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Introduction

These lectures deal with the functional analytical approach to linear and nonlinear parabolic
problems.

The simplest significant example is the heat equation, either linear
ut(t, x) = uxx(t, x) + f(t, x), 0 < t ≤ T, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ T,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

(1)

or nonlinear, 
ut(t, x) = uxx(t, x) + f(u(t, x)), t > 0, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), 0 ≤ x ≤ 1.

(2)

In both cases, u is the unknown, and f , u0 are given. We will write problems (1), (2) as
evolution equations in suitable Banach spaces. To be definite, let us consider problem (1),
and let us set

u(t, ·) = U(t), f(t, ·) = F (t), 0 ≤ t ≤ T,

so that for every t ∈ [0, T ], U(t) and F (t) are functions, belonging to a suitable Banach
space X. The choice of X depends on the type of the results expected, or else on the
regularity properties of the data. For instance, if f and u0 are continuous functions the
most natural choice is X = C([0, 1]); if f ∈ Lp((0, T ) × (0, 1)) and u0 ∈ Lp(0, 1), p ≥ 1,
the natural choice is X = Lp(0, 1), and so on.

Next, we write (1) as an evolution equation in X,{
U ′(t) = AU(t) + F (t), 0 < t ≤ T,

U(0) = u0,
(3)

where A is the realization of the second order derivative with Dirichlet boundary condition
in X (that is, we consider functions that vanish at x = 0 and at x = 1). For instance, if
X = C([0, 1]) then

D(A) = {ϕ ∈ C2([0, 1]) : ϕ(0) = ϕ(1) = 0}, (Aϕ)(x) = ϕ′′(x).

Problem (3) is a Cauchy problem for a linear differential equation in the space X =
C([0, 1]). However, the theory of ordinary differential equations is not easily extendable
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to this type of problems, because the linear operator A is defined on a proper subspace of
X, and it is not continuous.

What we use is an important spectral property of A: the resolvent set of A contains a
sector S = {λ ∈ C : λ 6= 0, |argλ| < θ}, with θ > π/2 (precisely, it consists of a sequence
of negative eigenvalues), and moreover

‖(λI −A)−1‖L(X) ≤
M

|λ|
, λ ∈ S. (4)

This property will allow us to define the solution of the homogeneous problem (i.e., when
F ≡ 0), that will be called etAu0. We shall see that for each t ≥ 0 the linear operator
u0 7→ etAu0 is bounded. The family of operators {etA : t ≥ 0} is said to be an analytic
semigroup: semigroup, because it satisfies

e(t+s)A = etAesA, t, s ≥ 0, e0A = I,

analytic, because the function (0,+∞) 7→ L(X), t 7→ etA is analytic.
Then we shall see that the solution of (3) is given by the variation of constants formula

U(t) = etAu0 +
∫ t

0
e(t−s)AF (s)ds, 0 ≤ t ≤ T,

that will let us study several properties of the solution to (3) and of u, recalling that
U(t) = u(t, ·).

We shall be able to study the asymptotic behavior of U as t → +∞, in the case that
F is defined in [0,+∞). As in the case of ordinary differential equations, the asymptotic
behavior depends heavily on the spectral properties of A.

Also the nonlinear problem (2) will be written as an abstract Cauchy problem,{
U ′(t) = AU(t) + F (U(t)), t ≥ 0,

U(0) = u0,
(5)

where F : X → X is the composition operator, or Nemitzky operator, F (v) = f(v(·)).
After stating local existence and uniqueness results, we shall see some criteria for existence
in the large. As in the case of ordinary differential equations, in general the solution is
defined only in a small time interval [0, δ]. The problem of existence in the large is of
particular interest in equations coming from mathematical models in physics, biology,
chemistry, etc., where existence in the large is expected. Some sufficient conditions for
existence in the large will be given.

Then we shall study the stability of the (possible) stationary solutions, that is all
the u ∈ D(A) such that Au + F (u) = 0. We shall see that under suitable assumptions
the Principle of Linearized Stability holds. Roughly speaking, u has the same stability
properties of the null solution of the linearized problem

V ′(t) = AV (t) + F ′(u)V (t).

A similar study will be made in the case that F is not defined in the whole space X, but
only in an intermediate space between X and D(A). For instance, in several mathematical
models the nonlinearity f(u(t, x)) in problem 2 is replaced by f(u(t, x), ux(t, x)). Choosing
again X = C([0, 1]), the composition operator v 7→ F (v) = f(v(·), v′(·)) is well defined in
C1([0, 1]).



Chapter 1

Sectorial operators and analytic
semigroups

1.1 Introduction

The main topic of our first lectures is the Cauchy problem in a general Banach space X,{
u′(t) = Au(t), t > 0,

u(0) = x,
(1.1)

where A : D(A) → X is a linear operator and x ∈ X. Of course, the construction and the
properties of the solution depends upon the class of operators that is considered. The most
elementary case, which we assume to be known to the reader, is that of a finite dimensional
X and a matrix A. The case of a bounded operator A in general Banach space X can be
treated essentially in the same way, and we are going to discuss it briefly in Section 1.2.
We shall present two formulae for the solution, a power series expansion and an integral
formula with a complex contour integral. While the first one cannot be generalized to
the case of an unbounded A, the contour integral admits a generalization to the sectorial
operators. This class of operators is discussed in Section 1.3. If A is sectorial, then the
solution map x 7→ u(t) of (1.1) is given by an analytic semigroup. Sectorial operators and
analytic semigroups are basic tools in the theory of abstract parabolic problems, and of
partial differential equations and systems of parabolic type.

1.2 Bounded operators

Let A ∈ L(X). First, we give the solution of (1.1) as the sum of a power series of
exponential type.

Proposition 1.2.1 Let A ∈ L(X). Then, the series

+∞∑
k=0

tkAk

k!
, t ∈ Re, (1.2)

converges in L(X) uniformly on bounded subsets of Re. Setting u(t) :=
∑+∞

k=0 t
kAkx/k!,

the restriction of u to [0,+∞) is the unique solution of the Cauchy problem (1.1).

7
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Proof. Existence. Using Theorem A.3 as in the finite dimensional case, it is easily checked
that solving (1.1) is equivalent to finding a continuous function v : [0,+∞) → X which
satisfies

v(t) = x+
∫ t

0
Av(s)ds, t ≥ 0. (1.3)

In order to show that u solves (1.3), let us fix an interval [0, T ] and define

u0(t) = x, un+1(t) = x+
∫ t

0
Aun(s)ds, n ∈ N. (1.4)

We have

un(t) =
n∑

k=0

tkAk

k!
x, n ∈ N.

Since ∥∥∥∥ tkAk

k!

∥∥∥∥ ≤ T k‖A‖k

k!
, t ∈ [0, T ],

the series
∑+∞

k=0 t
kAk/k! converges in L(X), uniformly with respect to t in [0, T ]. Moreover,

the sequence {un(t)}n∈N converges to u(t) uniformly for t in [0, T ]. Letting n → ∞ in
(1.4), we conclude that u is a solution of (1.3).
Uniqueness. If u, v are two solutions of (1.3) in [0, T ], we have by Proposition A.2(c)

‖u(t)− v(t)‖ ≤ ‖A‖
∫ t

0
‖u(s)− v(s)‖ds

and from Gronwall’s lemma (see Exercise 3 in §1.2.4 below), the equality u = v follows at
once. �

As in the finite dimensional setting, we define

etA =
+∞∑
k=0

tkAk

k!
, t ∈ R, (1.5)

In the proof of Proposition 1.2.1 we have seen that for every bounded operator A the above
series converges in L(X) for each t ∈ R. If A is unbounded, the domain of Ak may become
smaller and smaller as k increases, and even for x ∈

⋂
k∈ND(Ak) it is not obvious that

the series
∑+∞

k=0 t
kAkx/k! converges. For instance, take X = C([0, 1]), D(A) = C1([0, 1]),

Af = f ′.
Therefore, we have to look for another representation of the solution to (1.1) if we

want to extend it to the unbounded case. As a matter of fact, it is given in the following
proposition.

Proposition 1.2.2 Let A ∈ L(X) and let γ ⊂ C be any circle with centre 0 and radius
r > ‖A‖. Then

etA =
1

2πi

∫
γ
etλR(λ,A) dλ, t ∈ R. (1.6)

Proof. From (1.5) and the power series expansion

R(λ,A) =
+∞∑
k=0

Ak

λk+1
, |λ| > ‖A‖,
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(see (B.10)), we have

1
2πi

∫
γ
etλR(λ,A) dλ =

1
2πi

+∞∑
n=0

tn

n!

∫
γ
λnR(λ,A) dλ

=
1

2πi

+∞∑
n=0

tn

n!

∫
γ
λn

+∞∑
k=0

Ak

λk+1
dλ

=
1

2πi

+∞∑
n=0

tn

n!

+∞∑
k=0

Ak

∫
γ
λn−k−1 dλ = etA,

as the integrals in the last series equal 2πi if n = k, 0 otherwise. Note that the exchange
of integration and summation is justified by the uniform convergence. �

Let us see how it is possible to generalize to the infinite dimensional setting the variation
of constants formula, that gives the solution of the non-homogeneous Cauchy problem{

u′(t) = Au(t) + f(t), 0 ≤ t ≤ T,

u(0) = x,
(1.7)

where A ∈ L(X), x ∈ X, f ∈ C([0, T ];X) and T > 0.

Proposition 1.2.3 The Cauchy problem (1.7) has a unique solution in [0, T ], given by

u(t) = etAx+
∫ t

0
e(t−s)Af(s)ds, t ∈ [0, T ]. (1.8)

Proof. It can be directly checked that u is a solution. Concerning uniqueness, let u1, u2

be two solutions; then, v = u1 − u2 satisfies v′(t) = Av(t) for 0 ≤ t ≤ T , v(0) = 0. By
Proposition 1.2.1, we conclude that v ≡ 0. �

Exercises 1.2.4

1. Prove that etAesA = e(t+s)A for any t, s ∈ R and any A ∈ L(X).

2. Prove that if the operators A,B ∈ L(X) commute (i.e. AB = BA), then etAetB =
et(A+B) for any t ∈ R.

3. Prove the following form of Gronwall’s lemma:

Let u, v : [0,+∞) → [0,+∞) be continuous functions, and assume that

u(t) ≤ α+
∫ t

0
u(s)v(s)ds

for some α ≥ 0. Then, u(t) ≤ α exp{
∫ t
0 v(s)ds}, for any t ≥ 0.

4. Check that the function u defined in (1.8) is a solution of problem (1.7).
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1.3 Sectorial operators

Definition 1.3.1 We say that a linear operator A : D(A) ⊂ X → X is sectorial if there
are constants ω ∈ R, θ ∈ (π/2, π), M > 0 such that

(i) ρ(A) ⊃ Sθ,ω := {λ ∈ C : λ 6= ω, | arg(λ− ω)| < θ},

(ii) ‖R(λ,A)‖L(X) ≤
M

|λ− ω|
, λ ∈ Sθ,ω.

(1.9)

Note that every sectorial operator is closed, because its resolvent set is not empty.
For every t > 0, the conditions (1.9) allow us to define a bounded linear operator etA

on X, through an integral formula that generalizes (1.6). For r > 0, η ∈ (π/2, θ), let γr,η

be the curve

{λ ∈ C : | arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : | arg λ| ≤ η, |λ| = r},

oriented counterclockwise, as in Figure 1.

η

ω

γr,η + ω

ω + r

σ(A)

Figure 1.1: the curve γr,η.

For each t > 0 set

etA =
1

2πi

∫
γr,η+ω

etλR(λ,A) dλ, t > 0. (1.10)

Using the obvious parametrization of γr,η we get

etA =
eωt

2πi

(
−

∫ +∞

r
e(ρ cos η−iρ sin η)tR(ω + ρe−iη, A)e−iηdρ

+
∫ η

−η
e(r cos α+ir sin α)tR(ω + reiα, A)ireiαdα

+
∫ +∞

r
e(ρ cos η+iρ sin η)tR(ω + ρeiη, A)eiηdρ

)
,

(1.11)

for every t > 0 and for every r > 0, η ∈ (π/2, θ).
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Lemma 1.3.2 If A is a sectorial operator, the integral in (1.10) is well defined, and it is
independent of r > 0 and η ∈ (π/2, θ).

Proof. First of all, notice that for each t > 0 the mapping λ 7→ etλR(λ,A) is a L(X)-
valued holomorphic function in the sector Sθ,ω (see Proposition B.4). Moreover, for any
λ = ω + reiθ, the estimate

‖etλR(λ,A)‖L(X) ≤ exp(ωt) exp(tr cos η)
M

r
(1.12)

holds for each λ in the two half-lines, and this easily implies that the improper integral is
convergent. Now take any r′ > 0, η′ ∈ (π/2, θ) and consider the integral on γr′,η′ + ω. Let
D be the region lying between the curves γr,η + ω and γr′,η′ + ω and for every n ∈ N set
Dn = D ∩ {|z − ω| ≤ n}, as in Figure 1.2. By Cauchy integral theorem A.9 we have∫

∂Dn

etλR(λ,A) dλ = 0.

By estimate (1.12), the integrals on the two arcs contained in {|z − ω| = n} tend to 0 as
n tends to +∞, so that∫

γr,η+ω
etλR(λ,A) dλ =

∫
γr′,η′+ω

etλR(λ,A) dλ

and the proof is complete. �

ω

n

γr,η + ω

γr′,η′ + ω

Dn

Figure 1.2: the region Dn.

Let us also set
e0Ax = x, x ∈ X. (1.13)

In the following theorem we summarize the main properties of etA for t > 0.
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Theorem 1.3.3 Let A be a sectorial operator and let etA be given by (1.10). Then, the
following statements hold.

(i) etAx ∈ D(Ak) for all t > 0, x ∈ X, k ∈ N. If x ∈ D(Ak), then

AketAx = etAAkx, t ≥ 0.

(ii) etAesA = e(t+s)A for any t, s ≥ 0.

(iii) There are constants M0, M1, M2, . . ., such that
(a) ‖etA‖L(X) ≤M0e

ωt, t > 0,

(b) ‖tk(A− ωI)ketA‖L(X) ≤Mke
ωt, t > 0,

(1.14)

where ω is the number in (1.9). In particular, from (1.14)(b) it follows that for every
ε > 0 and k ∈ N there is Ck,ε > 0 such that

‖tkAketA‖L(X) ≤ Ck,εe
(ω+ε)t, t > 0. (1.15)

(iv) The function t 7→ etA belongs to C∞((0,+∞);L(X)), and the equality

dk

dtk
etA = AketA, t > 0, (1.16)

holds for every k ∈ N. Moreover, it has an analytic continuation ezA to the sector
Sθ−π/2,0, and, for z = ρeiα ∈ Sθ−π/2,0, θ′ ∈ (π/2, θ − α), the equality

ezA =
1

2πi

∫
γr,θ′+ω

eλzR(λ,A)dλ

holds.

Proof. Replacing A by A−ωI if necessary, we may suppose ω = 0. See Exercise 1, §1.3.5.

Proof of (i). First, let k = 1. Recalling that A is a closed operator and using Lemma A.4
with f(t) = eλtR(λ,A), we deduce that etAx belongs to D(A) for every x ∈ X, and that

AetAx =
1

2πi

∫
γr,η

etλAR(λ,A)x dλ =
1

2πi

∫
γr,η

λetλR(λ,A)x dλ, (1.17)

because AR(λ,A) = λR(λ,A) − I, for every λ ∈ ρ(A), and
∫
γr,η

etλdλ = 0. Moreover, if
x ∈ D(A), the equality AetAx = etAAx follows since AR(λ,A)x = R(λ,A)Ax. Iterating
this argument, we obtain that etAx belongs to D(Ak) for every k ∈ N; moreover

AketA =
1

2πi

∫
γr,η

λketλR(λ,A)dλ,

and (i) can be easily proved by recurrence.

Proof of (ii). Since

etAesA =
(

1
2πi

)2 ∫
γr,η

eλtR(λ,A)dλ
∫

γ2r,η′

eµsR(µ,A)dµ,
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with η′ ∈ (π
2 , η), using the resolvent identity it follows that

etAesA =
(

1
2πi

)2 ∫
γr,η

∫
γ2r,η′

eλt+µsR(λ,A)−R(µ,A)
µ− λ

dλdµ

=
(

1
2πi

)2 ∫
γr,η

eλtR(λ,A)dλ
∫

γ2r,η′

eµs dµ

µ− λ

−
(

1
2πi

)2 ∫
γ2r,η′

eµsR(µ,A)dµ
∫

γr,η

eλt dλ

µ− λ
= e(t+s)A,

where we have used the equalities∫
γ2r,η′

eµs dµ

µ− λ
= 2π iesλ, λ ∈ γr,η,

∫
γr,η

eλt dλ

µ− λ
= 0, µ ∈ γ2r,η′ (1.18)

that can be easily checked (Exercise 2, §1.3.5).

Proof of (iii). Let us point out that if we estimate ‖etA‖ integrating ‖eλtR(λ,A)‖ over γr,η

we get a singularity near t = 0, because the norm of the integrand behaves like M/|λ| for
|λ| small. We have to be more careful. Setting λt = ξ in (1.10) and using Lemma 1.3.2,
we get

etA =
1

2πi

∫
γrt,η

eξR

(
ξ

t
, A

)
dξ

t
=

1
2πi

∫
γr,η

eξR

(
ξ

t
, A

)
dξ

t

=
1

2πi

( ∫ +∞

r
eρeiη

R

(
ρeiη

t
, A

)
eiη

t
dρ−

∫ +∞

r
eρe−iη

R

(
ρe−iη

t
, A

)
e−iη

t
dρ

+
∫ η

−η
ereiα

R

(
reiα

t
, A

)
ireiα

dα

t

)
.

It follows that

‖etA‖ ≤ 1
π

{∫ +∞

r
Meρ cos η dρ

ρ
+

1
2

∫ η

−η
Mer cos αdα

}
.

The estimate of ‖AetA‖ is easier, and we do not need the above procedure. Recalling that
‖AR(λ,A)‖ ≤M + 1 for each λ ∈ γr,η and using (1.11) we get

‖AetA‖ ≤ M + 1
π

∫ +∞

r
eρt cos ηdρ+

(M + 1)r
2π

∫ η

−η
ert cos αdα,

so that, letting r → 0,

‖AetA‖ ≤ M + 1
π| cos η|t

:=
N

t
, t > 0.

From the equality AetAx = etAAx, which is true for each x ∈ D(A), it follows that
AketA = (Ae

t
k
A)k for all k ∈ N, so that

‖AketA‖L(X) ≤ (Nkt−1)k := Mkt
−k.

Proof of (iv). This follows easily from Exercise A.6 and from (1.17). Indeed,

d

dt
etA =

1
2πi

∫
γr,η

λeλtR(λ,A)dλ = AetA, t > 0.



14 Chapter 1

The equality
dk

dtk
etA = AketA, t > 0

can be proved by the same argument, or by recurrence. Now, let 0 < α < θ − π/2 be
given, and set η = θ − α. The function

z 7→ ezA =
1

2πi

∫
γr,η

ezλR(λ,A)dλ

is well defined and holomorphic in the sector

Sα = {z ∈ C : z 6= 0, | arg z| < θ − π/2− α},

because we can differentiate with respect to z under the integral, again by Exercise A.6.
Indeed, if λ = ξeiη and z = ρeiφ, then Re(zλ) = ξρ cos(η+φ) ≤ −cξρ for a suitable c > 0.

Since the union of the sectors Sα, for 0 < α < θ − π/2, is Sθ−π
2
,0, (iv) is proved. �

Statement (ii) in Theorem 1.3.3 tells us that the family of operators etA satisfies the
semigroup law, an algebraic property which is coherent with the exponential notation.
Statement (iv) tells us that e·A is analytically extendable to a sector. Therefore, it is
natural to give the following deefinition.

Definition 1.3.4 Let A be a sectorial operator. The function from [0,+∞) to L(X),
t 7→ etA (see (1.10), (1.13)) is called the analytic semigroup generated by A (in X).

−n

λ

γr,η

γ2r,η′

µ

γr,η

γ2r,η′

−n

Figure 1.3: the curves for Exercise 2.

Exercises 1.3.5

1. Let A : D(A) ⊂ X → X be sectorial, let α ∈ C, and set B : D(B) := D(A) → X,
Bx = Ax − αx, C : D(C) = D(A) → X, Cx = αAx. Prove that the operator B is
sectorial, and that etB = e−αtetA. Use this result to complete the proof of Theorem
1.3.3 in the case ω 6= 0. For which α is the operator C sectorial?

2. Prove that (1.18) holds, integrating over the curves shown in Figure 1.3.
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3. Let A : D(A) ⊂ X → X be sectorial and let x ∈ D(A) be an eigenvector of A with
eigenvalue λ.

(a) Prove that R(µ,A)x = (µ− λ)−1x for any µ ∈ ρ(A).

(b) Prove that etAx = eλtx for any t > 0.

4. Prove that if both A and −A are sectorial operators in X, then A is bounded.

Given x ∈ X, the function t 7→ etAx is analytic for t > 0. Let us consider its behavior
for t close to 0.

Proposition 1.3.6 The following statements hold.

(i) If x ∈ D(A), then limt→0+ etAx = x. Conversely, if y = limt→0+ etAx exists, then
x ∈ D(A) and y = x.

