
Answer Set Programming with Constraints

using Lazy Grounding

A. Dal Palù1, A. Dovier2, E. Pontelli3, and G. Rossi1

1 Dip. Matematica, Univ. Parma,
{alessandro.dalpalu|gianfranco.rossi}@unipr.it

2 Dip. Matematica e Informatica, Univ. Udine, dovier@dimi.uniud.it
3 Dept. Computer Science, New Mexico State Univ., epontell@cs.nmsu.edu

Abstract. The paper describes a novel methodology to compute stable
models in Answer Set Programming. The proposed approach relies on a
bottom-up computation that does not require a preliminary grounding
phase. The implementation of the framework can be completely realized
within the framework of Constraint Logic Programming over finite do-
mains. The use of a high level language for the implementation and the
clean structure of the computation offer an ideal framework for the im-
plementation of extensions of Answer Set Programming. In this work,
we demonstrate how non-ground arithmetic constraints can be easily
introduced in the computation model. The paper provides preliminary
experimental results which confirm the potential for this approach.

1 Introduction

The recent literature has shown a booming interest towards the Answer Set
Programming (ASP) paradigm [2]. ASP builds on the theoretical foundations
of normal logic programs under stable model semantics, and it provides a pro-
gramming paradigm that elegantly integrates traditional logic programming,
non-monotonic reasoning, and some forms of constraint-based reasoning.

The popularity of ASP has been fueled by the realization that ASP offers
compact, elegant, and provably correct solutions for problems in a variety of
application domains (e.g., phylogenetic inference [4], planning [13], bioinformat-
ics [9]); significant effort has also been invested in the design of knowledge build-
ing blocks and methodologies (e.g., [2]). The development of novel applications
has also stretched to the limits both the traditional languages supported by ASP
as well as system implementations, emphasizing some of the limitations of the
currently used technology. This has been, for example, highlighted in a recent
study concerning the use of ASP to solve complex planning problems (drawn
from recent international planning competitions) [23]. A problem like Pipeline
(from IPC-5), whose first 9 instances can be effectively solved by state-of-the-
art planners like FF, can be solved only in its first instance using Lparse and
Smodels; instances 2 through 4 do not terminate within several hours of execu-
tion, while instance 5 leads Lparse to generate a ground image that is beyond
the input capabilities of Smodels.

We have witnessed a flourishing of new proposals for language extensions
(e.g., aggregates, domain-specific constraints, functions), to enable the declara-
tive encoding of complex relationships. In turn, also these extensions have proved
challenging for the implementors, often leading to unnecessarily complex ma-
chineries to integrate extensions within the rigid framework of existing ASP
solvers (e.g., [7, 19]).

The majority of the existing ASP systems rely on a two-stage computation
model. The actual computation of the answer set is performed only on proposi-
tional programs—either directly (as in Smodels [21], DLV [12] and Clasp [8])
or appealing to the use of a SAT solver (as in ASSAT [14] and Cmodels [1]).
On the other hand, the convenience of ASP vitally builds on the use of first-order
constructs. This introduces the need of a grounding phase, typically performed
by a grounding module (e.g., a separate program, like Lparse or Gringo, or an
integrated module as in DLV). The presence of grounding represents a significant
obstacle to applications and extensions—it has the potential (often observed in
practice) of leading to extremely large ground programs and it may force devel-
opers to unnatural solutions to circumvent the grounding of certain components
of the program (e.g., as observed in some implementations of aggregates [7] and
domain-specific constraints [19]).

In this manuscript, we propose a different perspective on this problem, aimed
at creating a framework which executes ASP programs without preliminary
grounding and which enables ease integration of extensions like domain-specific
constraints. The proposed framework is called Grounding-lazy ASP (GASP). The
spirit of our effort can be summarized as follows:

• The framework is completely developed in a declarative language (Constraint
Logic Programming over finite domains)—where finite domain sets are em-
ployed for the compact representation of predicates in an ASP program.

• The execution model is bottom-up and does not require preliminary ground-
ing of the program.

This combination of ideas provides a novel system with significant potentials:

• It enables the simple integration of new features in the solver, such as
domain-specific constraints (e.g., numerical constraints). With a preliminary
grounding stage, these features would have to be encoded as ground pro-
grams, thus reducing the capability to devise general strategies to optimize
the search, and often leading to exponential growth in the size of the ground
program.

• The adoption of a non-ground search allows the system to effectively control
the search process at a higher level, enabling the adoption of Prolog-level
implementations of search strategies and the use of static analysis techniques.

• It reduces the negative impact of grounding the whole program before exe-
cution; grounding is lazily applied to the rules being considered during the
construction of an answer set, and the ground rules are not kept beyond
their needed use.

GASP has been implemented in a prototype, implemented in SICStus Prolog
(using the clpfd library) and available at www.dimi.uniud.it/dovier/GASP.

GASP supports the use of numerical constraints in the ASP programs (provid-
ing language capabilities comparable to that of the system presented in [19]).
In spite of the overheads introduced by the intermediate Prolog layer, GASP is
performance-wise competitive; it is capable of outperforming systems like Smod-

els and Clasp especially in benchmarks where the ground image is large.

