
Quaderni del Dipartimento di Matematica e Informatica
Università degli Studi di Parma

Gianfranco Rossi1, Federico Bergenti2

Nondeterministic Programming in Java
with JSetL

29 gennaio 2013 n. 510

Il presente lavoro è stato finanziato in parte dal progetto GNCS “Specifiche
insiemistiche eseguibili e loro verifica formale”.

1Università degli Studi di Parma, Parma, Italy, gianfranco.rossi@unipr.it
2Università degli Studi di Parma, Parma, Italy, federico.bergenti@unipr.it



Nondeterministic Programming in Java

with JSetL

Gianfranco Rossi, Federico Bergenti

Dipartimento di Matematica e Informatica

Università degli Studi di Parma

Parco Area delle Scienze 53/A, 43124 Parma, Italy

{gianfranco.rossi|federico.bergenti}@unipr.it

Abstract

In this paper, we show how nondeterministic programming techniques can
be used within the Java programming language. Our proposal is to stay within
a library-based approach but taking advantage of the (nondeterministic) con-
straint solver provided by the library JSetL to give the user the possibility to
define its own nondeterministic code as new constraints. We also point out the
potential synergy between nondeterminism and sets and between nondetermin-
ism and constraint programming. We support our claims by showing concrete
Java implementations of a number of different examples ranging from classical
combinatorial problems to list operations, and from graph-based problems to
implementing Definite Clause Grammars.

1 Introduction

Nondeterministic programming is a programming paradigm in which one can specify
various alternatives (called choice points) for program flow. The program computa-
tion, therefore, can be described as a tree (namely, a computation tree) where each
node represents a choice point. Basically, two forms of nondeterminism have been
considered in programming languages: don’t know nondeterminism and don’t care
nondeterminism. For don’t know nondeterminism, the choice can be made arbi-
trarily: each path in the computation tree should lead to a correct outcome. For
don’t care nondeterminism, some path in the computation tree should lead to a
correct outcome, while others may lead to a failure. In this case, the choice matter,
but the correct one is not known at the time the choice is made. These two forms
of non-determinism lead to completely different issues and different considerations.
Don’t care nondeterminism is present, for example, in Dijkstra’s guarded command
language and in Concurrent ML, in which communications may be synchronized
nondeterministically. In this paper we will not address don’t care nondeterminism.

1



Unless otherwise specified, whenever we will say “nondeterminism” we will refer to
don’t know nondeterminism.

The usual method to implement (don’t know) nondeterminism is via backtrack-
ing. If a failure is encountered, the program computation have to revert (i.e., to
backtrack) to some open choice point, i.e. one which have at least one alternative
originally ignored, and try another unexplored path. One complication is that the
system must be able to restore old program states by undoing all effects caused by
partially executing a branch that eventually failed.

The problem of incorporating constructs to support nondeterminism into pro-
gramming languages have been discussed at length in the past. Early references to
this topic are [5], for a general overview, and [14] for an analysis of the problem in
the context of functional programming languages. Logic programming languages,
notably Prolog, strongly rely on nondeterminism. Their computational model is
inherently nondeterministic (at each computation step, one of the clauses unifying
a given goal is selected nondeterministically) and the programmer can exploit and
control nondeterminism using the language features when defining its own proce-
dures.

As regards imperative programming, however, only relatively few languages pro-
vide primitive constructs to support nondeterminism. An early example is SETL
[13], a Pascal-like language endowed with sets, which provides among others a few
built-in features to support backtracking (e.g., the ok and fail primitives). Also
Python’s yield mechanism—and, more generally, the coroutine mechanisms present
in various programming languages—can be used as a way to explore the computation
tree associated with a nondeterministic program. More recently, the programming
language Alma-0 [1, 2] provides a comprehensive collection of primitive constructs
to support nondeterministic programming, such as the statements orelse, some,
forall, commit, for creating choice points and handling backtracking, as well as
other related features such as statements as boolean expressions, generalization of
equality and a new parameter passing mechanism.

A challenging possibility would be to have facilities to support (general) nonde-
terministic programming also in a well-assessed object-oriented imperative program-
ming language, such as Java. Extending the language with primitive constructs that
offer such support is, indeed, quite demanding in general. An alternative solution
would be a library-based approach in which the new facilities are provided as ex-
ternal libraries, possibly written in the language itself by exploiting the language
abstraction mechanisms. This approach has the undeniable advantage of having no
impact on the host language and hence of being easier to be accepted by the (usu-
ally conservative) programmers. On the other hand, supporting nondeterminism
requires to interact with the program control flow, and this is done in general much
better from within the language, via primitive constructs, rather than on the top of
the language itself, as it happens with the library-based approach.

At our knowledge no existing library addresses the problem of enriching an im-
perative (possibly O-O) language with a comprehensive collection of facilities to

2



support nondeterministic programming. Actually, libraries that support constraint
programming, such as Choco [4], Gecode [8], JaCoP [9], and many others, very often
provide mechanisms for nondeterministically compute solutions to Constraint Satis-
faction Problems (CSP). While it is undeniable that constraint solving can be used
to solve many of the problems usually addressed in nondeterministic programming
(think for example to the ubiquitous n-queens problem), it is also true that not all
such problems can be modelled as constraint satisfaction problems.

Our proposal is to stay within a library-based approach but taking advantage of
the (nondeterministic) constraint solver provided by the library to give the user the
possibility to define its own nondeterministic code as new constraints.

We will illustrate this possibility in the next sections with a number of simple
examples using JSetL [12]. JSetL is a Java library that endows Java with a number
of facilities that are intended to support declarative and constraint programming.
In this paper we show how JSetL can be used to support general forms of nondeter-
ministic programming as well. This is obtained by combining different but related
facilities: set data structures (along with their relevant operations), constraint solv-
ing, logical variables, unification, and user-defined constraints. In particular, JSetL
provides a nondeterministic constraint solver, using choice-points and backtracking.
It also allows the user to define its own constraints, that can take advantage of the
facilities for expressing and handling nondeterminism provided by the solver. Thus,
the user can define his/her general nondeterministic procedures as new constraints,
letting the constraint solver handle them.

The paper is organized as follows. In Section 2 we show how JSetL can support
nondeterminism through the use of general forms of set data structures and set oper-
ations which are, by their nature, inherently nondeterministic. Section 3 shows how
various problems can be modelled as CSP and solved using JSetL’s constraints and
constraint solving procedures, exploiting the labelling mechanism for nondetermin-
istically assigning domain values to variables involved in the CSP. Section 4 briefly
introduces general nondeterministic control structures and the relevant language
constructs. In Section 5 we show how different nondeterministic control structures
can be implemented in Java using the facilities for defining new constraints provided
by JSetL. Section 6 discusses multiple uses of constraint methods, that is the pos-
sibility to use the same methods both for testing and computing solutions. Finally,
in Section 7 we show a more complete example of application of the facilities of-
fered by JSetL to support nondeterministic control structures: the implementation
of Definite Clause Grammars.

2 Sets and Nondeterminism

Nondeterminism is strongly related to the notion of set and set operations. Accord-
ing to [16] “The abstract character of a set makes it an essentially nondeterministic
structure . . . ”. “Nondeterministic operations are related to sets in that we think of
them as capable of returning any element from some set of possible results.”. “the

3



paradigmatic example of a nondeterministic operation is that of an arbitrary choice
among the elements of some sets”. Relations between sets and nondeterminism are
pointed out also in [11] where nondeterminism is analyzed in the context of set
theoretic formal specifications.

