
A Master-Slave Architecture
to Integrate Sets and Finite Domains in Java

F. Bergenti1, E. Panegai2 and G. Rossi2

1 Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma

bergenti@ce.unipr.it
2 Dipartimento di Matematica
Università degli Studi di Parma

panegai@cs.unipr.it, gianfranco.rossi@unipr.it

Abstract. This paper summarizes the lessons learned from the integra-
tion of two Java constraint solvers: a set solver (namely JSetL) and a
finite domains solver (namely JFD). The most relevant outcome of this
experience is the definition of a generic master-slave architecture that
can be used to support the cooperation of different solvers. Each slave is
responsible for managing constraints of a particular sort and the master,
which is also a solver, is in charge of distributing tasks according to a
static, a-priori policy. This paper first presents this generic architecture
in an abstract form; then, its concrete instantiation to the selected case
study, i.e., the integration of JSetL and JFD, is also described. This case
study was selected because it fully demonstrates the possibilities of this
architecture as: (i) the poor performances of JSetL on non-set variables
are overwhelmed by the cooperation with JFD; and (ii) the expressive
power of JSetL is fully preserved and the integration with JFD demands
no restrictions.

1 Introduction

Rarely a single constraint solver outperforms all others in all situations. As a
matter of fact solvers are normally implemented on the basis of more or less
explicit tradeoffs between:
1. Capabilities: the kinds of constraints they manage and under which assump-

tions; and
2. Performances: the adopted strategies, heuristics and optimizations.

If we accept the assumption that no single solver will be sufficient to accommo-
date the requirements of future applications, we should better take into account
the possibility of synergically orchestrating the work of different solvers in order
to efficiently overcome the limitations of each solver [9].

Along these lines, the main objective of this work is to implement and val-
idate a case study of synergic cooperation between two solvers in the attempt
to find out a generic approach that would help us in similar integration tasks.
The realization of this combined solver guided us in the definition of a generic



master-slave architecture that can be easily and fruitfully applied in many inter-
esting situations. The reason why we chose this bottom-up approach is because
we believe that it can give us the instruments for deeply understanding and crit-
icizing our results and, most notably, that it can ensure a fine-grained analysis
of the impacts of important aspects, e.g., nondeterminism, in the cooperation of
different solvers.

Many frameworks and architectures that explore the cooperative integration
of constraint solvers are available in the literature (see, e.g., [6, 9]). They all share
a common architectural outline made of the following three major components:

1. A top level of meta-resolution (namely a meta-solver);
2. A set of constraint solvers all grouped at an object level; and
3. An interface between the meta-solver and the object-level solvers.

Broadly speaking, our architecture can be thought as a contraction of this
general architecture. The master-slave approach excludes the need of a layer
of meta-resolution: one of the solvers is selected and promoted to the role of
master. Such a solver does not work at the meta-level, rather it works at the
object level and it is enriched with the capability of dispatching tasks to, and
gathering results from, all other solvers. This may require some modifications to
the selected master solver, but it saves us the trouble of implementing a solver
from scratch when no meta-level functionality, e.g., expressing the dispatching
policy in term of constraints, is requested.

The case study that motivated our work deals with the integration of two Java
libraries JSetL [11] and JFD, both developed at the University of Parma3, that
implement respectively a constraint solver over sets and a constraint solver over
finite integer domains. Both work well on their reference domains, but they are
rather bad (or null) in all other situations: JSetL shows very poor performances
on non-set variables; on the contrary, JFD shows good efficiency but it does
not provide any notion of set or aggregate data type. Therefore, we decided to
integrate the two solvers into an added-value Java constraint solver capable of
exploiting:

1. The full expressive power of JSetL, with its inherent flexibility and generality;
and

2. The efficiency of JFD in treating finite integer domains variables.

Integrating a constraint solver over general sets, namely CLP(SET ) [5], and
an efficient solver over finite domains, namely CLP(FD) [2], has been already ex-
plored in [4], where feasibility and usefulness of the approach are clearly pointed
out. Since the constraint solving algorithms of JSetL and JFD are basically the
same exploited in CLP(SET ) and CLP(FD), [4] also provides the theoretical
basis of our current work. The work in [4], however, is deeply rooted in a logic
programming framework, assuming a logic programming language as the com-
mon implementation language for the integrated solver. Moving to a more com-
mon programming context, such as that of Java, causes some implementation
3 JSetL is available open source at http://www.math.unipr.it/~gianfr/JSetL. JFD

is available on request from the authors of this paper.



decisions to become more evident—e.g., how to handle nondeterminism—and it
requires explicit solutions for them to be provided. Moreover, differently from [4],
we use the integration of the two specific solver as an opportunity to generalize
the proposed solutions to a wider setting of cooperative constraint solving based
on a master-slave architecture, possibly involving more than one slave solver.