(ii) For every x ∈ X and t ≥ 0, the integral
∫ t
0 e

sAx ds belongs to D(A), and

A

∫ t

0
esAx ds = etAx− x. (1.19)

If, in addition, the function s 7→ AesAx is integrable in (0, ε) for some ε > 0, then

etAx− x =
∫ t

0
AesAx ds, t ≥ 0.

(iii) If x ∈ D(A) and Ax ∈ D(A), then limt→0+(etAx − x)/t = Ax. Conversely, if
z := limt→0+(etAx− x)/t exists, then x ∈ D(A) and Ax = z ∈ D(A).

(iv) If x ∈ D(A) and Ax ∈ D(A), then limt→0+ AetAx = Ax.

Proof. Proof of (i). Notice that we cannot let t → 0+ in the Definition (1.10) of etAx,
because the estimate ‖R(λ,A)‖ ≤ M/|λ − ω| does not suffice to use any convergence
theorem.

But if x ∈ D(A) things are easier: indeed fix ξ, r such that ω < ξ ∈ ρ(A), 0 < r < ξ−ω,
and set y = ξx−Ax, so that x = R(ξ, A)y. We have

etAx = etAR(ξ, A)y =
1

2πi

∫
γr,η+ω

etλR(λ,A)R(ξ,A)y dλ

=
1

2πi

∫
γr,η+ω

etλ
R(λ,A)
ξ − λ

y dλ− 1
2πi

∫
γr,η+ω

etλ
R(ξ,A)
ξ − λ

y dλ

=
1

2πi

∫
γr,η+ω

etλ
R(λ,A)
ξ − λ

y dλ,

because the integral
∫
γr,η+ω e

tλR(ξ, A)y/(ξ − λ) dλ vanishes (why?). Here we may let
t→ 0+ because ‖R(λ,A)y/(ξ − λ)‖ ≤ C|λ|−2 for λ ∈ γr,η + ω. We get

lim
t→0+

etAx =
1

2πi

∫
γr,η+ω

R(λ,A)
ξ − λ

y dλ = R(ξ,A)y = x.
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The second equality follows using Cauchy’s Theorem with the curve {λ ∈ γr,η + ω :
|λ−ω| ≤ n} ∪ {|λ−ω| = n, arg(λ−ω) ∈ [−η, η]} and then letting n→ +∞. Since D(A)
is dense in D(A) and ‖etA‖ is bounded by a constant independent of t for 0 < t < 1, then
limt→0+ etAx = x for all x ∈ D(A), see Lemma A.1.

Conversely, if y = limt→0+ etAx, then y ∈ D(A) because etAx ∈ D(A) for t > 0, and
we have R(ξ,A)y = limt→0+ R(ξ,A)etAx = limt→0+ etAR(ξ, A)x = R(ξ,A)x as R(ξ,A)x ∈
D(A). Therefore, y = x.

Proof of (ii). To prove the first statement, take ξ ∈ ρ(A) and x ∈ X. For every ε ∈ (0, t)
we have ∫ t

ε
esAx ds =

∫ t

ε
(ξ −A)R(ξ, A)esAx ds

= ξ

∫ t

ε
R(ξ,A)esAx ds−

∫ t

ε

d

ds
(R(ξ,A)esAx)ds

= ξR(ξ,A)
∫ t

ε
esAx ds− etAR(ξ,A)x+ eεAR(ξ, A)x.

Since R(ξ,A)x belongs to D(A), letting ε→ 0+ we get∫ t

0
esAx ds = ξR(ξ,A)

∫ t

0
esAx ds−R(ξ, A)(etAx− x). (1.20)

Therefore,
∫ t
0 e

sAxds ∈ D(A), and

(ξI −A)
∫ t

0
esAx ds = ξ

∫ t

0
esAx ds− (etAx− x),

whence the first statement in (ii) follows. If in addition s 7→ ‖AesAx‖ belongs to L1(0, T ),
we may commute A with the integral by Lemma A.4 and the second statement in (ii) is
proved.

Proof of (iii). If x ∈ D(A) and Ax ∈ D(A), we have

etAx− x

t
=

1
t
A

∫ t

0
esAx ds =

1
t

∫ t

0
esAAxds.

Since the function s 7→ esAAx is continuous on [0, t] by (i), then limt→0+(etAx−x)/t = Ax
by Theorem A.3.

Conversely, if the limit z := limt→0+(etAx−x)/t exists, then limt→0+ etAx = x, so that
both x and z belong to D(A). Moreover, for every ξ ∈ ρ(A) we have

R(ξ,A)z = lim
t→0+

R(ξ,A)
etAx− x

t
,

and from (ii) it follows

R(ξ, A)z = lim
t→0+

1
t
R(ξ, A)A

∫ t

0
esAx ds = lim

t→0+
(ξR(ξ, A)− I)

1
t

∫ t

0
esAx ds.

Since x ∈ D(A), the function s 7→ esAx is continuous at s = 0, and then

R(ξ, A)z = ξR(ξ, A)x− x.
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In particular, x ∈ D(A) and z = ξx− (ξ −A)x = Ax.

Proof of (iv). Statement (iv) is an easy consequence of (i), since AetAx = etAAx for
x ∈ D(A). �

Formula (1.19) is very important. It is the starting point of several proofs and it will
be used throughout these lectures. Therefore, remind it!

It has several variants and consequences. For instance, if ω < 0 we may let t → +∞
and, using (1.14)(a), we get

∫ +∞
0 esAxds ∈ D(A) and

x = −A
∫ +∞

0
esAx ds, x ∈ X.

In general, if Reλ > ω, replacing A by A− λI and using (1.19) and Exercise 1, §1.3.5, we
get

e−λtetAx− x = (A− λI)
∫ t

0
e−λsesAx ds, x ∈ X,

so that

x = (λI −A)
∫ +∞

0
e−λsesAx ds, x ∈ X. (1.21)

An important representation formula for the resolvent R(λ,A) of A follows.

Proposition 1.3.7 Let A : D(A) ⊂ X → X be a sectorial operator. For every λ ∈ C
with Reλ > ω we have

R(λ,A) =
∫ +∞

0
e−λtetAdt. (1.22)

Proof. The right hand side is well defined as an element of L(X) by estimate (1.14)(a).
The equality follows applying R(λ,A) to both sides of (1.21). �

Corollary 1.3.8 For all t ≥ 0 the operator etA is one to one.

Proof. e0A = I is obviously one to one. If there are t0 > 0, x ∈ X such that et0Ax = 0,
then for t ≥ t0, etAx = e(t−t0)Aet0Ax = 0. Since the function t 7→ etAx is analytic, etAx ≡ 0
in (0,+∞). From Proposition 1.3.7 we get R(λ,A)x = 0 for λ > ω, so that x = 0. �

Remark 1.3.9 Formula (1.22) is used to define the Laplace transform of the scalar func-
tion t 7→ etA, if A ∈ C. The classical inversion formula to recover etA from its Laplace
transform is given by a complex integral on a suitable vertical line; in our case the vertical
line has been replaced by a curve joining ∞e−iη to ∞eiη with η > π/2, in such a way that
the improper integral converges by assumption (1.9).

Of course, the continuity properties of semigroups of linear operators are very impor-
tant in their analysis. The following definition is classical.

Definition 1.3.10 Let (T (t))t≥0 be a family of bounded operators on X. If T (0) = I,
T (t+ s) = T (t)T (s) for all t, s ≥ 0 and the map t 7→ T (t)x is continuous from [0,+∞) to
X then we say that (T (t))t≥0 is a strongly continuous semigroup.
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By Proposition 1.3.6(i) we immediately see that the semigroup {etA}t≥0 is strongly
continuous in X if and only if D(A) is dense in X.

In any case some weak continuity property of the function t 7→ etAx holds for a general
x ∈ X; for instance we have

lim
t→0+

R(λ,A)etAx = R(λ,A)x (1.23)

for every λ ∈ ρ(A). Indeed, R(λ,A)etAx = etAR(λ,A)x for every t > 0, and R(λ,A)x ∈
D(A). In the case when D(A) is not dense in X, a standard way to obtain a strongly
continuous semigroup from a sectorial operator A is to consider the part of A in D(A).

Definition 1.3.11 Let L : D(L) ⊂ X → X be a linear operator, and let Y be a subspace
of X. The part of L in Y is the operator L0 defined by

D(L0) = {x ∈ D(L) ∩ Y : Lx ∈ Y }, L0x = Lx.

It is easy to see that the part A0 of A in D(A) is still sectorial. Since D(A0) is dense in
D(A) (because for each x ∈ D(A) we have x = limt→0 e

tAx), then the semigroup generated
by A0 is strongly continuous in D(A). By (1.10), the semigroup generated by A0 coincides
of course with the restriction of etA to D(A).

Coming back to the Cauchy problem (1.1), let us notice that Theorem 1.3.3 implies
that the function

u(t) = etAx, t ≥ 0

is analytic with values in D(A) for t > 0, and it is a solution of the differential equation
in (1.1) for t > 0. Moreover, u is continuous also at t = 0 (with values in X) if and only
if x ∈ D(A) and in this case u is a solution of the Cauchy problem (1.1). If x ∈ D(A)
and Ax ∈ D(A), then u is continuously differentiable up to t = 0, and it satisfies the
differential equation also at t = 0, i.e., u′(0) = Ax. Uniqueness of the solution to (1.1)
will be proved in Proposition 4.1.2, in a more general context.

Let us give a sufficient condition, seemingly weaker than (1.9), in order that a linear
operator be sectorial. It will be useful to prove that the realizations of some elliptic partial
differential operators are sectorial in the usual function spaces.

Proposition 1.3.12 Let A : D(A) ⊂ X → X be a linear operator such that ρ(A) contains
a halfplane {λ ∈ C : Reλ ≥ ω}, and

‖λR(λ,A)‖L(X) ≤M, Reλ ≥ ω, (1.24)

with ω ≥ 0, M ≥ 1. Then A is sectorial.

Proof. By Proposition B.3, for every r > 0 the open disks with centre ω ± ir and radius
|ω + ir|/M is contained in ρ(A). Since |ω + ir| ≥ r, the union of such disks and of the
halfplane {Reλ ≥ ω} contains the sector {λ ∈ C : λ 6= ω, | arg(λ− ω)| < π − arctan(M)}
and, hence, it contains S = {λ 6= ω : | arg(λ − ω)| < π − arctan(2M)}. If λ ∈ S and
Reλ < ω, we write λ = ω ± ir − (θr)/(2M) for some θ ∈ (0, 1). Since by (B.4)

R(λ,A) = R(ω ± ir, A) (I + (λ− ω ∓ ir)R(ω ± ir, A))−1
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and ‖(I + (λ− ω ∓ ir)R(ω ± ir, A))−1‖ ≤ 2, we have

‖R(λ,A)‖ ≤ 2M
|ω ± ir|

≤ 2M
r

≤
√

4M2 + 1
|λ− ω|

.

If λ ∈ S and Reλ ≥ ω, estimate (1.24) yields ‖R(λ,A)‖ ≤ M/|λ− ω|, and the statement
follows. �

Next, we prove a useful perturbation theorem.

Theorem 1.3.13 Let A : D(A) → X be a sectorial operator, and let B : D(B) → X be a
linear operator such that D(A) ⊂ D(B) and

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, x ∈ D(A). (1.25)

There is δ > 0 such that if a ∈ [0, δ] then A+B : D(A) → X is sectorial.

Proof. Let r > 0 be such that R(λ,A) exists and ‖λR(λ,A)‖ ≤M for Reλ ≥ r. We write
λ−A−B = (I −BR(λ,A))(λ−A) and we observe that

‖BR(λ,A)x‖ ≤ a‖AR(λ,A)x‖+ b‖R(λ,A)x‖ ≤
(
a(M + 1) +

bM

|λ|

)
‖x‖ ≤ 1

2
‖x‖

if a(M + 1) ≤ 1/4 and bM/|λ| ≤ 1/4. Therefore, if a ≤ δ := (4(M + 1))−1 and for Reλ
sufficiently large, ‖BR(λ,A)‖ ≤ 1/2 and

‖(λ−A−B)−1‖ ≤ ‖R(λ,A)‖ ‖(I −BR(λ,A))−1‖ ≤ 2M
|λ|

.

The statement now follows from Proposition 1.3.12. �

Corollary 1.3.14 If A is sectorial and B : D(B) ⊃ D(A) → X is a linear operator such
that for some θ ∈ (0, 1), C > 0 we have

‖Bx‖ ≤ C‖x‖θ
D(A)‖x‖

1−θ
X , x ∈ D(A),

then A+B : D(A+B) := D(A) → X is sectorial.

Remark 1.3.15 In fact the proof of Theorem 1.3.13 shows that if A : D(A) → X is a
sectorial operator and B : D(B) → X is a linear operator such that D(A) ⊂ D(B) and
limRe λ→+∞, λ∈Sθ,ω

‖BR(λ,A)‖ = 0, then A+B : D(A) → X is a sectorial operator.

The next theorem is sometimes useful, because it allows to work in smaller subspaces
of D(A). A subspace D as in the following statement is called a core for the operator A.

Theorem 1.3.16 Let A be a sectorial operator with dense domain. If a subspace D ⊂
D(A) is dense in X and etA(D) ⊂ D for each t > 0, then D is dense in D(A) with respect
to the graph norm.
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Proof. Fix x ∈ D(A) and a sequence (xn) ⊂ D which converges to x in X. Since D(A) is
dense, then by Proposition 1.3.6(iii)

Ax = lim
t→0+

etAx− x

t
= lim

t→0+

A

t

∫ t

0
esAx ds,

and the same formula holds with xn in place of x. Therefore it is convenient to set

yn,t =
1
t

∫ t

0
esAxn ds =

1
t

∫ t

0
esA(xn − x) ds+

1
t

∫ t

0
esAx ds.

For each n, the map s 7→ esAxn is continuous in D(A) and takes values in D; it follows that∫ t
0 e

sAxnds, being the limit of the Riemann sums, belongs to the closure of D in D(A),
and then each yn,t does. Moreover ‖yn,t − x‖ tends to 0 as t→ 0+, n→ +∞, and

Ayn,t −Ax =
etA(xn − x)− (xn − x)

t
+

1
t

∫ t

0
esAAxds−Ax.

Given ε > 0, fix τ so small that ‖τ−1
∫ τ
0 e

sAAxds − Ax‖ ≤ ε, and then choose n large,
in such a way that (M0e

ωτ + 1)‖xn − x‖/τ ≤ ε. For such choices of τ and n we have
‖Ayn,τ −Ax‖ ≤ 2ε, and the statement follows. �

Theorem 1.3.16 implies that the operator A is the closure of the restriction of A to D,
i.e. D(A) is the set of all x ∈ X such that there is a sequence (xn) ⊂ D with the property
that xn → x and Axn converges as n→ +∞; in this case we have Ax = limn→+∞Axn.

Remark 1.3.17 Up to now we have considered complex Banach spaces, and the operators
etA have been defined through integrals over paths in C. But in many applications we
have to work in real Banach spaces.

If X is a real Banach space, and A : D(A) ⊂ X → X is a closed linear operator, it is
however convenient to consider its complex spectrum and resolvent. So we introduce the
complexifications of X and of A, defined by

X̃ = {x+ iy : x, y ∈ X}; ‖x+ iy‖
X̃

= sup
−π≤θ≤π

‖x cos θ + y sin θ‖

and
D(Ã) = {x+ iy : x, y ∈ D(A)}, Ã(x+ iy) = Ax+ iAy.

With obvious notation, we say that x and y are the real and the imaginary part of x+ iy.
Note that the “euclidean norm”

√
‖x‖2 + ‖y‖2 is not a norm, in general. See Exercise 5

in §1.3.18.
If the complexification Ã of A is sectorial, so that the semigroup etÃ is analytic in X̃,

then the restriction of etÃ to X maps X into itself for each t ≥ 0. To prove this statement
it is convenient to replace the path γr,η by the path γ = {λ ∈ C : λ = ω′ + ρe±iθ, ρ ≥ 0},
with ω′ > ω, in formula (1.10). For each x ∈ X we get

etÃx =
1

2πi

∫ +∞

0
eω

′t
(
eiθ+ρteiθ

R(ω′ + ρeiθ, Ã)− e−iθ+ρte−iθ
R(ω′ + ρe−iθ, Ã)

)
x dρ, t > 0.

The real part of the function under the integral vanishes (why?), and then etÃx belongs
to X. So, we have a semigroup of linear operators in X which enjoys all the properties
that we have seen up to now.
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Exercises 1.3.18

1. Let Xk, k = 1, . . . , n be Banach spaces, and let Ak : D(Ak) → Xk be sectorial
operators. Set

X =
n∏

k=1

Xk, D(A) =
n∏

k=1

D(Ak),

and A(x1, . . . , xn) = (A1x1, . . . , Anxn), and show that A is a sectorial operator in
X. X is endowed with the product norm ‖(x1, . . . , xn)‖ =

(∑n
k=1 ‖xk‖2

)1/2.

2. (a) Let A, B be sectorial operators in X. Prove that etAetB = etBetA for any t > 0
if and only if etAesB = esBetA for any t, s > 0.

(b) Prove that if A and B are as above, then etAesB = esBetA for any t, s > 0 if and
only if R(λ,A)R(µ,B) = R(µ,B)R(λ,A) for large Reλ and Reµ.

3. Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be, respectively, a sectorial
operator and a closed operator such that D(A) ⊂ D(B).

(i) Show that there exist two positive constants a and b such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖

for every x ∈ D(A).

[Hint: use the closed graph theorem to show that BR(λ,A) is bounded for any
λ ∈ ρ(A)].

(ii) Prove that if BR(λ0, A) = R(λ0, A)B in D(B) for some λ0 ∈ ρ(A), then
BR(λ,A) = R(λ,A)B in D(B) for any λ ∈ Sθ,ω.

[Hint: use Proposition B.3].

(iii) Show that if BR(λ0, A) = R(λ0, A)B in D(B), then BetA = etAB in D(B) for
every t > 0.

4. Prove Corollary 1.3.14.

5. Let X be a real Banach space. Prove that the function f : X ×X → R defined by
f(x, y) =

√
‖x‖2 + ‖y‖2 for any x, y ∈ X, may not satisfy, in general, the homo-

geneity property
f(λ(x, y)) = |λ|f(x, y), λ ∈ C.
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Chapter 2

Examples of sectorial operators

In this chapter we show several examples of sectorial operators.
The leading example is the Laplace operator ∆ in one or more variables, i.e., ∆u = u′′

if N = 1 and ∆u =
∑N

i=1Diiu if N > 1. We shall see some realizations of the Laplacian
in different Banach spaces, and with different domains, that turn out to be sectorial
operators.

The Banach spaces taken into consideration are the usual spaces of complex valued
functions defined in RN or in an open set Ω of RN , that we recall briefly below.

The Lebesgue spaces Lp(Ω), 1 ≤ p ≤ +∞, are endowed with the norms

‖f‖Lp(Ω) =
(∫

Ω
|f(x)|pdx

)1/p

, 1 ≤ p < +∞,

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)|.

When no confusion may arise, we write ‖f‖p for ‖f‖Lp(Ω).
The Sobolev spaces W k,p(Ω), where k is any positive integer and 1 ≤ p ≤ +∞, consist

of all the functions f in Lp(Ω) which admit weak derivatives Dαf for |α| ≤ k belonging
to Lp(Ω). They are endowed with the norm

‖f‖W k,p(Ω) =
∑
|α|≤k

‖Dαf‖p.

If p = 2, we write Hk(Ω) for W k,p(Ω).
Cb(Ω) (resp., BUC(Ω)) is the space of all the bounded and continuous (resp., bounded

and uniformly continuous) functions f : Ω → C. They are endowed with the L∞ norm.
If k ∈ N, Ck

b (Ω) (resp. BUCk(Ω)) is the space of all the functions f in Cb(Ω) (resp. in
BUC(Ω)) which are k times continuously differentiable in Ω, with all the derivatives up
to the order k in Cb(Ω) (resp. in BUC(Ω)). They are endowed with the norm

‖f‖Ck
b (Ω) =

∑
|α|≤k

‖Dαf‖∞.

If Ω is bounded, we drop the subindex b and we write C(Ω), Ck(Ω).
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2.1 The operator Au = u′′

2.1.1 The second order derivative in the real line

Throughout the section we shall use square roots of complex numbers, defined by
√
λ =

|λ|1/2eiθ/2 if arg λ = θ ∈ (−π, π]. Therefore, Re
√
λ > 0 if λ ∈ C \ (−∞, 0].

Let us define the realizations of the second order derivative in Lp(R) (1 ≤ p < +∞),
and in Cb(R), endowed with the maximal domains

D(Ap) = W 2,p(R) ⊂ Lp(R), Apu = u′′, 1 ≤ p < +∞,

D(A∞) = C2
b (R), A∞u = u′′.

Let us determine the spectrum of Ap and estimate the norm of its resolvent.

Proposition 2.1.1 For all 1 ≤ p ≤ +∞ the spectrum of Ap is the halfline (−∞, 0]. If
λ = |λ|eiθ with |θ| < π then

‖R(λ,A)‖L(Lp(R)) ≤
1

|λ| cos(θ/2)
.

Proof. First we show that (−∞, 0] ⊂ σ(Ap). Fix λ ≤ 0 and consider the function
u(x) = exp(i

√
−λx) which satisfies u′′ = λu. For p = +∞, u is an eigenfunction of A∞

with eigenvalue λ. For p < +∞, u does not belong to Lp(R). To overcome this difficulty,
consider a cut-off function ψ : R → R, supported in [−2, 2] and identically equal to 1 in
[−1, 1] and set ψn(x) = ψ(x/n), for any n ∈ N.