Availability of suitable set data abstractions, therefore, represents a first viable
solution to the problem of expressing nondeterminism within a programming lan-
guage.

Let us illustrate this solution with a couple of simple examples written using
JSetL. First we need to briefly introduce the main features provided by JSetL to
support set data abstractions.

Basically, sets are created in JSetL as instances of the class LSet. Elements of
a LSet object can be of any type, including other LSet objects (i.e., nested sets are
allowed). Moreover, sets denoted by LSet (also referred to as logical sets) can be
partially specified, i.e., they can contain unknown elements, as well as unknown parts
of the set. Single unknown elements are represented by unbound logical variables
(i.e., uninitialized objects of the class LVar), whereas unknown parts of the set are
represented by unbound logical sets (i.e., uninitialized objects of the class LSet).
Sample declarations of logical variables and sets in JSetL are shown in Example 2.1.

Example 2.1 (Logical variables and sets in JSetL)

• LVar x = new LVar() creates an unbound logical variable x

• LSet ls1 = new LSet() creates an unbound logical set ls1

• LSet ls2 = LSet.empty().ins(1).ins(2).ins(3) creates a logical set ls2
with value {1,2,3}; in general, s.ins(o), where s is a logical set and o is
any object, returns a new logical set whose value is obtained by adding o as an
element to s

• LSet ls3 = ls1.ins(x) creates a partially specified logical set ls3 with an
unknown element x and an unknown rest ls1 (also denoted {x | ls1} using an
abstract notation).

�

JSetL provides the basic operations on this kind of sets, such as equality, inequal-
ity, membership, cardinality, union, etc., in the form of primitive constraints, simi-
larly to what provided by the Constraint Logic Programming language CLP(SET )
[6]. In particular, JSetL uses set unification [7] to solve equalities over partially
specified sets.

Set unification, as well as other basic set-theoretical operations, may involve non-
determinism. For example, the equation {x, y} = {1, 2}, where x and y are unbound
logical variables, admits two distinct solutions: x = 1 ∧ y = 2 and x = 2 ∧ y =
1. In JSetL, these solutions are computed nondeterministically by the constraint
solver. Similarly, the predicate x ∈ {1, 2, 3}, where x is an unbound logical variable,
admits three distinct solutions, x = 1, x = 2, and x = 3, which are computed
nondeterministically by the constraint solver.

4



A JSetL constraint solver is an instance of the class SolverClass. Basically, it
provides methods for adding constraints to its constraint store (e.g., the method add)
and to prove satisfiability/unsatisfiability of a given constraint (methods check and
solve). If s is a solver, Γ is the constraint stored in its constraint store (possibly
empty), and c is a constraint, s.check(c) returns false if and only if Γ ∧ c is
unsatisfiable.1

Hereafter we show two examples where we exploit the nondeterminism embedded
in set operations to provide a nondeterministic solution to two simple problems. The
examples illustrate also how the non-determinism of the JSetL solver interacts with
the usual features of the underlying imperative Java language.

As a first example, let us consider the problem of printing all permutations of a
set of integer numbers s. The problem can be modelled as the problem of unifying
a (partially specified) set of n = |s| logical variables {x1, . . . , xn} with the set s, i.e.,
{x1, . . . , xn} = s. Each solution to this problem yields an assignment of (distinct)
values to variables x1, . . . , xn that represents a possible permutation of the integers
in s.

Example 2.2 (Permutations) Given a set of integer numbers s, print all permuta-
tions of s.

public static void allPermutations(LSet s) {
int n = s.getSize(); // the cardinality of s
LSet r = LSet.mkLSet(n); // r = {x1,x2,. . . ,xn}
solver.check(r.eq(s)); // r = s

do {
r.printElems(’ ’);

System.out.println();

} while (solver.nextSolution());

}

The invocation LSet.mkLSet(n) creates a set composed of n unbound logical vari-
ables. This set is unified, through the constraint eq, with the set of n integers s.
This is done by invoking the method check of the current constraint solver solver

(solver is assumed to be created outside the method allPermutations). The invo-
cation check(c) causes a viable assignment of values from s to variables in r to be
computed. Values in r are then printed on the standard output by calling the method
printElems.

Calling the method nextSolution allows checking whether the current constraint
admits further solutions and possibly computing the next one. Thus, all possible
rearrangements of the values in the given sets are computed and printed, one at a
time. For example, if s is {1,3,5}, the produced output is:

1 3 5

1The method solve differs from check in that the former throws an exception if the constraint
is unsatisfiable, whereas the latter always returns a boolean value.

5



1 5 3

3 1 5

5 1 3

3 5 1

5 3 1
�

The method nextSolution exploits the backtracking mechanism embedded in
the constraint solver: calling nextSolution() forces the computation to go back un-
til the nearest open choice point is encountered. Specifically, in the above example,
we exploit nondeterminism provided by set unification, as implemented by the eq

constraint solving procedure. Solving r.eq(s) nondeterministically computes a so-
lution to the set unification problem involving the two sets r and s. Each computed
solution is a valid solution for the problem at hand, i.e., it is a correct permutation.
The method nextSolution is used here to generate all possible solutions.

As another example, let us consider a simplified version of the well-known Trav-
eling Salesman Problem (TSP). For this problem we can easily devise a set based
solution in which directed graphs are represented as sets whose elements are ordered
pairs containing neighboring nodes. This representation has an immediate imple-
mentation in terms of JSetL’s data structures: a graph can be implemented as a set
whose elements are lists of two nodes, and each node is a distinct logical variable.2

With these assumptions, we can provide a straightforward nondeterministic solution
by exploiting partially specified sets [3] and membership constraints on them.

Example 2.3 (TSP) Given a set of nodes N and a graph G, determine whether
there is a path in G starting from a source node, passing exactly once for every other
node and returning in the initial node.

public static LList tsp(LSet nodes, LSet edges, char start)

throws Failure {

int n = nodes.getSize();

//----------- path = [x0,...,xn-1]

LList path = LList.mkList(n);

//----------- start is the first node in path

LVar first_node = ((LVar)path.get(0));

solver.add(first_node.eq(start));

//----------- forall i,j. path[i] != path[j]

solver.add(path.allDiff());

//----------- forall i. (path[i],path[i+1]) must be an edge

for (int i=0; i<n-1; i++) {

LVar ith_node = ((LVar)path.get(i)));

LVar ith_next_node = ((LVar)path.get(i+1)));

LList adj_nodes = (LList.empty().ins(ith_next_node).ins(ith_node));

solver.add(edges.contains(adj_nodes));

2Note that arcs can be conveniently implemented using sets—instead of lists—if we have to deal
with undirected graphs.

6



}

//----------- (path[n-1],path[0]) must be an edge of the graph

LVar last_node = ((LVar)path.get(n-1));

LList first_last_nodes = (LList.empty().ins(first_node.ins(last_node)));

solver.add(edges.contains(first_last_nodes));

//----------- solve constraints

solver.solve();

return path;

}

The method add is used to add constraints to the constraint store of solver. In par-
ticular, adding the constraint path.allDiff() we force all elements in path (i.e., all
nodes of the graph) to be pairwise distinct, while adding the membership constraints
edges.contains(adj nodes) we require all adjacent nodes in path to be connected
by an edge of the graph. Finally, with the constraint edges.contains(first last

nodes) we require that also the last node in path is connected by an edge to the
initial node.

