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Dipartimento di Matematica
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Abstract. This paper summarizes a constraint solving technique that
can be used to reason effectively in the scope of a constraint language
that supersedes common finite domain languages available in the litera-
ture. The first part of this paper motivates the presented work and in-
troduces the constraint language, namely Hereditarily Finite Sets (HFS)
language. Then, the proposed constraint solver is detailed in terms of
a set of rewrite rules which exploit finite domain reasoning within the
HFS language. The presented approach achieves good efficiency without
loosing the desired correctness and completeness properties that other
solvers for HFS provide.

1 Introduction and Motivation

Finite Domain (FD) [5] constraint solvers have been effectively applied to a
great variety of problems in different application domains. Unfortunately, FD
constraint solving typically suffers from an inherent weakness from the point of
view of (i) expressive power and (ii) required a priori knowledge.

From the point of view of expressive power, FD constraint languages force
the domains of variables to bounded intervals (subset of a discrete universe,
often Z), which may lead to severe limitations in real-world applications where
domains of variables are often sparse sets, possibly of structured entities [12].
As a matter of fact, the use of intervals introduces an approximation in the
representation of domains that may result in reduced effectiveness of constraint
solving. Some constraint solvers address this issue and provide a means to deal
with non-interval domains, e.g., (i) FD set terms [20] of SICStus allow modeling
domains in terms of finite unions of intervals, and (ii) GNU Prolog transparently
switches between sparse and interval domain representations [5].

Furthermore, forcing domains in Z inhibits a natural representation of struc-
tured knowledge. The recent introduction of Finite Set (FS) constraints [11] aims
at overcoming such limitations because FS constraints model domains as collec-
tions of known sets. Such domains are normally expressed in terms of set intervals
[l..u] where l and u are known sets, usually of integers. A set interval [l..u] rep-
resents the set of all subsets of u that contain l, i.e., [l..u] = {x : x ⊆ u∧ l ⊆ x}.
Many constraint solvers (including many CLP systems) now offer FS constraints,
e.g., ECLiPSe [14], Oz [19] and B-Prolog [22].



FS constraints are explicitly derived from FD constraints and therefore they
retain the appreciated efficiency of the latter, while inheriting many of their
problems and limitations. In particular, available FS constraint solvers, e.g.,
Conjunto [11] and Cardinal [2], treat efficiently only interval domains that are
defined as the convex closure of a collection of elements. For example, given a
variable whose domain is {{a, b}, {a, c}, {d}}, the corresponding interval domain
is the set interval [{}..{a, b, c, d}].

Besides the mentioned expressive power limitations, it is also worth discussing
another important limitation of FD-like constraint languages. The practice of us-
ing FD-like reasoning in knowledge representation has shown that domains are
often unknown prior to reasoning and an important side effect of reasoning is re-
vealing the shape of domains. In many real-world cases, domains are not available
prior to computation, and they have to be acquired and/or computed; anyway,
constraints over them are often known in advance. Mentioned situations are not
really tractable with FD-like languages because their solvers typically attach
a possibly implicit (and redundant) domain to each variable before processing
constraints.

The difficulties connected with required a priori knowledge in FD-like reason-
ing are explicitly tackled by [10], which extends CLP(FD) to deal with incom-
plete knowledge on domains. The proposed system is based on the Interactive
CSP approach [6] and it uses domains as communication channels between the
CLP(FD) solver and an acquisition system.

The mentioned limitations in terms of expressive power and required a priori
knowledge do not reduce the notable importance of FD-like constraint languages
and solvers for their proved effectiveness in handling a great variety of problems.
Nonetheless, the urge for expressive power to support modeling of complex do-
mains that real-world applications require justifies the definition of constraint
languages and solvers that trade-off efficiency with expressive power and com-
pleteness, e.g., CLP(SET ) [9] and CLPS [4].

In particular, CLP(SET ) provides a constraint language that subsumes most
of the mentioned FD-like languages while delivering a correct and complete
constraint solver, at the cost of notable inefficiency. More in details, CLP(SET ),
and its Java porting JSetL [18], support modeling domains in terms of generic
extensional sets, usually called Hereditarily Finite Sets (HFS ), that contain any
kind of object (and nested finite sets in particular). Moreover, such sets can be
constructed dynamically by means of common set operations and it is worth
mentioning that constraint solving can take place even over partially or totally
unspecified sets.