The ideas presented in this paper expand our preliminary work on compar-
ing ASP and CLP methodologies [6] and development of computation-based
characterizations of answer sets [15]. The work is also similar in spirit to the
concurrently proposed ASPeRiX system [11]. Both GASP and ASPeRiX have
their theoretical roots in the same notion of computation-based characterization
of answer sets [15]. ASPeRiX is implemented in C++ and develops heuristics
aimed at enhancing the choice of the rules when more of them are applica-
ble. Models for non-ground computation based on alternative execution schemes
(e.g., top-down computations) have also been recently proposed (e.g., [3]).

2 The Language GASP

Syntax. The signature Σ = 〈ΠC ∪ ΠU ,F ,V〉 of the language is defined as
follows. V is a denumerable set of variables. F = Z ∪ FZ ∪ FU ∪ {′..′/2} is the
set of constant and function symbols of the language, where

• Z = {0,−1, 1,−2, 2, . . .} is a set of constants for the integer numbers

• FZ is a set of function symbols representing operations over integer numbers,
such as +,−, ∗, div, mod, etc.;

• FU is a (possibly empty) set of user-defined constant symbols, with the
property that FU ∩ (Z ∪ FZ ∪ {‘..’}) = ∅.

• ‘..’ is a binary function symbol used to build intervals.

ΠU is the set of user-defined predicate symbols, while ΠC is the set of constraint
predicate symbols (we assume that ΠC ∩ΠU = ∅).

Each Σ-term of the form a..b is well-formed iff a, b are integer constants and
a ≤ b; we will refer to this type of terms as interval terms. Each Σ-term of
the form f(t1, . . . , tk), f ∈ FZ , is well-formed iff t1, . . . , tk are either variables,
or integer constants, or (recursively) well-formed compound terms of the same
form. Well-formed Σ-terms of the above form are called compound integer terms.
User-defined function symbols are not allowed in our language.

〈ΠU ,F ,V〉-atoms are user-defined atoms, while 〈ΠC ,F ,V〉-atoms are con-
straint atoms (or primitive constraints). We assume that interval terms can oc-
cur only in user-defined atoms (namely, in rule’s head atoms—see below), while
compound integer terms can occur only in constraint atoms. Negated literals
have the form not A, where A is a (positive) Σ-atom.

The set of constraint predicate symbols ΠC of our language includes =, 6=
and ≤. t1 = t2, t1 6= t2 are well-formed iff t1 and t2 are Σ-terms, while t1 ≤ t2
is well-formed iff t1 and t2 are integer terms (either constants, variables, or
compound integer terms). These symbols represent, respectively, the (syntactic)
equality and inequality over Z ∪ FU and the natural order relation over Z.

A GASP-constraint is a conjunction of constraint atoms. Other integer pred-
icates (e.g., <, ≥, and >) can be defined as GASP-constraints using =, 6=, and
≤. Examples of well-formed terms and atoms are: p(1..10), p ∈ ΠU and X 6= Y

+ 1. Hereafter, we will consider only well-formed terms and atoms.

Let us observe that our approach is parametric w.r.t. the constraint domain
considered. In the paper, however, we focus on integer constraints.

A GASP-rule has the form H ← B1, . . . , Bk, where H is a user-defined atom
or false, and B1, . . . , Bk are either user-defined literals or constraint atoms or
true. A GASP-rule of the form H ← true (abbreviated H) is called a fact. A
GASP-rule of the form false← B1, . . . , Bk (abbreviated ← B1, . . . , Bk) is called
an integrity constraint. Intuitively, an integrity constraint B1, . . . , Bk expresses
the fact that we want to discard all models of the given program that entail
B1 ∧ . . . ∧Bk. A GASP-program is a collection of GASP-rules.

Given a GASP-rule H ← B1, . . . , Bk, let us denote with U body the col-
lection of user-defined literals in B1, . . . , Bk, and with C body the collection
of constraint atoms in B1, . . . , Bk. Hence, H ← B1, . . . , Bk can be written as
H ← U body, C body. Moreover we define with body+ the collection of positive
literals in U body ∪ C body and with body− the collection of atoms that appear
in negative literals in U body.

We assume that our language provides also special atoms called cardinal-
ity constraints [22]. Accordingly, ΠC includes the symbol {}/3 which is used
to construct cardinality constraints of the form h{ϕ}k. h{ϕ}k is well-formed iff
h and k are integer s.t. 0 ≤ h ≤ k, and ϕ is a sequence of atoms of the form
A : B1, . . . , Bn, n ≥ 0 (written A, if n = 0), where A, B1, . . . , Bn are user-defined
atoms and B1, . . . , Bn occur as head atoms in some rules of the program. Fur-
thermore, vars(B1, . . . , Bn) ⊆ vars(A). Cardinality constraints can occur both
in the head and in the body of a rule. When occurring in the head, their intu-
itive meaning is the following. h{A[X̄, Ȳ1, . . . , Ȳn] : B1[Ȳ1], . . . , Bn[Ȳn]}k forces
models of the given program to contain, for each tuple of ground terms t̄ for X̄,
a set R such that R ⊆ {A : X̄ = t̄, ∃Ȳ1 . . .∃Ȳn(B1, . . . , Bn)} ∧ h ≤ |R| ≤ k . For
example, given the program

r(1..3). q(a). q(b). 1{p(X, Y) : r(Y)}1← q(X).

its models are required to contain exactly one among p(a, 1), p(a, 2), p(a, 3) and
exactly one among p(b, 1), p(b, 2), p(b, 3).

