced at compile time.

Traditionally, we think of a2 compiler as a program that rranslates a source
language like Fortran into the assembly or machine language of some com-
puter, However, there are seemingly unrelated places where compiler technol-
ogy is regularly used. The analysis portion in each of the following examples
is similar to that of a conventional compiler.

I. Text formaiters. A text formatter takes input that is a stream of charac-
ters, most of which is text to be typeset, but some of which includes com-
mands o indicate paragraphs, figures, or mathematical structures like
subscripts and superscripts. We mention some of the analysis done by
text formatters in the next section.

2. Silicon compilers. A silicon compiler has a source language that is similar
or identical to a conventienal programming language. However, the vari-
ables of the language represent, not locatiens in memory, but, logical sig-
mals (0 or 1) or groups of signals in a switching circuit. The output is a
circuit design in an appropriate language. See Johnson |1983], Ullman
[19B4], or Trickey |1985] for a discession of silicon compilation.

3. Query interpreters. A query inlerpreter translates a predicate containing
relational and boolean operators into commands to search a database for
records satisfving that predicate. (See Ullman [1982] or Date | 1986).)

The Context of a Compiler

In addition 1o & compiler, several other programs may be required 1o create an
executable target program. A source program may be divided into modules
stored in separate files. The task of collecting the source program is some-
times entrusted to & distinct program, called a preprocessor. The preprocessor
may also expand shorthands, called macros, into source language statements.

Figure 1.3 shows a typical “compilation.” The target program created by
the compiler may require further processing before it can be run. The com-
piler in Fig. 1.3 creates assembly code that is translated by an assembler into
machine code and then linked together with some library routines into the
code that actually runs on the machine.

We shall consider the components of a compiler in the next two sections,
the remaining programs in Fig. 1.3 are discussed in Scction 1.4,

1.2 ANALYSIS OF THE SOURCE PROGRAM

In this section, we introduce analysis and illustrate its use in some text-
formatting languages. The subject is treated in more detail in Chapters 2-4
and 6. In compiling, analysis consists of three phases:

|. Linear analvsis, in which the stream of characters making up the source
program is read from left-to-right and grouped into rtokens that are
sequences of characters having a collective meaning.

sEC, 1.2 ANALYSIS OF THE SOURCE PROGRAM 5

skelotal source program

Preprocossnr

SOUFCE [Arograim

compiler

targel assembly program
i

assembler

relocatable machine code

R S

e ; library,
,h_h:dt MR relocatable object files

ahsolute machine code

Fig. 1.3, A language-procossing sysicm.

2. Hierarchival analvsis, in which characters or tokens are grouped hierarchi-
cally into nested collections with collective meaning.

3. Semanric analysis, in which certain checks are performed to cnsure that
the components of a program [it together meaningfully.

Lexical Analysis

In a compiler, linear analysis is called fexical! anulvsis or scanning. For exam-
ple, in lexical analysis the characters in the assignment statement

position := initial + rate » &0
would be grouped into the following tokens.

The identifier position.
The assignment symbaol :=,
The identifier initial.
The plus sign.

The identifier rate.

The multiplication sign.
The number &60.

=] & obh o e b =

The blanks scparating the characters of these tokens would normally be elim-
inated during lexical analysis,

6 INTRODUCTION TO COMPILING SEC. 1.2

Syntax Analysis

Hierarchical analysis is called parsing or synrer unatysts. 1t nvolves grouping
the tokens of the source program into grammatical phrases that are used by
the compiler to synthesize output, Usually, the grammatical phrases of the
source program are represenled by a parse tree such as the one shown in Fig,

1.4,
s gamered
sfcifement
//) \
identifier ELPresNTi
position // + \\
EXPITESSTE SLPrELsiin
dentifier / | \
| CARrEViIN ELIrERNien
initial | |
ideniifier nimber
rate &0

Fig. 1.4. Parse trec for position:=initial +rate = 60.