Satisfiability of the constraints stored in the constraint store is then checked using
the method solve. In particular, solving the constraints edges.contains(adj nodes)

allows the program to nondeterministically generate all possible assignments of values
(i.e., nodes connected by an edge) to the adjacent elements in path. If the selected
assignment turns out to be not a valid one, a new assignment is computed (if it
exists), via backtracking to the nearest choice point. If, on the contrary, the con-
straint store is evaluated to true, the values assigned to variables in path represent
the solution we are looking for and the computation finally terminates.

For example, with the graph

{[c,e],[a,c],[c,b],[b,a],[b,e],[d,a],[e,d],[d,b]}

and source node a, the first computed TSP path is

[a,c,e,d,b,a].
�

Note that the proposed solution uses a pure “generate & test” approach. Interest
in such solution, however, is mainly in its naturalness in expressing nondeterminism
rather than in its efficiency. As a matter of fact, nondeterminism is implemented
simply by operations on sets (in particular, set membership), and the nondetermin-
istic search is completely embedded in the constraint solver. Since the semantics of
set operations is usually well understood and quite intuitive, making nondetermin-
istic programming the same as programming with sets can contribute to make the
(not trivial) notion of nondeterminism easier to understand and to use.

Sets also provide a natural way to collect all solutions for problems involving
(large) solution spaces. In JSetL such operation can be implemented either by
combining calls to nextSolution and Java iterative statements or, more abstractly,

7



by using the library method setof. Both techniques allow one to explore the search
space of a nondeterministic computation and to collect into a set all the computed
solutions for a specified logical variable x. Actually this represents a limited form
of intensionally defined sets. A set s is constructed by collecting all possible values
of a variable x for which a condition ϕ, involving x, turns out to be satisfied, i.e.
s = {x : ϕ}. If ϕ can be represented as a JSetL constraint, the set collection
can be easily performed by using nextSolution() or the method setof over this
constraint.

3 CSP and Nondeterminism

Many of the problems that are naturally dealt with by nondeterministic programs—
i.e., those that deal with multiple alternatives—can be viewed as Constraint Satis-
faction Problems (CSP).

Formally, a CSP is defined by a set of variables v1, v2, . . . , vn, each with a
non-empty domain di of possible values, and a set of constraints c1, c2, . . . , cm.
Each constraint cj involves some subset of the variables and specifies the allowable
combinations of values for that subset. A solution to a CSP is an assignment of
values to some or all of the variables that satisfies all the constraints.

At a very high level the typical solving process for a given CSP can be described
as follows:

(i) define all the variables, domains and constraints for the problem,

(ii) check satisfiability of the constraints, and

(iii) search for one or all solutions for the problem.

Actually, the main CSP search techniques interleave various forms of search (step
(iii)) with constraint propagation (step (ii)), in which inconsistent values are re-
moved from the domain of the variables through reasoning about the constraints.

According to this approach, nondeterminism is usually confined to the last step
(often indicated as the labelling phase). Values to be assigned to variables are picked
up nondeterministically; if the selected assignment turns out to be not suitable,
another alternative is then explored.

Availability of features to support constraint programming, therefore, represents
another viable—though partial—solution to the problem of expressing nondeter-
minism within a programming language.3 Let us illustrate this technique with a
simple example written using JSetL. Most of its facilities to support constraint pro-
gramming have been already presented in the previous section. Another important
feature which is useful at this point is the labeling mechanism. Solving the con-
straint s.label(), where s is a collection of logical variables, allows the program to

3Constraint programming in the context of conventional imperative programming languages,
such as Java and C++, is mainly supported via suitable libraries—see, for instance, the JSR-331
effort for defining a standard API for constraint programming in Java [10]).

8



nondeterministically generate an admissible assignment of values to variables in s,
starting from the first variable in s and the first value in its domain (default labeling
strategy in JSetL). This assignment is propagated to all the constraints in the con-
straint store and if none of them turns out to be unsatisfiable, then an assignment
for the next variable in s is computed and propagated, and so on. As soon as a
constraint in the store turns out to be unsatisfiable, backtracking occurs and a new
assignment for the lastly assigned variable is computed. If a viable assignment for
all the variables in s is finally found, then it represents a solution for the given CSP.

The considered example is the n-queens problem, a well-known combinatorial
problem. We show how it can be formulated as a CSP, and how viable solutions
for it can be obtained using a final nondeterministic labelling phase. The proposed
solution is written using JSetL, but very similar formulations can be devised for
most of the available constraint programming systems.

Example 3.1 (n-queens) Try to place n queens on a n × n chess board such that
no two queens attack each other, i.e., no two queens are placed on the same row, the
same column or the same diagonal.

public static void main (String[] args)

throws Failure {
IntLSet columns = new IntLSet(0,n-1); // columns
Vector<IntLVar> rows = new Vector<IntLVar>();

for(int i = 0; i < n; i++)

rows.add(new IntLVar()); // rows
//————- specify domains
for (int i = 0; i < n; i++)

solver.add(rows.get(i).dom(0,n-1));

//————- add constraints
for (int i = 0; i < n-1; i++) {

IntLVar r i = rows.get(i);

for (int j = i+1; j < n; j++) {
IntLVar r j = rows.get(j);

solver.add(r i.neq(r j)); // r i 6= r j
solver.add(r j.sum(j).sub(r i).neq(i)); // r j + j - r i 6= i
solver.add(r i.sum(j).sub(r j).neq(i)); // r i + j - r j 6= i

}
}
//————- check constraints
solver.solve();

//————- generate a solution
solver.solve(IntLVar.label(rows));

//————- print a solution
for (int i = 0; i < n; i++) {

System.out.print("\n Queen "+i+" in: ");

System.out.print("["+i+","+rows.get(i).toString()+"]");

}
return;

}

9



}

Integers in set columns indicate the columns on which the queens can be placed (n
is a static final int declared in the outer environment). A value v in the i-th
logical variable of rows indicates a queen placed in row i at column v. The resolution
of the problem consists in assigning a value among 0 and n−1 to each of the n logical
variables in rows satisfying the constraints. The first inequality constraint states that
two queens can not be placed on the same column, while the other two inequalities
state that two queens can not be placed on the same diagonal.

Solving the label constraint allows the program to nondeterministically generate
an admissible assignment of values (i.e., columns) to all the variables in rows. Each
such assignment represents a solution for the given CSP.

A possible solution printed by this program is:

Queen 0 in: [0,1]

Queen 1 in: [1,3]

Queen 2 in: [2,0]

Queen 3 in: [3,2]

�

The above example clearly shows that if a problem can be formulated as a CSP
then we have the opportunity to use the constraint programming features possibly
supported by our language to provide some form of nondeterministic solution for
the problem at hand.

Unfortunately not all problems whose solutions are naturally formulated as non-
deterministic algorithms are also easily modelled as CSP. There are situations in
which, in particular, the variable domains are hardly reconducted to those supported
by exiting CP solvers, making the programming effort to model them in terms of the
existing ones too cumbersome and sometimes quite ad-hoc. On the other hand, the
use of sets and set operations to model nondeterministic computations, as shown in
the previous section, is not always feasible and/or convenient.