When cardinality constraints occur in the body of a rule, they will be entailed
by models that meet the above- mentioned property.

We assume, as done in several existing ASP systems, that programs satisfy
the range restriction property, suitably adapted to account for constraints. A
GASP-rule is range restricted if all variables occurring in its head (except those
which are “local” to cardinality constraints) occur also in at least one positive
atom of U body. A GASP-program is range restricted iff every rule in it is range
restricted. In this way, all variables in the program are guaranteed to have a
finite set of possible values associated with.

Semantics. A GASP-program can be seen as a syntactic shorthand for an ASP
program where any non-ground GASP-rule represents a family of ground ASP
rules. Let A be a collection of propositional atoms. An ASP rule has the form:

p← p0, . . . , pn,not pn+1, . . . ,not pm

where {p, p0, . . . , pn, pn+1, . . . , pm} ⊆ A. An ASP program is a collection of ASP
rules. The process of replacing each non-ground rule with an equivalent finite
set of ground rules is called grounding.

A ground instance of a rule R of P is obtained from R by replacing all vari-
ables in it by ground terms built using the symbols in F \({′..′}∪FZ), respecting
well-formedness of the resulting ground atoms. In addition, each variable v ∈ V
that appears in a Σ-term whose functor is in FZ∪{′..′} or that appears in GASP-
constraints based on ≤ has to be grounded using an element of Z. Additionally,
note that:

• We omit compound integer terms from the grounding process—as these are
meant to be evaluated and replaced with the constants representing the
values of the compound terms (elements of Z);

• We omit intervals. Instead, we expect the grounding process to replace each
rule of the form p(t̄, a..b, s̄)← body, with the set of rules

p(t̄, a, s̄)← body p(t̄, a + 1, s̄)← body · · · p(t̄, b, s̄)← body

• each ground constraint atom C is replaced with true or false depending on
whether C is entailed or not in the traditional theory of integer arithmetic.

Let us note that C body disappears as soon as the program is grounded.
A ground program ground(P) is obtained from P by replacing all rules in P

by all ground instances of all rules in P .
Integrity constraints are always removed from the generated program: an

ASP integrity constraint ← p0, . . . , pn,not pn+1, . . . ,not pm is equivalent, for
stable models, to p ← not p, p0, . . . , pn,not pn+1, . . . ,not pm, where p is a new
propositional atom. Similarly, rules containing cardinality constraints are re-
placed by a collection of rules that precisely capture their semantics.

Therefore we can use all definitions and results usually adopted in ASP to
provide a semantics characterization of GASP-programs. In particular, we con-
sider here the semantics based on the notion of well-founded model [24]. The
well-founded model [24] of a general program P is a 3-interpretation I, i.e., a
pair 〈I+, I−〉 such I+ ∪ I− ⊆ A and I+ ∩ I− = ∅. I+ denotes the atoms that are
known to be true while I− denotes those atoms that are known to be false.

The union between two 3-interpretations I ∪ J , where I = 〈I+, I−〉 and
J = 〈J+, J−〉, is defined as 〈I+ ∪ J+, I− ∪ J−〉. The intersection is defined
similarly. If I+ ∪ I− = A, then the interpretation I is said to be complete.
Given two 3-interpretations I, J , we use I ⊆ J to denote the fact that I+ ⊆ J+

and I− ⊆ J−. The notion of entailment for 3-interpretations can be defined as
follows. If p ∈ A, then I |= p iff p ∈ I+; I |= notp iff p ∈ I−; I |= A∧B iff I |= A
and I |= B, and I |= H ← A1 ∧ . . .∧An iff I |= H or there is i ∈ {1, . . . , n} such
that I |= not Ai.

Intuitively, the well-founded model of P contains only (possibly not all) lit-
erals that are necessarily true and the ones that are necessarily false in all stable
models of P . The remaining literals are undefined. It is well-known that a general
program P has a unique well-founded model wf(P) [24]. If wf(P) is complete
then it is also a stable model (and it is the unique stable model of P).

3 Computation-based characterization of stable models

The computation model adopted in GASP has been derived from recent investi-
gations about alternative models to characterize answer set semantics for various
extensions of ASP—e.g., programs with abstract constraint atoms [17].