The paper starts from the description of the generic master-slave architecture
(next section) and its operational behaviour (Section 3). The instantiation of this
architecture to our case study is postponed to Section 4. Then, our results are
discussed together with other comparable results in Section 5. Section 6 draws
some conclusion and presents some future work.

2 Master-Slave Constraint Solving

In this section we describe a generic master-slave architecture that we designed
to support the integration of solvers with different capabilities. Each solver is
responsible for a predefined set of constraints and the master, which is also a
solver, is in charge of distributing tasks to, and gathering results from, the slaves.
We work under the assumption that the distribution policy is static and based
only on a fixed, a-priori mapping between kinds of constraints and solvers.

We start with a bunch of solvers to be integrated and we treat all of them,
but the one selected to be the master, as black boxes. All solvers share a common
high-level description as follows. We assume that each solver is equipped with
a constraint store that holds its constraints. We also assume that all solvers
regard each constraint as a collection of atomic constraints, possibly containing
just a single atomic constraint, and interpreted logically as a conjunction of
atomic constraints. We do not require all solvers to share the same set of atomic
constraints. Typically, the sets of atomic constraints of the slaves are overlapping
and some atomic constraint, e.g., the equality constraint, is in all sets.

As long as the interaction with the outer world is concerned, each solver is
characterized in terms of:

1. The kinds of constraints that it can manage;
2. The way we can add constraints to its constraint store; and
3. The way the constraint store is made inspectable from the outside world in

order to collect the results of computations.

The main task of each solver is to try to reduce any conjunction of atomic con-
straints to a simplified form that it cannot further simplify, i.e., that it considers
irreducible. The detection of a failure (logically, the reduction to false) implies
the unsatisfiability of the original constraint. Conversely, the ability to obtain the
irreducible form may eventually imply the satisfiability of the original collection
of constraints. In complete constraint solvers, the success of the reduction pro-
cess allows to conclude the satisfiability of the original constraint and each of the
obtained irreducible constraints represents a solution for the original constraint.
On the contrary, incomplete constraint solvers usually return one irreducible
constraint which has the same set of solutions as the original constraint, but



that is not guaranteed to be satisfiable (actually, determining its satisfiability
can be potentially hard).

Our general master-slave architecture applies to both complete and incom-
plete solvers. However, the specific instantiation that we consider in our case
study aims at developing a complete constraint solver in order to save the re-
sults of [4].

2.1 Selection of the Master

Given a set of solvers described in terms of the aforementioned characteristics,
the first issue we have to tackle in order to enable cooperation among them
regards assigning the role of master to a particular solver. The master represents
the front end of the integrated solver and has the following duties:

1. It enables the programmer to express constraints;
2. It distributes tasks to slaves according to an allocation policy;
3. It gathers results from slaves; and
4. It provides a common view of results.

Differently from most of the approaches in the literature, our starting point is
the selection of a solver to let it play the role of master. We are not concerned
with realizing a new, special-purpose solver for the sole purpose of enabling
cooperation. This would require the realization of a new solver from scratch and
it would require to rewrite many algorithms and data structures that are already
present in all solvers we are integrating. We would need a language for this new
solver, a constraint store, and some rewriting procedures. All these features are
already implemented and functioning in all solvers we are integrating.