In the cxpression initial + rate « 60, the phrase rate = 60 is a logi-
cal unit because the wsual conventions of arithmetic expressions tell us that
multiplication” is performed before addition, Because the ecxpression
initial +rate is followed by a =, il is not grouped into a single phrase by
itself in Fig. 1.4,

The hierarchical structure of a program is usually expressed by recursive
rules. For example, we might have the following rules as part of the defini-
tion of expressions;

I. Any idensifier is an expression,
2. Any mumber is an expression,
3. If expression) and expression, are expressions, then so are

CAPPESSION , + chpression
CIPrESSION % eXPrEssion o
{ expression;)

Rules (1) and (2) are {nonrecursive) basis rules, while (3) defines expressions
in terms of operators applied to other expressions. Thus, by rule (1), ini-
tial and rate are expressions, By rule (2), 60 is an cxpression, while by
rule (3}, we can first infer thal rate+ &0 i3 4n cxpression and finally that
initial + rate # 60 is an expression.

Similarly, many languages define statements recursively by rules such as:

SEC. 1.2 ANALYSIS OF THE SOURCE PROGRAM 7

L. If identifier) is an identifier, and expression, s an expression, then
identifier, = expression;

15 a statement.
-]

2. IF expression is an expression and statemienty i5 a statement, then

while [¢xpression |) do srarement,
if { expression;) then stutement

are statements.

The division between lexical and syntactic analysis 1% somewhat arbitrary,
We usually choose a division that simplifics the overall task of analysis, One
factor in determining the division is whether a source language consiruct is
inherently recursive or not. Lexical constructs do not require recursion, while
syntactic constructs often do. Contest-free grammars are a formalization of
recursive rules that can be used to guide syntactic analysis. They are intro-
duced in Chapter 2 and studied extensively in Chapter 4,

For example, recursion is not required to recognize identifiers, which -are
typically strings of letters and digits beginning with a letter. We would nor-
mally recognize identifiers by a simple scan of the input stream. waiting until
a character that was neither a letter nor a digit was found, and then grouping
all the letters and digits found up to that point into an identifier token.| The ~
characters so grouped are recorded in a table, called a symbol fable, and
removed from the input 5o that processing of the next token can begin.

On the other hand, this kind of linear scan is not powerful cnough to
analyze expressions or statements, For example, we cannot properly match
parentheses in expressions, or begin and end in statements, without putting
some kind of hicrarchical or nesting structure on the inpul.

) N
position - positicn +
ey o
initial " initial -
2T ~
rate &0 rate inftoreal
|
(a) () &0

Fig. 1.5. Scmantic analysis inserts a conversion from integer G real,

The parse tree in Fig. 1.4 describes the syntactic structure of the inpur, A
maore common internal representation of this syntactic structure is given by the
syntax tree in Fig. 1.5(a). A syntax tree is a compressed representation of the
iﬁrsc tree in which the operators appear as the interior nodes, and the
operands of an operator are the children of the node for that operator. The
conatruction of trees such as the one in Fig. 1.3(a) is discussed in Section 5.2,

8 INTRODUCTION TO COMPILING sEC, 1.2

We shall take up in Chapter 2, and in more detail in Chapter 5, the subject of
symtax-cirected translation, in which the compiler uses the hierarchical struc-
turc on the input to help generate the output,

Semantic Analysis

The semanlic analysis phase checks the source program for semantic errors
and gathers type information for the subsequent codc-generation phasc. It
uses the hierarchical structure determined by the syntax-analysis phase to
identify the operators and operands of expressions and statements.

An important component of semantic analysis is type checking. Here the
compiler checks that each operator has operands that are permitted by the
source language specification. For example, many programming language
definitions require a compiler to report an ecror every time a real number is
used 1o index an array. However, the language specification may permit some
operand coerciens, for example, when a binary arithmetic operator is applied
to an inteper and real. In this casc, the compiler may need to convert the
integer to a real. Type checking and semantic analysis are discussed in
Chapter 6.