The work described in [15] provides a computation-based characterization of
answer sets for programs with abstract constraints. One of the side-effects of
that research is the development of a computation-based view of answer sets
for general logic programs. The original definition of answer sets [10] requires
guessing an interpretation and successively validating it—through the notion of
reduct (P I) and the ability to compute minimal models of a definite program
(e.g., via repeated iterations of the immediate consequence operator [16]).

The characterization of answer sets derived from [15] does not require the
initial guessing of a complete interpretation; instead it combines the guessing
process with the construction of the answer set.

We provide our formalization of computation in terms of GASP-computation
a nd show that it is an instance of [15]. We begin with the following notion:

Definition 1 (Applicable rule). We say that a ground rule a ← body is ap-
plicable w.r.t. an interpretation I, if body+ ⊆ I+ and body− ∩ I+ = ∅ .

We extend the definition of applicable to a non-ground rule R w.r.t. I iff
there exists a grounding r of R that is applicable w.r.t. I. Note that C body is
replaced by true during the local grounding stage.

Given a program P and an interpretation I, we denote with P∪I the program

P ∪ I = (P \ {r ∈ P | head(r) ∈ I−}) ∪ I+.

Intuitively, P ∪ I is the program P modified in such a way to guarantee that all
elements in I+ are true and all elements in I− are false.

Definition 2 (GASP-computation). A GASP-computation of a program P is
a sequence of 3-interpretations I0, I1, I2, . . . that satisfies the following properties:

• I0 = wf(P)

• Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)

• if I =
⋃

∞

i=0 Ii, then 〈I+,A \ I+〉 is a model of P (Convergence)

• for each i ≥ 0 there exists a rule a← body in P that is applicable w.r.t. Ii

and Ii+1 = wf(P ∪ Ii ∪ 〈body+, body−〉) (Revision)

• if a ∈ I+
i+1 \ I

+
i then there is a rule a← body in P which is applicable w.r.t.

Ij , for each j ≥ i (Persistence of Reason).

The proofs of correctness and completeness of GASP-computation w.r.t. the
answer sets of a program P can be found at http://sole.dimi.uniud.it/

~agostino.dovier/GASP/.

4 A CLP approach for Stable Models computation

In this section we show how the GASP-computation can be implemented within
a CLP(FD) framework. The use of a Prolog based implementation allows fast
prototyping of the search techniques and heuristics. The CLP environment allows
non-ground computation of arithmetic constraints to be easily embedded into
the implemented system.

4.1 Representation of Interpretations based on FDSETs.

Instances of a predicate that are true and false within an interpretation are en-
coded as sets of tuples, and handled using FD techniques. In order to compute
the set of ground applicable rules, a local grounding phase is performed accord-
ing to the definition of applicable rule, i.e. only compatible assignments of the
rule w.r.t. the current interpretations are considered. During the construction
of a model, the effect of this strategy is to ground only those rules that effec-
tively contribute in supporting each stable model. Moreover, when arithmetic
constraints are present in a rule, the ability to treat them in their non-ground
version, allows to save on the enumeration of all possible admissible combinations
of their ground instances.

The computation of applicable rules is at the basis of the GASP-computation
and it is performed very frequently, i.e. at every node of the computation tree.
From a relational algebra point of view, this can be seen as a set of join and
projection operations on a set of tuples. If performed naively, these operations
may become inefficient, especially when the number of tuples increases. We cope
with this problem by introducing a compact and dynamic representation of the
interpretations based on FDSETs. This allows us to efficiently handle large sets
of tuples with respect to memory usage and query time. The compact represen-
tation is withdrawn to build a CSP whose solutions correspond to the applicable
ground rules.

FDSETs are a data structure available in the clpfd library of SICStus Prolog
that allows to efficiently store and compute on sets of integer numbers. Ba-
sically, a set {a1, a2, . . . , an} is interpreted as the union of a set of intervals
[ab1 ..ae1

], . . . , [abk
..aek

] and stored consequently as [[ab1 |ae1
], . . . , [abk

|aek
]]. A li-

brary of built-in predicates for dealing with this data structure is made available.

We identify with pn a predicate p with arity n. In the program, a pred-
icate pn appears as p(X1, . . . , Xn) where, in place of some variables, a con-
stant can occur (e.g., p(a, X, Y, d)). The interpretation of the predicate pn can
be modeled as a set of tuples (a1, a2, . . . , an), where ai ∈ Consts(P)—where
Consts(P) denotes the set of constants in the language used by the program

P . The explicit representation of the set of tuples has the maximal cardinal-
ity |Consts(P)|n. The idea is to use a more compact representation based on
FDSETs, after a mapping of tuples to integers. Without loss of generality, we
assume that Consts(P) ⊆ N. Each tuple a = (a0, . . . , an−1) is mapped to
the unique number map(a) =