Unfortunately, the constraint solver of CLP(SET ) does not exploit the in-
formation that the domain of variables provides, and it does not even explicitly
express that a variable may have a domain. This leads to a very weak form of
propagation and most of constraint solving is basically a generate & test. For
example, given the following problem x ∈ {1, 2, 3, 4, 5} ∧ x 6= 10, the CLP(SET )
solver enumerates all possible values of x before asserting that x 6= 10 holds.



While the expressive power and the computational features of CLP(SET )
make it a good candidate to deliver a constraint language capable of addressing
the mentioned issues of FD-like languages and solvers, the inefficiencies of avail-
able implementations of CLP(SET ) prohibit its instant use in many problems
where FD-like solvers proved their relevance. A step towards a more effective use
of the CLP(SET ) language is represented by CLP(SET ,FD) [7] which integrates
FD constraints into CLP(SET ) thus allowing efficient processing of the former
through the use of an embedded FD solver. Advantages, however, are limited
to FD constraints only: CLP(SET ,FD) still retains the overall constraint solv-
ing technique of CLP(SET ), with no possibility to exploit domain information
except for the handling of FD constraints.

The overall goal of this paper is to combine the flexibility and expressive
power of CLP(SET )-like languages with the efficiency of FD-like languages, in
a more general manner. In order to achieve this goal, we propose to integrate
FD, FS and CLP(SET ) constraints into a single, uniform constraint language
and to extend the domain-driven constraint solving techniques of FD and FS to
the whole solver. For this reason, we develop a new (set) constraint solver that
replaces the standard CLP(SET ) solver and that exploits the information on
domains of variables to obtain improved efficiency.

The resulting language and solver can be viewed as a generalization of the
languages of FD and FS constraints, in which domains are allowed to be general
sets, containing elements of any kinds, possibly nested and partially specified.

On the other hand, the work described in this paper can be viewed as a gen-
eralization of [7], that allows retaining the expressive power of CLP(SET ) while
permitting the efficient processing of a larger class of CLP(SET ) constraints.

The paper is organized as follows. Next section presents the language of
HFS-constraints, focusing on the notion of variable domain. In Section 3, we first
present the architecture of the proposed constraint solver, and then we detail the
solver in terms of a set of rewrite rules which exploit FD-like reasoning within
the HFS language. Finally, in Section 4 we summarize the current state of the
implementation of our proposal and we point out some future work.

2 The HFS Constraint Language

This section details the syntax and semantics of the constraint language that we
consider in this work. It also highlights the peculiar features that the language
provides for treating domains of variables, which we exploited in the constraint
solver reported in the next section.

The language described here is a minor extension of the constraint language
provided by the CLP language CLP(SET ), and the Java library JSetL, which
delivers (most of) CLP(SET ) facilities for set solving in an object-oriented lan-
guage framework.



2.1 Syntax and semantics

As usual, the syntax of the language is defined by its signature Σ that is a triple
〈V,F ,Π〉 where V is a fixed finite set of variables, F is the set of constant and
function symbols, and Π is the set of constraint predicate symbols allowed in
the language.

The set F of constant and function symbols is

{∅, ins, int} ∪ Z ∪ FZ ∪ FU

where: ∅, ins, and int are the set constructors; Z is the denumerable set of con-
stants representing the integer numbers, i.e., Z = {0,−1, 1,−2, 2, . . .}; FZ is
a set of function symbols representing operations over integer numbers, such
as +,−, ∗, div,mod; FU is a (possibly empty) set of user-defined constant and
function symbols.

The set Π of constraint predicate symbols is

{=} ∪ΠS ∪R ∪ {set, integer} ∪Neg

where: ΠS is a set of predicate symbols representing the usual set-theoretic
operations, such as ∈,⊆, union, inters, ||, diff, size; R is a set of predicate symbols
representing the usual comparison relations over integer numbers, such as ≤, >;
Neg is a set of predicate symbols representing the negated counterparts of most
of other predicate symbols, such as 6=, 6∈, not integer.