Example 1.1. Inside a machine, the bit patiern represenling an intcger s gen-
erally different from the bit pattern for a real, even if the integer and the real
number happen 0 have the same value. Suppose, for example, that all iden-
tifiers in Fig. 1.5 have been declared to be reals and that 60 by itself is
assumed to be an integer. Type checking of Fig. 1.5{a) reveals that = is
applied to a real, rate, and an integer, 60, The gencral approach is to con-
vert the integer into @ real. This has been achieved in Fig. 1.5(b) by creating
an extra node for the operator inttoreal that explicitly converts an integer into
a real. Alternatively, since the operand of inttoreal is a constanl, the com-
piler may instead replace the integer constant by an eguivalent real constant, O

Analysis in Text Formatters

It is usetul to regard the input 10 a text formatier as specifying a hicrarchy of
hoxes that are rectangular regions to be filled by some bit pattern, represent-
ing light and dark pixels to be printed by the output device.

For example, the TEX system (Knuth [1984a]) views its input this way.
Each charuacter that is not part of a command represents a box containing the
bit pattern for that character in the appropriate font and size. Consecutive
charaviers not separated by “white space™ (blanks or newline characters) are
grouped into words, consisting of a sequence of horizontally arranged boxes,
shown schematically in Fig. 1.6. The grouping of characters into words (or
commands) is the linear or lexical aspect of analysis in a text formatter.

Boxes in TEX may be bult from smaller boxes by arbitrary horizontal and
vertical combinations, For example,

“hbax{ <list of boxes=> }

[INTRODUCTION TO COMPILING SEC, 1.2

a sub {i sup 2}

resulls in a0, Grouping the operators sub and sup into tokens is part of the
lexical analysis of EQN text. However, the syntactic structure of the teat is
needed to determine the size and placement of a box,

1.3 THE PHASES OF A COMPILER

Conceptually, a compiler operates in phases, each of which transforms the
source program from one representation to another. A typical decomposition
of a compiler is shown in Fig. 1.9. In practice, some of the phases may be
grouped together, as mentioned in Section 1.5, and the intermediate represen-
tations berween the grouped phases need not be explicitly constructed.

KOUWrce program

lexical
amalveer

5}1“51
analyzer
semantic

symbal-table inﬂ]fu‘.r errar

manager - ; handler
= |intermediate code

gencristor

!

code
oplimizer
t

code
gencrator

farget program

Fig. 1.9. Phascs of a compiler,

The first three phases, forming the bulk of the analysis portion of a com-
piler, were introduced in the last section. Two other activities, symbaol-table
management and error handling, are shown interacting with the six phases of
lexical analysis, syntax analysis, semanlic analysis, intermediate code genera-
tion, code optimization, and code generation. Informally, we shall also call
the symbol-table manager and the error handler “phases.”

SEC, 1.3 THE PHASES OF A COMPILER |

Symbol-Table Management

An essenfial function of a compiler is to record the identifiers used in the
source program and collect information abowt various attributes of cach iden-
tifier. These attributes may provide information about the storage allocated
for an identifier, its type, its scope (where in the progra® it is valid), and, in
the case of procedure names, such things as the number and types of its argu-
ments, the method of passing each argument (e.g., by reference), and the type
returned, il any.

A symbol table is a data structure containing a record for each identifier,
with fields for the attributes of the identifier, The data structure allows us to
find the record for each identifier guickly and to store or retrieve data from
that record quickly. Symbol tables are discussed in Chapters 2 and 7.

When an identifier in the source program is detected by the lexical
analyzer, the identifier is entered into the symbol rable. However, the attri-
butes of an identifier cannot normally be determined during lexical analysis,
For example, in a Pascal declaration like

var position, initial, rate : real ;

the type real is not known when position, initial, and rate are scen by
the lexical analyzer.

The remaining phases enter information sbout identifiers into the symbol
table and then wuse this information in various ways. For example, when .
doing semantic analysis and intermediate code generation, we need to know
what the types of identifiers are, so we can check that the source program
uses them in valid ways, and so that we can generate the proper operations on
them. The code generator typically enters and uses detailed information about
the storage assipned 1o wentifiers.

Error Detection and Reporting

Each phase can encounter errors. However, after detecting an error, a phase
must somehow deal with that error, so that compilation can proceed, allowing
further errors in the source program to be detected.- A compiler that stops
when it finds the first error is not as helpful as it could be.