In conclusion, there are cases in which some more general programming tools to
express and handle nondeterminism are required. We will face this topic in the next
sections.

4 Nondeterministic Control Structures

Dealing with general nondeterministic control structures requires primarily the abil-
ity to express and handle choice points and backtracking.

This implies, first of all, that the notion of program computation is extended to
allow distinguishing between computations that terminate with success and compu-
tations that terminate with failure. Basically, a computation fails whenever it exe-
cutes, either implicitly or explicitly, a fail statement. Conversely, a finite, error-free
computation succeeds if it does not fail.

10



In response to a failure, the computation backtracks to the last open choice
point. Choice points may be created by the programmer using suitable language
constructs, such as the following orelse statement (borrowed from [1]):

either S1 orelse S2 . . . orelse Sn end

where S1. . . Sn are statements, which expresses a nondeterministic choice among n
statements. More precisely, the computation of the orelse goes as follows: state-
ment S1 is executed first; if, at some point of the computation (possibly beyond the
end of the orelse statement) a failure occurs, then backtracking takes place and the
computation resumes with S2 in the state it had when entering S1; if a new failure
occurs, then the computation backtracks and it resumes with S3, and so on; if a
failure occurs after executing Sn and no other open choice points do exist, then the
computation definitively fails.

Let us briefly illustrate how to deal with general nondeterministic control struc-
tures with a couple of simple examples written using a C-like pseudo-language en-
dowed with the orelse statement and a few other facilities to support nondetermin-
istic programming. In the next section we will show how the same control structures
can be implemented in Java using JSetL.4

As a first simple example, let us consider the problem of computing and printing
all possible sublists of a list l. The problem can be solved by defining a nondeter-
ministic function that returns any of the possible different sublists of l. All sublists
are then obtained by forcing the computation to backtrack until all solutions have
been generated.5 An implementation of this algorithm written in pseudo-code using
the orelse construct is shown in Example 4.1.

Example 4.1 (Printing all sublists—in pseudo-code) Let l, s, and p be (generic)
lists. The following function nondeterministically generates the sublists of the given
list l.

sublist(l):
either

p = any prefix of l;
return p;

orelse

s = sublist(l without its first element);
return s;

end;

4A more systematic discussion of nondeterministic control structures is outside the scope of
this paper. A presentation of a minimal set of such structures, including the basic concept of
continuations, and their usage to express a variety of search algorithms can be found, for instance,
in [15].

5Of course, the problem could be solved also by defining a deterministic procedure using con-
ventional features of a conventional language, such as arrays and nested loops on the indexes of the
array. The resulting code, however, is likely to be more complex than that using nondeterminism
(although, in this simple example, the solution is in any case not too complicated).

11



where the prefix of a list [e1, . . . , en] is any list [e1, . . . , em] with m ≤ n, m,n ≥ 0
(prefixes of a list l can be nondeterministically generated by a function defined in a
similar way to sublist).

To compute and print all sublists of l we need a way to force the computation
to backtrack to sublist and try another open alternative created by the orelse

statement, until at least one such alternative does exist. We assume our pseudo-
language is endowed with the following all solutions construct (akin to the FORALL

statement of [1] and the Exploreall of [15]):

all solutions S1 ...Sn end

where S1, . . . , Sn are statements, whose meaning is: execute S1, . . . , Sn; if at the
end there are open choice points then fail; else continue (note that in this way, if
the last open choice point is within Si then all statements following Si are executed
again).

Using this construct, our problem can be solved as follows:

all solutions

r = sublist(l);
print(r);

end

After printing the first value for r, the computation backtracks to sublist, which
tries another open orelse alternative and computes a new value for r, if it exists;
then print(r) is executed again. �

Note that in this case the domain of discourse is that of lists. Trying to en-
code it in terms of the usual constraint domains, e.g. that of the integer numbers,
though feasible in principle (one could, for example, deal with the indexes of the ele-
ments and restate the problem as a CSP over integers), may lead to rather involved
programs in practice.

As another more articulated example let us consider the well-known problem of
finding a path between two nodes in a directed graph. As shown in Example 2.3,
a directed graph can be represented as a set of ordered pairs [n1, n2], where n1, n2

are nodes, and each pair represents an arc of the graph. In this case, however, using
sets and operations on sets as done in Example 2.3 is not enough to represent a
nondeterministic solution for this problem. In fact, in the case of the TSP problem
we know exactly the number of nodes to be visited (i.e., all nodes of the graph), so
the problem can be simply stated as a collection of (nondeterministic) membership
constraints over these nodes. Conversely, in the path finding problem we do not know
a priori the number of nodes to be visited and we must decide at each step if we can
stop or we must continue visiting the graph. That is, we need to nondeterministically
choose between two possible actions and this requires more general nondeterministic
control structures.

A nondeterministic solution for the path finding problem can be formulated in
pseudo-code, using the orelse construct, as shown in Example 4.2.

12



Example 4.2 (Finding a path—in pseudo-code) Let G be a directed graph and s
and d two nodes of G. The problem consists in determining whether there is a path
in G from s (the source node) to d (the destination node).

path(G,s,d):
either

test([s, d] is an arc in G);
return true;

orelse

test(there exists a node t in G such that
[s, t] is an arc in G and path(G,t,d));
return true;

end

return false;

Here we assume to use the test(e) construct, where e is a boolean expression,
with the following operational meaning: if e evaluates to true then continue; else
fail.6. Moreover, we assume that the boolean expression “there exists a node t in G

such that . . . ” nondeterministically binds the variable t to any node in G which is
directly connected to s whenever it returns true(it can be easily implemented by a
nondeterministic function using the orelse construct in a similar way to sublist).

If, at some point in the computation, the path that has been built till that mo-
ment turns out to not lead to the destination node, i.e., the last recursive call to
path(G,t,d) definitively fails, then the computation backtracks to the last choice
point with at least one open alternative and the computation continues from that
alternative (in practice, a different path is taken into account). �

As mentioned in Section 1, very few programming languages support the above
mentioned nondeterministic constructs as primitive features. On the other hand,
providing such features as part of a library (i.e., implementing them in some high-
level language) may turn out to be not a trivial task. Our proposal is to stay within
a library-based approach but taking advantage of the (nondeterministic) constraint
solver provided by the library to give the user the possibility to define its own
nondeterministic code as new constraints.

We will illustrate this possibility in the next sections with a number of simple
examples using JSetL.

5 Implementing Nondeterministic Control Structures
in JSetL

JSetL is endowed with a nondeterministic constraint solver. Nondeterminism is
used to implement various set operations (e.g. set unification), as well as to perform
labelling. Availability of built-in nondeterministic constraints, however, is not suf-
ficient to obtain the general kind of nondeterminism we would like to have. Let us

6It is the same as the “boolean expressions as statement” feature of Alma-0 [1]

13



consider for example the following program fragment, where we assume that x and
y are unbound logical variables, r is an unbound logical set, and s1, s2 are logical
sets which are bound to {1} and {x}, respectively:

Solver.solve(r.inters(s1,s2));

if (r.isEmpty()) Solver.add(y.eq(0));

else Solver.add(y.ge(1));

...