A primitive HFS-constraint is any atomic predicate built using the symbols
from the signature. A non-primitive HFS-constraint is a conjunction of primitive
HFS-constraints.

The intuitive semantics of the various symbols is as follows1. The symbol ∅
represents the empty set. ins(t, s) represents the set composed of the element
t union the elements of the set s, i.e., {t} ∪ s. For example, ins(1, s), where s
is an uninitialized variable, represents the (unbounded) set {1} ∪ s. int(a, b, s)
represents the set composed of the elements in the interval [a, b] union the el-
ements of the set s. If a, b are integer constants, [a, b] is the set of integers
{x : x ≥ a∧x ≤ b}; if a, b are ground terms denoting sets, [a, b] is the set of sets
{x : a ⊆ x ∧ x ⊆ b}, that is the bounded lattice induced by the subset relation
⊆ having a as its greatest lower bound and b as its least upper bound.

It is worth noting that ins and int are different constructors for terms de-
noting the same notion of set. Thus, terms constructed using ins and int can be
tested, e.g. for equality, and they can be combined. For example, ins(1, int(10, 20,
ins(100, ∅))) represents the set containing all integers between 10 and 20 with
the integers 1 and 100. We call a term built using the set constructors ins and
int an extended set term.

The predicates = and ∈ represent the equality and the membership relation-
ships, respectively; the predicate union represents the union relation: union(r, s, t)
1 A formal discussion of these concepts is out of the scope of this paper and can be

found in [7]



holds iff t = r ∪ s; the predicate || represents the disjoint relationship between
two sets: s || t holds iff s ∩ t = ∅; and so on.

Symbols in Z are mapped to the elements of Z, while functions in FZ and
the predicate symbols ≤,≥, etc. are mapped to functions and relations over Z
in the natural way.

We say that a HFS-constraint containing only predicates taken from {=, 6=
,∈, 6∈, union, ||,≤, size, set, integer} is in canonical form. As a matter of fact, [9]
shows that all other predicates in Π can be defined as non-primitive constraints
using the above together with the HFS theory.

Sets are defined by means of the set constructors ins and int as shown above.
For the sake of simplicity, however, we will often use the following more conve-
nient notations:

{t1 | t}
as a shorthand for

ins(t1, t)
and

{t1.. t2 | t}
as a shorthand for

int(t1, t2, t)
writing {t1} and {t1.. t2}, respectively, when t is the empty set. This notation
is easily extended to the case of n elements (possibly mixing the ins and int
constructors, e.g., {1, 10..20, 100}). With a little abuse of terminology, we call a
syntactic object of the form t1..t2 a range term.

Various concrete language facilities are provided to make set definition sim-
pler. For example, in JSetL, we can provide an array of elements when creating
a set object; furthermore, an interval of integers can be specified at set creation
by giving the lower and upper bounds of the interval. In CLP(SET ), a special
syntax is provided to denote a set obtained by n applications of the set construc-
tor ins as a list of n elements with curly brackets, as in the usual mathematical
notation.

Elements of a set can be values of any type (not necessarily homogeneous),
including logical variables and other sets. Hence, sets can be nested at any level,
e.g., { 1, {∅, {a}}, {{{b}}} }. Moreover, sets can be partially specified, i.e., they
can contain uninitialized logical variables in place of single elements.

It is worth noting that we assume that the constraints of the language deal
naturally with set terms made of single elements and intervals, possibly mixed
together. For example:

– 13 ∈ {1..10, 15, 20..100}
– union({1, 5, 7}, {3..6}, R)
– {1, 3, x} = {1..3}

are all admissible HFS-constraints, whose solved forms are: false, R = {1, 3..7},
and x = 2, respectively. The availability of extended set terms is particularly
useful to represent non-interval sets, e.g., the ones obtained from the constraint
diff({1..10}, {5}, R), whose solved form is R = {1..4, 6..10}.



Actually, extended set term management represents a straightforward exten-
sion of the set representation and manipulation facilities provided by CLP(SET ),
JSetL, and other available FD/FS constraint solvers.

2.2 Domains

Logical variables can range over the domain of HFS (set variables), as well as
over the domain of integers (integer variables), and, for equality and membership
constraints only, over the domain of all possible values.