If un = ψnu, then un ∈ D(Ap) and ‖un‖p ≈ n1/p as n → +∞. Moreover, ‖Aun −
λun‖p ≤ Cn1/p−1. Setting vn = un/‖un‖p, it follows that ‖(λ− A)vn‖p → 0 as n→ +∞,
and then λ ∈ σ(A). See Exercise B.9.
Now let λ 6∈ (−∞, 0]. If p = +∞, the equation λu − u′′ = 0 has no nonzero bounded
solution, hence λI − A∞ is one to one. If p < +∞, it is easy to see that all the nonzero
solutions u ∈W 2,p

loc (R) to the equation λu−u′′ = 0 belong to C∞(R) and they are classical
solutions, but they do not belong to Lp(R), so that the operator λI − Ap is one to one.
We recall that W 2,p

loc (R) denotes the set of all the functions f : R → R which belong to
W 2,p(I) for any bounded interval I ⊂ R.

Let us show that λI − Ap is onto. We write
√
λ = µ. If f ∈ Cb(R) the variation of

constants method gives the (unique) bounded solution to λu− u′′ = f , written as

u(x) =
1
2µ

(∫ x

−∞
e−µ(x−y)f(y)dy +

∫ +∞

x
eµ(x−y)f(y)dy

)
= (f ? hµ)(x), (2.1)

where hµ(x) = e−µ|x|/2µ. Since ‖hµ‖L1(R) = (|µ|Reµ)−1, we get

‖u‖∞ ≤ ‖hµ‖L1(R)‖f‖∞ =
1

|λ| cos(θ/2)
‖f‖∞,

where θ = arg λ. If |θ| ≤ θ0 < π we get ‖u‖∞ ≤ (|λ| cos(θ0/2))−1‖f‖∞, and therefore A∞
is sectorial, with ω = 0 and any θ ∈ (π/2, π).

If p < +∞ and f ∈ Lp(R), the natural candidate to be R(λ,Ap)f is still the function u
defined by (2.1). We have to check that u ∈ D(Ap) and that (λI −Ap)u = f . By Young’s
inequality (see e.g. [3, Th. IV.15]), u ∈ Lp(R) and again

‖u‖p ≤ ‖f‖p‖hµ‖1 ≤
1

|λ| cos(θ/2)
‖f‖p.
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That u ∈ D(Ap) may be seen in several ways; all of them need some knowledge of ele-
mentary properties of Sobolev spaces. The following proof relies on the fact that smooth
functions are dense in W 1,p(R)(1).

Approximate f ∈ Lp(R) by a sequence (fn) ⊂ C∞
0 (R). The corresponding solutions

un to λun−u′′n = fn are smooth and they are given by formula (2.1) with fn instead of f ,
therefore they converge to u by Young’s inequality. Moreover,

u′n(x) = −1
2

∫ x

−∞
e−µ(x−y)fn(y)dy +

1
2

∫ +∞

x
eµ(x−y)fn(y)dy

converge to the function

g(x) = −1
2

∫ x

−∞
e−µ(x−y)f(y)dy +

1
2

∫ +∞

x
eµ(x−y)f(y)dy

again by Young’s inequality. Hence g = u′ ∈ Lp(R), and u′′n = λun−fn converge to λu−f ,
hence λu− f = u′′ ∈ Lp(R). Therefore u ∈W 2,p(R) and the statement follows. �

Note that D(A∞) is not dense in Cb(R), and its closure is BUC(R). Therefore, the
associated semigroup etA∞ is not strongly continuous. But the part of A∞ in BUC(R),
i.e. the operator

BUC2(R) → BUC(R), u 7→ u′′

has dense domain in BUC(R) and it is sectorial, so that the restriction of etA∞ to BUC(R)
is strongly continuous. If p < +∞, D(Ap) is dense in Lp(R), and etAp is strongly continuous
in Lp(R).

This is one of the few situations in which we have a nice representation formula for
etAp , for 1 ≤ p ≤ +∞, and precisely

(etApf)(x) =
1

(4πt)1/2

∫
R
e−

|x−y|2
4t f(y)dy, t > 0, x ∈ R. (2.2)

This formula will be discussed in Section 2.3, where we shall use a classical method,
based on the Fourier transform, to obtain it. In principle, since we have an explicit
representation formula for the resolvent, plugging it in (1.10) we should get (2.2). But the
contour integral obtained in this way is not very easy to work out.

2.1.2 The operator Au = u′′ in a bounded interval, with Dirichlet bound-
ary conditions

Without loss of generality, we fix I = (0, 1), and we consider the realizations of the second
order derivative in Lp(0, 1), 1 ≤ p < +∞,

D(Ap) = {u ∈W 2,p(0, 1) : u(0) = u(1) = 0} ⊂ Lp(0, 1), Apu = u′′,

as well as its realization in C([0, 1]),

D(A∞) = {u ∈ C2([0, 1]) : u(0) = u(1) = 0}, A∞u = u′′.

1Precisely, a function v ∈ Lp(R) belongs to W 1,p(R) iff there is a sequence (vn) ⊂ C∞(R) with vn,
v′n ∈ Lp(R), such that vn → v and v′n → g in Lp(R) as n → +∞. In this case, g is the weak derivative of
v. See [3, Chapter 8].
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We could follow the same approach of Subsection 2.1.1, by computing the resolvent oper-
ator R(λ,A∞) for λ /∈ (−∞, 0] and then showing that the same formula gives R(λ,Ap).
The formula turns out to be more complicated than before, but it leads to the same final
estimate, see Exercise 3 in §2.1.3. Here we do not write it down explicitly, but we estimate
separately its components, arriving at a less precise estimate for the norm of the resolvent,
with simpler computations.

Proposition 2.1.2 The operators Ap : D(Ap) → Lp(0, 1), 1 ≤ p < +∞ and A∞ :
D(A∞) → C([0, 1]) are sectorial, with ω = 0 and any θ ∈ (π/2, π).

Proof. For λ /∈ (−∞, 0] set µ =
√
λ, so that Reµ > 0. For every f ∈ X, X = Lp(0, 1)

or X = C([0, 1]), extend f to a function f̃ ∈ Lp(R) or f̃ ∈ Cb(R), in such a way that
‖f̃‖ = ‖f‖. For instance we may define f̃(x) = 0 for x /∈ (0, 1) if X = Lp(0, 1), f̃(x) = f(1)
for x > 1, f̃(x) = f(0) for x < 0 if X = C([0, 1]). Let ũ be defined by (2.1) with f̃ instead
of f . We already know from Proposition 2.1.1 that ũ|[0,1] is a solution of the equation
λu− u′′ = f satisfying ‖u‖p ≤ ‖f‖p/(|λ| cos(θ/2)), where θ = arg λ. However, it does not
necessarily satisfy the boundary conditions. To find a solution that satisfies the boundary
conditions we set

γ0 =
1
2µ

∫
R
e−µ|s|f̃(s) ds = ũ(0)

and
γ1 =

1
2µ

∫
R
e−µ|1−s|f̃(s) ds = ũ(1).

All the solutions of the equation λu− u′′ = f belonging to W 2,p(0, 1) or to C2([0, 1]) are
given by

u(x) = ũ(x) + c1u1(x) + c2u2(x),

where u1(x) := e−µx and u2(x) := eµx are two independent solutions of the homogeneous
equation λu−u′′ = 0. We determine uniquely c1 and c2 imposing u(0) = u(1) = 0 because
the determinant

D(µ) = eµ − e−µ

is nonzero since Reµ > 0. A straightforward computation yields

c1 =
1

D(µ)
[γ1 − eµγ0] , c2 =

1
D(µ)

[
−γ1 + e−µγ0

]
,

so that for 1 ≤ p < +∞

‖u1‖p ≤
1

(pReµ)1/p
; ‖u2‖p ≤

eRe µ

(pReµ)1/p
;

while ‖u1‖∞ = 1, ‖u2‖∞ = eRe µ. For 1 < p < +∞ by the Hölder inequality we also obtain

|γ0| ≤
1

2|µ|(p′ Reµ)1/p′
‖f‖p, |γ1| ≤

1
2|µ|(p′ Reµ)1/p′

‖f‖p

and
|γj | ≤

1
2|µ|

‖f‖1, if f ∈ L1(0, 1), j = 0, 1

|γj | ≤
1

|µ|Reµ
‖f‖∞, if f ∈ C([0, 1]), j = 0, 1.
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Moreover |D(µ)| ≈ eRe µ for |µ| → +∞. If λ = |λ|eiθ with |θ| ≤ θ0 < π then Reµ ≥
|µ| cos(θ0/2) and we easily get

‖c1u1‖p ≤
C

|λ|
‖f‖p and ‖c2u2‖p ≤

C

|λ|
‖f‖p

for a suitable C > 0 and λ as above, |λ| large enough. Finally

‖u‖p ≤
C

|λ|
‖f‖p

for |λ| large, say |λ| ≥ R, and | arg λ| ≤ θ0.
For |λ| ≤ R we may argue as follows: one checks easily that the spectrum of Ap consists

only of the eigenvalues −n2π2, n ∈ N. Since λ 7→ R(λ,Ap) is holomorphic in the resolvent
set, it is continuous, hence it is bounded on the compact set {|λ| ≤ R, | arg λ| ≤ θ0} ∪{0}.
�

Exercises 2.1.3

1. Let A∞ be the operator defined in Subsection 2.1.1.

(a) Prove that the resolvent R(λ,A∞) leaves invariant the subspaces

C0(R) := {u ∈ C(R) : lim
|x|→+∞

u(x) = 0}

and
CT (R) := {u ∈ C(R) : u(x) = u(x+ T ), x ∈ R},

with T > 0.

(b) Using the previous results show that the operators

A0 : D(A0) := {u ∈ C2(R) ∩ C0(R) : u′′ ∈ C0(R)} → C0(R), A0u = u′′,

and
AT : D(AT ) := C2(R) ∩ CT (R) → CT (R), ATu = u′′

are sectorial in C0(R) and in CT (R), respectively.

2. (a) Let λ > 0 and set

φ(x) =
∫ +∞

0

1√
4πt

e−λte−x2/4tdt.

Prove that φ′′ = λφ and φ(0) = (2
√
πλ)−1Γ(1/2) = (2

√
λ)−1 , φ(x) → 0 as |x| →

+∞, so that φ coincides with the function h√λ in (2.1). (b) Use (a) and Proposition
1.3.7 to prove formula (2.2).

3. Consider again the operator u 7→ u′′ in (0, 1) as in Subsection 2.1.2, with the domains
D(Ap) defined there, 1 ≤ p ≤ +∞. Solving explicitly the differential equation
λu−u′′ = f in D(Ap), show that the eigenvalues are −n2π2, n ∈ N, and express the
resolvent as an integral operator.
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4. Consider the operator Apu = u′′ in Lp(0, 1), 1 ≤ p <∞, with the domain

D(Ap) = {u ∈W 2,p(0, 1) : u′(0) = u′(1) = 0} ⊂ Lp(0, 1),

or in C([0, 1]), with the domain

D(A∞) = {u ∈ C2((0, 1)) ∩ C([0, 1]) : u′(0) = u′(1) = 0},

corresponding to the Neumann boundary condition. Use the same argument of
Subsection 2.1.2 to show that Ap is sectorial.

5. Let A∞ be the realization of the second order derivative in C([0, 1]) with Dirichlet
boundary condition, as in Subsection 2.1.2. Prove that for each α ∈ (0, 1) the part
of A∞ in Cα([0, 1]), i.e. the operator

{u ∈ C2+α([0, 1]) : u(0) = u(1) = 0} → Cα([0, 1]), u 7→ u′′

is not sectorial in Cα([0, 1]), although the function (0,+∞) → L(Cα([0, 1])), t 7→
etA∞

|Cα([0,1]) is analytic.

[Hint: take f ≡ 1, compute explicitly u := R(λ,A∞)f for λ > 0, and show that
lim supλ→+∞ λ1+α/2u(λ−1/2) = +∞, so that λ[R(λ,A∞)f ]Cα is unbounded as λ →
+∞. ]

Taking into account the behavior of R(λ,A)1, deduce that ‖etA‖L(Cα([0,1])) is un-
bounded for t ∈ (0, 1).

2.2 Some abstract examples

The realization of the second order derivative in L2(R) is a particular case of the following
general situation. Recall that, if H is a Hilbert space, and A : D(A) ⊂ H → H is a linear
operator with dense domain, the adjoint A∗ of A is the operator A∗ : D(A∗) ⊂ X → X
defined as follows,

D(A∗) = {x ∈ H : ∃y ∈ H such that 〈Az, x〉 = 〈z, y〉, ∀z ∈ D(A)}, A∗x = y.

The operator A is said to be self-adjoint if D(A) = D(A∗) and A = A∗. It is said to be
dissipative if

‖(λ−A)x‖ ≥ λ‖x‖, (2.3)

for all x ∈ D(A) and λ > 0, or equivalently (see Exercises 2.2.4) if Re〈Ax, x〉 ≤ 0 for every
x ∈ D(A).

The following proposition holds.

Proposition 2.2.1 Let H be a Hilbert space, and let A : D(A) ⊂ H → H be a self-adjoint
dissipative operator. Then A is sectorial, with an arbitrary θ < π and ω = 0.

Proof. Let us first show that σ(A) ⊂ R. Let λ = a+ ib ∈ C. Since 〈Ax, x〉 ∈ R for every
x ∈ D(A), we have

‖(λI −A)x‖2 = (a2 + b2)‖x‖2 − 2a〈x,Ax〉+ ‖Ax‖2 ≥ b2‖x‖2. (2.4)
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Hence, if b 6= 0 then λI − A is one to one. Let us check that the range is both closed
and dense in H, so that A is onto. Take xn ∈ D(A) such that λxn − Axn converges as
n→ +∞. From the inequality

‖(λI −A)(xn − xm)‖2 ≥ b2‖xn − xm‖2, n, m ∈ N,

it follows that (xn) is a Cauchy sequence, and by difference (Axn) is a Cauchy sequence
too. Hence there are x, y ∈ H such that xn → x, Axn → y. Since A is self-adjoint, it is
closed, and then x ∈ D(A), Ax = y, and λxn−Axn converges to λx−Ax ∈ Range (λI−A).
Therefore, the range of λI −A is closed.

If y is orthogonal to the range of λI−A, then for every x ∈ D(A) we have 〈y, λx−Ax〉 =
0. Hence y ∈ D(A∗) = D(A) and λy − A∗y = λy − Ay = 0. Since λI − A is one to one,
then y = 0, and the range of λI −A is dense.

Let us check that σ(A) ⊂ (−∞, 0]. Indeed, if λ > 0 and x ∈ D(A), we have

‖(λI −A)x‖2 = λ2‖x‖2 − 2λ〈x,Ax〉+ ‖Ax‖2 ≥ λ2‖x‖2, (2.5)

and arguing as above we get λ ∈ ρ(A).
Let us now verify condition (1.9)(ii) for λ = ρeiθ, with ρ > 0, −π < θ < π. Take x ∈ H

and u = R(λ,A)x. From the equality λu− Au = x, multiplying by e−iθ/2 and taking the
inner product with u, we deduce

ρeiθ/2‖u‖2 − e−iθ/2〈Au, u〉 = e−iθ/2〈x, u〉,

from which, taking the real part,

ρ cos(θ/2)‖u‖2 − cos(θ/2)〈Au, u〉 = Re(e−iθ/2〈x, u〉) ≤ ‖x‖ ‖u‖.

Therefore, taking into account that cos(θ/2) > 0 and 〈Au, u〉 ≤ 0, we get

‖u‖ ≤ ‖x‖
|λ| cos(θ/2)

,

with θ = arg λ. �

Let us see another example, where X is a general Banach space.

Proposition 2.2.2 Let A be a linear operator such that the resolvent set ρ(A) contains
C \ iR, and there exists M > 0 such that ‖R(λ,A)‖ ≤M/|Reλ| for Reλ 6= 0. Then A2 is
sectorial, with ω = 0 and any θ < π.

Proof. For every λ ∈ C\(−∞, 0] and for every y ∈ X, the resolvent equation λx−A2x = y
is equivalent to

(
√
λI −A)(

√
λI +A)x = y.

Since Re
√
λ > 0, then

√
λ ∈ ρ(A) ∩ (ρ(−A)), so that

x = R(
√
λ,A)R(

√
λ,−A)y = −R(

√
λ,A)R(−

√
λ,A)y (2.6)

and, since |Re
√
λ| =

√
|λ| cos(θ/2) if arg λ = θ, we get

‖x‖ ≤ M2

|λ|(cos(θ/2))2
‖y‖,

for λ ∈ Sθ,0, and the statement follows. �
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Remark 2.2.3 The proof of Proposition 2.2.2 shows that limRe λ→+∞, λ∈Sθ,ω
‖AR(λ,A2)‖ =

0. Therefore, Remark 1.3.15 implies that A2+αA is the generator of an analytic semigroup
for any α ∈ R.

Proposition 2.2.2 gives an alternative way to show that the realization of the second
order derivative in Lp(R), or in Cb(R), is sectorial. But there are also other interesting
applications. See next exercise 3.

Exercises 2.2.4

1. Let A be a sectorial operator with θ > 3π/4. Show that −A2 is sectorial.

2. Let H be a Hilbert space and A : D(A) ⊂ H → H be a linear operator. Show that
the dissipativity condition (2.3) is equivalent to Re〈Ax, x〉 ≤ 0 for any x ∈ D(A).

3. (a) Show that the operator A : D(A) = {f ∈ Cb(R) ∩ C1(R \ {0}) : x 7→ xf ′(x) ∈
Cb(R), limx→0 xf

′(x) = 0}, Af(x) = xf ′(x) for x 6= 0, Af(0) = 0, satisfies the
assumptions of Proposition 2.2.2, so that A2 is sectorial in Cb(R).

(b) Prove that for each a, b ∈ R a suitable realization of the operator A defined by
(Af)(x) = x2f ′′(x) + axf ′(x) + bf(x) is sectorial.

[Hint. First method: use (a), Exercise 1 and Remark 2.2.3. Second method: de-
termine explicitly the resolvent operator using the changes of variables x = et and
x = −et].

2.3 The Laplacian in RN

Let us consider the heat equation{
ut(t, x) = ∆u(t, x), t > 0, x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,
(2.7)

where f is a given function in X, X = Lp(RN ), 1 ≤ p < +∞, or X = Cb(RN ).
To get a representation formula for the solution, let us apply (just formally) the Fourier

transform, denoting by û(t, ξ) the Fourier transform of u with respect to the space variable
x. We get  ût(t, ξ) = −|ξ|2û(t, ξ), t > 0, ξ ∈ RN ,

û(0, ξ) = f̂(ξ), ξ ∈ RN ,

whose solution is û(t, ξ) = f̂(ξ)e−|ξ|
2t. Taking the inverse Fourier transform, we get

u = T (·)f , where the heat semigroup {T (t)}t≥0 is defined by the Gauss-Weierstrass formula

(T (t)f)(x) =
1

(4πt)N/2

∫
RN

e−
|x−y|2

4t f(y)dy, t > 0, x ∈ RN (2.8)

(as usual, we define (T (0)f)(x) = f(x)). The verification that (T (t))t≥0 is a semigroup is
left as an exercise.

Now, we check that formula (2.8) gives in fact a solution to (2.7) and defines an
analytic semigroup whose generator is a sectorial realization of the Laplacian in X. For
clarity reason, we split the proof in several steps.
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(a) Let us first notice that T (t)f = Gt ? f , where

Gt(x) =
1

(4πt)N/2
e−

|x|2
4t ,

∫
RN

Gt(x)dx = 1, t > 0,

and ? denotes the convolution. By Young’s inequality,

‖T (t)f‖p ≤ ‖f‖p, t > 0, 1 ≤ p ≤ +∞. (2.9)

Since Gt and all its derivatives belong to C∞(RN ) ∩ Lp(RN ), 1 ≤ p ≤ +∞, it readily
follows that the function u(t, x) := (T (t)f)(x) belongs to C∞((0,+∞)×RN ), because we
can differentiate under the integral sign. Since ∂Gt/∂t = ∆Gt, then u solves the heat
equation in (0,+∞)× RN .

Let us show that T (t)f → f in X as t → 0+ if f ∈ Lp(RN ) or f ∈ BUC(RN ). If
f ∈ Lp(RN ) we have

‖T (t)f − f‖p
p =

∫
RN

∣∣∣ ∫
RN

Gt(y)f(x− y)dy − f(x)
∣∣∣pdx

=
∫

RN

∣∣∣ ∫
RN

Gt(y)[f(x− y)− f(x)]dy
∣∣∣pdx

=
∫

RN

∣∣∣ ∫
RN

G1(v)[f(x−
√
tv)− f(x)]dv

∣∣∣pdx
≤

∫
RN

∫
RN

G1(v)|f(x−
√
tv)− f(x)|pdv dx

=
∫

RN

G1(v)
∫

RN

|f(x−
√
tv)− f(x)|pdx dv.

Here we used twice the property that the integral of Gt is 1; the first one to put f(x)
under the integral sign and the second one to get∣∣∣ ∫

RN

G1(v)[f(x−
√
tv)− f(x)]dv

∣∣∣p ≤ ∫
RN

G1(v)|f(x−
√
tv)− f(x)|pdv

through Hölder inequality, if p > 1. Now, the function ϕ(t, v) :=
∫

RN |f(x−
√
tv)−f(x)|pdx

goes to zero as t → 0+ for each v, by a well known property of the Lp functions, and it
does not exceed 2p‖f‖p

p. By dominated convergence, ‖T (t)f − f‖p
p tends to 0 as t→ 0+.