Solver.add(y.neq(0));

Solver.solve();

The constraint r.inters(s1,s2) admits two distinct solutions, namely, x 6= 1 ∧ r =
{} and x = 1 ∧ r = {1}. The constraint solver is able to compute them using
nondeterminism. Assuming the first solution is computed first, the if statement
adds the constraint y = 0 to the constraint store. Therefore, the invocation to the
solver in the last statement detects a failure. The second solution for the constraint
inters is then taken into account, but the condition of the if statement is no longer
evaluated. The constraint solver will examine the constraint store again, with the
new value for r, but still with the constraint y = 0 stored in it. Hence, it fails again.

Basically the problem is caused by the fact that nondeterminism in JSetL is
confined to constraint solving: backtracking allows the computation to go back to
the nearest open choice point within the constraint solver, but it does not allow to
re-execute user program code (the if statement in the above example).

The solution that we propose to circumvent these difficulties is based on the pos-
sibilities offered by JSetL to introduce new user-defined constraints. Those methods
that require to use nondeterminism can be defined as new JSetL constraints. Within
these methods the user can exploit facilities for creating and handling choice-points.
When solving these constraints the solver can explore the different alternatives using
backtracking.

5.1 User-defined Constraints

User-defined constraints in JSetL are defined as part of a user class that extends the
abstract class NewConstraintsClass. For example,

public class MyOps extends NewConstraintsClass {

// public and private methods implementing user-defined constraints

}

is intended to define a collection of new constraints implementing user defined op-
erations.

The actual implementation of user-defined constraints requires some program-
ming conventions to be respected, as shown in the following example.

Example 5.1 (Implementing new constraints) Define a class MyOps which offers
two new constraints c1(o1,o2) and c2(o3), where o1, o2, o3 are objects of type t1,
t2, and t3, respectively.

14



public class MyOps extends NewConstraintsClass {

public MyOps(SolverClass currentSolver) {

super(currentSolver);

}

public Constraint c1(t1 o1, t2 o2) {

return new Constraint("c1", o1, o2);

}

public Constraint c2(t3 o3) {

return new Constraint("c2", o3);

}

protected void user_code(Constraint c)

throws Failure, NotDefConstraintException {

if (c.getName().equals("c1")) c1(c);

else if(c.getName().equals("c2")) c2(c);

else throw new NotDefConstraintException();

}

private void c1(Constraint c) {

t1 x = (t1)c.getArg(1);

t2 y = (t2)c.getArg(2);

//implementation of constraint c1 over objects x and y

}

private void c2(Constraint c) {

t3 x = (t3)c.getArg(1);

//implementation of constraint c2 over object x

}

}

The one-argument constructor of the class MyOps initializes the field Solver of
the super class NewConstraintsClass with (a reference to) the solver currently in
use by the user program.

The other public methods simply construct and return new objects of class Constraint.
This class implements the atomic constraint data type. All built-in constraint meth-
ods implemented by JSetL (e.g., eq, neq, in, etc.) return an object of class Constraint,
whereas the method add takes an object of this class as its parameter. Each different
constraint is identified by a string name (e.g., "c1"), which can be specified as a
parameter of the constraint constructor.

The method user code, which is defined as abstract in NewConstraintsClass,
implements a “dispatcher” that associates each constraint name with the correspond-
ing user-defined constraint method. It will be called by the solver during constraint
solving.

Finally, the private methods, such as c1 and c2, provide the implementation
of the new constraints. These methods must, first of all, retrieve the constraint
arguments, whose number and type depend on the constraint itself. We will show

15



possible implementations of such methods (using nondeterminism) in Examples 5.4,
5.5, and 7.2. �

Once objects of the class containing user-defined constraints have been cre-
ated, one can use these constraints as the built-in ones: user-defined constraints
can be added to the constraint store using the method add and solved using the
SolverClass methods for constraint solving. For example, the statements

MyOps myOps = new MyOps(solver);

solver.solve(myOps.c1(o1,o2));

where MyOps is the class defined in Example 5.1, create an object of type MyOps,
called myOps, and then create the constraint "c1" over two objects o1 and o2 by
calling myOps.c1(o1,o2). This constraint is added to the constraint store of the
constraint solver solver and immediately solved by calling the solve method. Solv-
ing constraint "c1" will cause the solver to call the concrete implementation of the
method user code provided by myOps, and consequently to execute its method c1.

5.2 Nondeterminism in User-defined Constraints

Let us start with a trivial sample problem: nondeterministically assign a value
among 1, 2, and 3 to an integer variable x, and print it. Using pseudo-code and the
orelse construct, we can write a solution for this problem as follows:

either

x = 1;
orelse

x = 2;
orelse

x = 3;
end;
print(x);

In JSetL this problem can be solved defining a new constraint that implements
the orelse construct—we will call it ndAssign. Defining nondeterministic con-
straints in JSetL, however, requires additional arrangements to be taken into ac-
count.

First of all note that methods defining user-defined constraints must necessarily
return an object of type Constraint. Thus, any result possibly computed by the
method must be returned through parameters. The use of unbound logical variables
(i.e., objects of class LVar) as arguments provides a simple solution to this problem.
The result of ndAssign will be the value bound to the logical variable x passed as
its argument.

More generally, the use of logical objects, i.e., logical variables as well as logical
sets and lists, is fundamental in JSetL when dealing with nondeterminism. As a
matter of fact, if an object is involved in a nondeterministic computation we need
the ability to restore the status it had before the last choice point whenever the

16



computation must backtrack and try a different alternative. In JSetL this ability is
obtained by allowing the solver to save and restore the global status of all logical
objects involved in the computation. Note that logical objects in JSetL are charac-
terized by the fact that their value, if any, can not be changed through side-effects
(e.g. by an assignment statement). Thus, saving and restoring the status of logical
objects is a relatively simple task for the solver.

Hence, we will always use logical objects, in particular logical variables, for
all those objects that are involved in nondeterministic computations, such as the
variable x in ndAssign. Since values of logical objects can not be modified by using
the usual imperative statements (e.g., the assignment) we will always use constraints
to manage them. In particular, the equality constraint l.eq(v) is used to unify a
logical variable l with a value v. If l is unbound, this simply amounts to bind x to
v. Once assigned, the value v is no longer modifiable.

A possible implementation of ndAssign using JSetL is shown in Example 5.2.

Example 5.2 (Defining nondeterministic constraints) Define a constraint ndAssign(x)
that nondeterministically binds x to either 1, 2, or 3.

public class NdTest extends NewConstraintsClass {

...

public Constraint ndAssign(LVar x) {

return new Constraint("ndAssign",x);

}

...

private void ndAssign(Constraint c) {

LVar x = (LVar)c.getArg(1);

switch(c.getAlternative()) {

case 0:

Solver.addChoicePoint(c);

Solver.add(x.eq(1));

break;

case 1:

Solver.addChoicePoint(c);

Solver.add(x.eq(2));

break;

case 2:

Solver.add(x.eq(3));

}

}

}

The method ndAssign is provided as part of a new class, named NdTest, that
extends NewConstraintsClass (see Example 5.1 for completing the code of class
NdTest). ndAssign implements the nondeterministic construct orelse by using the
methods getAlternative and addChoicePoint. The invocation c.getAlternative()

returns an integer associated with the constraint c that can be used to count the
nondeterministic alternatives within this constraint. Its initial value is 0. Each

17



time the constraint c is re-considered due to backtracking, the value returned by
c.getAlternative() is automatically incremented by 1.