Domains can be specified as HFSs and associated to variables through mem-
bership constraints, e.g., x ∈ d, where d, the domain of x, is an extended set
term. This turns domains into first class abstractions of the language and natu-
rally equips them with common set operations, thus generalizing domains from
bounded intervals to very general, unbounded and potentially sparse sets.

More in detail, domains can be specified either as sets or as intervals. In the
first case, the domain can be given either by enumerating all its values or it
can be constructed as the result of some set operation. Moreover, the domain
can be partially specified. For example, x ∈ {1, 3, 5, 7, 9} states that the domain
of the integer variable x is the set of the odd natural numbers less than 10,
whereas x ∈ {1 | s}, with s a set variable, states that the domain of x is an
unbounded set containing the value 1 plus something else not yet specified.
Similarly, r ∈ {{1}, {2}, {3}, {1, 2, 3}} precisely defines the domain of the set
variable r as a set of four different sets.

When the domain is specified as an interval, the interval itself can be given
either by specifying its lower and upper bounds, int(a, b), or it can be constructed
as the result of some set operation, where a and b can be either integer constants
(for integer variables), or known sets (for set variables). For example, the con-
straint r ∈ {{1}..{1, 2, 3}} states that the values of r can be: {1}, {1, 2}, {1, 3},
{1, 2, 3}.

A domain d is said a closed domain if any element t in d is completely known
(i.e., it is denoted by a ground term) or all variables possibly occurring in t
have a closed domain attached; otherwise, d is an open domain. For instance,
{1, x}, where x is an integer variable with domain {1..100}, is a closed domain.
Conversely, {1, x}, with x > 10, and {1 | s}, with s a set variable with no attached
domain, are (resp., bounded and unbounded) open domains. A closed domain
whose elements are integer numbers is said an integer domain, while a closed
domain whose elements are known sets is said a set domain.

3 Constraint Solving

3.1 The Overall Solver Architecture

In order to enhance effectiveness and efficiency of the constraint solving process,
we decided to structure the proposed constraint solver into a layered architecture.
Each layer achieves a different level of consistency at a different cost. Lower levels



are considered more effective in proving inconsistency and reducing the search
space than upper levels.

More precisely the solver is structured as follows:

– Level 1 – Single constraints are processed to generate canonical constraints
by means of deterministic rewrite rules only. Rules are triggered by the type
of the primitive constraint to be handled. A very weak form of propagation
of constraints is performed at this level: variable substitution only.

– Level 2 – Deterministic rules involving pairs of constraints are applied. These
are all propagation rules that exploit the knowledge about variable domains,
whenever possible, to reduce the size of domains or to reveal an inconsistency,
according to the FD and FS approaches.

– Level 3 – Nondeterministic and labeling rules are applied. This level is highly
nondeterministic and it includes the labeling of variables whose domains are
known. Such level 3 rules are mostly taken from the available implementa-
tions of CLP(SET ) solvers.

The overall solving process repeatedly exploits all applicable rules at a given
level until a fixpoint is reached, before passing to an higher level. If no new
constraints are added to the constraint store, the process steps forward to an
higher lever, otherwise it restarts from level 1.

The results of levels 1 and 2 are simplified forms of the original constraint that
we cannot prove satisfiable, much like the output of FD-like constraint solvers.
Conversely, the output of level 3 enjoys the same desirable characteristics of
constraint solving in CLP(SET ), i.e., correctness and completeness, provided
that all variables in the CSP have a closed domain attached. In fact, the result
of level 3 is a finite collection {C1, . . . , Ck} of constraints in solved form [9] which
is guaranteed to be satisfiable. Moreover, the disjunction of all the constraints in
solved form generated by the solver is equisatisfiable to the original constraint.

The achieved improvement of effectiveness mainly derives from the fact that
the proposed layered architecture allows the user deciding which level of consis-
tency he/she wants to achieve. As a matter of fact, the user is free to choose
to (i) stop at any of the first two levels, with no satisfiability warrants, or (ii)
select which (if any) variable to label if the corresponding domain is known, or
optionally (iii) skip level 2 in order to avoid constraint propagation, thus letting
more time to be spent in searching the solution space rather than in enforc-
ing consistency. This last choice is what current implementations of CLP(SET )
provides, i.e., they skip over most of the rules that we now put in level 2.