The syntax and semantic analysis phases usually handle a large fraction of
the errors detectable by the compiler. The lexical phase can detect errors
where the characters remaining in the input do not form any token of the
language. Errors where the token siream violaies the structure rules {syntax)
of the language arc determined by the syntax analysis phase. During semantic
anulysis the compiler tries 1o detect constructs that have the right syntactic
structure bug no meaning to the operation involved, e.g., if we iry to add two
identifiers, one of which is the name of an array, and the other the name of a
procedure. We discuss the handling of errors by each phase in the part of the
book devoted to that phase,

12 INTRODUCTION TO COMPIANG SEC. |.3

The Analysis Phases

As translation progresses, the compiler's internal representation of the source
program changes. We illustrute these representations by considering the
translation of the statement

position := initial + rate = &0 (1

Figure | 10 shows the representation of this statement alter cach phase.

The lexical analysis phase reads the charucters in the source program and
groups them into a stream of tokens in which esch token represents a logically
cohesive sequence of characters, such as an wentifier, o keyword (1f, while,
etc.). a punciuation character, or & mulli-<character operator like :=. The
character sequence lorming g token is called the fexeme Tor the token.,

Certain tokens will be augmented by a “lexical value.” For example, when
an identitier like rate is found, the lexical analyzer not only generates a
token, say id, but also enters the lexeme rate into the symbol table, if it is
not #lready there. The lexical value associated with this occurrence of id
points to the symbol-table entry for rate.

In this section, we shall use id,, ids, and idy for pesition, initial, and
rate, respectively, to emphasize that the internal representation of an identil-
ier s different from the characler sequence forming the identifier. The
representation of (1.1} after lexical analysis is therefore suggested by

id, 1= id, + id; » 60 (1.3

We should also make up tokens for the multi-characler operator := and the
number 63 to retlect their internal representation, but we defer that until
Chapter 2. Lexical analysis is covered in detail in Chaprer 3,

The second and third phases, syntax and semantic analysis, have also been
introduced in Scction 1.2, Syntax analysis imposes a hierarehical structure on
the token stream, which we shall portray by syniax trees as in Fig. 1.11(a), A
typical data structure for the tree is shown in Fig, 1.1i(h) in which 4n interior
nade 5 @ record with a field for the operator and two fields containing
pointers to the records for the lef and right children. A Jeaf is a record with
two or more fields, one o identify the token at the leal, and the others o
record information aboul the token. Additional informanon abowt longuage
construets can be kept by adding more lields to the records (or nodes. We
discuss syntax and semantic analysis in Chapters 4 and 6, respectively.

Intermediate Code Generation

After syntax and semantic analysis, some compilers generate an explicit inter-
mediate representation of the source program. We can think of this inter-
mediate representation as & program for an abstract machine. This intermedi-
ate representation should have two important properties; it should be easy (o
produce, and easy o translale into the targel program,

The intermediate representation can have a variety of forms. In Chapier &

SEC. 1.3 THE PHASES OF A COMPILER

position := initial + rate w» GO

! lcxacal analyzxer l

[}
id, :=id. +id, « &0

i

| syntax analyscr I

¥

+

= f:x““'-u
id,

gt
i ,-"'.‘“'-».
id, el

¥

|_ semanlic anslyzer 1

SYMOOL TADLE id; *
position| - - id, Tﬁhar&al
inivial | - - . a0
rate |

mtermedisle code encrator l

NS

Bt bd —

templ = inttoreal(60)
temp2 := 1d3 + tempi
tempd := idld + ELemnpd
id1 = tempd

|

| code optimizer |

templ = idl « &0.0
id1 = id2 # templ

¥

| cide gencrulor |

HOVF iri‘ﬂ.. B2
MULF #&0.0, B2
MOVF id2, R1
ADDF B2, R1
MOVF R1, id1

Fig. 1.10. Translation of & statement.

f4 INTRODUCTION TO COMPILING SEC, 1.3

(@3] mo)

(a) (k)

Fig. 1.11. The data structure i (b) is for the trec in {a).