∑
i∈[0..n−1] aiM

i, where M is a “big number”,

M ≥ |Consts(P)|. In case of predicates without arguments (predicates of arity
0), for the empty tuple () we set map(()) = 0. We also extend the map function
to the case of non-ground tuples, using FD variables. If Y = (y1, y2, . . . , yn),
where yi ∈ Vars(P) ∪ Consts(P), then map(Y) is the FD expression that rep-
resent the sum defined above. For instance, if Y = (3, X, 1, Y) and M = 10,
then map(Y) = 3 + X ∗ 10 + 1 ∗ 102 + Y ∗ 103. Moreover, all variables possibly
occurring in Y are constrained to have domain 0..M− 1.
A 3-interpretation 〈I+, I−〉 is represented by a set of 4-tuples (p, n, POSp,n, NEGp,n),
one for each predicate symbol, where p is the predicate name, n its arity, and

POSp,n = {map(x) : I+ |= p(x)} NEGp,n = {map(x) : I− |= not p(x)}

If clear from the context, we drop the subscript n from the notation. These
sets are represented and handled efficiently, by using FDSETs. For instance, if

POSp,3 = {map(0, 0, 1), map(0, 0, 2), map(0, 0, 3), map(0, 0, 8),
map(0, 0, 9), map(0, 1, 0), map(0, 1, 1), map(0, 1, 2)}

and M = 10, then its representation as FDSETs is simply: [[1|3], [8|12]], in other
words, the disjunction of two intervals.

4.2 Computing applicable rules.

We briefly show now how local grounding is performed, highlighting the role of
arithmetic constraints in the rule.

The idea is to build a CSP where the variables appearing in the rule corre-
spond to FD variables. Solutions to the CSP correspond to ground rules that are
applicable. According to our definition, the applicable rule has its body+ that
is completely contained in I+ and its body− that has no ground predicate that
appears in I+. These requirements can be encoded in terms of FD constraints,
by linking the FD variables appearing in a predicate to the values associated to
the predicate by the function map and contained in the FDSET representation
of I. More formally, let us assume a rule

r ≡ p0(X0)← C(X), p1(Xp1
), . . . , pk(Xpk

),not pn+1(Xpn+1
), . . . , not pm(Xpm

),

where C is C body of r (namely a conjunction of arithmetic constraints), Xi

is a list of variables and/or ground integers that are compatible to the arity of pi.
For each variable in the rule, a corresponding FD variable is defined. Moreover,
for each predicate pi another FD variable Vi is created.

Every variable Vi is bounded to the corresponding variables X i, according
to the map(X i) function, i.e. Vi = map(Xi). Moreover, in order to implement

the semantics of applicable rule, we require that each predicate pi in body+ has
domain POSpi

and each predicate pi in body− can not take values from POSpi
.

In addition we require that the head does not appear in I, since in that case it
would be already supported and the rule would be applied redundantly. Finally,
the constraint C is added to the CSP by introducing the corresponding FD
constraints. This choice allows GASP to be easily extensible and to support a
wide range of constraints in a modular way.

The solutions of this CSP are all the ground instances of V0, computed
through labeling, that represent the possible head values to be added to the
model.

The same technique is adapted to compute TP and the single steps of the
alternating fixpoint procedure for computing the well-founded models.

4.3 The overall algorithm.

We describe now the methodology followed in the implementation of the GASP-
computation. We distinguish among three cases: the program is positive, the
program admits a well-founded model, the program does not admit a complete
well-founded model (it can have zero or more stable models).

In the first case, the computation of TP operator fixpoint is performed, and
the resulting interpretation is the only stable model. The computation of the
fixpoint uses similar techniques to the CSP-based computation of the applicable
rule, and it makes use of a dependency graph in order to select the rules to
activate during the fixpoint.

In the second case, the idea of alternating fixpoint [25] is coded in Prolog. The
implementation boils down to controlling the alternating fixpoint computation
and to encode the TP,J operator (see e.g., [25]). Once again, similar CSPs to
applicable rule computations are added in order to compute the TP,J operators.

In the third case, the GASP-computation is launched starting from that
model. Instead of starting from an empty model, literals that are necessarily
true and false respectively in each stable model are included in the starting
model and lesser application of rules are required.

The GASP-computation is implemented through a chronological backtracking
search where choice points contain the option whether to apply an applicable
rule or not. The key ingredients of the main loop are: the computation of an
extension of the TP operator fixpoint, the handling of some specific cardinality
constraint and the implementation of some rule-based propagators.

In Figure 1, we summarize in pseudocode the algorithm. Each applicable rule
represents a non-deterministic choice in the computation of a stable model. The
computation explores the first of these choices (line 4), and acts depending on
the head a of the rule. In case the head is a cardinality constraint (we currently
support exactly one, but this can be extended in the future), a non-deterministic
assignment is added to the model, where one literal out of the possible candidates
is added to I+ and all the remaining to I− (line 6). After the assignment, a
fixpoint over the computation of TP and propagators is performed before entering
the recursive call. The propagation phase will be discussed in the next section.