The foreseen improvement of efficiency mainly relies on the decision of post-
poning all (costly) nondeterministic rules at the end of the constraint solving
cycle. Generally speaking, the split of rules into deterministic and nondetermin-
istic promotes efficiency over, e.g., CLP(SET ) and JSetL, because the solver is
given more chance to detect inconsistency before branching any nondeterministic
choice.

Finally, it is worth noting that the rewrite rules used by FD-like constraint
solvers to process constraints can be entirely expressed in terms of set constraints



over (the sets that represent) the domains of variables. For example, domain
reduction associated to a constraint like x ∈ d ∧ x ∈ d′ can be expressed by the
CLP(SET ) constraint x ∈ D ∧ inters(d, d′, D). Thus, we can concentrate on
providing efficient implementations of set constraints especially in cases where
sets are completely specified, e.g., where sets represent FD or FS domains. The
same set constraints, however, apply naturally also to all other cases (e.g., non-
interval domains), though they are treated, in general, less efficiently.

3.2 Constraint Solving Rules

The rest of this section presents a taxonomy of the rewrite rules we employed for
constraint solving. For each level of the solver, we detail the classes of rewrite
rules that we used at that level, and we exemplify some rule for each class.

Many of the rewrite rules of our solver are directly derived from CLP(SET ),
and they have been (i) adapted to cope with extended set terms, and (ii) special-
ized to exploit interesting properties of special cases (e.g. ground sets). Moreover,
some new rules have been introduced to deal with integer and set domains with
FD- and FS-like approaches. Finally, some other rules have been introduced to
handle cardinality constraints, much like in Cardinal [2].

Most of the rules are direct application of the classic set theory adapted to
support HFS [9].

The rules are presented as deterministic rewrite rules that operate when
respective pre-conditions are met:

pre-conditions
{C1, . . . , Cn} → {C ′

1, . . . , C
′
m}

where C1, . . . , Cn and C ′
1, . . . , C

′
m (n, m ≥ 0) are primitive HFS-constraints in

the constraint store, and {C1, . . . , Cn} → {C ′
1, . . . , C

′
m} represents the changes

in the constraint store caused by the application of the rule.
In the rest of this section, we adopt the following notation:

– t, ti: any term (either ground or not);
– c, ci: any ground term (either integer or not);
– i, ii: integer constants;
– v, vi: any non-ground term;
– X, Y , Z, N , M , . . . (uninitialized) variables; and
– s, r, si: any set (either ground or not).

We also introduce the function dom(X), which returns the closed domain cur-
rently associated with X, or −∞.. +∞ if the domain of X is open or X has no
domain attached. The details on how dom(.) is concretely implemented is out
of the scope of this paper, but it is worth noting that the domain of a variable
can be equally stored as an attribute of the variable itself, or as an appropriate
constraint that links a variable to its domain.

dom(X) is defined for any X and we need to complement it with two other
predicates to perform the common task of deciding whether X is an integer
variable or a set variable. In particular, int dom(d) holds if d is an integer domain,
and set dom(d) holds if d is a set domain.



Level 1

This level performs a simplification of constraints by means of six classes of
rewrite rules.

Ground cases – Solve constraints whose arguments are all ground terms. For
example:

– set membership test
c 6= c1 and . . . and c 6= cn, ci not range terms

{c ∈ {c1, . . . , cn |X}} → {c ∈ X}
(1)

– interval membership test
i ≥ i1, i ≤ i2

{i ∈ {i1..i2}} → {}
(2)

Similar rules apply to other constraints that deal with both integer and set
intervals, such as union, intersection and difference. These operations are fun-
damentals for the implementation of the FD and FS constraint solving tech-
niques as illustrated for instance in [11] and [2]. For this reason it is crucial that
these rules are implemented as efficiently as possible. This is the case, e.g., of
inters(1 .. 10, 5 .. 20, D), which is easily solved because both intervals are com-
pletely known. Conversely, a constraint like inters({1, X}, {2, Y }, D) is managed
with the more general, though less efficient, rules of level 3.