Unfortunately, we cannot devise a single criterion for selecting the optimal
solver to elect to the role of master. This choice is driven by the experience and
by estimations of the required implementation effort. We can only enumerate
some issues to consider for a good selection of the master:

1. The expressive power of the constraint languages involved, i.e., the master
should provide a constraint language that subsumes the union of the lan-
guages of all slaves;

2. The performaces, i.e., slaves should perform better than the master in their
reference domains;

3. The support for constraint programming abstractions, e.g., logical variables
and nondeterminism;

4. The possibility of extending the selected solver to integrate master-specific
procedures, e.g., a constraint dispatching procedure and its result processing
counterpart; and

5. The public functionalities provided to programmers.

Reasonably, if we can access a solver with a good expressive power and such that
it can cover most of the constraints of all other solvers, we have a good candidate
for the role of master. Taking into account our case study, the constraint language
of JSetL is sufficiently expressive and therefore we selected JSetL to play the role
of master, after some minor modifications described in Section 4.



2.2 The Master’s Solving Process

Once the role of master is assigned, the solving process works as follows. First,
all constraints are loaded into the master’s constraint store, then each constraint
in the store is analyzed separately. For each constraint, the master performs one
of the following mutually exclusive actions:

1. It solves the constraint with no help from slaves;
2. It delegates the resolution of the constraint to a bunch of slaves; or
3. It forwards the constraint to a bunch of slaves to let them exploit it for

current or future use, and then it solves it.

The choice of which action to perform and when is a core part of the design of
the master and it may heavily influence the overall speed-up that the integrated
solver gains over single solvers.

Previous actions progress the master’s constraint store towards a solved form
and they are repeated until the solving process terminates successfully or until
it fails. The process terminates successfully when no further constraint can be
reduced or allocated to slaves and when all results are gathered from the con-
straint stores of slaves. On the contrary, it fails when the master, or any slave,
detects an inconsistency and no further nondeterministic choices are left open.

2.3 Communications between the Master and the Slaves

In our architecture, the allocation of constraints to slaves is performed by means
of a static, a-priori policy. This policy is chosen because it is very easy to imple-
ment and because it demands no considerable amount of computation compared
to reasonable constraint solving processes.

Given an n-ary atomic constraint C = op(t1, . . . , tn), we first use the operator
op and its arity n to allocate C to a group of solvers. If this is not sufficient to
identify the needed solvers, we consider the data types of the ti and we use this
information to finally allocate C.

In general, given an atomic constraint C, and given S, the pre-computed set
of slaves that can handle C, the allocation of C to slaves is performed by means
of one of the four mutually exclusive cases:

1. If C is a constraint of the master and S = ∅, then the master solves it;
2. If C is not a constraint of the master and S 6= ∅, then C is posted to all

slaves in S;
3. If C is a constraint of the master and S 6= ∅, then the master posts C to all

slaves in S and then solves it; or
4. If C is not a constraint of the master and S = ∅, the allocation fails, i.e., the

constraint is unknown.

The first option (that we call MASTER) is selected when the master can manage
the constraint at hand and no slave needs it in for future computations. In our
case study, this is the case of all set constraints, such as op⊂(x, y) which enforces
x ⊂ y: JSetL reduces them with no help from JFD. The second option (called
SLAVE ) is the opposite, i.e., the master has no means to exploit the constraint
and it needs a group of slaves to handle it. In our case study, this is the case of



arithmetic constraints like op+(z, x, y), which enforces z = x + y: JSetL cannot
efficiently handle such a constraint and therefore it delegates it to JFD. The
third option (BOTH ) is selected when the master can handle the constraint
on its own, but it knows that slaves may eventually need it. In our case study,
this is the case of equality constraints like op=(x, y), which imposes x = y:
if x and y are either free variables or integer constants, both JSetL and JFD
need this constraint to make sure that no information contained in the original
constraint store is lost during the solving process. The last of these four options
(UNKNOWN ) indicates an error in the integration of solvers and it should never
occur.

The allocation of constraints to slaves is only the first part of the process the
master performs to solve its constraint store. The second part consists of the
master gathering the results from slaves and reconciling them into its constraint
store. In our architecture, we do not take into account the possibility for a slave
to generate constraints that are directly passed to other slaves.

The master is interested only in the final outcome of the computation of
slaves, i.e., the irreducible constraints, involving variables known from the mas-
ter, that the slaves leave in their constraint store after a complete reduction of
any allocated constraint. Hence, the computation of slaves is immaterial from
the point of view of the master.

Generally speaking, a slave should provide back to the master any constraint
left in its constraint store that is available also in the language of the master.
This would guarantee that no information is lost during the resolution and that
each solver is free to choose the best approach for solving its constraints.