(1) rec search(P,I)

(2) R = applicable rules(I)

(3) if (R = ∅ and I is a model) output: I is a stable model

(4) else select a← body+,not body− ∈ R

(5) if (a = 1{...}1)
(6) ND-choice: I = 〈assignment, body−〉 ∪ I

(7) I = fixpoint(propagation(P,TP (P ∪(〈∅, body−〉 ∪ I))))

(8) else

(9) (I = 〈{a}, body−〉 ∪ I,

(10) I = fixpoint(propagation(P,TP (P ∪(〈∅, body−〉∪I))))
(11) OR (Non-deterministic)

(12) P= P ∪{← body−},
(13) I = fixpoint(propagation(P,TP (P∪I))))
(14) if (I not failed) rec search(P,I)

Fig. 1. The answer set computation

If the head is a normal literal (line 9) then a non-deterministic choice is
opened (lines 9 or 12). In the first part, the rule is applied and thus a and
body− are added to I. After the fixpoint (line 10) the recursive call (line 14) is
performed. In the second part, we consider the case in which the rule is never
chosen in the subtree and to ensure this a new integrity constraint is added to
the program (line 12). After the fixpoint the recursive call is made.

Let us recall that every time the local grounding in invoked, a CSP is built.
We believe that the enhancement of this step (e.g., building CSPs less often
and/or incremental CSP) could reduce the search time significantly. In line 14
“I not failed” means that I+ ∩ I− 6= ∅.

The process may encounter a contradiction while adding new facts to the in-
terpretation, and consequently the computation may encounter failures. When-
ever there are no more applicable rules, a leaf in the search tree is reached (line 3)
and the corresponding stable model is obtained (convergence property).

From the implementation point of view, it turns out that computing well-
founded models at every non-deterministic application of a rule is time consum-
ing. In particular, the computation of the extension of P with new facts from
the positive interpretation is inefficient.

To gain efficiency, we substitute the call to the well-founded computation
with a variant of the TP operator. The extension of TP to ASP considers rules
where body+ ∈ I+ and body− ∈ I−. The TP operator adds new positive atoms
as stated by the head of the rule. Using well-founded computation involves the
alternating fixpoint procedure which is not efficient enough to be included at
each level of the search. The combination of TP fixpoint and our propagators
provide better results. In future work we plan to improve the well-founded model
computation algorithm and to use it in place of the TP fixpoint.

4.4 Non-Ground Propagation.

A propagation step is launched before each leaf expansion, in order to deduce
additional literals that can be safely introduced in the current interpretation and
that neither TP nor well-founded fixpoints are able to infer.

The ideas presented below represent a generalization of some of the tech-
niques that drive the search in Smodels. In particular, we deal with non-ground
rules and therefore we introduce a CSP-based analysis similar to the computa-
tion of the applicability of rules. The resolution of the CSP is designed to avoid
the complete grounding of the rules involved. We address three settings where
negative literals can be deduced: inferring a literal that appears (i) in the body,
(ii) in the head and (iii) in a cardinality constraint in the head.

Let I = 〈I+, I−〉 be the current model, R be a non-ground ASP rule of the
form head(R) : −body+(R),not body−(R) and R′ a grounding of R.

The case (i) applies when there exists a grounding R′ such that head(R′) ∈
I−. In this case the rule R′ should not become applicable, otherwise head(R′)
would be added in I+ and generate a failure. We consider the specific situation
in which body(R′) is completely satisfied except for exactly one undetermined
literal l ∈ body+ (l 6∈ I+ ∪ I−). To prevent the rule R′ to fire, the literal l is
added to I−.

The case (ii) applies when it is possible to deduce that an undetermined literal
l 6∈ I+ ∪ I− may not be introduced in I+ in any subsequent computation. The
(ground) literal l can be introduced in I+ only if there is at least one (potentially)
applicable rule R′ such that head(R′) = l. If some literals p ∈ body(R′) are
undetermined, we assume that they can potentially contribute to satisfy the
body: i.e., if p ∈ body+(R′) then p is assumed to be true and if p ∈ body−(R′)
then p is assumed to be false. If there is no such rule R′ then the literal l can be
safely added to I−.

The case (iii) applies when a positive ground literal in I+ and the predicate
matches the cardinality constraint (1{...}1) in the head of an applicable rule. In
this case, every other literal in the same range can be safely set to false.

Note that the inference of positive literals is possible as well, however they
can not be introduced in the model, unless a test for unfoundedness is performed
(they must be supported by some chains of applicable rules). We plan as future
work to investigate this kind of propagation that resembles a mixed top-down
approach in the computation of stable models.

5 Experiments

The prototype implementing the ideas described above and all the tests de-
scribed in this section are available at www.dimi.uniud.it/dovier/GASP. The
prototype has been developed using SICStus Prolog 4.0 (www.sics.se/isl/
sicstuswww/site/), chosen for its rich library of FDSET primitives. Although
faster constraint solvers are available (e.g., Gecode), we prefer to stay in the
realm of declarative programming.