If f ∈ BUC(RN ) we have

sup
x∈RN

|(T (t)f − f)(x)| ≤ sup
x∈RN

∫
RN

Gt(y)|f(x− y)− f(x)|dy

= sup
x∈RN

∫
RN

G1(v)|f(x−
√
tv)− f(x)|dv

≤
∫

RN

G1(v) sup
x∈RN

|f(x−
√
tv)− f(x)|dv.

Again, the function ϕ(t, v) := supx∈RN |f(x −
√
tv) − f(x)| goes to zero as t → 0+ for

each v by the uniform continuity of f , and it does not exceed 2‖f‖∞. By dominated
convergence, T (t)f − f goes to 0 as t→ 0+ in the supremum norm.
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If f ∈ Cb(RN ) the same argument shows that T (t)f → f , as t → 0+, uniformly on
compact sets. In particular, the function (t, x) 7→ (T (t)f)(x) is continuous and bounded
in [0,+∞)× RN .

(b) If f ∈ X, the function

R(λ)f =
∫ +∞

0
e−λtT (t)fdt

is well defined and holomorphic in the halfplane Π := {λ ∈ C : Reλ > 0}. Observe that
t 7→ T (t)f is continuous from [0,+∞) to X, if X = Lp(RN ) and bounded and continuous
from (0,+∞) to X, if X = Cb(RN ) (the continuity in (0,+∞) follows from the fact that
T (s)f ∈ BUC(RN ) for every s > 0, see Exercise 5 in §2.3.1 below). In both cases R(λ)f
is well defined.

It is easily seen that R verifies the resolvent identity in the halfplane Π: indeed, for
λ 6= µ, λ, µ ∈ Π, we have

R(λ)R(µ)f =
∫ +∞

0
e−λtT (t)

∫ +∞

0
e−µsT (s)fds dt =

∫ +∞

0

∫ +∞

0
e−λt−µsT (t+ s)f dt ds

=
∫ +∞

0
e−µσT (σ)f

∫ σ

0
e(µ−λ)tdt dσ =

∫ +∞

0
e−µσT (σ)f

e(µ−λ)σ − 1
µ− λ

dσ

=
1

µ− λ
(R(λ)f −R(µ)f).

Let us prove that R(λ) is one to one for λ ∈ Π. Suppose that there are f ∈ X, λ0 ∈ Π
such that R(λ0)f = 0. From the resolvent identity it follows that R(λ)f = 0 for all λ ∈ Π,
hence, for all g ∈ X ′

〈R(λ)f, g〉 =
∫ +∞

0
e−λt〈T (t)f, g〉dt = 0, λ ∈ Π.

Since 〈R(λ)f, g〉 is the Laplace transform of the scalar function t 7→ 〈T (t)f, g〉, we get
〈T (t)f, g〉 ≡ 0 in (0,+∞), and then T (t)f ≡ 0 in (0,+∞), since g is arbitrary. Letting
t → 0+ ge get f = 0. Thus, by Proposition B.2 there is a linear operator A : D(A) ⊂
X → X such that ρ(A) ⊃ Π and R(λ,A) = R(λ) for λ ∈ Π.

(c) Let us show that the operator A is sectorial in X and that T (t) = etA for any t > 0.
For Re z > 0, f ∈ X, we define T (z)f = Gz ∗ f where

Gz(x) =
1

(4πz)N/2
e−

|x|2
4z ,

∫
RN

|Gz(x)|dx =
(
|z|

Re z

)N/2

.

By Young’s inequality ‖T (z)f‖p ≤ (cos θ0)−N/2‖f‖p if z ∈ Sθ0,0 and θ0 < π/2. Moreover,
sinceGz → Gz0 in L1(RN ) as z → z0 in Π (this is easily seen using dominated convergence),
the map z 7→ T (z)f is continuous from Π toX. Writing for every f ∈ Lp(RN ), g ∈ Lp′(RN )
(1/p+ 1/p′ = 1),

〈T (z)f, g〉 =
1

(4πz)N/2

∫
RN

e−
|y|2
4z 〈f(· − y), g〉dy

and using Theorem A.6 one sees that z 7→ T (z)f is holomorphic from Π to Lp(RN ). In
the case p = +∞, X = Cb(RN ), the function z 7→ T (z)f(x) is holomorphic in Π for every
x ∈ RN .
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Now we prove the resolvent estimate in the halfplane {Re z > 0}. If λ = a + ib with
a > 0 and b ≥ 0, by Cauchy integral theorem we have

R(λ,A)f =
∫ +∞

0
e−λtT (t)fdt =

∫
γ
e−λzT (z)fdz

where γ = {z = x− ix, x ≥ 0}. Therefore

‖R(λ,A)f‖p ≤ 2N/4‖f‖p

∫ +∞

0
e−(a+b)xdx ≤ 1

a+ b
(
√

2)N/2‖f‖p ≤
2N/4

|λ|
‖f‖p.

If b ≤ 0 one gets the same estimate considering γ̃ = {z = x+ ix, x ≥ 0}.
By Proposition 1.3.12, A is sectorial in X.
Let etA be the analytic semigroup generated by A. By Proposition 1.3.7, for Reλ > 0

we have

R(λ,A)f =
∫ +∞

0
e−λtetAfdt =

∫ +∞

0
e−λtT (t)fdt

hence for every f ∈ X, g ∈ X ′,∫ +∞

0
e−λt〈etAf, g〉dt =

∫ +∞

0
e−λt〈T (t)f, g〉dt.

This shows that the Laplace transforms of the scalar-valued functions t 7→ 〈etAf, g〉, t 7→
〈T (t)f, g〉 coincide, hence 〈etAf, g〉 = 〈T (t)f, g〉. Since f, g are arbitrary, etA = T (t).

(d) Let us now show that A is an extension of the Laplacian defined in W 2,p(RN ), if
X = Lp(RN ), and in C2

b (RN ) if X = Cb(RN ).
To begin with, we consider the case of Lp(RN ). The Schwartz space S(RN ) is invariant

under each T (t) and it is dense in Lp(RN ) because it contains C∞
0 (RN )(2). For f ∈ S(RN ),

it is easily checked that u := T (·)f belongs to C2([0,+∞) × RN ) (in fact, it belongs to
C∞([0,+∞)× RN )) and that ut = ∆u = T (t)∆f . Therefore

u(t, x)− u(0, x)
t

=
1
t

∫ t

0
ut(s, x)ds =

1
t

∫ t

0
∆u(s, x)ds→ ∆f(x) as t→ 0+ (2.10)

pointwise and also in Lp(RN ), because

1
t

∫ t

0
‖∆u(s, ·)−∆f‖p ds ≤ sup

0<s<t
‖T (s)∆f −∆f‖p.

Then, by Proposition 1.1.6(iii), S(RN ) is contained in D(A) and Au = ∆u for u ∈ S(RN ).
Moreover, by Theorem 1.3.16 it is a core for A. Let u ∈ W 2,p(RN ) and let un ∈ S(RN )
be such that un → u in W 2,p(RN ). Then Aun = ∆un → ∆u in Lp(RN ) and, since A is
closed, u ∈ D(A) and Au = ∆u.

In the case of Cb(RN ) we argue differently because the Schwartz space is not dense
in Cb(RN ) and in C2

b (RN ). Instead, we use the identities T (t)∆f = ∆T (t)f = ∂
∂tT (t)f

which hold pointwise in (0,+∞)× RN . Setting g = f −∆f we have

R(1, A)g =
∫ +∞

0
e−tT (t)(f −∆f)dt =

∫ +∞

0
e−t(I −∆)T (t)fdt

2We recall that S(RN ) is the space of all the functions f : RN → R such that |x|α|Dβf(x)| tends to 0 as
|x| tends to +∞ for any multiindices α and β; C∞

0 (RN ) is the space of all compactly supported infinitely
many times differentiable functions f : RN → R.
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=
∫ +∞

0
e−t

(
I − ∂

∂t

)
T (t)fdt = f,

by a simple integration by parts in the last identity and using the fact that T (t)f → f
pointwise as t→ 0+. This shows that f ∈ D(A) and that Af = ∆f .

(e) If N = 1 we already know that D(A) = W 2,p(R) if X = Lp(R), and D(A) = C2
b (R), if

X = Cb(R). The problem of giving an explicit characterization of D(A) in terms of known
functional spaces is more difficult if N > 1. The answer is nice, i.e. D(A) = W 2,p(RN )
if X = Lp(RN ) and 1 < p < +∞, but the proof is not easy for p 6= 2. For p = 1,
W 2,1(RN ) 6= D(A) and for p = +∞, C2

b (RN ) 6= D(A) (see next Exercise 6 in §2.3.1).

Here we give an easy proof that the domain of A in L2(RN ) is H2(RN ).
The domain of A in L2 is the closure of S(RN ) with respect to the graph norm u 7→

‖u‖L2(RN ) + ‖∆u‖L2(RN ), which is weaker than the H2-norm. To conclude it suffices to
show that the two norms are in fact equivalent on S(RN ): indeed, in this case D(A) is
the closure of S(RN ) in H2(RN ), that is H2(RN ). The main point to be proved is that
‖Diju‖L2(RN ) ≤ ‖∆u‖L2(RN ) for each u ∈ S(RN ) and i, j = 1, . . . , N . Integrating by parts
twice we get

‖ |D2u| ‖2
2 =

N∑
i,j=1

∫
RN

DijuDiju dx = −
N∑

i,j=1

∫
RN

DijjuDiu dx

=
N∑

i,j=1

∫
RN

DiiuDjju dx = ‖∆u‖2
2. (2.11)

The L2 norm of the first order derivatives of u may be estimated as follows. For u ∈
H2(RN ), the identity ∫

RN

∆uu dx = −
∫

RN

|Du|2dx

yields ‖Du‖2
2 ≤ ‖∆u‖2‖u‖2, and this concludes the proof.

Exercises 2.3.1

1. (a) Using the Fourier transform show that T (t) maps S(RN ) into itself for each t > 0
and that

T (t)T (s)f = T (t+ s)f, t, s > 0,

for every f ∈ S(RN ) and, hence, for every f ∈ Lp(RN ), 1 ≤ p < +∞.

(b) Show that if fn, f ∈ Cb(RN ), fn → f pointwise and ‖fn‖∞ ≤ C, then T (t)fn →
T (t)f pointwise. Use this fact to prove the semigroup law in Cb(RN ).

2. Show that BUC2(RN ) is a core of the Laplacian in BUC(RN ).

3. Use the Fourier transform to prove the resolvent estimate for the Laplacian in
L2(RN ), ‖u‖L2(RN ) ≤ ‖f‖2/Reλ, if Reλ > 0 and ‖u‖2 ≤ ‖f‖2/|Imλ| if Imλ 6= 0,
where λu−∆u = f .

4. Prove that the Laplace operator is sectorial in Lp(RN ) and in Cb(RN ) with ω = 0
and every θ < π. [Hint: argue as in (c)].
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5. (a) Using the representation formula (2.8), prove the following estimates for the heat
semigroup T (t) in Lp(RN ), 1 ≤ p ≤ +∞:

‖DαT (t)f‖p ≤
cα

t|α|/2
‖f‖p (2.12)

for every multiindex α, 1 ≤ p ≤ +∞ and suitable constants cα.

(b) Let 0 < θ < 1, and let Cθ
b (RN ) be the space of all functions f such that

[f ]Cθ
b (RN ) := supx 6=y |f(x)−f(y)|/|x−y|θ < +∞. Use the fact that DiGt is odd with

respect to xi to prove that for each f ∈ Cθ
b (RN ), and for each i = 1, . . . , N

‖DiT (t)f‖∞ ≤ C

t1/2−θ/2
[f ]Cθ

b (RN ), t > 0.

(c) Use the estimates in (a) for |α| = 1 to prove that

‖Diu‖X ≤ C1t
1/2‖∆u‖X + C2t

−1/2‖u‖X , t > 0,

‖Diu‖X ≤ C3‖∆u‖1/2
X ‖u‖1/2

X ,

for X = Lp(RN ), 1 ≤ p < +∞, X = Cb(RN ), and u in the domain of the Laplacian
in X.

6. (a) Let B be the unit ball of R2. Show that the function u(x, y) = xy log(x2 + y2)
belongs to C1(B) and that uxx, uyy ∈ L∞(B) whereas uxy 6∈ L∞(B).

(b) Using the functions uε(x, y) = xy log(ε + x2 + y2), show that there exists no
C > 0 such that ‖u‖C2

b (R2) ≤ C(‖u‖∞ + ‖∆u‖∞) for any u ∈ C∞
0 (R2). Deduce that

the domain of the Laplacian in Cb(R2) is not C2
b (R2).

2.4 The Dirichlet Laplacian in a bounded open set

Now we consider the realization of the Laplacian with Dirichlet boundary condition in
Lp(Ω), 1 < p < +∞, where Ω is an open bounded set in RN with C2 boundary ∂Ω. Even
for p = 2 the theory is much more difficult than in the case Ω = RN . In fact, the Fourier
transform is useless, and estimates such as (2.11) are not available integrating by parts
because boundary integrals appear.

In order to prove that the operator Ap defined by

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω), Apu = ∆u , u ∈ D(Ap)

is sectorial, one shows that the resolvent set ρ(Ap) contains a sector

Sθ = {λ ∈ C : λ 6= 0, | arg λ| < θ}

for some θ ∈ (π/2, π), and that the resolvent estimate

‖R(λ,Ap)‖L(Lp(Ω)) ≤
M

|λ|

holds for some M > 0 and for all λ ∈ Sθ,ω. The hard part is the proof of the existence of
a solution u ∈ D(Ap) to λu −∆u = f , i.e. the following theorem that we state without
any proof.
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Theorem 2.4.1 Let Ω ⊂ RN be a bounded open set with C2 boundary, and let f ∈ Lp(Ω),
λ 6∈ (−∞, 0]. Then, there is u ∈ D(Ap) such that λu−∆u = f , and the estimate

‖u‖W 2,p ≤ C‖f‖p (2.13)

holds, with C depending only upon Ω and λ.

The resolvent estimate is much easier. Its proof is quite simple for p ≥ 2, and in fact
we shall consider only this case. For 1 < p < 2 the method still works, but some technical
problems occur.

Proposition 2.4.2 Let 2 ≤ p < +∞, let λ ∈ C with Reλ ≥ 0 and let u ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω), be such that λu−∆u = f ∈ Lp(Ω). Then

‖u‖p ≤
√

1 +
p2

4
‖f‖p

|λ|
.

Proof. To simplify the notation, throughout the proof, we denote simply by ‖ ·‖ the usual
Lp-norm.

If u = 0 the statement is obvious. If u 6= 0, we multiply the equation λu − ∆u = f
by |u|p−2u, which belongs to W 1,p′(Ω) (see Exercises 2.2.4), and we integrate over Ω. We
have

λ‖u‖p +
∫

Ω

N∑
k=1

∂u

∂xk

∂

∂xk

(
|u|p−2u

)
dx =

∫
Ω
f |u|p−2u dx.

Notice that

∂

∂xk
|u|p−2u = |u|p−2 ∂u

∂xk
+
p− 2

2
u|u|p−4

(
u
∂u

∂xk
+ u

∂u

∂xk

)
.

Setting

|u|(p−4)/2u
∂u

∂xk
= ak + ibk, k = 1, . . . , N,

with ak, bk ∈ R, we have

∫
Ω

N∑
k=1

∂u

∂xk

∂

∂xk

(
|u|p−2u

)
dx

=
∫

Ω

N∑
k=1

(
(|u|(p−4)/2)2uu

∂u

∂xk

∂u

∂xk
+
p− 2

2
(|u|(p−4)/2)2u

∂u

∂xk

(
u
∂u

∂xk
+ u

∂u

∂xk

))
dx

=
∫

Ω

N∑
k=1

(
a2

k + b2k + (p− 2)ak(ak + ibk)
)
dx,

whence

λ‖u‖p +
∫

Ω

N∑
k=1

((p− 1)a2
k + b2k)dx+ i(p− 2)

∫
Ω

N∑
k=1

akbk dx =
∫

Ω
f |u|p−2u dx.
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Taking the real part we get

Reλ‖u‖p +
∫

Ω

N∑
k=1

((p− 1)a2
k + b2k)dx = Re

∫
Ω
f |u|p−2u dx ≤ ‖f‖ ‖u‖p−1,

and then 
(a) Reλ ‖u‖ ≤ ‖f‖;

(b)
∫

Ω

N∑
k=1

((p− 1)a2
k + b2k)dx ≤ ‖f‖ ‖u‖p−1.

Taking the imaginary part we get

Imλ ‖u‖p + (p− 2)
∫

Ω

N∑
k=1

akbk dx = Im
∫

Ω
f |u|p−2u dx

and then

|Imλ| ‖u‖p ≤ p− 2
2

∫
Ω

N∑
k=1

(a2
k + b2k)dx+ ‖f‖ ‖u‖p−1,

so that, using (b),

|Imλ| ‖u‖p ≤
(
p− 2

2
+ 1

)
‖f‖ ‖u‖p−1,

i.e.,
|Imλ| ‖u‖ ≤ p

2
‖f‖.

From this inequality and from (a), squaring and summing, we obtain

|λ|2‖u‖2 ≤
(

1 +
p2

4

)
‖f‖2,

and the statement follows. �

2.5 More general operators

In this section we state without proofs some important theorems about generation of
analytic semigroups by second order strongly elliptic operators. Roughly speaking, the
realizations of elliptic operators with good coefficients and good boundary conditions are
sectorial in the most common functional spaces. This is the reason why the general theory
has a wide range of applications.

Let us consider general second order elliptic operators in an open set Ω ⊂ RN . Ω is
either the whole RN or a bounded open set with C2 boundary ∂Ω. Let us denote by n(x)
the outer unit vector normal to ∂Ω at x.

Let A be the differential operator

(Au)(x) =
N∑

i,j=1

aij(x)Diju(x) +
N∑

i=1

bi(x)Diu(x) + c(x)u(x) (2.14)
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with real, bounded and continuous coefficients aij , bi, c on Ω. We assume that for every
x ∈ Ω the matrix [aij(x)]i,j=1,...,N is symmetric and strictly positive definite, i.e.,

N∑
i,j=1

aij(x)ξiξj ≥ ν|ξ|2, x ∈ Ω, ξ ∈ RN , (2.15)

for some ν > 0. Moreover, if Ω = RN we need that the leading coefficients aij are uniformly
continuous.

The following results hold.

Theorem 2.5.1 (S. Agmon, [1]) Let p ∈ (1,+∞).

(i) Let Ap : W 2,p(RN ) → Lp(RN ) be defined by Apu = Au. The operator Ap is sectorial
in Lp(RN ) and D(Ap) is dense in Lp(RN ).

(ii) Let Ω and A be as above, and let Ap be defined by

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω), Apu = Au.

Then, the operator Ap is sectorial in Lp(Ω), and D(Ap) is dense in Lp(Ω).

(iii) Let Ω and A be as above, and let Ap be defined by

D(Ap) = {u ∈W 2,p(Ω) : Bu|∂Ω = 0}, Apu = Au, u ∈ D(Ap),

where

(Bu)(x) = b0(x)u(x) +
N∑

i=1

bi(x)Diu(x), (2.16)

the coefficients bi, i = 1, . . . , N are in C1(Ω) and the transversality condition

N∑
i=1

bi(x)ni(x) 6= 0, x ∈ ∂Ω (2.17)

holds. Then, the operator Ap is sectorial in Lp(Ω), and D(Ap) is dense in Lp(Ω).

We have also the following result.

Theorem 2.5.2 (H.B. Stewart, [16, 17]) Let A be the differential operator in (2.14).

(i) Consider the operator A : D(A) → X = Cb(RN ) defined by{
D(A) = {u ∈ Cb(RN )

⋂
1≤p<+∞W 2,p

loc (RN ) : Au ∈ Cb(RN )},

Au = Au, u ∈ D(A).
(2.18)

Then, A is sectorial in X, and D(A) = BUC(RN ).

(ii) Let Ω ⊂ RN be a bounded open set with C2 boundary ∂Ω, and consider the operator{
D(A) = {u ∈

⋂
1≤p<+∞W 2,p(Ω) : u|∂Ω = 0, Au ∈ C(Ω)},

Au = Au, u ∈ D(A).
(2.19)

Then, the operator A is sectorial in X, and D(A) = C0(Ω) = {u ∈ C(Ω) : u =
0 at ∂Ω}.
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(iii) Let Ω be as in (ii), and let X = C(Ω),{
D(A) = {u ∈

⋂
1≤p<+∞W 2,p(Ω) : Bu|∂Ω = 0, Au ∈ C(Ω)},

Au = Au, u ∈ D(A),
(2.20)

where B is defined in (2.16) and the coefficients bi, i = 1, . . . , N are in C1(Ω) and
satisfy (2.17). Then, the operator A is sectorial in X, and D(A) is dense in X.