3 General Constraint Solving Procedures

The procedure the master performs for solving its constraint store is described
in Algorithm 1, where Store is the conjunction of all constraints in the initial
constraint store, conventionally ended with a true:

Store = C1 ∧ C2 ∧ . . . ∧ true

This procedure moves from one atomic constraint Ci to the next Ci+1 and solves
each of them until Store is irreducible. The procedure reset sets the current
constraint to point to the first atomic constraint in Store. Then, procedure step
eventually allocates the current constraint to slaves or tries to solve it. Finally,
function is final form tests if the reduction process is complete.

The master constraint solving procedure assumes that each slave provides a
few methods to modify or inspect its constraint store, as follows.

3.1 Slave Interface
The following methods represent the interface that slave solvers provide to the
outer world:
1. add(C), where C is a slave constraint to be added to the constraint store of

the slave;



Algorithm 1 The master’s procedure for constraint solving
procedure master solve(Constraint Store)

repeat
reset(Store);
step(Store)

until is final form(Store)
end procedure;

2. get constraints() that returns the conjunction of constraints that are present
in the store of the slave;

3. solve(B), where B is a value from an enumerative type used to specify which
solving process is requested.

The type of the argument of solve contains, at least, the value REDUCE and,
possibly, the value LABEL ALL. The first is used to ask the slave to process
its constraint store until an irreducible form is found. The second asks the slave
to label nondeterministically all variables in its constraint store. This process
causes equality constraints op=(x, v) to be added to the constraint store of the
slave to force x = v, where v is a value in the domain of variable x.

The previous methods are sufficient to let the master delegate constraints to
slaves. However we need some glue functions to make a perfect match between
the master’s and each slave’s view of the constraint store. Such glue functions
have the following responsibilities:
1. They translate master’s constraints to the corresponding constraints for each

slave and vice versa; and
2. They filter constraints to determine which of them should be passed from

the master to the slaves and which should not, and vice-versa.

In details, such glue functions are:
1. master to slave(Slave,C) that translates a master constraint C to the cor-

responding slave constraint, or to true if C is not a constraint to be sent to
slave Slave;

2. slave to master(Slave,D) acts as the opposite of master to slave and it trans-
lates a slave constraint D to the corresponding master constraint;

3. which type(C) that allows C to be classified as belonging to one of the four
types of constraints mentioned above (MASTER, SLAVE, BOTH and UN-
KNOWN ); and

4. which slave(C) that maps C to a possibly empty set of slaves that can handle
it.

Procedures master to slave and slave to master take also care of mapping mas-
ter’s variables to slaves’ counterparts, and vice versa.

Few other procedures are provided by the slave interface to handle nonde-
terminism and will be discussed in subsection 3.3.

3.2 The Master’s Constraint Solving Procedure

The procedure step—see Algorithm 2—is the core of the solving process of the
master. It embodies all actions necessary to solve each atomic constraint in



Algorithm 2 The core of the solving procedure
procedure step(Constraint Store)

Type T ;
Constraint C, D;
Set Slaves, Selected Slaves;

C ← extract(Store);
Selected Slaves← ∅;

while C 6= true do
T ← which type(C);
Slaves← which slave(C);
Selected Slaves← Selected Slaves ∪ Slaves;

if T = SLAV E or T = BOTH then
for all Slave ∈ Slaves do

Slave.add(master to slave(Slave, C))
end for

end if ;

if T = BOTH or T = MASTER then
handle constraint(Store, C)

end if ;

C ← extract(Store);
end while;

for all Slave ∈ Selected Slaves do
Slave.solve(REDUCE);

slave try next(Slave, Store)
end for;

end procedure;

Store, either by using its own procedures or by interacting with the slave solvers.
Eventually step modifies the constraint store Store as a side effect.

The invocation extract(Store) removes the current atomic constraint C from
Store and returns it, moving the current atomic constraint to point to the next
atomic constraint in Store. Then step has the task of deciding whether the se-
lected constraint C must be allocated to some slave solver or not. More precisely,
if the master decides—invoking procedures which type and which slave—to solve
an atomic constraint on its own, it exploits the procedure handle constraint ; af-
ter its complete execution, either the atomic constraint is in an irreducible form,
or it will be further processed at next step. On the contrary, if the master decides
to delegate an atomic constraint to a group of slaves it posts the (translated ver-
sion of the) selected constraint C to each slave in the group. A specific instance
of procedure handle constraint will be shown in next section, when presenting
our case study.