Test Param Lparse Smodels Clasp GASP

non wf graph 40 4.035 0.735 1.720 1.82
(all sol) 80 29.824 6.874 7.8 13.55

160 235.039 61.568 45.6 120.81
320 1,885 - - 1,380.77

Send More Money (all) none 55.69 0.01 0.01 3.43

Queens 22 0.310 172.5 0.05 0.62
(1st sol) 23 0.360 395.9 0.06 1.68

24 0.415 220.0 0.08 1.20
25 0.464 2,067.0 0.09 8.38

Squares (19,7) 1.76 2.99 0.17 1.43
(1st sol) (6,24) 88 371.71 17.37 0.49

(6,45) 1,140 - - 1.48

p2 100 0.84 0.286 .200 0.75
(all sol) 200 3.346 1.172 1.45 3.00

300 8.338 2.691 5.54 7.72
400 13.242 4.819 15.27 14.81

Table 1. Timings. ‘-’ means that computation was killed after 24 hours

We performed some preliminary experiments, using different classes of ASP
programs, and we report the execution times in Table 1. All the experiments
have been performed on an AMD Opteron 2.2 GHz Linux Machine. For the
ASP tests, we used Lparse 1.1.5, Smodels 2.33 (www.tcs.hut.fi/Software/
smodels/), Clasp 1.1.0 (www.cs.uni-potsdam.de/clasp) and ASPeRiX 0.1
(http://www.info.univ-angers.fr/pub/claire/asperix/).

In Table 1 we report on the benchmarks we run to compare the performances
of GASP and Lparse+Smodels and Lparse+Clasp. Times are in seconds.

The first set of benchmarks (non wf graph) is based on a non well-founded
program inspired by a graph problem, where the parameter determines the size
of the graph. The program admits two distinct stable models and basically com-
putes a transitive closure h of a binary predicate p, then add the predicate r:
r(X, Y) :- h(X, Y),not p(X, Y) . Depending on the stable model, the predi-
cate p is slightly modified. The preliminary computation of well-founded model
returns a sub-model and the non-deterministic GASP computation procedure
must be used. The grounding time (and size of the program—with q = 320
the file is 1.9GB) are not negligible. However, in large instances GASP outper-
forms Lparse+Smodels and Lparse+Clasp even removing the time spent
for grounding.

The second benchmark is the classical Send + More = Money problem, coded
with ASP. Here constraint propagation performed by CLP in GASP is the key
for solving the problem efficiently. Compared to Lparse, it is interesting to note
that even if the size of the ground program is small (53K and 1300 rules), it
takes almost a minute to produce the file.

Test Param GASP ASPeRiX GASP nodes ASPeRiX nodes

p2 100 0.75 0.22 0 10,000
(all sol) 200 3.00 1.20 0 40,000

300 7.72 3.53 0 90,000
400 14.81 7.92 0 160,000

non wf graph 40 1.82 0.096 2 1
(all sol) 80 13.55 0.671 2 1

160 120.81 5.315 2 1
320 1,380.77 42.918 2 1

Table 2. GASP and ASPeRiX

The third set of benchmarks is the N queens problem. Here, GASP out-
performs Smodels, while the performances of Clasp are only biased by the
grounding time.

The fourth set is taken from the CSPLIB (www.csplib.org). The problem
9 is the perfect square placement problem, where a set of non-overlapping
squares must be placed inside a larger square. We designed 3 test sets, where
(N, S) indicates the number N of squares and S the master side: the set (19,7)
contains 1 square (side 4), 5 squares (side 2) and 13 squares (side 1); the set
(6,24) contains 1 square (side 16) and 5 squares (side 8); the set (6,45) contains
1 square (side 30) and 5 squares (side 15). In this test, the performances of
GASP are impressive, since the non-ground computation takes advantage of
FD constraint solving during the search. The time spent by Lparse increases
dramatically with the size of the master square as well as the size of the ground
program (for (6,24) we have 71MB and 3.5M rules, for (6,45) 945MB and 44M
rules), thus making it impossible for the solvers to find a solution.

Finally we included last test p2 taken from [11] and used by authors to
prove the effectiveness of ASPeRiX in a case with large grounding when one is
interested in a single solution. The program admits a stable model that contains
a complete graph of a number of nodes that is provided as parameter. We can see
that the GASP is capable of finding the solutions in the time needed to ground
the program. Note that the ground program for 400 nodes has 22MB of size and
contains 880K rules.

In Table 2 we compare the performances of GASP and ASPeRiX on programs
that are supported by the latter (ASPeRiX does not support cardinality con-
straints). Since the approach is similar, we can compare the size of the search
trees (number of choice points nodes). For the time comparisons, recall that
ASPeRiX has a C++ implementation, while GASP is written in Prolog.

In the p2 program, despite the penalty for running into a Prolog environment,
GASP timings are comparable and linearly scaled to ASPeRiX. Moreover, the
rule-based propagators of GASP are able to reduce the search tree to a single
node, while ASPeRiX develops a quadratic sized tree. On the other hand, the
pruning of the tree in GASP represents the principal cost of the search.

In the second test (non wf graph), GASP is much slower than ASPeRiX,
suggesting that the propagators used by GASP perform unnecessary work. This
issue will be considered in future work. In the current implementation, when
propagation is performed, CSPs are built on the current interpretation and they
ignore the partial work performed in previous runs. Considering incremental
versions of these CSPs could save the largest fraction of time currently used.