Moreover, in all the cases above there is M > 0 such that λ ∈ Sθ,ω implies

‖DiR(λ,A)f‖∞ ≤ M

|λ|1/2
‖f‖∞, f ∈ X, i = 1, . . . , N. (2.21)

Exercises 2.5.3

1. Show that if p ≥ 2 and u ∈W 1,p(Ω) then the function |u|p−2u belongs to W 1,p′(Ω).
Is this true for 1 < p < 2?

2. Let A be the Laplacian in L2(RN ) with domain D(A) = H2(RN ). Prove that the
operator −A2 is sectorial in L2(RN ) and characterize its domain.
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Chapter 3

Intermediate spaces

3.1 The interpolation spaces DA(α,∞)

Let A : D(A) ⊂ X → X be a sectorial operator, and set

M0 = sup
0<t≤1

‖etA‖, M1 = sup
0<t≤1

‖tAetA‖. (3.1)

We have seen in Proposition 1.3.6 that for all x ∈ D(A) the function t 7→ u(t) = etAx
belongs to C([0, T ];X), and for all x ∈ D(A) such that Ax ∈ D(A), it belongs to
C1([0, T ];X). We also know that for x ∈ X the function t 7→ v(t) = ‖AetAx‖ has in
general a singularity of order 1 as t→ 0+, whereas for x ∈ D(A) it is bounded near 0. It
is then natural to raise the following related questions:

1. how can we characterize the class of initial data such that the function u(t) = etAx
has an intermediate regularity, e.g., it is α-Hölder continuous for some 0 < α < 1?

2. how can we characterize the class of initial data x such that the function t 7→ ‖AetAx‖
has a singularity of order α, with 0 < α < 1?

To answer such questions, we introduce some intermediate Banach spaces between X
and D(A).

Definition 3.1.1 Let A : D(A) ⊂ X → X be a sectorial operator, and fix 0 < α < 1. We
set 

DA(α,∞) = {x ∈ X : [x]α = sup0<t≤1 ‖t1−αAetAx‖ < +∞},

‖x‖DA(α,∞) = ‖x‖+ [x]α.
(3.2)

Note that what characterizes DA(α,∞) is the behavior of ‖t1−αAetAx‖ near t = 0.
Indeed, for 0 < a < b < +∞ and for each x ∈ X, estimate (1.15) with k = 1 implies that
supa≤t≤b ‖t1−αAetAx‖ ≤ C‖x‖, with C = C(a, b, α). Therefore, the interval (0, 1] in the
definition of DA(α,∞) could be replaced by any (0, T ] with T > 0, and for each T > 0
the norm x 7→ ‖x‖+ sup0<t≤T ‖t1−αAetAx‖ is equivalent to the norm in (3.2).

Once we have an estimate for ‖AetA‖L(DA(α,∞);X) we easily obtain estimates for
‖AketA‖L(DA(α,∞);X) for every k ∈ N, just using the semigroup law and (1.15). For instance
for k = 2 and for each x ∈ DA(α,∞) we obtain

sup
0<t≤T

‖t2−αA2etAx‖ ≤ sup
0<t≤T

‖tAet/2 A‖L(X)‖t1−αAet/2 Ax‖ ≤ C‖x‖DA(α,∞).

41
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It is clear that if x ∈ DA(α,∞) and T > 0, then the function s 7→ ‖AesAx‖ belongs to
L1(0, T ), so that, by Proposition 1.3.6(ii),

etAx− x =
∫ t

0
AesAx ds, t ≥ 0, x = lim

t→0
etAx.

In particular, all the spaces DA(α,∞) are contained in the closure of D(A). The following
inclusions follow, with continuous embeddings:

D(A) ⊂ DA(α,∞) ⊂ DA(β,∞) ⊂ D(A), 0 < β < α < 1.

Proposition 3.1.2 For 0 < α < 1 the equality

DA(α,∞) = {x ∈ X : [[x]]DA(α,∞) = sup
0<t≤1

t−α‖etAx− x‖ < +∞}

holds, and the norm
x 7→ ‖x‖+ [[x]]DA(α,∞)

is equivalent to the norm of DA(α,∞).

Proof. Let x ∈ DA(α,∞) be given. For 0 < t ≤ 1 we have

t−α(etAx− x) = t−α

∫ t

0
s1−αAesAx

1
s1−α

ds, (3.3)

so that
[[x]]DA(α,∞) = sup

0<t≤1
‖t−α(etAx− x)‖ ≤ α−1[x]DA(α,∞). (3.4)

Conversely, let [[x]]DA(α,∞) < +∞, and write

AetAx = AetA
1
t

∫ t

0
(x− esAx)ds+ etA

1
t
A

∫ t

0
esAxds.

It follows that

‖t1−αAetAx‖ ≤ t1−αM1

t2

∫ t

0
sα ‖x− esAx‖

sα
ds+M0t

−α‖etAx− x‖, (3.5)

and the function s 7→ ‖x− esAx‖/sα is bounded, so that t 7→ t1−αAetAx is also bounded,
and

[x]DA(α,∞) = sup
0<t≤1

‖t1−αAetAx‖ ≤ (M1(α+ 1)−1 +M0)[[x]]DA(α,∞). (3.6)

We can conclude that the seminorms [ · ]DA(α,∞) and [[ · ]]DA(α,∞) are equivalent. �

The next corollary follows from the semigroup law, and it gives an answer to the first
question at the beginning of this section.

Corollary 3.1.3 Given x ∈ X, the function t 7→ etAx belongs to Cα([0, 1];X) if and only
if x belongs to DA(α,∞). In this case, t 7→ etAx belongs to Cα([0, T ];X) for every T > 0.
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Proof. The proof follows from the equality

etAx− esAx = esA(e(t−s)Ax− x), 0 ≤ s < t,

recalling that ‖eξA‖L(X) is bounded by a constant independent of ξ if ξ runs in any bounded
interval. �

It is easily seen that the spaces DA(α,∞) are Banach spaces. Moreover, it can be
proved that they do not depend explicitly on the operator A, but only on its domain D(A)
and on the graph norm of A. More precisely, for every sectorial operator B : D(B) → X
such thatD(B) = D(A), with equivalent graph norms, the equalityDA(α,∞) = DB(α,∞)
holds, with equivalent norms.

Starting from DA(α,∞) we define other normed spaces, as follows.

Definition 3.1.4 Let A : D(A) ⊂ X → X be a sectorial operator. For any k ∈ N and
any α ∈ (0, 1) we set

DA(k + α,∞) = {x ∈ D(Ak) : Akx ∈ DA(α,∞)},

‖x‖DA(k+α,∞) = ‖x‖D(Ak) + [Akx]α.
(3.7)

Corollary 3.1.3 yields that the function t 7→ u(t) := etAx belongs to Cα([0, 1];D(A))
(and then to Cα([0, T ];D(A)) for all T > 0) if and only if x belongs to DA(1 + α,∞).
Similarly, since d

dte
tAx = etAAx for x ∈ D(A), u belongs to C1+α([0, 1];X) (and then to

C1+α([0, T ];X) for all T > 0) if and only if x belongs to DA(1 + α,∞).

An important feature of spaces DA(α,∞) is that the part of A in DA(α,∞), i.e.

Aα : DA(1 + α,∞) → DA(α,∞), Aαx = Ax,

is a sectorial operator.

Proposition 3.1.5 For 0 < α < 1 the resolvent set of Aα contains ρ(A), the restriction
of R(λ,A) to DA(α,∞) is R(λ,Aα), and the inequality

‖R(λ,Aα)‖L(DA(α,∞)) ≤ ‖R(λ,A)‖L(X)

holds for every λ ∈ ρ(A). In particular, Aα is a sectorial operator in DA(α,∞) and etAα

is the restriction of etA to DA(α,∞).

Proof. Fix λ ∈ ρ(A) and x ∈ DA(α,∞). The resolvent equation λy − Ay = x has
a unique solution y ∈ D(A), and since D(A) ⊂ DA(α,∞) then Ay ∈ DA(α,∞) and
therefore y = R(λ,A)x ∈ DA(1 + α,∞).

Moreover for 0 < t ≤ 1 the inequality

‖t1−αAetAR(λ,A)x‖ = ‖R(λ,A)t1−αAetAx‖ ≤ ‖R(λ,A)‖L(X)‖t1−αAetAx‖

holds. Therefore,

[R(λ,A)x]DA(α,∞) ≤ ‖R(λ,A)‖L(X)[x]DA(α,∞),

and the claim is proved. �

Let us see an interpolation property of the spaces DA(α,∞).
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Proposition 3.1.6 Let M0, M1 be the constants in (3.1). For every x ∈ D(A) we have

[x]DA(α,∞) ≤Mα
0 M

1−α
1 ‖Ax‖α‖x‖1−α.

Proof. For all t ∈ (0, 1) we have

‖t1−αAetAx‖ ≤


M0t

1−α‖Ax‖,

M1t
−α‖x‖.

It follows that

‖t1−αAetAx‖ ≤ (M0t
1−α‖Ax‖)α(M1t

−α‖x‖)1−α = Mα
0 M

1−α
1 ‖Ax‖α‖x‖1−α.

�

An immediate consequence of Proposition 3.1.6 are estimates for ‖etA‖L(X,DA(α,∞))

and more generally for ‖AnetA‖L(X,DA(α,∞)), n ∈ N: indeed, for each x ∈ X and t > 0,
etAx belongs to D(A), so that

‖etAx‖DA(α,∞) ≤Mα
0 M

1−α
1 ‖AetAx‖α‖etAx‖1−α ≤ CT

tα
‖x‖, 0 < t ≤ T, (3.8)

and similarly, for each n ∈ N,

sup
0<t≤T

‖tn+αAnetA‖L(X,DA(α,∞)) < +∞. (3.9)

Let us discuss in detail a fundamental example. We recall that for any open set Ω ⊂ RN

and any θ ∈ (0, 1) the Hölder space Cθ
b (Ω) consists of the bounded functions f : Ω → C

such that
[f ]Cθ

b (Ω) = sup
x,y∈Ω, x 6=y

|f(x)− f(y)|
|x− y|θ

< +∞,

and it is a Banach space with the norm

‖f‖Cθ
b (Ω) = ‖f‖∞ + [f ]Cθ

b (Ω).

Moreover, for k ∈ N, Ck+θ
b (Ω) denotes the space of all the functions f which are

differentiable up to the k-th order in Ω, with bounded derivatives, and such that Dαf ∈
Cθ

b (Ω) for any multiindex α with |α| = k. It is a Banach space with the norm

‖f‖Ck+θ
b (Ω) =

∑
|α|≤k

‖Dαf‖∞ +
∑
|α|=k

[Dαf ]Cθ
b (Ω).

We drop the index b when Ω is bounded.

Example 3.1.7 Let us consider X = Cb(RN ), and let A : D(A) → X be the realization
of the Laplacian in X. For 0 < α < 1, α 6= 1/2, we have

DA(α,∞) = C2α
b (RN ), (3.10)

DA(1 + α,∞) = C2+2α
b (RN ), (3.11)

with equivalence of the respective norms.
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Proof. We prove the statement for α < 1/2. Let T (t) be the heat semigroup, given by
formula (2.8). We recall that for each f ∈ Cb(RN ) we have

(a) ‖ |DT (t)f | ‖∞ ≤ c√
t
‖f‖∞, (b) ‖AT (t)f‖∞ ≤ c

t
‖f‖∞, (3.12)

for some c > 0, by (2.12).
Let us first prove the inclusion DA(α,∞) ⊃ C2α

b (RN ). If f ∈ C2α
b (RN ) we write

(T (t)f)(x)− f(x) =
1

(4π)N/2

∫
RN

e−
|y|2
4

[
f(x−

√
ty)− f(x)

]
dy,

and we get

‖T (t)f − f‖∞ ≤ 1
(4π)N/2

[f ]C2α
b
tα

∫
RN

e−
|y|2
4 |y|2αdy.

Therefore, f ∈ DA(α,∞) and [[f ]]DA(α,∞) ≤ C[f ]C2α
b (RN ).

Conversely, let f ∈ DA(α,∞). Then, for every t > 0 we have

|f(x)− f(y)| ≤ |T (t)f(x)− f(x)|+ |T (t)f(x)− T (t)f(y)|+ |T (t)f(y)− f(y)|

≤ 2[[f ]]DA(α,∞)t
α + ‖ |DT (t)f | ‖∞|x− y|.

(3.13)
We want to choose t = |x−y|2 to get the statement, but estimate (3.12)(a) is not sufficient
for this purpose. To get a better estimate we use the equality

T (n)f − T (t)f =
∫ n

t
AT (s)f ds, 0 < t < n,

that implies, for each i = 1, . . . , N ,

DiT (n)f −DiT (t)f =
∫ n

t
DiAT (s)f ds, 0 < t < n. (3.14)

Note that ‖AT (t)f‖∞ ≤ tα−1[f ]α for 0 < t ≤ 1 by definition, and ‖AT (t)f‖∞ ≤
Ct−1‖f‖∞ ≤ Ctα−1‖f‖∞ for t ≥ 1 by (3.12)(b). Using this estimate and (3.12)(a) we get

‖DiAT (s)f‖∞ = ‖DiT (s/2)AT (s/2)f‖∞ ≤ ‖DiT (s/2)‖L(Cb(RN ))‖AT (s/2)f‖∞

≤ C

s3/2−α
‖f‖DA(α,∞)

so that we may let n→ +∞ in (3.14), to get

DiT (t)f = −
∫ +∞

t
DiAT (s)f ds, t > 0,

and

‖DiT (t)f‖∞ ≤ ‖f‖DA(α,∞)

∫ +∞

t

C

s3/2−α
ds =

C(α)
t1/2−α

‖f‖DA(α,∞). (3.15)

This estimate is what we need for (3.13) to prove that f is 2α-Hölder continuous. For
|x− y| ≤ 1 choose t = |x− y|2 to get

|f(x)− f(y)| ≤ 2[[f ]]DA(α,∞)|x− y|2α + C(α)‖f‖DA(α,∞)|x− y|2α
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≤ C‖f‖DA(α,∞)|x− y|2α.

If |x− y| ≥ 1 then |f(x)− f(y)| ≤ 2‖f‖∞ ≤ 2‖f‖DA(α,∞)|x− y|2α.

Let us prove (3.11). The embedding C2+2α
b (RN ) ⊂ DA(1 + α,∞) is an obvious con-

sequence of (3.10), since C2+2α
b (ReN ) ⊂ D(A). To prove the other embedding we have

to show that the functions in DA(1 + α,∞) have second order derivatives belonging to
C2α

b (RN ).
Fix any λ > 0 and any f ∈ DA(1 + α,∞). Then f = R(λ,A)g where g := λf −∆f ∈

DA(α,∞) = C2α
b (RN ), and by (1.22) we have

f(x) =
∫ +∞

0
e−λt(T (t)g)(x)dt, x ∈ RN .

We can differentiate twice with respect to x, because for each i, j = 1, . . . , N , both
‖e−λtDiT (t)g‖∞ and ‖e−λtDijT (t)g‖∞ are integrable in (0,+∞). Indeed, (3.15) implies
‖DiT (t/2)g‖∞ ≤ C(α)(t/2)α−1/2 for every i, so that using once again (3.12)(a) we get

‖DijT (t)g‖∞ = ‖DjT (t/2)DiT (t/2)g‖∞

≤ c

(t/2)1/2

C(α)
(t/2)1/2−α

‖g‖DA(α,∞)

=
k

t1−α
‖g‖DA(α,∞). (3.16)

Therefore, the integral
∫ +∞
0 e−λtT (t)g dt is well defined as a C2

b (RN )-valued integral, so
that f ∈ C2

b (RN ). We could go on estimating the seminorm [DijT (t)g]C2α
b (RN ), but we get

[DijT (t)g]C2α
b (RN ) ≤ C‖g‖DA(α,∞)/t, and it is not obvious that the integral is well defined

as a C2+2α
b (RN )-valued integral. So, we have to choose another approach. Since we already

know that DA(α,∞) = C2α
b (RN ), it is sufficient to prove that Dijf ∈ DA(α,∞), i.e. that

sup
0<ξ≤1

‖ξ1−αAT (ξ)Dijf‖∞ < +∞, i, j = 1, . . . , N.

Let k be the constant in formula (3.16). Using (3.16) and (3.12)(b), for each ξ ∈ (0, 1) we
get

‖ξ1−αAT (ξ)Dijf‖∞ =
∥∥∥∥∫ +∞

0
ξ1−αe−λtAT (ξ + t/2)DijT (t/2)g dt

∥∥∥∥
∞

≤ ‖g‖DA(α,∞)

∫ +∞

0
ξ1−α ck

(ξ + t/2)(t/2)1−α
dt

= ‖g‖DA(α,∞)

∫ +∞

0

2ck
(1 + s)s1−α

ds. (3.17)

Therefore, all the second order derivatives of f are in DA(α,∞) = C2α
b (RN ), their C2α

b

norm is bounded by C‖g‖α ≤ C(λ‖f‖α + ‖∆f‖α) ≤ max{λC,C}‖f‖DA(1+α,∞), and the
statement follows. �

Remark 3.1.8 The case α = 1/2 is more delicate. In fact, the inclusion Lip(RN ) ⊂
DA(1/2,∞) follows as in the first part of the proof, but it is strict. Indeed, it is possible
to prove that

DA(1/2,∞) =
{
u ∈ Cb(RN ) : sup

x 6=y

|u(x) + u(y)− 2u((x+ y)/2)|
|x− y|

< +∞
}
,
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and this space is strictly larger than Lip(RN ) (see [19]).

Example 3.1.7 and Corollary 3.1.3 imply that the solution u(t, x) = (T (t)u0)(x) of the
Cauchy problem for the heat equation in RN ,{

ut(t, x) = ∆u(t, x), t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,

is α-Hölder continuous with respect to t on [0, T ]×RN , with Hölder constant independent
of x, if and only if the initial datum u0 belongs to C2α

b (RN ). In this case, Proposition
3.1.5 implies that ‖u(t, ·)‖DA(α,∞) ≤ C‖u0‖DA(α,∞) for 0 ≤ t ≤ T , so that u is 2α-Hölder
continuous with respect to x as well, with Hölder constant independent of t. We say that
u belongs to the parabolic Hölder space Cα,2α([0, T ]× RN ), for all T > 0.

This is a first example of a typical feature of second order parabolic partial differential
equations: time regularity implies space regularity, and the degree of regularity with
respect to time is one half of the regularity with respect to the space variables.

Moreover, Example 3.1.7 gives an alternative proof of the classical Schauder Theorem
for the Laplacian (see e.g. [7, ch. 6]).

Theorem 3.1.9 If u ∈ C2
b (RN ) and ∆u ∈ Cα

b (RN ) for some α ∈ (0, 1), then u ∈
C2+α

b (RN ).

Proof. In fact such a u belongs to DA(1 + α/2,∞) = C2+α
b (RN ). �

As a consequence of Proposition 3.1.5 and of Example 3.1.7 we also obtain that the
Laplacian with domain C2+α

b (RN ) is sectorial in Cα
b (RN ) for every α ∈ (0, 1). The proof

follows immediately from the equalities

D∆(1 + α/2,∞) = C2+α
b (RN ), D∆(α/2,∞) = Cα

b (RN ).

A characterization of the spaces DA(α,∞) for general second order elliptic operators
is similar to the above one, but the proof is less elementary since it relies on the deep
results of Theorem 2.5.2 and on general interpolation techniques.

Theorem 3.1.10 Let α ∈ (0, 1), α 6= 1/2. The following statements hold.

(i) Let X = Cb(RN ), and let A be defined by (2.18). Then, DA(α,∞) = C2α
b (Rn), with

equivalence of the norms.

(ii) Let Ω be an open bounded set of RN with C2 boundary, let X = C(Ω), and let A be
defined by (2.19). Then,

DA(α,∞) = C2α
0 (Ω) := {f ∈ C2α(Ω) : f|∂Ω = 0},

with equivalence of the norms.

(iii) Let Ω be an open bounded set of RN with C2 boundary, let X = C(Ω), and let A be
defined by (2.20). Then

DA(α,∞) =


C2α(Ω), if 0 < α < 1/2,

{f ∈ C2α(Ω) : Bf|∂Ω = 0}, if 1/2 < α < 1,

with equivalence of the norms.
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Remark 3.1.11 Proposition 3.1.5 and Theorem 3.1.10(ii) show that, for any α ∈ (0, 1),
the operator A : {u ∈ C2+2α([0, 1]) : u(0) = u′′(0) = u(1) = u′′(1) = 0} → C2α

0 ([0, 1]),
Au = u′′ is sectorial. This result should be compared with Exercise 2.1.3(5) which states
that the realization of the second order derivative with Dirichlet boundary condition in
C2α([0, 1]) is not sectorial.

Exercises 3.1.12

1. Show that if ω < 0 in Definition 1.3.1 then DA(α,∞) = {x ∈ X : |x|α =
supt>0 ‖t1−αAetAx‖ < +∞}, and that x 7→ |x|α is an equivalent norm in DA(α,∞)
for each α ∈ (0, 1). What about ω = 0?

2. Show that DA(α,∞) = DA+λI(α,∞) for each λ ∈ R and α ∈ (0, 1), with equivalence
of the norms.

3. Show that DA(α,∞) is a Banach space.

4. Show that
DA(α,∞) = DA0(α,∞),

where A0 is the part of A in X0 := D(A) (see Definition 1.3.11).

5. Show that the closure of D(A) in DA(α,∞) is the subspace of all x ∈ X such that
limt→0 t

1−αAetAx = 0. This implies that, even if D(A) is dense in X, it is not
necessarily dense in DA(α,∞).

[Hint: to prove that etAx− x tends to zero in DA(α,∞) provided t1−αAetAx tends
to zero as t → 0, split the supremum over (0, 1] in the definition of [ · ]α into the
supremum over (0, ε] and over [ε, 1], ε small].