After the whole constraint store of the master solver has been examined, the
procedure step requests to the slaves to solve the constraints possibly posted to
them. This is obtained by invoking the procedure solve for each slave solver in the
set Selected Slaves. The subsequent invocation of the procedure slave try next—
see Algorithm 3—allows the master to get the results from the slave solver and
to add them to its constraint store. This procedure also takes care of the possible
nondeterminism occurring in the slave constraint solving.



Algorithm 3 The procedure used to explore nondeterministic choices left open
by slaves

procedure slave try next(Solver Slave, Constraint Store)
Constraint D;

either
D ← slave to master(Slave, Slave.get constraints());

if D = false then
fail

else
insert(Store, D);

end if ;
orelse . try next nondeterministic alternative

Slave.next solution();

slave try next(Slave, Store)
end either

end procedure;

3.3 Handling Nondeterminism
In our architecture we assume that both the master and the slave solvers can
be sources of nondeterminism and we need to take care of both possibilities in a
coherent way.

The fact that slave solvers can be nondeterministic requires that the slave
interface modules further provide the following methods:
1. next solution() to explore the next nondeterministic alternative that a pre-

vious call to solve might have left open.
2. save() that returns a snapshot of the current state of computation of a slave;

and
3. restore() that restores a previously saved state.

save() and restore() will allow saving and restoring of the constraint store of the
slave solvers whenever a choice point is detected in the rewriting process of a
constraint of the master.

To be able to explore nondeterministic choices possibly left open by the slave
solvers the master uses the procedure slave try next. This procedure uses the
construct either-orelse to manage the nondeterminism that a previous call to
procedure solve might have created. The idea of this construct (see [1]) is that
the either branch is explored on first and just before executing it, the complete
state of computation is pushed onto a backtracking stack. Subsequent branches
of nondeterminism are triggered by a call to fail and they will execute the first
unexplored orelse branch until no choices are left open. Before executing any
orelse branch, the backtracking stack is used to restore the computation state,
so that all branches start from the same state.

Furthermore, the procedures that handle the backtracking stack in the master
solver need to be slightly modified. As a matter of fact, our use of the construct
either-orelse is based on the assumption that the either branch can save the
complete computation state of all slaves, and that the orelse branch can restore
it. In details, whenever the master has to add a choice point, saving its compu-
tation state (in particular, its constraint store) onto its backtracking stack, it



also save the state of all the slave solver, as obtained by invoking the relevant
save methods. Whenever the master solver backtracks to an unexplored choice
point, it pops the computation state from the stack, including the saved states
of the slaves, and it automatically forces the latter to turn back to their saved
state, by invoking the relevant restore methods.

It is worth noting that methods save and restore are not normally explic-
itly considered when dealing with cooperative constraint solvers and the work is
under the (implicit) assumption that solvers are implemented in a programming
language that supports nondeterminism. Under this assumption, any change
in the computation state of any slave occurred since last choice point is au-
tomatically undone when the master rolls back (this is the case of the Prolog
implementation of CLP(SET + FD) [4]). This is obviously false in a program-
ming language like Java that do not support nondeterminism and we need to
explicitly take care of it.

4 A Case Study: JSetL+JFD

In this section we describe the integration of two constraint solvers, namely JSetL
and JFD, as an instance of the generic master-slave architecture described above.
In such instance we assume that one single slave is used and that the implemen-
tation language, i.e., Java, does not support nondeterminism. The presented
technique can be easily generalized to the case of many slaves.

JSetL is a Java library that endows Java with a number of facilities to support
general purpose declarative programming like those usually found in Constraint
Logic Programming (CLP) languages. In particular, JSetL provides logical vari-
ables, unification, list and set data structures, constraint solving and nondeter-
minism, like those supported by CLP(SET ) [5].

As noted in [11], computation efficiency is not a primary design requirement
of JSetL. JSetL is mainly conceived as a tool for rapid prototyping, where easi-
ness of program development and program understanding prevail over efficiency.
Moreover, JSetL is meant to provide researchers with a study tool for all issues
related to set constraint solving. This is the reason why JSetL provides rich and
efficient techniques for managing set variables and constraints, while it relies on
basic generate & test constraint solving for the case of scalar variables.