6 Conclusions

In this paper, we provided the foundation for a bottom-up construction of stable
models of a program P without preliminary program grounding. The notion of
GASP-computation has been introduced; this model does not rely on the explicit
grounding of the program. Instead, the grounding is local and performed on-
demand during the computation of the answer sets. The GASP language handles
cardinality constraints and arithmetic constraints that can be implemented in
a non-ground fashion and provide significant enhancements in the computation.
We believe this approach can provide an effective avenue to achieve greater
efficiency in space and time w.r.t. a complete program grounding.

We illustrated our Prolog implementation of GASP using CSP on FD vari-
ables and FDSETs. The performances of GASP show that, notwithstanding the
Prolog overhead and naive data structures used, the computations are compa-
rable and often better than traditional ground-based approaches.

We plan to investigate how to handle incremental CSPs in order to save
redundant work, to reimplement efficiently the well-founded computation and
include it in the main loop, to study a mixed goal-driven resolution (top-down
approach) that should guide the non-deterministic choices.

Acknowledgments. The work has been partially supported by MIUR FIRB
RBNE03B8KK and PRIN projects, and NSF grants HRD0420407, CNS0220590
and IIS0812267. We really thank Andrea Formisano for the several useful dis-
cussions.

References

1. Y. Babovich and M. Maratea. Cmodels-2: SAT-based Answer Sets Solver Enhanced
to Non-tight Programs. LPNMR, LNCS 2923:346–350, Springer, 2004.

2. C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, 2003.

3. P. Bonatti, E. Pontelli, T. Son. Credulous Resolution for ASP. AAAI, 2008.
4. D. Brooks, E. Erdem, S. Erdogan, J. Minett, and D. Ringe. Inferring Phylogenetic

Trees Using Answer Set Programming. JAR, 39(4):471–511, 2007.
5. P. Codognet and D. Diaz. A Minimal Extension of the WAM for clp(fd). ICLP,

pp 774–790, MIT Press, 1993.
6. A. Dovier, A. Formisano, and E. Pontelli. A Comparison of CLP(FD) and ASP

Solutions to NP-Complete Problems. ICLP, LNCS 3668:67–82, Springer, 2005.

7. I. Elkabani, E. Pontelli, T. Son. A System for Computing Answer Sets of Logic
Programs with Aggregates. LPNRM, LNCS 3662:427–431, Springer, 2005.

8. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Clasp: a Conflict-driven
Answer Set Solver. LPNMR, LNCS 4483:260–265, Springer, 2007.

9. M. Gebser, T. Schaub, S. Thiele, B. Usadel, P. Veber. Detecting Inconsistencies in
Large Biological Networks with ASP. ICLP, LNCS 5366:130–144, Springer, 2008.

10. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs.
ICLP, pp 1070–1080, MIT Press, 1988.

11. C. Lefevre and P. Nicolas. Integrating Grounding in Search Process for Answer Set
Computing. Work. on Integrating ASP and Other Computing Paradigms, 2008.

12. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. , S. Perri, and F. Scarcello. The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on

Computational Logic, 7(3):499–562, 2006
13. V. Lifschitz. Answer Set Planning. LPAR, LNCS 1705:373–374, Springer, 1999.
14. F. Lin, and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT

solvers. Artificial Intelligence 157(1-2): 115–137, 2004.
15. L. Liu, E. Pontelli, S. Tran, and M. Truszczynski. Logic Programs with Ab-

stract Constraint Atoms: the Role of Computations. ICLP, LNCS 4670:286–301.
Springer, 2007.

16. J.W. Lloyd. Foundations of Logic Programming. Springer, Heidelberg, 1987.
17. V. Marek and J. Remmel. Set Constraints in Logic Programming. LPNMR, LNCS

2923:167–179. Springer, 2004.
18. V.W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Pro-

gramming Paradigm. In K.R. Apt, V.W. Marek, M. Truszcziński, and D. S. War-
ren, editors, The Logic Programming Paradigm. Springer, 1999.

19. V. Mellarkod and M. Gelfond. Integrating Answer Set Reasoning with Constraint
Solving Techniques. FLOPS, LNCS 4989:15–31, Springer, 2008.

20. I. Niemelä. Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm. Annals of Mathematics and AI, 25(3-4): 241–273, 1999.

21. I. Niemelä and P. Simons. Smodels - An Implementation of the Stable Model and
Well-Founded Semantics for Normal LP. LPNMR, LNCS 1265:421–430. Springer,
1997.

22. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1.2): 181–234, 2002.

23. T. Son and E. Pontelli. Planning for Biochemical Pathways: a Case Study of An-
swer Set Planning in Large Planning Problem Instances. First International Work-

shop on Software Engineering for Answer Set Programming, pp 116–130, 2007.
24. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded Semantics for

General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.
25. U. Zukowski, B. Freitag, and S. Brass. Improving the Alternating Fixpoint: The

Transformation Approach. LPNMR, LNCS 1265:4–59, Springer, 1997.