3.2 Spaces of class Jα

Definition 3.2.1 Given three Banach spaces Z ⊂ Y ⊂ X (with continuous embeddings),
and given α ∈ (0, 1), we say that Y is of class Jα between X and Z if there is C > 0 such
that

‖y‖Y ≤ C‖y‖α
Z‖y‖1−α

X , y ∈ Z.

From Proposition 3.1.6 it follows that for all α ∈ (0, 1) the space DA(α,∞) is of class
Jα between X and the domain of A. From Exercise 5(c) in §2.3.1 we obtain that W 1,p(RN )
is in the class J1/2 between Lp(RN ) and W 2,p(RN ) for each p ∈ [1,+∞), and that C1

b (RN )
is in the class J1/2 between Cb(RN ) and the domain of the Laplacian in Cb(RN ).

Other examples of spaces of class Jα between a Banach space X and the domain of
a sectorial operator A are the real interpolation spaces DA(α, p) with 1 ≤ p < +∞, the
complex interpolation spaces [X,D(A)]α, the domains of the fractional powers D(−Aα),
. . . but the treatment of such spaces goes beyond the aims of this introductory course. The
main reference on the subject is the book [18], a simplified treatment may be found in the
lecture notes [11].

Several properties of the spaces DA(α,∞) are shared by any space of class Jα.

Proposition 3.2.2 Let A : D(A) → X be a sectorial operator, and let Xα be any space
of class Jα between X and D(A), 0 < α < 1. Then the following statements hold:
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(i) For ε ∈ (0, 1− α) we have
DA(α+ ε,∞) ⊂ Xα,

with continuous embedding.

(ii) For k ∈ N ∪ {0} there are constants Mk,α > 0 such that

‖AketA‖L(X,Xα) ≤
Mk,α

tk+α
, 0 < t ≤ 1.

(iii) If B ∈ L(Xα, X) then A+B : D(A+B) := D(A) → X is sectorial.

Proof. Proof of (i). Let x ∈ DA(α+ ε,∞). From formula (1.19) with t = 1 we obtain

x = eAx−
∫ 1

0
AesAx ds.

The function s 7→ AesAx is integrable over [0, 1] with values in Xα, because

‖AesAx‖Xα ≤ C(‖AesAx‖D(A))α‖AesAx‖X)1−α

≤ Cε(s−2+α+ε‖x‖DA(α+ε,∞))α(s−1+α+ε‖x‖DA(α+ε,∞))1−α = Cεs
−1+ε‖x‖DA(α+ε,∞).

Therefore, x ∈ Xα, and the statement follows.

Proof of (ii). For each x ∈ X we have ‖AketAx‖Xα ≤ C(‖AketAx‖D(A))α(‖AketAx‖X)1−α,
and the statement follows using (1.15).

Proof of (iii). It is an immediate consequence of corollary 1.3.14. �

Note that in general a space Xα of class Jα between X and D(A) may not be contained
in any DA(β,∞). For instance, if X = C([0, 1]), A is the realization of the second order
derivative with Dirichlet boundary condition X, i.e. D(A) = {u ∈ C2([0, 1]) : u(0) =
u(1) = 0} and Au = u′′, then C1([0, 1]) is of class J1/2 between X and D(A) but it is not
contained in D(A) (and hence, in any DA(β,∞)) because the functions in D(A) vanish at
x = 0 and at x = 1.

Similarly, the part Aα of A in Xα could not be sectorial. Note that the embeddings
D(A) ⊂ Xα ⊂ X imply that t 7→ etA is analytic in (0,+∞) with values in L(Xα),
hence ‖etA‖L(Xα) is bounded by a constant independent of t if t runs in any interval
[a, b] ⊂ (0,+∞), but it could blow up as t→ 0.

Exercises 3.2.3

1. Let A : D(A) → X be a sectorial operator. Prove that D(A) is of class J1/2 between
X and D(A2).

[Hint: If ω = 0, use formula (1.19) to get ‖Ax‖ ≤ M1‖x‖/t + M0t‖A2x‖ for each
t > 0 and then take the minimum for t ∈ (0,+∞). If ω > 0, replace A by A−ωI. . . ].

2. Let A : D(A) → X be a linear operator satisfying the assumptions of Proposition
2.2.2. Prove that D(A) is of class J1/2 between X and D(A2).

[Hint: Setting λx−A2x = y for x ∈ D(A2) and λ > 0, use formula (2.6) to estimate
‖Ax‖ and then take the minimum for λ ∈ (0,+∞)].



50 Chapter 3. Intermediate spaces

3. Prove that C1
b (R) is of class J1/4 between Cb(R) and C4

b (R).

4. (a) Following the proof of Proposition 3.1.6, show that DA(α,∞) is of class Jα/θ

between X and DA(θ,∞), for every θ ∈ (α, 1).

(b) Show that any space of class Jα between X and D(A) is of class Jα/θ between
X and DA(θ,∞), for every θ ∈ (α, 1).

(c) Using (a), prove that any function which is continuous with values in X and
bounded with values in DA(θ,∞) in an interval [a, b], is also continuous with values
in DA(α,∞) in [a, b], for α < θ.

5. Prove that for every θ ∈ (0, 1) there is C = C(θ) > 0 such that

‖Diϕ‖∞ ≤ C(‖ϕ‖C2+θ
b (RN ))

(1−θ)/2(‖ϕ‖Cθ
b (RN ))

(1+θ)/2,

‖Dijϕ‖∞ ≤ C(‖ϕ‖C2+θ
b (RN ))

1−θ/2(‖ϕ‖Cθ
b (RN ))

θ/2,

for every ϕ ∈ C2+θ
b (RN ), i, j = 1, . . . , N . Deduce that C1

b (RN ) and C2
b (RN ) are of

class J(1−θ)/2 and J1−θ/2, respectively, between Cθ
b (RN ) and C2+θ

b (RN ).

[Hint: write ϕ = ϕ − T (t)ϕ + T (t)ϕ = −
∫ t
0 T (s)∆ϕds + T (t)ϕ, T (t) = heat semi-

group, and use the estimates ‖DiT (t)f‖∞ ≤ Ct−1/2+θ/2‖f‖Cθ
b
, ‖DijT (t)f‖∞ ≤

Ct−1+θ/2‖f‖Cθ
b
].

6. Let bi, i = 1, . . . , N , c : RN → C be given functions, and let A be the differential
operator (Au)(x) = ∆u(x)+

∑N
i=1 bi(x)Diu(x)+c(x)u(x). Following the notation of

Section 2.3, let D(Ap) be the domain of the Laplacian in Lp(RN ) for 1 ≤ p < +∞,
in Cb(RN ) for p = +∞.

Show that if bi, c ∈ L∞(RN ) then the operator D(Ap) → Lp(RN ), u 7→ Au is
sectorial in Lp(RN ) for 1 ≤ p < +∞, and if bi, c ∈ Cb(RN ) then the operator
D(A∞) → Cb(RN ), u 7→ Au is sectorial in Cb(RN ).



Chapter 4

Non homogeneous problems

Let A : D(A) ⊂ X → X be a sectorial operator and let T > 0. In this chapter we study
the nonhomogeneous Cauchy problem{

u′(t) = Au(t) + f(t), 0 < t ≤ T,

u(0) = x,
(4.1)

where f : [0, T ] → X.
Throughout the chapter we use standard notation. We recall that if Y is any Banach

space and a < b ∈ R, B([a, b];Y ) and C([a, b];Y ) are the Banach spaces of all bounded
(respectively, continuous) functions from [a, b] to Y , endowed with the sup norm ‖f‖∞ =
supa≤s≤b ‖f(s)‖Y . Cα([a, b];Y ) is the Banach space of all α-Hölder continuous functions
from [a, b] to Y , endowed with the norm ‖f‖Cα([a,b];Y ) = ‖f‖∞ + [f ]Cα([a,b];Y ), where
[f ]Cα([a,b];Y ) = supa≤s,t≤b ‖f(t)− f(s)‖Y /(t− s)α.

4.1 Strict, classical, and mild solutions

Definition 4.1.1 Let f : [0, T ] → X be a continuous function, and let x ∈ X. Then:

(i) u ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) is a strict solution of (4.1) in [0, T ] if u′(t) =
Au(t) + f(t) for every t ∈ [0, T ], and u(0) = x.

(ii) u ∈ C1((0, T ];X) ∩ C((0, T ];D(A)) ∩ C([0, T ];X) is a classical solution of (4.1) in
[0, T ] if u′(t) = Au(t) + f(t) for every t ∈ (0, T ], and u(0) = x.

From Definition 4.1.1 it is easily seen that if (4.1) has a strict solution, then

x ∈ D(A), Ax+ f(0) = u′(0) ∈ D(A), (4.2)

and if (4.1) has a classical solution, then

x ∈ D(A). (4.3)

We will see that if (4.1) has a classical (or a strict) solution, then it is given, as in the
case of a bounded A, by the variation of constants formula (see Proposition 1.2.3)

u(t) = etAx+
∫ t

0
e(t−s)Af(s)ds, 0 ≤ t ≤ T. (4.4)

Whenever the integral in (4.4) does make sense, the function u defined by (4.4) is said to
be a mild solution of (4.1).

51
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Proposition 4.1.2 Let f ∈ C((0, T ], X) be such that t 7→ ‖f(t)‖ ∈ L1(0, T ), and let
x ∈ D(A) be given. If u is a classical solution of (4.1), then it is given by formula (4.4).

Proof. Let u be a classical solution, and fix t ∈ (0, T ]. Since u ∈ C1((0, T ];X) ∩
C((0, T ];D(A)) ∩ C([0, T ];X), the function

v(s) = e(t−s)Au(s), 0 ≤ s ≤ t,

belongs to C([0, t];X) ∩ C1((0, t), X), and

v(0) = etAx, v(t) = u(t),

v′(s) = −Ae(t−s)Au(s) + e(t−s)A(Au(s) + f(s)) = e(t−s)Af(s), 0 < s < t.

As a consequence, for 0 < 2ε < t we have

v(t− ε)− v(ε) =
∫ t−ε

ε
e(t−s)Af(s)ds,

so that letting ε→ 0+ we get

v(t)− v(0) =
∫ t

0
e(t−s)Af(s)ds,

and the statement follows. �

Remark 4.1.3 Under the assumptions of Proposition 4.1.2, the classical solution of (4.1)
is unique. In particular, for f ≡ 0 and x ∈ D(A), the function

t 7→ u(t) = etAx, t ≥ 0,

is the unique solution of the homogeneous problem (4.1). Of course, Proposition 4.1.2 also
implies uniqueness of the strict solution.

Therefore, existence of a classical or strict solution of (1.1) is reduced to the problem
of regularity of the mild solution. In general, even for x = 0 the continuity of f is not
sufficient to guarantee that the mild solution is classical. Trying to show that u(t) ∈ D(A)
by estimating ‖Ae(t−s)Af(s)‖ is useless, because we have ‖Ae(t−s)Af(s)‖ ≤ C‖f‖∞(t−s)−1

and this is not sufficient to make the integral convergent. More sophisticated arguments,
such as in the proof of Proposition 1.3.6(ii), do not work. We refer to Exercise 3 in §4.1.13
for a rigorous counterexample.

The mild solution satisfies an integrated version of (4.1), as the next lemma shows.

Proposition 4.1.4 Let f ∈ Cb((0, T );X), and let x ∈ X. If u is defined by (4.4), then
for every t ∈ [0, T ] the integral

∫ t
0 u(s)ds belongs to D(A), and

u(t) = x+A

∫ t

0
u(s)ds+

∫ t

0
f(s)ds, 0 ≤ t ≤ T. (4.5)
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Proof. For every t ∈ [0, T ] we have∫ t

0
u(s)ds =

∫ t

0
esAxds+

∫ t

0
ds

∫ s

0
e(s−σ)Af(σ)dσ

=
∫ t

0
esAxds+

∫ t

0
dσ

∫ t

σ
e(s−σ)Af(σ)ds.

The integral
∫ t
σ e

(s−σ)Af(σ)ds =
∫ t−σ
0 eτAf(σ)dτ belongs to D(A) by Proposition 1.3.6(ii)

and A
∫ t
σ e

(s−σ)Af(σ)ds = (e(t−σ)A − I)f(σ). Lemma A.4 yields∫ t

0
dσ

∫ t

σ
e(s−σ)Af(σ)ds ∈ D(A)

and

A

∫ t

0
dσ

∫ t

σ
e(s−σ)Af(σ)ds =

∫ t

0

(
e(t−σ)A − I

)
f(σ)dσ.

Hence, using once again Proposition 1.3.6(ii), the integral
∫ t
0 u(s)ds belongs to D(A) and

A

∫ t

0
u(s)ds = etAx− x+

∫ t

0

(
e(t−σ)A − I

)
f(σ)dσ, 0 ≤ t ≤ T,

so that (4.5) holds. �

In the next proposition we show that the mild solution with x = 0 is Hölder continuous
in all intervals [0, T ]. For the proof we define

Mk := sup
0<t≤T+1

‖tkAketA‖, k = 0, 1, 2, (4.6)

and

v(t) = (etA ∗ f)(t) :=
∫ t

0
e(t−s)Af(s)ds, 0 ≤ t ≤ T, (4.7)

Proposition 4.1.5 Let f ∈ Cb((0, T );X). Then the function v defined above belongs to
Cα([0, T ];X) for every α ∈ (0, 1), and there is C = C(α, T ) such that

‖v‖Cα([0,T ];X) ≤ C sup
0<s<T

‖f(s)‖. (4.8)

Proof. For 0 ≤ t ≤ T we have

‖v(t)‖ ≤M0t‖f‖∞, (4.9)

whereas for 0 ≤ s ≤ t ≤ T we have

v(t)− v(s) =
∫ s

0

(
e(t−σ)A − e(s−σ)A

)
f(σ)dσ +

∫ t

s
e(t−σ)Af(σ)dσ

=
∫ s

0
dσ

∫ t−σ

s−σ
AeτAf(σ)dτ +

∫ t

s
e(t−σ)Af(σ)dσ.

(4.10)
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Since τ ≥ s− σ, this implies that

‖v(t)− v(s)‖ ≤ M1‖f‖∞
∫ s

0
dσ

∫ t−σ

s−σ

dτ

τ
+M0‖f‖∞(t− s)

≤ M1‖f‖∞
∫ s

0

dσ

(s− σ)α

∫ t−σ

s−σ

1
τ1−α

dτ +M0‖f‖∞(t− s)

≤ M1‖f‖∞
∫ s

0

dσ

(s− σ)α

∫ t−s

0

1
τ1−α

dτ +M0‖f‖∞(t− s)

≤
(
M1T

1−α

α(1− α)
(t− s)α +M0(t− s)

)
‖f‖∞,

(4.11)

so that v is α-Hölder continuous. Estimate (4.8) follows immediately from (4.9) and (4.11).
�

The result of Proposition 4.1.4 is used in the next lemma, where we give sufficient
conditions in order that a mild solution be classical or strict.

Lemma 4.1.6 Let f ∈ Cb((0, T ];X), let x ∈ D(A), and let u be the mild solution of (4.1).
The following conditions are equivalent.

(a) u ∈ C((0, T ];D(A)),

(b) u ∈ C1((0, T ];X),

(c) u is a classical solution of (4.1).

If in addition f ∈ C([0, T ];X), then the following conditions are equivalent.

(a′) u ∈ C([0, T ];D(A)),

(b′) u ∈ C1([0, T ];X),

(c′) u is a strict solution of (4.1).

Proof. Of course, (c) implies both (a) and (b). Let us show that if either (a) or (b) holds,
then u is a classical solution. We already know that u belongs to C([0, T ];X) and that it
satisfies (4.5). Therefore, for every t, h such that t, t+ h ∈ (0, T ],

u(t+ h)− u(t)
h

=
1
h
A

∫ t+h

t
u(s)ds+

1
h

∫ t+h

t
f(s)ds. (4.12)

Since f is continuous at t, then

lim
h→0+

1
h

∫ t+h

t
f(s)ds = f(t). (4.13)

Let (a) hold. Then Au is continuous at t, so that

lim
h→0+

1
h
A

∫ t+h

t
u(s)ds = lim

h→0+

1
h

∫ t+h

t
Au(s)ds = Au(t).
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By (4.12) and (4.13) we obtain that u is differentiable at the point t, with u′(t) = Au(t)+
f(t). Since both Au and f are continuous in (0, T ], then u′ is continuous, and u is a
classical solution.

Now let (b) hold. Since u is continuous at t, then

lim
h→0

1
h

∫ t+h

t
u(s)ds = u(t).

On the other hand, (4.12) and (4.13) imply the existence of the limit

lim
h→0+

A

(
1
h

∫ t+h

t
u(s)ds

)
= u′(t)− f(t).

Since A is a closed operator, then u(t) belongs to D(A), and Au(t) = u′(t) − f(t). Since
both u′ and f are continuous in (0, T ], then Au is also continuous in (0, T ], so that u is a
classical solution.

The equivalence of (a′), (b′), (c′) may be proved in the same way. �

In the following two theorems we prove that, under some regularity conditions on f ,
the mild solution is strict or classical. In the theorem below we assume time regularity
whereas in the next one we assume “space” regularity on f .

Theorem 4.1.7 Let 0 < α < 1, f ∈ Cα([0, T ], X), x ∈ X, an let u be the function defined
in (4.4). Then u belongs to Cα([ε, T ], D(A)) ∩ C1+α([ε, T ], X) for every ε ∈ (0, T ), and
the following statements hold:

(i) if x ∈ D(A), then u is a classical solution of (4.1);

(ii) if x ∈ D(A) and Ax+ f(0) ∈ D(A), then u is a strict solution of (4.1), and there is
C > 0 such that

‖u‖C1([0,T ],X) + ‖u‖C([0,T ],D(A)) ≤ C(‖f‖Cα([0,T ],X) + ‖x‖D(A)). (4.14)

(iii) if x ∈ D(A) and Ax+ f(0) ∈ DA(α,∞), then u′ and Au belong to Cα([0, T ], X), u′

belongs to B([0, T ];DA(α,∞)), and there is C such that

‖u‖C1+α([0,T ];X) + ‖Au‖Cα([0,T ];X) + ‖u′‖B([0,T ];DA(α,∞))

≤ C(‖f‖Cα([0,T ];X) + ‖x‖D(A) + ‖Ax+ f(0)‖DA(α,∞)).
(4.15)

Proof. We are going to show that if x ∈ D(A) then u ∈ C((0, T ];D(A)), and that if
x ∈ D(A) and Ax + f(0) ∈ D(A) then u ∈ C([0, T ];D(A)). In both cases statements (i)
and (ii) will follow from Lemma 4.1.6.

Set 
u1(t) =

∫ t

0
e(t−s)A(f(s)− f(t))ds, 0 ≤ t ≤ T,

u2(t) = etAx+
∫ t

0
e(t−s)Af(t)ds, 0 ≤ t ≤ T,

(4.16)
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so that u = u1+u2. Notice that both u1(t) and u2(t) belong to D(A) for t > 0. Concerning
u1(t), the estimate

‖Ae(t−s)A(f(s)− f(t))‖ ≤ M1

t− s
(t− s)α[f ]Cα

implies that the function s 7→ e(t−s)A(f(s)−f(t)) is integrable with values inD(A), whence
u1(t) ∈ D(A) for every t ∈ (0, T ] (the same holds, of course, for t = 0 as well). Concerning
u2(t), we know that etAx belongs to D(A) for t > 0, and that

∫ t
0 e

(t−s)Af(t)ds belongs to
D(A) by Proposition 1.3.6(ii). Moreover, we have

(i) Au1(t) =
∫ t

0
Ae(t−s)A(f(s)− f(t))ds, 0 ≤ t ≤ T,

(ii) Au2(t) = AetAx+ (etA − I)f(t), 0 < t ≤ T.

(4.17)

If x ∈ D(A), then equality (4.17)(ii) holds for t = 0, too. Let us show that Au1 is Hölder
continuous in [0, T ]. For 0 ≤ s < t ≤ T we have

Au1(t)−Au1(s) =
∫ s

0

(
Ae(t−σ)A(f(σ)− f(t))−Ae(s−σ)A(f(σ)− f(s))

)
dσ

+
∫ t

s
Ae(t−σ)A(f(σ)− f(t))dσ

=
∫ s

0

(
Ae(t−σ)A −Ae(s−σ)A

)
(f(σ)− f(s))dσ (4.18)

+
∫ s

0
Ae(t−σ)A(f(s)− f(t))dσ +

∫ t

s
Ae(t−σ)A(f(σ)− f(t))dσ

=
∫ s

0

∫ t−σ

s−σ
A2eτAdτ(f(σ)− f(s))dσ

+ (etA − e(t−s)A)(f(s)− f(t)) +
∫ t

s
Ae(t−σ)A(f(σ)− f(t))dσ,

so that

‖Au1(t)−Au1(s)‖ ≤M2[f ]Cα

∫ s

0
(s− σ)α

∫ t−σ

s−σ
τ−2dτ dσ

+ 2M0[f ]Cα(t− s)α +M1[f ]Cα

∫ t

s
(t− σ)α−1dσ (4.19)

≤M2[f ]Cα

∫ s

0
dσ

∫ t−σ

s−σ
τα−2dτ + (2M0 +M1α

−1)[f ]Cα(t− s)α

≤
(

M2

α(1− α)
+ 2M0 +

M1

α

)
[f ]Cα(t− s)α,

where Mk, k = 0, 1, 2, are the constants in (4.6). Hence, Au1 is α-Hölder continuous
in [0, T ]. Moreover, it is easily checked that Au2 is α-Hölder continuous in [ε, T ] for
every ε ∈ (0, T ), and therefore Au ∈ Cα([ε, T ];X). Since u ∈ Cα([ε, T ];X) (because
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t 7→ etAx ∈ C∞((0, T ];X) and t 7→
∫ t
0 e

(t−s)Af(s)ds ∈ Cα([0, T ];X) by Proposition 4.1.5),
it follows that u ∈ Cα([ε, T ];D(A)). Since ε is arbitrary, then u ∈ C((0, T ];D(A)).