Special cases – Identify simple cases, in which not all terms are necessarily
ground, e.g, one term is ground and/or one term is a set whose elements are all
variables and/or terms are singleton sets. For example:

– empty set
{t ∈ ∅} → fail

(3)

– singleton set
t2 not a range term

{t1 ∈ {t2}} → {t1 = t2}
(4)

Generation of canonical constraints – Primitive constraints that are not
in a canonical form and that can not be further simplified are rewritten to
semantically equivalent canonical constraints. For example:

– subset
{X ⊆ Y } → {union(X, Y, Y )}

(5)

Inference of types – Provide additional constraints to ensure type coherence.
For example:

– integer variable
int dom(s)

{X ∈ s} → {X ∈ s, integer(X)}
(6)



Inference of cardinalities – Provide additional constraints to ensure coherence
of the cardinality of sets. For example:
– set variable

set dom({s1 .. s2}), |s1| = a, |s2| = b

{X ∈ {s1 .. s2}} → {X ∈ {s1 .. s2}, size(X, N), N ∈ {a .. b}}
(7)

Inference of domains – Gather information on domains that is not explicitly
provided. For example:
– cardinality of a partially specified set

m = number of distinct ground terms in{t1, . . . , tn} or
m = 1 if t1, . . . , tn are all non-ground terms
{size({t1, . . . , tn}, N)} → {N ∈ {m..n}}

(8)

For example, size({X, Y, 1}, N) generates N ∈ {1..3}, while size({1, 2, 3}, N)
is rewritten to N ∈ {3..3}, i.e., N = 3.

All cases that are not tackled by the mentioned classes of rules are considered
irreducible at level 1 and they are therefore shipped to level 2. In particular,
constraints like t ∈ {t1, . . . , tn | s}, with n ≥ 1, s either variable or ∅, and
either t or t1, . . . , tn non-ground terms are passed unaltered to level 2 (note that
constraints of the form X ∈ {t1, . . . , tn | s} represent sort of domain declarations
that are managed at level 2).

Remark 1. The outcome of level 1 is in canonical form, which eases the tasks
of level 2 because it can address only pairs of constraints in canonical form.
While this characteristic of the output of level 1 is crucial to limit the potential
explosion of rules at level 2, on the other hand it may introduce some inefficien-
cies in the overall constraint solving process. As a matter of fact, the relation
represented by a non-canonical constraint may become no longer evident after
the constraint have been replaced by the (equivalent) conjunction of primitive
constraints in canonical form. Hence, some optimizations and/or inferences that
apply to the original constraint are hardly applicable to the transformed con-
straint. For example, the non-canonical constraint inters(X, Y, Z) is replaced by
the equivalent canonical constraint union(A,Z,X), union(B,Z, Y ), A ||B; if after
this replacement, X, Y , Z get instantiated to ground set terms, the solver can
not apply the efficient processing rules provided for dealing with intersection of
ground sets. The identification of the appropriate tradeoff between reducing the
number of cases to be managed by the solver’s upper levels and delaying as long
as possible elimination of non-canonical constraints is left as an open problem
for future work.

Level 2

Rules at this level are mainly intended to perform an FD-like reasoning on
domains of variables. This level provides also rules to perform simple consistency
checks between pairs of constraints (e.g., between type constraints).



Domains management – Add/remove elements from the domains of variables,
merge sparse domain information of single variables, test for domain member-
ship. For example:

– domain update set dom(d), update dom(d, c) = d′

{c ∈ X, X ∈ d} → {X ∈ d′}
(9)

where update dom(d, c) returns the subset d′ of the set domain d whose
elements contain the constant element c, i.e.,

d′ = {s : s ∈ d ∧ c ∈ s}.

For example:

- update dom({∅..{1, 2, 3}}, 1)) = {{1}..{1, 2, 3}}
- update dom({∅..{1, 2, 3}}, 4)) = ∅
- update dom({{1, 2}, {1, 3}, {2, 3}}, 1) = {{1, 2}, {1, 3}}
- update dom({{1, 2}, a}, 1) = {{1, 2}}.