The invocation Solver.addChoicePoint(c) adds a choice point to the alterna-
tive stack of the current solver. This allows the solver to backtrack and re-consider
the constraint c if a failure occurs subsequently. �

In order to use ndAssign we must first create an instance of the class NdTest,
and then solve the new constraint by invoking either solve or check of the current
solver. A possible usage of ndAssign is shown in Example 5.3.

Example 5.3 (Using nondeterministic constraints) Nondeterministically select a
value among 1, 2, and 3, and print it.

LVar n = new LVar();

NdTest ndTest = new NdTest(solver);

solver.check(ndTest.ndAssign(n));

System.out.println(n);

Executing this fragment of code will print the first value for n (e.g., 1).7 To
obtain all possible values for n, one could use the method nextSolution as follows:

solver.check(ndTest.ndAssign(n));

do{

System.out.println(n);

} while(solver.nextSolution());

�

As another example let us consider the implementation of the nondeterministic
function sublist shown in Section 4.

Note that, generally speaking, functions are replaced by relations whenever they
are defined as constraints. Specifically, a function f : d1 → d2 can be implemented
by a constraint c(x1, x2), with x1 and x2 ranging over the domains d1 and d2, re-
spectively. This constraint defines a binary relation R over the domains d1 and d2:
c(x1, x2) holds iff 〈x1, x2〉 ∈ R ⊆ d1 × d2.

In the example at hand, the function sublist of Example 4.1 will be imple-
mented in JSetL by a new constraint sublist(l,sl) which states that sl must be
a sublist of l. Moreover, as noted before, l and sl are conveniently represented
as logical lists (rather than, for example, as instances of Vector or List). In fact,
values bound to l and sl are subject to possible changes due to backtracking during
the computation of sublist. Being logical objects, their values will be accessed only
through constraints, in particular equality constraints.

7The same result could be obtained in JSetL by using the built-in set constraint in: the invo-
cation solver.check(n.in(s)), where s is a set containing 1, 2, and 3, will nondeterministically
bind n to values in s.

18



Example 5.4 (sublist in JSetL) Define a constraint sublist(l,sl) which is
true if sl is a sublist of the list l.

public Constraint sublist(LList l,LList sl) {

return new Constraint("sublist",l,sl);

private void sublist(Constraint c) throws Failure {

LList l = (LList)c.getArg(1);

LList sl = (LList)c.getArg(2);

switch(c.getAlternative())

{

case 0: Solver.addChoicePoint(c);

Solver.add(prefix(l,sl)); // sl is any prefix of l

break;

case 1: LVar x = new LVar();

LList r = new LList(); // r is l without its

Solver.add(l.eq(r.ins(x))); // first element

Solver.add(sublist(r,sl)); // sl is any non-empty

Solver.add(sl.neq(LList.empty())); //sublist of r

}

return;

}

The method prefix can be defined in JSetL in the same way shown for sublist.
The rest r of the list l is obtained through unification between l and the par-
tially specified list r.ins(x) (i.e, [x | r] using Prolog notation for lists), while the
fact that the sublist of r must be non-empty is guaranteed by the JSetL constraint
sl.neq(LList.empty()). �

Finally, let us consider a little bit more complex example: the implementation of
the nondeterministic procedure path shown in Example 4.2. To make the solution
more realistic, we add to path a further parameter p that represents the path from
s to d. path will be implemented in JSetL as a new constraint, named "path", in
a class that extends NewConstraintsClass as shown in Section 5.1. The concrete
Java code of the method that implements the new constraint "path" is shown in
Example 5.5.

Example 5.5 (path in JSetL)

public Constraint path(LSet G,LVar s,LVar d,LList p) {
return new Constraint("path",G,s,d,p);

}
private void path(Constraint c) {

LSet G = (LSet)c.getArg(1); // the graph
LVar s = (LVar)c.getArg(2); // the source node
LVar d = (LVar)c.getArg(3); // the destination node
LList p = (LList)c.getArg(4); // the computed path
switch(c.getAlternative())

{

19



case 0:

Solver.addChoicePoint(c);

LList finalArc = LList.empty().ins(d).ins(s);

Solver.add(G.contains(finalArc));

Solver.add(p.eq(LList.empty().ins(finalArc)));

break;

case 1:

LVar t = new LVar();

LList intermediateArc = LList.empty().ins(t).ins(s));

LList t dPath = new LList();

Solver.add(G.contains(intermediateArc));

Solver.add(path(G,t,d,t dPath));

Solver.add(p.eq(t dPath.ins(intermediateArc)));

}
return;

}

As an example, if G is the graph

{[’a’,’b’],[’a’,’c’],[’c’,’b’],[’b’,’d’],[’c’,’d’]},
s has value ’a’ and d has value ’d’, then solving the constraint path(G,s,d,p)

nondeterministically assigns to p the three different paths:

[[’a’,’b’],[’b’,’d’]]

[[’a’,’c’],[’c’,’d’]]

[[’a’,’c’],[’c’,’b’],[’b’,’d’]]. �

6 Multiple Uses of Constraint Methods

The use of relations in place of functions, along with the use in their implementation
of a number of specific features provided by JSetL, such as logical variables and
unification, have another important consequence on the usability of user-defined
constraint methods.

Let us consider a function y = f(x) and a possible call to it, z = f(a). In JSetL
one can define a constraint cf (x, y) which represents the relation Rf = {〈x, y〉 :
y = f(x)} and then solve the constraint cf (a, z). Solving this constraint actually
amounts to check whether 〈a, z〉 ∈ Rf , for some z. While calling f(x) to compute
y implies assuming x to be the input parameter and y the output, solving cf (x, y)
does not make any assumption on the ”direction” of their parameters. Thus one
can compute y out of a given x, or, vice versa, x out of a given y, or one can test
whether the relation among two given values x and y holds, or one can compute
any of the pair 〈x, y〉 belonging to Rf . Hence, the same method can be used to
implement different, though related, functions.

This general use of user-defined constraints in JSetL is made possible thanks
to the availability of a number of different facilities to be used in the constraint
implementation. Specifically,

• the use of logical variables as parameters

20



• the use of unification in place of equality and assignment

• the use of nondeterminism to compute multiple solutions for the same con-
straint.

Note that the fact that a logical variable acts as input or as an output parameter
depends on the fact it is bound or not when the method is called. In particular,
unbound variables can be easily used to obtain output parameters (see Example
5.2). Moreover, if the value bound to a variable is a partially specified aggregate,
e.g. a logical list, then it can act simultaneously as input and as output, i.e. as an
input-output parameter.

The following is an example of the possible different usages of the constraint
sublist(l1,l2) shown in Example 5.4.

Example 6.1 (Uses of sublist)

• Compute l2 out of l1. Let l1 be bound to the list [1,2,3] and l2 be unbound.
The invocation

solver.add(listOps.sublist(l1,l2)),

where listOps is an instance of the class containing sublist that extends
NewConstraintsClass, will generate nondeterministically the following values
for l2:

[], [1], [1,2], [1,2,3], [2], [2,3], [3].