Concerning the behavior as t → 0+, if x ∈ D(A), then t 7→ etAx ∈ C([0, T ], X) and
then u ∈ C([0, T ], X), see Proposition 4.1.5. This concludes the proof of (i).

If x ∈ D(A), we may write Au2(t) in the form

Au2(t) = etA(Ax+ f(0)) + etA(f(t)− f(0))− f(t), 0 ≤ t ≤ T. (4.20)

If Ax + f(0) ∈ D(A), then limt→0+ Au2(t) = Ax, hence Au2 is continuous at t = 0,
u = u1 + u2 belongs to C([0, T ];D(A)) and it is a strict solution of (4.1). Estimate (4.14)
easily follows since u′ = Au+ f and

‖Au1(t)‖ ≤M1[f ]Cα

∫ t

0
(t− s)α−1ds =

M1

α
[f ]Cαtα,

‖Au2(t)‖ ≤M0‖Ax‖+ (M0 + 1)‖f‖∞.

This concludes the proof of (ii).
If Ax + f(0) ∈ DA(α,∞), we already know that t 7→ etA(Ax + f(0)) ∈ Cα([0, T ], X),

with Cα norm estimated by C‖Ax+f(0)‖DA(α,∞), for some positive constant C. Moreover
f ∈ Cα([0, T ], X) by assumption, so we have only to show that t 7→ etA(f(t) − f(0)) is
α-Hölder continuous.

For 0 ≤ s ≤ t ≤ T we have

‖etA(f(t)− f(0))− esA(f(s)− f(0))‖ ≤ ‖(etA − esA)(f(s)− f(0))‖+ ‖etA(f(t)− f(s))‖

≤ sα[f ]Cα

∥∥∥∥A∫ t

s
eσAdσ

∥∥∥∥
L(X)

+M0(t− s)α[f ]Cα

≤M1[f ]Cαsα

∫ t

s

dσ

σ
+M0[f ]Cα(t− s)α (4.21)

≤M1[f ]Cα

∫ t

s
σα−1dσ +M0[f ]Cα(t− s)α

≤
(
M1

α
+M0

)
(t− s)α[f ]Cα .

Hence Au2 is α-Hölder continuous as well, and the estimate

‖u‖C1+α([0,T ];X) + ‖Au‖Cα([0,T ];X) ≤ c(‖f‖Cα([0,T ],X) + ‖x‖X + ‖Ax+ f(0)‖DA(α,∞))

follows, since u′ = Au+ f and u = u1 + u2.
Let us now estimate [u′(t)]DA(α,∞). For 0 ≤ t ≤ T we have

u′(t) =
∫ t

0
Ae(t−s)A(f(s)− f(t))ds+ etA(Ax+ f(0)) + etA(f(t)− f(0)),

so that for 0 < ξ ≤ 1 we deduce

‖ξ1−αAeξAu′(t)‖ ≤
∥∥∥∥ξ1−α

∫ t

0
A2e(t+ξ−s)A(f(s)− f(t))ds

∥∥∥∥
+ ‖ξ1−αAe(t+ξ)A(Ax+ f(0))‖+ ‖ξ1−αAe(t+ξ)A(f(t)− f(0))‖
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≤M2[f ]Cαξ1−α

∫ t

0
(t− s)α(t+ ξ − s)−2ds (4.22)

+M0[Ax+ f(0)]DA(α,∞) +M1[f ]Cαξ1−α(t+ ξ)−1tα

≤M2[f ]Cα

∫ ∞

0
σα(σ + 1)−2dσ +M0[Ax+ f(0)]DA(α,∞) +M1[f ]Cα .

Then, [u′(t)]DA(α,∞) is bounded in [0, T ], and the proof is complete. �

Remark 4.1.8 The proof of Theorem 4.1.7 implies that the condition Ax + f(0) ∈
DA(α,∞) is necessary in order that Au ∈ Cα([0, T ];X). Once this condition is satis-
fied, it is preserved through the whole interval [0, T ], in the sense that Au(t)+f(t) = u′(t)
belongs to DA(α,∞) for each t ∈ [0, T ].

In the proof of the next theorem we use the constants

Mk,α := sup
0<t≤T+1

‖tk−αAketA‖L(DA(α,∞),X) < +∞, k = 1, 2. (4.23)

Theorem 4.1.9 Let 0 < α < 1, and let f ∈ C([0, T ];X) ∩ B([0, T ];DA(α,∞)). Then
the function v = (etA ∗ f) belongs to C([0, T ];D(A)) ∩ C1([0, T ];X), and it is the strict
solution of {

v′(t) = Av(t) + f(t), 0 < t ≤ T,

v(0) = 0.
(4.24)

Moreover, v′ and Av belong to B([0, T ];DA(α,∞)), Av belongs to Cα([0, T ]; X), and there
is C such that

‖v′‖B([0,T ];DA(α,∞))+‖Av‖B([0,T ];DA(α,∞))+‖Av‖Cα([0,T ];X) ≤ C‖f‖B([0,T ];DA(α,∞)). (4.25)

Proof. Let us prove that v is a strict solution of (4.24), and that (4.25) holds. For
0 ≤ t ≤ T , v(t) belongs to D(A), and, denoting by |f | the norm of f in B([0, T ];DA(α,∞))

‖Av(t)‖ ≤M1,α|f |
∫ t

0
(t− s)α−1ds ≤ TαM1,α

α
|f |. (4.26)

Moreover, for 0 < ξ ≤ 1 we have

‖ξ1−αAeξAAv(t)‖ = ξ1−α

∥∥∥∥∫ t

0
A2e(t+ξ−s)Af(s)ds

∥∥∥∥
≤M2,αξ

1−α

∫ t

0
(t+ ξ − s)α−2ds|f | ≤ M2,α

1− α
|f |, (4.27)

so that Av is bounded with values in DA(α,∞). Let us prove that Av is Hölder continuous
with values in X: for 0 ≤ s ≤ t ≤ T we have

‖Av(t)−Av(s)‖ ≤
∥∥∥∥A∫ s

0

(
e(t−σ)A − e(s−σ)A

)
f(σ)dσ

∥∥∥∥ +
∥∥∥∥A∫ t

s
e(t−σ)Af(σ)dσ

∥∥∥∥
≤M2,α|f |

∫ s

0
dσ

∫ t−σ

s−σ
τα−2dτ +M1,α|f |

∫ t

s
(t− σ)α−1dσ
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≤
(

M2,α

α(1− α)
+
M1,α

α

)
(t− s)α|f |, (4.28)

hence Av is α-Hölder continuous in [0, T ]. Estimate (4.25) follows from (4.26), (4.27),
(4.28).

The differentiability of v and the equality v′(t) = Av(t) + f(t) follow from Lemma
4.1.6. �

Corollary 4.1.10 Let 0 < α < 1, x ∈ X, f ∈ C([0, T ];X) ∩ B([0, T ];DA(α,∞)) be
given, and let u be given by (4.4). Then, u ∈ C1((0, T ];X) ∩ C((0, T ];D(A)), and u ∈
B([ε, T ];DA(α+ 1,∞)) for every ε ∈ (0, T ). Moreover, the following statements hold:

(i) If x ∈ D(A), then u is the classical solution of (4.1);

(ii) If x ∈ D(A), Ax ∈ D(A), then u is the strict solution of (4.1);

(iii) If x ∈ DA(α + 1,∞), then u′ and Au belong to B([0, T ];DA(α,∞)) ∩ C([0, T ];X),
Au belongs to Cα([0, T ];X), and there is C > 0 such that

‖u′‖B([0,T ];DA(α,∞)) + ‖Au‖B([0,T ];DA(α,∞)) + ‖Au‖Cα([0,T ];X)

≤ C(‖f‖B([0,T ];DA(α,∞)) + ‖x‖DA(α,∞)).
(4.29)

Proof. Let us write u(t) = etAx+ (etA ∗ f)(t). If x ∈ D(A), the function t 7→ etAx is the
classical solution of w′ = Aw, t > 0, w(0) = x. If x ∈ D(A) and Ax ∈ D(A) it is in
fact a strict solution; if x ∈ DA(α+ 1,∞) then it is a strict solution and it also belongs to
C1([0, T ];X) ∩B([0, T ];DA(α+ 1,∞)). The claim then follows from Theorem 4.1.9. �

As a consequence of Theorem 4.1.7 and of Corollary 4.1.10 we get a classical theorem
of the theory of PDE’s. We need some notation.

We recall that for 0 < θ < 1 the parabolic Hölder space Cθ/2,θ([0, T ]×RN ) is the space
of the continuous functions f : RN → C such that

‖f‖Cθ/2,θ([0,T ]×RN ) := ‖f‖∞ + sup
x∈RN

[f(·, x)]Cθ/2([0,T ]) + sup
t∈[0,T ]

[f(t, ·)]Cθ
b (RN ) < +∞,

and C1+θ/2,2+θ([0, T ] × RN ) is the space of the bounded functions u such that ut, Diju
exist for all i, j = 1, . . . , N and belong to Cθ/2,θ([0, T ]× RN ). The norm is

‖u‖C1+θ/2,2+θ([0,T ]×RN ) :=‖u‖∞ +
N∑

i=1

‖Diu‖∞

+ ‖ut‖Cθ/2,θ([0,T ]×RN ) +
N∑

i,j=1

‖Diju‖Cθ/2,θ([0,T ]×RN ).

Note that f ∈ Cθ/2,θ([0, T ]×RN ) if and only if t 7→ f(t, ·) belongs to Cθ/2([0, T ];Cb(RN ))
∩ B([0, T ];Cθ

b (RN )).



60 Chapter 4. Non homogeneous problems

Corollary 4.1.11 (Ladyzhenskaja – Solonnikov – Ural’ceva) Let 0 < θ < 1, T > 0 and
let u0 ∈ C2+θ

b (RN ), f ∈ Cθ/2,θ([0, T ]× RN ). Then the initial value problem{
ut(t, x) = ∆u(t, x) + f(t, x), 0 ≤ t ≤ T, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(4.30)

has a unique solution u ∈ C1+θ/2,2+θ([0, T ]× RN ), and there is C > 0, independent of u0

and f , such that

‖u‖C1+θ/2,2+θ([0,T ]×RN ) ≤ C(‖u0‖C2+θ
b (RN ) + ‖f‖Cθ/2,θ([0,T ]×RN )).

Proof. Set X = Cb(RN ), A : D(A) → X, Aϕ = ∆ϕ, T (t) = heat semigroup. The
function t 7→ f(t, ·) belongs to Cθ/2([0, T ];X) ∩ B([0, T ];DA(θ/2,∞)), thanks to the
characterization of example 3.1.7. The initial datum u0 is in D(A), and both Au0 and
f(0, ·) are in DA(θ/2,∞). Then we may apply both Theorem 4.1.7 and Corollary 4.1.10
with α = θ/2. They imply that the function u given by the variation of constants formula
(4.4) is the unique strict solution to problem (4.1), with initial datum u0 and with f(t) =
f(t, ·). Therefore, the function

u(t, x) := u(t)(x) = (T (t)u0)(x) +
∫ t

0
(T (t− s)f(s, ·))(x)ds,

is the unique bounded classical solution to (4.30) with bounded ut. Moreover, The-
orem 4.1.7 implies that u′ ∈ Cθ/2([0, T ];Cb(RN )) ∩ B([0, T ];Cθ

b (RN )), so that ut ∈
Cθ/2,θ([0, T ]×RN ), with norm bounded by C(‖u0‖C2+θ

b (RN ) +‖f‖Cθ/2,θ([0,T ]×RN )) for some
C > 0. Corollary 4.1.10 implies that u is bounded with values in DA(θ/2 + 1,∞), so that
u(t, ·) ∈ C2+θ

b (RN ) for each t, and

sup
0≤t≤T

‖u(t, ·)‖C2+θ
b (RN ) ≤ C(‖u0‖C2+θ

b (RN ) + ‖f‖Cθ/2,θ([0,T ]×RN )),

for some C > 0, by estimate (4.29).
To finish the proof it remains to show that each second order space derivative Diju is

θ/2-Hölder continuous with respect to t. To this aim we use the interpolatory inequality

‖Dijϕ‖∞ ≤ C(‖ϕ‖C2+θ
b (RN ))

1−θ/2(‖ϕ‖Cθ
b (RN ))

θ/2,

that holds for every ϕ ∈ C2+θ
b (RN ), i, j = 1, . . . , N . See Exercise 5 in §3.2.3. Applying it

to the function ϕ = u(t, ·)− u(s, ·) we get

‖Diju(t, ·)−Diju(s, ·)‖∞

≤ C(‖u(t, ·)− u(s, ·)‖C2+θ
b (RN ))

1−θ/2(‖u(t, ·)− u(s, ·)‖Cθ
b (RN ))

θ/2

≤ C(2 sup
0≤t≤T

‖u(t, ·)‖C2+θ
b (RN ))

1−θ/2(|t− s| sup
0≤t≤T

‖ut(t, ·)‖Cθ
b (RN ))

θ/2

≤ C ′|t− s|θ/2(‖u0‖C2+θ
b (RN ) + ‖f‖Cθ/2,θ([0,T ]×RN )),

and the statement follows. �



4.1. Strict, classical, and mild solutions 61

Remark 4.1.12 If we have a Cauchy problem in an interval [a, b] 6= [0, T ],{
v′(t) = Av(t) + g(t), a < t ≤ b,

v(a) = y,
(4.31)

we obtain results similar to the case [a, b] = [0, T ], by the change of time variable τ =
T (t − a)/(b − a). The details are left as (very easy) exercises. We just write down the
variation of constants formula for v,

v(t) = e(t−a)Ay +
∫ t

a
e(t−s)Ag(s)ds, a ≤ t ≤ b. (4.32)

Exercises 4.1.13

1. Let f ∈ Cb((0, T );X) and set v = (etA ∗ f). Let Xα be a space of class Jα between
X and D(A) (α ∈ (0, 1)). Using the technique of Proposition 4.1.5 prove that

(a) v ∈ B([0, T ];Xα) and ‖v‖B([0,T ];Xα) ≤ C1 sup0<t<T ‖f(t)‖;
(b) v ∈ C1−α([0, T ];Xα) and ‖v‖Cα([0,T ];Xα) ≤ C2 sup0<t<T ‖f(t)‖.

2. Let A : D(A) → X be a sectorial operator, and let 0 < α < 1, a < b ∈ R. Prove
that if a function u belongs to C1+α([a, b];X) ∩ Cα([a, b];D(A)) then u′ is bounded
in [a, b] with values in DA(α,∞).

[Hint: set u0 = u(a), f(t) = u′(t) − Au(t), and use Theorem 4.1.7(iii) and Remark
4.1.8].

3. Consider the sectorial operators Ap in the sequence spaces `p, 1 ≤ p <∞ given by

D(Ap) = {(xn) ∈ `p : (nxn) ∈ `p}, Ap(xn) = −(nxn) for (xn) ∈ D(Ap)

and assume that for every f ∈ C([0, T ]; `p) the mild solution of (4.1) with initial
value x = 0 is a strict one.

(i) Use the closed graph theorem to show that the linear operator

S : C([0, 1]; `p) → C([0, 1];D(Ap)), Sf = etA ∗ f

is bounded.

(ii) Let (en) be the canonical basis of `p and consider a nonzero continuous function
g : [0,+∞) → [0, 1] with support contained in [1/2, 1]. Let fn(t) = g(2n(1 −
t))e2n ; then fn ∈ C([0, 1]; `p), ‖fn‖∞ ≤ 1. Moreover, setting hN = f1+ · · ·+fN ,
we have also hN ∈ C([0, 1]; `p), ‖hN‖∞ ≤ 1, since the functions fn have disjoint
supports. Show that (etA ∗ fn)(1) = c2−ne2n where c =

∫∞
0 e−sg(s)ds, hence

‖(etA ∗hN )(1)‖D(Ap) ≥ cN1/p. This implies that S is unbounded, contradicting
(i).
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Chapter 5

Asymptotic behavior in linear
problems

5.1 Behavior of etA

One of the most useful properties of analytic semigroups is the so called spectrum deter-
mining condition: roughly speaking, the asymptotic behavior (as t → +∞) of etA, and,
more generally, of AnetA, is determined by the spectral properties of A. This is an anal-
ogy with the finite dimensional case where the asymptotic behavior of the solutions of the
differential equation u′ = Au depends on the eigenvalues of the matrix A.

Define the spectral bound of any sectorial operator A by

s(A) = sup{Reλ : λ ∈ σ(A)}. (5.1)

Clearly s(A) ≤ ω for any real number ω satisfying (1.9).

Proposition 5.1.1 For every n ∈ N ∪ {0} and ε > 0 there exists Mn,ε > 0 such that

‖tnAnetA‖L(X) ≤Mn,εe
(s(A)+ε)t, t > 0. (5.2)

Proof. Let ω ∈ R, θ ∈ (π/2, π) satisfy (1.9), and fix η ∈ (π/2, θ).
For 0 < t ≤ 1, estimates (5.2) are an easy consequence of (1.15). If t ≥ 1 and

s(A) + ε ≥ ω, (5.2) is still a consequence of (1.15). Let us consider the case in which
t ≥ 1 and s(A) + ε < ω. Since ρ(A) ⊃ Sθ,ω ∪ {λ ∈ C : Reλ > s(A)}, setting a =
(ω − s(A)− ε)| cos η|−1, b = (ω − s(A)− ε)| tan η|, the path

Γε = {λ ∈ C : λ = ξe−iη + ω, ξ ≥ a} ∪ {λ ∈ C : λ = ξeiη + ω, ξ ≥ a}

∪{λ ∈ C : Reλ = s(A) + ε, |Im λ| ≤ b}

(see Figure 5.1) is contained in ρ(A), and ‖R(λ,A)‖L(X) ≤Mε on Γε, for some Mε > 0.
Since for every t the function λ 7→ eλtR(λ,A) is holomorphic in ρ(A), the path ω+γr,η

in the definition of etA may be replaced by Γε, obtaining for each t ≥ 1,

‖etA‖ =
∥∥∥∥ 1
2πi

∫
Γε

etλR(λ,A)dλ
∥∥∥∥

63
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ωs(A) + εs(A)

Γε

b

a

Figure 5.1: the curve Γε.

≤ Mε

π

∫ +∞

a
e(ω+ξ cos η)tdξ +

Mε

2π

∫ b

−b
e(s(A)+ε)tdy

≤ Mε

π

(
1

| cos η|
+ b

)
e(s(A)+ε)t.

Estimate (5.2) follows for n = 0. Arguing in the same way, for t ≥ 1 we get

‖AetA‖ =
∥∥∥∥ 1
2πi

∫
Γε

λetλR(λ,A)dλ
∥∥∥∥

≤ Mε

2π

(
2

∫ +∞

a
e(ω+ξ cos η)tdξ +

∫ b

−b
e(s(A)+ε)tdy

)
≤ Mε

π
(| cos η|−1 + b)e(s(A)+ε)t ≤ M̃ε

t
e(s(A)+2ε)t.

Since ε is arbitrary, (5.2) follows also for n = 1.
From the equality AnetA = (AetA/n)n we get, for n ≥ 2,

‖AnetA‖L(X) ≤ (M1,εnt
−1et(s(A)+ε)/n)n = (M1,εn)nt−ne(s(A)+ε)t,

and (5.2) is proved. �

We remark that in the case s(A) = ω = 0, estimates (1.14) are sharper than (5.2) for
t large.

From Proposition 5.1.1 it follows that if s(A) < 0, then t 7→ etAx is bounded in [0,+∞)
for every x ∈ X. In the case s(A) ≥ 0, it is interesting to characterize the elements x such
that t 7→ etAx is bounded in [0,+∞). We shall see that this is possible in the case where
the spectrum of A does not intersect the imaginary axis.

5.2 Behavior of etA for a hyperbolic A

In this section we assume that
σ(A) ∩ iR = ∅. (5.3)
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In this case A is said to be hyperbolic. Set σ(A) = σ−(A) ∪ σ+(A), where

σ−(A) = σ(A) ∩ {λ ∈ C : Reλ < 0}, σ+(A) = σ(A) ∩ {λ ∈ C : Reλ > 0}. (5.4)

We write σ+ and σ−, respectively for σ+(A) and σ−(A) when there is no danger of confu-
sion. Note that σ+ is bounded. On the contrary, σ− may be bounded or unbounded. For
instance using Proposition 2.1.1 and Exercise 1, §1.3.5, we easily see that the spectrum of
the realization of u′′ − u in Cb(R) is the unbounded set (−∞,−1]. On the other hand if
A ∈ L(X) then A is sectorial and σ− is bounded.

Since both σ−, σ+ are closed we have

−ω− := sup{Reλ : λ ∈ σ−} < 0, ω+ := inf{Reλ : λ ∈ σ+} > 0. (5.5)

σ− and σ+ may also be empty: in this case we set ω− = +∞, ω+ = +∞. Let P be the
operator defined by

P =
1

2πi

∫
γ+

R(λ,A)dλ, (5.6)

where γ+ is a closed regular curve contained in ρ(A), surrounding σ+, oriented counter-
clockwise, with index 1 with respect to each point of σ+, and with index 0 with respect
to each point of σ−. P is called spectral projection relative to σ+.