Similarly, the processing of disequalities may cause elements to be removed
from a domain:

s, t ground
{X 6= t, X ∈ s} → {X ∈ D, diff(s, {t}, D)}

(10)

In particular, when s is an integer interval {i1..i2} and t is an integer be-
longing to the interval, distinct from i1 and i2, the resulting new domain D
is {i1..t− 1, t + 1..i2}.

– domain merge
r, s ground

{X ∈ s, X ∈ r} → {X ∈ D, inters(s, r,D)}
(11)

Rules (10 and (11) are applicable for any (ground) s and r, which requires
diff and inters to work equally with interval and non-interval sets. As an
example, inters({{1}..{1, 2, 3}}, {{1, 2}, {2, 3}}, X) holds for X = {{1, 2}}.

– domain test
c 6∈ dom(Xk) and . . . and c 6∈ dom(Xn)

{c ∈ {X1, . . . , Xk−1, Xk, . . . , Xn}} → {c ∈ {X1, . . . , Xk−1}}
(12)

This rule removes all variables whose domains do not contain c. It is worth
noting that this rules has an interesting special case for k = 1 that leads to
fail via {c ∈ {X1, . . . , Xn}} → c ∈ ∅.

As an example of application of rule (12), which shows some improvements of
our approach on CLP(SET ) (and CLP(SET ,FD)), let us consider the following
HFS-constraint:

R = {X1, X2, X3, X4, X5}, 15 ∈ R,R ⊆ {1, 3, 5, 7, 9, 11}



After propagating equality for R over the other two constraints through variable
substitution, the solution of the ⊆ constraint forces all variables X1, X2, X3,
X4, X5 to get the set {1,3,5,7,9,11} as their domain; then the constraint 15 ∈
{X1, X2, X3, X4, X5} is reduced by rule (12) to 15 ∈ ∅, hence to false. Note that
CLP(SET ) addresses this constraint with a generate & test approach–generates
all possible values for R and then test them using the ∈ constraint.

Remark 2. The condition that the sets involved in rules (10) and (11) must be
ground in not strictly necessary. Allowing these rules to be applied even to more
general cases, however, may cause troubles to arise:

– with termination of the constraint solving algorithm;
– with efficiency of the rewriting process, since the solution of constraints like

diff and inters applied to general sets may generate (through non-determinism)
a large number of (possibly redundant) solutions.

For these reasons we prefer for now to restrict applicability of these rules to the
ground case only. A more precise analysis of cases in which it may be convenient
to allow non-ground cases to be dealt with is left for future work. As an example
of one such case, consider the constraint X ∈ {1, 3, 5, Y } which states that the
domain of X contains the values 1, 3, and 5, and possibly another value Y which
is left unspecified for the moment. Assume that the constraint store contains
also the constraint Xneq3. If we remove the groundness condition of rule (10),
then we can apply this rule and we get the new constraints X ∈ {1, 5, Y }, Y 6= 3.
Thus, application of rule (10) allows us to get a reduced domain for X although
it is not completely specified.

Type clash – Identify clashes in type constraints, e.g., set(X) ∧ integer(X)
immediately fails.

Size management – Make sure the cardinality of a set is always unique:
– size uniqueness

{size(s,N), size(s,M)} → {size(s,N), N = M}
(13)

Besides the mentioned cases X ∈ s∧X ∈ r and X ∈ s,X 6= t, level 2 deals with
all combinations of canonical constraints not eliminated at level 1 that share
some variable. In particular, level 2 treats the combinations of X ∈ s with:
– X 6∈ r;
– X ≤ e, size(s,X) (X integer variable);
– union(X, Y, Z), union(Y,Z, X), X || Y (X set variable).

Moreover, it is worth noting that the case X ∈ s ∧X ≤ e, with e arithmetic
expression, fires the application of common FD-like rules that cause an FD-like
propagation.

Finally, the rules of level 2 can exploit an interesting optimization of im-
plementation. Most of reasonable implementations of the proposed constraint
solving approach would likely store all knowledge about the domain of X in an
attribute of X itself. Therefore, rules of level 2 may exploit this to avoid scanning
of the entire constraint store while looking for constraints of the form X ∈ d in
order to associate X with its domain.



Level 3

This level groups all rewrite rules that involve nondeterminism. In particular
rules dealing with membership constraints of the form X ∈ s allow forcing
assignment to the specified variables of values from their domains, leading to a
chronological backtracking search of the space of solutions.