The Java Finite Domains (JFD) is a library that provides the programmer
with an object-oriented view of well-known constraint solving techniques for
variables with finite domains. In details, it implements the CLP(FD) language
for integers [2] and it provides some facilities for inspecting the computation of
the solver and for integrating it with third party Java objects.

The language that JSetL provides for the definition of constraints is a su-
perset of JFD’s one and therefore JSetL can play the role of master, while JFD
becomes the one and only slave. This choice requires some minor modifications
to JSetL, but it saves us the trouble of realizing a new meta-solver from scratch.
The result of this integration, namely JSetL+JFD, has the best of both worlds:



Algorithm 4 The handle constraint procedure of JSetL+JFD
procedure handle constraint(Constraint Store, Constraint C)

if C = op∈(o1,o2) then
member(Store, C)

else if C = op∈(o1,o2) then
equals(Store, C)

else if . . . then
else if C = next then

slave try next(Store, C) . Unroll nondeterministic choice
end if

end procedure

it retains the expressive power and flexibility of JSetL, while allowing an efficient
finite-domains processing when needed.

The synergic cooperation of JSetL and JFD is completely transparent to the
programmer because he/she deals only with the API, i.e., the language, that
JSetL provides. The presence of JFD as a back-end slave is perceived only at
runtime because of the improvement of performances that it brings when dealing
with finite domains variables: whenever JSetL detects constraints that JFD can
handle efficiently, e.g., membership constraints over finite sets of integers, it
delegates their resolution to JFD.

Algorithm 4 shows (part of) the instance of procedure handle constraint in
the case of JSetL+JFD. handle constraint implements the constraint handling
for master’s constraints, using a dedicated procedure for each different type of
constraint. One of these procedures, namely member, dedicated to the manage-
ment of op∈(x, y) constraints, is shown in Algorithm 5.

Following [4], we want our integrated solver JSetL+JFD to preserve the com-
pleteness property that characterizes CLP(SET ) and JSetL. To this end, we force
the slave solver JFD to label variables before returning its results to the master.
To obtain this, the call Slave.solve(REDUCE) of Algorithm 2 is replaced by the
call:

jfd.solve(LABEL ALL)

Forcing labeling, allows the slave solver JFD to communicate back to the mas-
ter solver JSetL only equality constraints, provided JFD has received enough
information to associate a domain to each variable it has to deal with.

The main differences with respect to the general scheme of Section 3 is the
way nondeterminism is handled within the master solver. The problem is how the
abstract construct either-orelse can be rendered concretely using JSetL facilities
for nondeterminism handling.

JSetL allows to express nondeterminism by explicitly creating choice points
through the use of the method add choice point, and to backtrack to one of
the open choice points using the control information stored in the constraint
itself and obtainable through the method get alternative of the class Constraint.
Nondeterminism in JSetL, however, is confined to constraint solving, i.e., the
aforementioned methods can be only used within constraint solving procedures
(either predefined or user defined).



Algorithm 5 The member procedure of JSetL+JFD.
procedure member(Constraint Store, Constraint C)

if C = op∈(o1, ∅) then
fail

else if C = op∈(o1, X) then
insert(Store, op=(X, {o1 |N}))

else if C = op∈(o1, {o2 | s}) then
if C.get alternative() = 0 then

add choice point(C); . Save nondeterministic choice

insert(Store, op=(o1, o2))
else

insert(Store, op∈(o1, s))
end if

else if . . . then
end if

end procedure

As an example, consider the implementation of the constraint rewriting pro-
cedure member shown in Algorithm 5. Such a procedure is a source of nonde-
terminism because it addresses two possibilities when the constraint it handles
is C = op∈(o1, {o2 | s}):

o1 = o2 ∨ o1 ∈ s

The nondeterministic alternatives are implemented as the different alternatives
of nested if-else statements, which are selected using the control information
obtained through the method get alternative. Each if-else alternative, but the
last one, creates a choice point and adds it to the backtracking stack by invoking
the method add choice point. Then the remaining code of the if-else alternative
implements the proper constraint rewriting.