• Compute l1 out of l2. Let l2 be bound to the list [1,2] and l1 be unbound.
The same invocation as above will generate nondeterministically the following
(infinite) sequence of values for l1:

[1,2|r 1] (which means a list containing 1, 2 and something else),

[x 1,1,2|r 1],

[x 1,x 2,1,2|r 1],

and so on, where r 1 and x 1, x 2, . . . , are unbound internal logical objects of
type LList and LVar, respectively.

• Compute all the sublists of l1 with exactly two elements. Let l1 be bound to the
list [1,2,3] and l2 be bound to the partially specified list [x,y], where x and
y are unbound logical variables. The same invocation as above will generate
nondeterministically the following values for x and y:

x = 1 and y = 2 (i.e., the list [1,2]),

x = 2 and y = 3 (i.e., the list [2,3]).
�

As another example, consider the procedure path shown in Example 5.5, along
with the sample graph G considered at the end of the example, and the constraint

21



path(G,s,d,p),

where s, d and p are logical variables that represent the source node, the destination
node, and the path from s to d, respectively. If s is bound to ’a’, while d is left
unbound, then solving this constraint allows us to solve a different problem from
that of Example 5.5, namely, finding all nodes in G that are reachable from the node
’a’. Thus, solving path(G,s,d,p) will nondeterministically bind d to the values
’b’, ’c’, and ’d’.

7 Implementing DCGs

In this section we show a more complete example of application of the facilities
offered by JSetL to support nondeterminism: the implementation of Definite Clause
Grammars.

A Definite Clause Grammar (DCG) is a way to represent a context-free grammar
as a set of first-order logic formulae in the form of definite clauses. As such, DCGs are
closely related to Logic Programming, and tools for dealing with DCGs are usually
provided by current Prolog systems. Given the DCG representation of a grammar
one can immediately obtain a parser for the language it describes by viewing the
DCG as a set of Prolog clauses and using the Prolog interpreter to execute them.

In this section we show how DCGs can be conveniently used also in the context of
more conventional languages, such as Java, provided the language is equipped with a
few features that are fundamental to support DCGs processing, namely (logical) lists
and nondeterminism. We prove this claim by showing how DCGs can be encoded
and processed in Java using JSetL.

Consider the following simple grammar of constant arithmetic expressions

〈expr〉 ::= 〈num〉|〈num〉+ 〈expr〉|〈num〉 − 〈expr〉

Assume that input to be parsed is represented as a list of numerals and symbols.
For example, [8, +, 2, -, 7] is a valid 〈expr〉.

This grammar may be encoded in terms of first-order logic formulae in clausal
form in the following way: create one predicate for each non-terminal in the grammar
and define each predicate using one clause for each alternative form of the corre-
sponding non-terminal. Each predicate takes two arguments, the first being the list
representation of the input stream, and the second being instantiated to the list of
input elements that remain after a complete syntactic structure has been found. As
an example, the above grammar can be written as a DCG as follows (using a pure
Prolog notation).

Example 7.1 (A DCG for 〈expr〉)

expr(L, Remain) :-

num(L, Remain).

expr(L, Remain) :-

22



num(L, L1), L1 = [+|L2], expr(L2, Remain).

expr(L, Remain) :-

num(L, L1), L1 = [-|L2], expr(L2, Remain).

num(L, Remain) :-

L = [D|Remain], number(D).

where [o|L] represents the list with first element o and rest the list L, and the predicate
number(D) is true if D is a numeric constant.8 �

This grammar representation constitutes an executable Prolog program that
can be immediately used as a top-down parser for the denoted language. Using this
program we can prove that, for example,

expr([1, +, 2, -, 3], [])

is true (i.e., 1+2-3 is a valid arithmetic expression), while
expr([1, +, 2, -], [])

is false.
Note that clauses for the same predicate are selected nondeterministically. The

Prolog interpreter first attempts to use the first clause to process the input stream
list; if it fails then it backtracks and tries to use the second one, and then, if it fails
again, the third one and so on, until the computation terminates successfully. For
instance, having to prove expr([1, +, 2, -, 3], []) the first clause fails since
Remain is instantiated to [+, 2, -, 3] by the call to num(L, Remain), which is
trivially different from []. Then the second clause will be used instead.

The DCG shown in Example 7.1, that we have written as a Prolog program, can
be implemented with a relatively small effort as a JSetL program as well. Each pred-
icate corresponding to a non-terminal in the grammar is implemented as a new JSetL
constraint, that is a method of a class extending the class NewConstraintsClass.
These methods exploit the nondeterministic features provided by JSetL to support
the nondeterministic choice among different clauses for the same predicate. List
data structures are implemented using JSetL logical lists, that is objects of the class
LList. In particular, partially specified lists with an unknown rest (i.e., [o | l], l un-
bound) can be constructed using the method ins and accessed through unification.
The complete JSetL implementation of the DCG shown above is given in Example
7.2.

Example 7.2 (Implementing the DCG for 〈expr〉 in JSetL)

public class ExprParser extends NewConstraintsClass {

public ExprParser(SolverClass CurrentSolver) {

super(CurrentSolver);

}

8Special syntax exists in current Prolog systems that allows BNF-like specification of DCGs. For
instance, the second clause of Example 7.1 can be written in Prolog (also) as expr --> num, [+],

expr. The Prolog interpreter automatically translates this special form to the pure clausal form
used in Example 7.1.

23



public Constraint expr(LList L, LList Remain) {

return new Constraint("expr", L, Remain);

}

public Constraint num(LList L, LList Remain) {

return new Constraint("num", L, Remain);

}

public Constraint number(LVar n) {

return new Constraint("number", n);

}

protected void user_code(Constraint c)

throws NotDefConstraintException {

if (c.getName().equals("expr"))

expr(c);

else if (c.getName().equals("num"))

num(c);

else if (c.getName().equals("number"))

number(c);

else {

throw new NotDefConstraintException();

}

return;

}

private void expr(Constraint c) {

LList L = (LList)c.getArg(1);

LList Remain = (LList)c.getArg(2);

switch (c.getAlternative()) {

// expr(L, Remain) :- num(L, Remain).

case 0: {

Solver.addChoicePoint(c);

Solver.add(num(L, Remain));

break;

}

// expr(L, Remain) :- num(L, L1), L1 = [+|L2], expr(L2, Remain).

case 1: {

Solver.addChoicePoint(c);

LList L1 = new LList();

LList L2 = new LList();

Solver.add(num(L, L1));

Solver.add(L1.eq(L2.ins1(’+’)));

Solver.add(expr(L2, Remain));

break;

}

// expr(L, Remain) :- num(L, L1), L1 = [-|L2], expr(L2, Remain).

case 2: {

LList L1 = new LList();

LList L2 = new LList();

Solver.add(num(L, L1));

24



Solver.add(L1.eq(L2.ins1(’-’)));

Solver.add(expr(L2, Remain));

}

}

return;

}

private void num(Constraint c) {

LList L = (LList)c.getArg(1);

LList Remain = (LList)c.getArg(2);

LVar D = new LVar();

Solver.add(L.eq(Remain.ins1(D)));

Solver.add(number(D));

return;

}

private void number(Constraint c) {

LVar n = (LVar)c.getArg(1);

if (n.getValue() instanceof Integer ||

n.getValue() instanceof Double)

return;

else

c.fail();

}

}

If, for example, the expression to be parsed is 5 + 3− 2, which is represented by
a logical list tokenList with value [5,+,3,-,2], and sampleParser is an instance
of the class ExprParser, then the invocation

solver.check(sampleParser.expr(tokenList,LList.empty()))

will return true, while, if tokenList has value [5,+,3,-], the same invocation to
sampleParser.expr will return false. �

Actions to be performed when a non-terminal has been successfully reduced (e.g.,
to evaluate the parsed expression or to generate the corresponding target code)
can be easily added to a DCG by adding new arguments to predicates defining
non-terminals and new atoms at the end of the body of the corresponding clauses.
Accordingly, the JSetL implementation of a DCG can be easily extended by adding
new arguments and suitable statements to the user-defined constraints implementing
the non-terminals.