Nondeterministic choices – Open nondeterministic branches. For example:

– (set inequality)

{s 6= r} → {Z 6∈ s, Z ∈ r} or {s 6= r} → {Z ∈ s, Z 6∈ r}
(14)

where s and r are (any) sets.

Enumeration – Label variables with appropriate values. For example:

– (set membership)
t1 not a range term

{X ∈ {t1 | s}} → {X = t1} or {X ∈ {t1 | s}} → {X ∈ s}
(15)

Note that other forms of solution enumeration are obtained from the treatment
of other constraints such as union(X, Y, {1, 2, 3}) which assigns to X and Y all
possible subsets whose union yields {1, 2, 3}.

From a pragmatic point of view, the treatment of this kind of constraints,
that leads to a generalized notion of labeling, could be explicitly activated or
deactivated by the user on request.

4 Discussion

The presented work has been mainly performed on a theoretical basis and just
some preliminary experiments are available. During the preliminary inclusion of
HFS in a practical solver, we faced some technical difficulties.

The architecture of the solver that we sketched in Section 3 clearly shows that
the solver embeds FD and FS constraint solving as particular cases. Actually,
one of the main duties of level 2 is to identify FD and FS sub-problems and treat
them accordingly. At the implementation level, this can be obtained either by a
single solver with specialized subparts or via solver cooperation [13], e.g. using a
master/slave architecture as discussed in [3], where a master solver invokes one
or more existing slave solvers when needed.

The master/slave approach has been adopted in the CLP(SET ,FD) pro-
posal [7] where FD constraint solving is made available within CLP(SET ) by
exploiting the facilities of an existing FD solver (specifically the FD solver of
SICStus in the current implementation). Conversely, the integration of FD con-
straints within JSetL, our Java implementation of CLP(SET ), is based on a
single solver in which rewrite rules dealing with FD constraints have been devel-
oped from scratch and embedded in the general solver that deals with all other
(set) constraints.



The constraint technique described in this paper has not been fully im-
plemented yet. However, previous experiences with the integration of FD and
CLP(SET ), both within the Prolog interpreter {log} [17] and within the Java
library JSetL, gave us some feedback about the feasibility and the possible per-
formance improvements of this approach. In particular, the current version of
JSetL, named JSetL(FD) [1, 16], provides most of the CLP(SET ) facilities to-
gether with basic FD constraint solving facilities. It also supports the constraint
size and it provides an implementation of the constraint all different based
on the well known approach of Hall sets [15].

The preliminary experiments that we performed using this implementation
show that the use of FD techniques within our solver strongly enhances its per-
formances on problems that can modeled as simple FD problems. This confirms
the encouraging results obtained with CLP(SET ,FD) and documented in [8].

Table 1 shows the results we obtained using JSetL(FD) on the standard
n-queens problem. On this problem JSetL(FD) exhibits performances that are
comparable to (or even better than) those of existing FD solvers, in particular
the one provided by SWI Prolog [21].

JSetL(FD) JSetL(FD)
n Count of solutions Binary decomposition all different SWI Prolog

7 40 250ms 187ms 510ms
8 92 1,109ms 442ms 2,750ms
9 352 5,703ms 1,640ms 13,810ms
10 724 30,375ms 5,687ms 75,520ms
11 2,680 243,047ms 20,750ms 43,150ms
12 14,200 > 3 min 105,391ms > 3 min

Table 1. Enumeration of all solutions of the n-queens problem

For the near future, we plan to extend the current implementation JSetL(FD)
to completely include the constraint solving technique described in this paper.
This will be achieved by:

– Extending the current representation of sets by allowing JSetL(FD) to sup-
port extended set terms that mix single set elements and intervals;

– Providing efficient implementation of all constraints in the ground cases,
including those intended to handle integer and set intervals;

– Implementing rules for FS constraints to effectively manage set domains, as
provided, e.g., by Conjunto and Cardinal; and

– Structuring the whole solver in terms of the layered architecture described
in Section 3.
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siemistica nella libreria JSetL Tesi di Laurea, Dipartimento di Matematica, Uni-
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