Algorithm 6 shows the refined versions of the procedure slave try next for
JSetL+JFD. To implement the nondeterministic computation of Algorithm 3 we
introduce a new constraint, called next, and we turn the procedure slave try next
into a constraint rewriting procedure called to handle the new constraint next.
The way this constraint is processed is exactly the same shown in procedure
slave try next of Algorithm 3 except that, after calling next solution of the slave,
it inserts again the constraint next in its current constraint store Store. Some
minor modifications of the procedure handle constraint are also required to ac-
count for the new constraint next—see Algorithm 4. Similarly, the invocation
slave try next(Slave,Store) in the procedure step is replaced by the invocation
insert(Store,next) that adds the constraint next to the constraint store of the
master.

Furthermore we assume that the procedures that handle the backtracking
stack in JSetL are slightly modified to allow the JFD state to be saved/restored
to/from the JSetL backtracking stack, according to the technique described in
Section 3.3. This requires that JFD is equipped with the save and restore pro-
cedures described in the general case. Using this technique, the implementation
of nondeterministic constraint rewriting procedures, such as member, remains
completely unchanged with respect to the case of a stand-alone master.



Algorithm 6 The slave try next procedure of JSetL+JFD
procedure slave try next(Constraint Store, Constraint C)

Constraint D;

if C.get alternative() = 0 then
add choice point(next); . save computation state

D ← slave to master(jfd, jfd.get constraints());

if D = false then
fail

else
insert(Store, D)

end if
else

jfd.next solution(); . try next nondeterministic alternative
insert(Store, next)

end if
end procedure;

5 Related Work

The possibility of synergically orchestrating the work of different solvers in order
to efficiently overcome the limitations of each single solver is normally explored
in the area of cooperative constraint solving.

The literature on cooperative constraint solving tries to capture this idea
by designing a composite constraint solver that provides a unified view of the
languages and the features that atomic constraint solvers offer. The composite
solver has the responsibilities of all cooperation-related tasks, e.g., providing
a unified constraint store, managing the communication and task breakdown
between atomic solvers and translating constraints back and forth atomic solvers.
Then, the language of this composite solver is likely to enrich the combination
of the languages of atomic solvers with meta-level features that allow expressing
strategies and heuristics for cooperation.

The literature on this subject is rich and a number of architectures have been
proposed [3, 6, 9, 13]. For example, Hofstedt [9] proposes a very general, yet quite
complex, architecture capable of accommodating different solvers on-the-fly in
order to solve complex problems that no single solver could solve efficiently.
Moreover, a substantial number of theoretical works are devoted to the study
of necessary conditions for supporting efficient cooperation between different
solvers [9, 10].

Many of the approaches that the literature of cooperative constraint solving
proposes could be possibly applied to the case study that we consider in this
work, i.e., the integration of a set solver with a finite domains solver. Neverthe-
less, such approaches seem to overkill the problem with very generic, yet very
redundant, architectures that are not easily implementable. Moreover, many de-
tails regarding the internal mechanisms used for cooperation are not specified
and it is not clear whether they may put little problems in practice, or not. Fi-
nally, most of the proposals found in the literature assume that composite solvers
and atomic solvers are all implemented in a (single) logic language. This hidden



hypothesis has a strong impact when implementing solvers in an object-oriented
language like Java because most of the issues related to nondeterminism must
be treated explicitly.

A related research area uses the synergic cooperation of constraint-solvers
to deal with Distributed Constraint Satisfaction Problems (see, e.g., [12]), i.e.,
constraint satisfaction problems that can be solved by means of an efficient
distribution of tasks to solver agents. Normally, all agents have the same charac-
teristics and a single agent would be able to efficiently solve the whole problem.
The distribution is meant to boost performances and it does not deal with dif-
ferent capabilities agents may have. This is significantly different from the main
objective of our work that targets the integration of solvers with different capa-
bilities. We need the cooperation of solvers because no single solver is capable of
efficiently addressing the whole complexity of the problem at hand; not because
a single solver is not quick enough for our purposes.

The basic motivation of our work lies in the working assumption that we are
not probably going to deliver the perfect constraint solver capable of meeting
all requirements of future applications. This lead us to the study of cooper-
ative solvers as a means to overcome the limitations of each solver. For the
sake of completeness, we shall mention that the same working hypothesis led
other researcher towards the realization of tools for the ad-hoc construction of
application-specific solvers. For example, Constraint Handling Rules (CHRs) [7]
is a language for the realization (from scratch) of the right solver for the problem
at hand.