For example, the DCG of Example 7.2 can be extended so as to return the
JSetL constraint corresponding to the parsed arithmetic expression. Basically, this
is obtained by adding an extra argument z of type IntLVar to each constraint of
the DCG and a further argument cc of type Constraint to the constraint expr.
Moreover, the constraint implementation is modified so as to construct in cc a
constraint of the form z.eq(Ce), where Ce is the JSetL constraint corresponding

25



to the input expression e. For instance, the switch alternative dealing with the +

operator of the constraint expr is modified as follows:

case 1: {

Solver.addChoicePoint(c);

LList L1 = new LList();

LList L2 = new LList();

IntLVar z1 = new IntLVar();

Solver.add(num(z1, L, L1));

Solver.add(L1.eq(L2.ins1(’+’)));

IntLVar z2 = new IntLVar();

Solver.add(expr(z2, L2, Remain));

Solver.add(z.eq(z1.sum(z2)));

cc.add(z.eq(z1.sum(z2)));

break;

}

If sampleParser and tokenList are those of Example 7.2, and z and cc are IntLVar
and Constraint objects, respectively, then the invocation

solver.check(sampleParser.expr(tokenList,LList.empty(),z,cc))

will bind cc to the JSetL constraint:

z.eq(x 1.sum(x 2)).and(x 1.eq(5)).

and(x 2.eq(x 3.sub(2))).and(x 3.eq(3))

Finally, note that the simple expression grammar considered in the above ex-
amples forces right associativity in expression evaluation, which is rather unusual.
Obtaining left associativity would require left-recursive grammar rules. However,
the top-down execution strategy of Prolog, and the equivalent strategy used to solve
nondeterministic constraints in JSetL, naturally yield a recursive descent parser,
which is well known to be not adequate to handle left-recursive grammars: as a
matter of fact it will go into an infinite loop on them. Therefore, when handling
DCG in Prolog, as well as in JSetL, one should rearrange the grammar so as to
avoid left-recursion. This in turn may result, in general, in slightly more compli-
cated DCGs.

8 Conclusions and future work

In this paper we have shown, through a number of simple examples, that nondeter-
ministic programming is feasible and it may be conveniently exploited also within
conventional O-O languages such as Java. We have obtained this by combining a
number of different features offered by the Java library JSetL: set data abstractions,
nondeterministic constraint solving, logical variables, unification, user-defined con-
straints. In particular, general nondeterministic procedures can be defined in JSetL
as new user-defined constraints, taking advantage of the facilities for expressing and
handling nondeterminism provided by the solver.

26



As a future work we plan to identify the minimal extensions to be made to the
JSetL’s solver to make it capable of supporting, with the same approach outlined
in this paper, other nondeterministic control structures such as those described for
instance in [1] and [15].

Acknowledgments

This work has been partially supported by the G.N.C.S. project “Specifiche in-
siemistiche eseguibili e loro verifica formale”. Special thanks to Luca Chiarabini
who took part and stimulated the preliminary discussions on this work, and to An-
drea Longo who contributed to the development of the JSetL-based implementation
of DCGs.

References

[1] (1998) K.R. Apt, J. Brunekreef, V. Partington, A. Schaerf (1999)
Alma-0: An Imperative Language that Supports Declarative Programming.
ACM Transactions on Programming Languages and Systems (TOPLAS), Vol.
20, No. 5, Sept. 1998, 1014–1066.

[2] K.R. Apt, A. Schaerf (1999) The Alma Project, or How First-Order Logic
Can Help Us in Imperative Programming. In E.-R. Olderog, B. Steffen, Eds.,
Correct System Design, LNCS, v. 1710, 89–113. Springer-Verlag, 1999.

[3] F. Bergenti, L. Chiarabini, and G. Rossi (2011) Programming with Par-
tially Specified Aggregates in Java. Computer Languages, Systems & Structures,
Elsevier, 37(4), 178–192.

[4] Choco. http://www.choco-constraints.net.

[5] J. Cohen (1979) Non-Deterministic Algorithms. Computing Surveys, Vol. 11,
No. 2, 79–94, June 1979.

[6] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi (2000) Sets and Con-
straint Logic Programming. ACM Transactions on Programming Languages
and Systems, 22(5):861–931.

[7] A. Dovier, E. Pontelli, and G. Rossi (2006) Set unification. Theory and
Practice of Logic Programming, 6:645–701.

[8] Gecode. http://www.gecode.org/.

[9] JaCoP. http://jacop.osolpro.com/.

[10] (2010) JSR-331, Java Constraint Programming API (Early Draft). Java Com-
munity Process. http://www.jcp.org.

27



[11] S.H. Mirian-HosseinaAbadi, M.R. Mousavi (2002) Making Nondetermin-
ism Explicit in Z. Proceedings of the Iranian Computer Society Annual Con-
ference (CSICC 02), Tehran, Iran, February.

[12] G. Rossi, E. Panegai, and E. Poleo (2007) JSetL: A Java Library for
Supporting Declarative Programming in Java. Software-Practice & Experience,
37:115-149.

[13] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg
(1986) Programming with sets, an introduction to SETL. Springer-Verlag.

[14] H. Sondergaard, P. Sestoft (1992) Non-Determinism in Functional Lan-
guages. The Computer Journal, 35(5), October 1992, 514-523.

[15] P. Van Hentenryck, L. Michel (2006) Nondeterministic Control for Hybrid
Search. Constraints, Vol. 11, No. 4, December 2006, 353– 373

[16] M. Walicki, S. Meldal (1993) Sets and Nondeterminism. Pre-
sented at ICLP’93 Post-Conference Workshop on Logic Programming
with Sets (http://people.math.unipr.it/gianfranco.rossi/sets/body_
workshop.html), Budapest, June 1993.

28



Stampato in proprio, a cura degli autori, presso il Dipartimento di Matematica e In-
formatica dell’Università degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124
Parma, adempiuti gli obblighi ai sensi della Legge n. 160 del 15.04.2004 “Norme rela-
tive al deposito legale dei documenti di interesse culturale destinate all’uso pubblico”
(G.U. n. 98 del 27 aprile 2004) e del Regolamento di attuazione emanato con D.P.R.
n. 252 del 3 maggio 2006 (G.U. n. 191 del 18 agosto 2006) entrato in vigore il 2 set-
tembre 2006 [precedente normativa abrogata: Legge n. 374 del 2.2.1939, modificata
in D.L. n. 660 del 31 agosto 1945].

Esemplare fuori commercio per il deposito legale agli effetti della legge 15 aprile
2004, n. 160.

29