we consider an intermediate form called “three-address code,” which is like
the assembly language for & machine in which every memory location can act
like a register. Three-address code consists of a sequence of instructions, each
of which has at most three operands. The source program in (1,1) might
appear in three-address code as

templ i= inttoreal{&0d)
temp2 ;= idd * templ
temp3d i= id2 + temp2
id1 := temp3d

(1.3)

This intermediate form has several propertics. First, each three-address
instruction has at most one operator in addition (o the assignment, Thus,
when generating these instructions, the compiler has to decide on the order in
which operations are to be done; the multiplication precedes the addition in
the source program of (1.1). Second, the compiler must generate a temporary
name b0 hold the value computed by each instruction. Third, some “three-
address™ instructions have fewer than three operands, e.g., the first and last
instructions in (1.3).

In Chapter B, we cover the principal intermediate representations used in
compilers, In general, these representalions must do more than compute
eapressions; they must also handle flow-of-contrel constructs and procedure
calls. Chapters 5 and 8 present algorithms for generating intermediate code
for typical programming language constructs,

Coede Oplimization

The code optimization phase atlempts to improve the intermediate code, so
that faster-running machine code will result. Some optimizations are trivial.
For example, a natural algorithm generates the intermediate code (1.3}, using
an instruction for each operator in the tree representation after semantic
analysis, cven though there is a better way to perform the same calculation,
using the two instructions

SEC. 1.3 THE PHASES OF A COMPILER 15

templ = id3 = 60.0

id1 := id2 + temp? (L.4)

There is nothing wrong with this simple algorithm, since the problem can be
fixed during the code-optimization phase. That is, the compiler can deduce
that the conversion of 60 from integer to real representation can be done once
and for all at compile time, so the inttoreal operation can be eliminated.
Besides, temp3 is used only once, to transmit s value to id1. It then
becomes safe to substitute id1 for temp3, whereupon the last statement of
(1.3) is not needed and the code of {1.4) results.

There is great variation in the amount of code optimization different com-
pilers perform. In those that do the most, called “optimizing compilers,” a
significant fraction of the time of the compiler is spent on this phase. How-
ever, there are simple optimizations that significantly improve the running
time of the target program without slowing down compilation too much,
Many of these are discussed in Chapter 9, while Chapter 10 gives the technal-
ogy used by the most powerful optimizing compilers.

Code Generatbon

The final phase of the compiler is the generation of target code, consisting
normally of relocatable machine code or assembly code. Memory locations
are selected for each of the variables used by the program. Then, intermedi-
ate instructions are cach translated into a sequence of machine instructions
that perform the same task, A crucial aspect is the assignment of variables to
regislers,

For example, using registers | and 2, the translation of the code of (1.4)
might become

MOVF id3, R2

MULF #60.0, R2

MOVF idZ, R1 (1.3}
ADDF R2, R1

MOVF R1, id1

The first and second operands of each instruction specify s source and destina-
tion, respectively. The F in cach instruction telis us that instructions deal with
floating-poinl numbers. This code moves the contents of the address’ 1da
inte register 2, then multiplies it with the real-constant 60.0. The # signifies
that 60.0 is to be treated as a constant, The third instruction moves 1d2 into
register | and adds to it the value previously computed in register 2. Finally,
the value in register | is moved into the address of 141, so the code imple-
ments the assignment in Fig. 1.10. Chapter 9 covers code gencration,

" We have side-stepped the importani issuc of storage allocation for the identifiers in the source
program. As we shall sec in Chupier 7, the organization of storuge at run-time depends on the
language being compied. Storage-aliocation decisions wre mude cither during intermediate coude
peneration or during ocode generation,

Compilers

Principles, Techniques, and Tools

ALFRED V. AHO

AT&T Bell Laboratories
Murray Hill, New Jersey

RAVI SETHI

ATE&ET Bell Laboratories
Murray Hill, New Jersey

JEFFREY D. ULLMAN

Sranford University
Stanford, Califormia

)
.

b
13
E

Ve

il

ADDISON-WESLEY PUBLISHING COMPANY

Regding, Massachuseits » Menle Fark, Coliforna

Dan Mills, Ontaric » Wokingham, England Amsterdam » Sydaey
Singapore = Tokyo » Madrid » Bogotd Santizgo e San Juzn