6 Conclusions and Future Work

This paper gathers ideas and results obtained from a very practical experience:
the integration of JSetL and JFD into a value-added Java constraint solver that
can fully exploit the expressive power of JSetL, e.g., set variables and constraints,
and the efficiency of JFD in treating finite integer domains variables. The out-
come of this experience is twofold:

1. A generic master-slave architecture for the integration of constraint solvers
with different capabilities has been identified and studied; and

2. The JSetL+JFD Java library for constraint solving is implemented.

Future work is in the direction of improving the generic architecture that we
defined by relaxing some design choices that may prohibit the use of it in many
interesting situations. For example, we are in the process of changing the pol-
icy for allocation of constraints to slaves in order to make it more flexible and
dynamic.

From the point of view of the integration of set and finite domains constraints,
we envisage the possibility of allowing the manipulation of finite domains by
means of JSetL high-level set operations. The importance of this feature has
been emphasized by various authors (see, e.g., [8]). In practice this would be
achieved by implementing the constraint rewriting procedures defined in [4].



Other interesting directions of future development are inherent to the choice
of forcing slaves, when possible, to label their variables before returning their
results to the master, in order to gain completeness. This labeling, however,
would probably cause inefficiencies. A first cut to such inefficiencies could be
achieved by carefully deciding when to ask slaves to label variables and which
variables they should label. Obviously, the more we delay the labeling request,
the better. Then, a possibly larger improvement of efficiency could be achieved
by dropping the completeness requirement to let slaves deciding the best way to
process their constraint stores.

Acknowledgments The work is partially supported by MIUR project “Con-
straints and preferences as a unifying formalism for system analysis and solution
of real-life problems”.

References

1. K. R. Apt, J. Brunekreef, V. Partington and A. Schaerf. Alma-0: An imperative
language that supports declarative programming. ACM TOPLAS, 20(5), 1014–
1066, 1998.

2. P. Codognet and D. Diaz. Compiling constraints in CLP(FD). Journal of Logic
Programming, 27(3), 185–226, 1996.

3. M. Correia, P. Barahona and F. Azevedo. CaSPER: A programming environ-
ment for development and integration of constraint solvers. Procs. 1st Inter-
national Workshop on Constraint Programming Beyond Finite Integer Domains
(BeyondFD’05 ), 59–73, 2005.

4. A. Dal Palù, A. Dovier, E. Pontelli and G. Rossi. Integrating finite domain con-
straints and CLP with sets. Procs. 5th ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP’03 ), ACM Press, 219–229, 2003.

5. A. Dovier, C. Piazza, E. Pontelli and G. Rossi. Sets and constraint logic program-
ming. ACM TOPLAS, 22(5), 861–931, 2000.

6. S. Frank, P. Hofstedt and P. R. Mai. A flexible meta-solver framework for constraint
solver collaboration. Procs. 26th German Conference on Artificial Intelligence,
KI’2003, LNCS 2821, Springer-Verlag, 2003.

7. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3), 1998.

8. M. Gavanelli, E. Lamma, P. Mello and M. Milano. Dealing with incomplete knowl-
edge on CLP(FD) variable domains, In ACM TOPLAS, 27(2):236–263, 2005.

9. P. Hofstedt. Cooperating constraint solvers. Procs. International Conference on
Principle and Practice of Constraint Programming, LNCS 1894, Springer-Verlag,
520–524, 2000.

10. E. Monfroy and C. Castro. Basic components for constraint solver cooperations.
Procs. ACM SAC 2003, ACM Press, 367–374, 2003.

11. G. Rossi, E. Panegai and E. Poleo. JSetL: A Java library for supporting declarative
programming in Java. Software-Practice & Experience, in print, 2006.

12. A. Petcu, B. Faltings and D. Parkes. MDPOP: Faithful distributed implementation
of efficient social choice problems. Procs. Autonomous Agents and Multiagent
Systems (AAMAS’06 ), 2006.

13. P. Zoeteweij and F. Arbab. A component-based parallel constraint solver. Procs.
of COORDINATION 2004, LNCS 2949, 307–322, Springer-Verlag, 2004.