γ

γ−

−ω

γ+

σ+σ−

Figure 5.2: the curves γ+, γ−.

Proposition 5.2.1 The following statements hold.

(i) P is a projection, that is P 2 = P .

(ii) For each t ≥ 0 we have

etAP = PetA =
1

2πi

∫
γ+

eλtR(λ,A)dλ. (5.7)

Consequently, etA(P (X)) ⊂ P (X), etA((I − P )(X)) ⊂ (I − P )(X).
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(iii) P ∈ L(X,D(An)) for every n ∈ N. Therefore, P (X) ⊂ D(A) and the operator
A|P (X) : P (X) → P (X) is bounded.

(iv) For every ω ∈ [0, ω+) there exists Nω > 0 such that for every x ∈ P (X) we have(1)

‖etAx‖ ≤ Nωe
ωt‖x‖, t ≤ 0. (5.8)

(v) For each ω ∈ [0, ω−) there exists Mω > 0 such that for every x ∈ (I − P )(X) we
have

‖etAx‖ ≤Mωe
−ωt‖x‖, t ≥ 0. (5.9)

Proof. Proof of (i). Let γ+, γ′+ be regular curves contained in ρ(A) surrounding σ+, with
index 1 with respect to each point of σ+, and such that γ+ is contained in the bounded
connected component of C \ γ′+. By the resolvent identity we have

P 2 =
(

1
2πi

)2 ∫
γ′+

R(ξ,A)dξ
∫

γ+

R(λ,A)dλ

=
(

1
2πi

)2 ∫
γ′+×γ+

[R(λ,A)−R(ξ,A)](ξ − λ)−1dξdλ

=
(

1
2πi

)2 ∫
γ+

R(λ,A)dλ
∫

γ′+

(ξ − λ)−1dξ −
(

1
2πi

)2 ∫
γ′+

R(ξ, A)dξ
∫

γ+

(ξ − λ)−1dλ

= P.

The proof of (ii) is similar and it is left as an exercise.

Proof of (iii). Since the path γ+ is bounded and λ 7→ R(λ,A) is continuous with values
in L(X,D(A)), then P ∈ L(X,D(A)), and

AP =
1

2πi

∫
γ+

AR(λ,A)dλ =
1

2πi

∫
γ+

λR(λ,A)dλ.

Therefore, AP ∈ L(X,D(A)) too. Moreover, if x ∈ D(A) then PAx = APx. By recur-
rence, P ∈ L(X,D(An)) for every n ∈ N.

Proof of (iv). Since the part of A in P (X) is bounded and its spectrum is σ+ (see Exercise
3, the restriction of etA to P (X) may be analytically continued to (−∞, 0), using formula
(5.7). See Proposition 1.2.2.

For ω ∈ [0, ω+), we choose γ+ such that infλ∈γ+ Reλ = ω. Then for each t ≤ 0 and
x ∈ P (X) we have

‖etAx‖ =
1
2π

∥∥∥∥∫
γ+

eλtR(λ,A)x dλ
∥∥∥∥ ≤ c sup

λ∈γ+

|eλt| ‖x‖ = ceωt‖x‖,

with c = (2π)−1|γ+| sup{‖R(λ,A)‖ : λ ∈ γ+}, |γ+| = lenght of γ+.

1For obvious notational reasons for each x ∈ P (X) and t < 0 we write etAx instead of etA|P (X)x.



5.2. Behavior of etA for a hyperbolic A 67

Proof of (v). For t small, say t < 1, estimate (5.9) is a consequence of (1.15). For t ≥ 1
we write etA(I − P ) as

etA(I − P ) =
1

2πi

(∫
γ
−

∫
γ+

)
eλtR(λ,A)dλ =

1
2πi

∫
γ−

eλtR(λ,A)dλ,

where γ is the curve used in the definition of etA (see (1.10)), γ− = {λ ∈ C : λ =
−ω + re±iη, r ≥ 0} is oriented as usual and η > π/2. See Figure 5.2. The estimate is
obtained as in the proof of Proposition 5.1.1, and it is left as an exercise. �

Corollary 5.2.2 Let x ∈ X. Then
(i) We have

sup
t≥0

‖etAx‖ < +∞⇐⇒ Px = 0.

In this case, ‖etAx‖ decays exponentially to 0 as t→ +∞.
(ii) For x ∈ X, the backward Cauchy problem{

v′(t) = Av(t), t ≤ 0,

v(0) = x,
(5.10)

has a bounded solution in (−∞, 0] if and only if x ∈ P (X). In this case, the bounded
solution is unique, it is given by v(t) = etAx, and it decays exponentially to 0 as t→ −∞.

Proof. (i) Split every x ∈ X as x = Px+ (I − P )x, so that etAx = etAPx+ etA(I − P )x.
The norm of the second addendum decays exponentially to 0 as t → +∞. The norm
of the first one is unbounded if Px 6= 0. Indeed, Px = e−tAetAPx, so that ‖Px‖ ≤
‖e−tA‖L(P (X))‖etAPx‖ ≤ Nωe

−ωt‖etAPx‖ with ω > 0, which implies that ‖etAPx‖ ≥
eωt‖Px‖/Nω. Therefore t 7→ etAx is bounded in R+ if and only if Px = 0.

(ii) If x ∈ P (X), the function t 7→ etAx is a strict solution of the backward Cauchy
problem, and it decays exponentially as t → −∞. Conversely, if a backward bounded
solution v does exist, then for a < t ≤ 0 we have

v(t) = e(t−a)Av(a) = e(t−a)A(I − P )v(a) + e(t−a)APv(a),

where e(t−a)A(I − P )v(a) = (I − P )v(t), e(t−a)APv(a) = Pv(t). Since ‖e(t−a)A(I − P )‖ ≤
Mωe

−ω(t−a), letting a→ −∞ we get (I −P )v(t) = 0 for each t ≤ 0, so that v is a solution
to the backward problem in P (X), v(0) = x ∈ P (X) and hence v(t) = etAx. �

Note that problem (5.10) is ill posed in general. Changing t to −t, it is equivalent to a
forward Cauchy problem with A replaced by −A, and −A may have very bad properties.
If A is sectorial, −A is sectorial if and only if it is bounded (see Exercise 4, §1.3.5).

The subspaces (I − P )(X) and P (X) are often called the stable subspace and the
unstable subspace, respectively.

Example 5.2.3 Let us consider again the operator A∞ : C2
b (R) → Cb(R) studied in

Subsection 2.1.1. We have ρ(A∞) = C \ (−∞, 0], ‖λR(λ,A∞)‖ ≤ (cos θ/2)−1, with θ =
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arg λ. In this case ω = s(A∞) = 0, and estimates (5.2) are worse than (1.14) for large t.
It is convenient to use (1.14), which gives

‖etA∞‖ ≤M0, ‖tkAk
∞e

tA∞‖ ≤Mk, k ∈ N, t > 0.

Therefore etAu0 is bounded for every initial datum u0, and the k-th derivative with respect
to time, the 2k-th derivative with respect to x decay at least like t−k, as t→ +∞, in the
sup norm.

Example 5.2.4 Let us now consider the problem
ut(t, x) = uxx(t, x) + αu(t, x), t > 0, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

(5.11)

with α ∈ R. Choose X = C([0, 1]), A : D(A) = {f ∈ C2([0, 1]) : f(0) = f(1) = 0} → X,
Au = u′′ + αu. Then the spectrum of A consists of the sequence of eigenvalues

λn = −π2n2 + α, n ∈ N.

In particular, if α < π2 the spectrum is contained in the halfplane {λ ∈ C : Reλ < 0},
and by Proposition 5.1.1 the solution u(t, ·) = etAu0 of (5.11) and all its derivatives decay
exponentially as t→ +∞, for any initial datum u0.

If α = π2, assumption (1.9) holds with ω = 0. This is not immediate. A possible way
to show it is to study the explicit expression of R(λ,A) (which coincides with R(λ−π2, B)
where B : D(A) → X, Bf = f ′′) near λ = 0, see Example 2.1.2). Here we follow another
approach. We observe that the operator A2u := u′′ + π2u with domain D(A2) = {u ∈
H2(0, 1) : u(0) = u(1) = 0} is sectorial in L2(0, 1) and etA2 coincides with etA on C([0, 1]).
Indeed, if f ∈ C([0, 1]) any solution u ∈ D(A2) of λu − A2u = f actually belongs to
C2([0, 1]), so that R(λ,A) = R(λ,A2) in C([0, 1]) for any λ ∈ ρ(A2) = ρ(A). Since the
functions uk(x) = sin(kπx) are eigenfunctions of A2 with eigenvalue (−k2 + 1)π2 for any
k ∈ N, then (see Exercise 3, §1.3.5) etA2uk = e−(k2−1)π2tuk for any t ≥ 0.

If f ∈ C([0, 1]) ⊂ L2(0, 1), we expand it in a sine series in L2(0, 1),

f =
+∞∑
k=1

ckuk, ck = 2
∫ 1

0
f(x)uk(x)dx. (5.12)

To justify the expansion, it suffices to observe that (5.12) is the Fourier series of the
function f : [−1, 1] → R which is the odd extension of f . Hence,

etAf = etA2f =
+∞∑
k=1

cke
−(k2−1)π2tuk, t ≥ 0,

yields

‖etAf‖∞ ≤ 2‖f‖∞
+∞∑
k=1

e−(k2−1)π2t, t > 0.

which is bounded in [1,+∞). Since etA is an analytic semigroup, then ‖etA‖ is bounded
in [0, 1].
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If α > π2, there are elements of the spectrum of A with positive real part. In the case
where α 6= n2π2 for every n ∈ N, assumption (5.3) is satisfied. Let m ∈ N be such that
π2m2 < α < π2(m+ 1)2. By Corollary 5.2.2, the initial data u0 such that the solution is
bounded are those which satisfy Pu0 = 0. The projection P may be written as

P =
m∑

k=1

Pk, (5.13)

where Pk =
∫
|λ−λk|<εR(λ,A)dλ/(2πi), and the numbers λk = −π2k2 + α, k = 1, . . . ,m,

are the eigenvalues of A with positive real part, ε small. Let us show that

(Pkf)(x) = 2 sin(kπx)
∫ 1

0
sin(kπy) f(y)dy, x ∈ [0, 1]. (5.14)

For any λ 6= λk expand f ∈ C([0, 1]) as in (5.12). Using Exercise 3 in §1.3.5 we get

R(λ,A)f = R(λ,A2)f =
+∞∑
n=1

cn
λ− λn

un.

Hence
Pkf =

1
2πi

∫
|λ−λk|≤ε

R(λ,A)f dλ = ckuk.

Consequently, from (5.13) and (5.14) it follows that the solution of (5.11) is bounded in
[0,+∞) if and only if ∫ 1

0
sin(kπy)u0(y)dy = 0, k = 1, . . . ,m.

Exercises 5.2.5

1. Prove statement (ii) of Proposition 5.2.1 and complete the proof of statement (v).

2. Let A be a sectorial operator in X. Define the growth bound

ωA = inf{γ ∈ R : ∃M > 0 s.t. ‖etA‖ ≤Meγt, t ≥ 0}.

Show that s(A) = ωA.

[Hint: show that if Reλ > ωA then

R(λ) =
∫ +∞

0
e−λtetAdt

is the inverse of λI −A].

3. Prove that the spectrum of the restrictions A+ and A− of A to P (X) and to (I −
P )(X) are, respectively, σ+ and σ−.

[Hint: Prove that

R(λ,A+) =
1

2πi

∫
γ+

R(ξ, A)
λ− ξ

dξ,
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if λ /∈ σ+ and γ+ is suitably chosen, and that

R(λ,A−) = − 1
2πi

∫
γ+

R(ξ,A)
λ− ξ

dξ,

if λ /∈ σ− and γ+ is suitably chosen.]

4. Let α, β ∈ R, and let A be the realization of the second order derivative in C([0, 1]),
with domain {f ∈ C2([0, 1]) : αf(i) + βf ′(i) = 0, i = 0, 1}. Find s(A).

5. Let A satisfy (5.3), and let T > 0, f : [−T, 0] → P (X) be a continuous function.
Prove that for every x ∈ P (X) the backward problem{

u′(t) = Au(t) + f(t), −T ≤ t ≤ 0,

u(0) = x,

has a unique strict solution in the interval [−T, 0] with values in P (X), given by the
variation of constants formula

u(t) = etAx+
∫ t

0
e(t−s)Af(s)ds, −T ≤ t ≤ 0.

Prove that for each ω ∈ [0, ω+) we have

‖u(t)‖ ≤ Nω

(
‖x‖+

1
ω

sup
−T<t<0

‖f(t)‖
)
.

6. (A generalization of Proposition 5.2.1). Let A be a sectorial operator such that
σ(A) = σ1 ∪ σ2, where σ1 is compact, σ2 is closed, and σ1 ∩ σ2 = ∅. Define Q by

Q =
1

2πi

∫
γ
R(λ,A)dλ,

where γ is any regular closed curve in ρ(A), around σ1, with index 1 with respect to
each point in σ1 and with index 0 with respect to each point in σ2.

Prove that Q is a projection, that the part A1 of A in Q(X) is a bounded operator,
and that the group generated by A1 in Q(X) may be expressed as

etA1 =
1

2πi

∫
γ
eλtR(λ,A)dλ.

5.3 Bounded solutions of nonhomogeneous problems in un-
bounded intervals

In this section we consider nonhomogeneous Cauchy problems in halflines. We start with{
u′(t) = Au(t) + f(t), t > 0,

u(0) = u0,
(5.15)

where f : [0,+∞) → X is a continuous function and u0 ∈ X. We assume throughout that
A is hyperbolic, i.e. (5.3) holds, and we define σ−, σ+ and ω−, ω+ as in Section 5.2.
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Let P be the projection defined by (5.6). Fix once and for all a positive number ω
such that

−ω− < −ω < ω < ω+,

and let Mω, Nω be the constants given by Proposition 5.2.1(iv)(v).

Proposition 5.3.1 Let f ∈ Cb([0,+∞);X), u0 ∈ X. Then the mild solution u of (5.15)
is bounded in [0,+∞) with values in X if and only if

Pu0 = −
∫ +∞

0
e−sAPf(s)ds. (5.16)

If (5.16) holds we have

u(t) = etA(I − P )u0 +
∫ t

0
e(t−s)A(I − P )f(s)ds−

∫ +∞

t
e(t−s)APf(s)ds, t ≥ 0. (5.17)

Proof. For every t ≥ 0 we have u(t) = (I − P )u(t) + Pu(t), where

(I − P )u(t) = etA(I − P )u0 +
∫ t

0
e(t−s)A(I − P )f(s)ds,

and

Pu(t) = etAPu0 +
∫ t

0
e(t−s)APf(s)ds

= etAPu0 +
(∫ +∞

0
−

∫ +∞

t

)
e(t−s)APf(s)ds

= etA
(
Pu0 +

∫ +∞

0
e−sAPf(s)ds

)
−

∫ +∞

t
e(t−s)APf(s)ds.

For every t ≥ 0 we have

‖(I − P )u(t)‖ ≤ Mωe
−ωt‖(I − P )u0‖+

∫ t

0
Mωe

−ω(t−s)ds sup
0≤s≤t

‖(I − P )f(s)‖

≤ Mω‖(I − P )‖
(
‖u0‖+

1
ω
‖f‖∞

)
,

so that (I−P )u is bounded in [0,+∞) with values in X. The integral
∫ +∞
t e(t−s)APf(s)ds

is bounded too, and its norm does not exceed

Nω

∫ ∞

t
eω(t−s)ds sup

s≥0
‖Pf(s)‖ =

Nω

ω
‖P‖ ‖f‖∞.

Hence u is bounded if and only if t 7→ etA
(
Pu0 +

∫ +∞
0 e−sAPf(s)ds

)
is bounded. On the

other hand y := Pu0 +
∫ +∞
0 e−sAPf(s)ds is an element of P (X). By Corollary 5.2.2, etAy

is bounded if and only if y = 0, namely (5.16) holds. In this case, u is given by (5.17). �

Now we consider a backward problem,{
v′(t) = Av(t) + g(t), t ≤ 0,

v(0) = v0,
(5.18)
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where g : (−∞, 0] → X is a bounded and continuous function, and v0 ∈ X.
Problem (5.18) is in general ill posed, and to find a solution we will have to assume

rather restrictive conditions on the data. On the other hand, such conditions will ensure
nice regularity properties of the solutions.

Note that the variation of constants formula (4.4) is well defined only for forward
problems. Therefore, we have to make precise the concept of mild solution. A function
v ∈ C((−∞, 0];X) is said to be a mild solution of (5.18) in (−∞, 0] if v(0) = v0 and for
each a < 0 we have

v(t) = e(t−a)Av(a) +
∫ t

a
e(t−s)Ag(s)ds, a ≤ t ≤ 0. (5.19)

In other words, v is a mild solution of (5.18) if and only if for every a < 0, setting y = v(a),
v is a mild solution of the problem{

v′(t) = Av(t) + g(t), a < t ≤ 0,

v(a) = y,
(5.20)

and moreover v(0) = v0.

Proposition 5.3.2 Let g ∈ Cb((−∞, 0];X), v0 ∈ X. Then problem (5.18) has a mild
solution v ∈ Cb((−∞, 0];X) if and only if

(I − P )v0 =
∫ 0

−∞
e−sA(I − P )g(s)ds. (5.21)

If (5.21) holds, the bounded mild solution is unique and it is given by

v(t) = etAPv0 +
∫ t

0
e(t−s)APg(s)ds+

∫ t

−∞
e(t−s)A(I − P )g(s)ds, t ≤ 0. (5.22)

Proof. Assume that (5.18) has a bounded mild solution v. Then for every a < 0 and for
every t ∈ [a, 0] we have v(t) = (I − P )v(t) + Pv(t), where

(I − P )v(t) = e(t−a)A(I − P )v(a) +
∫ t

a
e(t−s)A(I − P )g(s)ds

= e(t−a)A(I − P )v(a) +
(∫ t

−∞
−

∫ a

−∞

)
e(t−s)A(I − P )g(s)ds

= e(t−a)A

(
(I − P )v(a)−

∫ a

−∞
e(a−s)A(I − P )g(s)ds

)
+ v1(t)

= e(t−a)A((I − P )v(a)− v1(a)) + v1(t).

The function

v1(t) :=
∫ t

−∞
e(t−s)A(I − P )g(s)ds, t ≤ 0,

is bounded in (−∞, 0]. Indeed,

‖v1(t)‖ ≤Mω sup
s≤0

‖(I − P )g(s)‖
∫ t

−∞
e−ω(t−s)ds ≤ Mω

ω
‖I − P‖ ‖g‖∞. (5.23)
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Moreover v is bounded by assumption, hence supa≤0 ‖(I − P )v(a)‖ < +∞. Letting a →
−∞ and using estimate (5.9) we get

(I − P )v(t) = v1(t), t ≤ 0.

Taking t = 0, we get (5.21). On the other hand, Pv is a mild (in fact, strict) solution to
w′(t) = Aw(t) +Pg(t), and since Pv(0) = Pv0, by Exercise 5 in §5.2.5, we have for t ≤ 0,

Pv(t) = etAPv0 +
∫ t

0
e(t−s)APg(s)ds.

Summing up, v is given by (5.22).
Conversely, assume that (5.21) holds, and define the function v(t) := v1(t) + v2(t),

where v1 is defined above and v2(t) := etAPv0 +
∫ t
0 e

(t−s)APg(s)ds. Then v1 is bounded
by estimate (5.23), and v2 is bounded by Exercise 5 in §5.2.5 again, so that v is bounded.

One checks easily that v is a mild solution of (5.20) for every a < 0, and, since (5.21)
holds, we have v(0) = Pv0 +

∫ 0
−∞ e−sA(I − P )g(s)ds = Pv0 + (I − P )v0 = v0. Then v is

a bounded mild solution to (5.18). �

5.4 Solutions with exponential growth and exponential de-
cay

We now replace assumption (5.3) by

σ(A) ∩ {λ ∈ C : Reλ = ω} = ∅, (5.24)

for some ω ∈ R. Note that (5.24) is satisfied by every ω > s(A). If I is any (unbounded)
interval and ω ∈ R we set

Cω(I;X) := {f : I → X continuous, ‖f‖Cω := sup
t∈I

‖e−ωtf(t)‖ < +∞}.

Let f ∈ Cω((0,+∞);X), g ∈ Cω((−∞, 0);X). Since et(A−ωI) = e−ωtetA, one checks
easily that problems (5.15) and (5.18) have mild solutions u ∈ Cω((0,+∞);X), v ∈
Cω((−∞, 0];X) if and only if the problems{

ũ′(t) = (A− ωI)ũ(t) + e−ωtf(t), t > 0,

u(0) = u0,
(5.25)

{
ṽ′(t) = (A− ωI)ṽ(t) + e−ωtg(t), t ≤ 0,

v(0) = v0,
(5.26)

have mild solutions ũ ∈ Cb((0,+∞);X), ṽ ∈ Cb((−∞, 0];X), and in this case we have
u(t) = eωtũ(t), v(t) = eωtṽ(t). On the other hand, the operator Ã = A− ωI : D(A) → X
is sectorial and hyperbolic, hence all the results of the previous section may be applied to
problems (5.25) and (5.26). Note that such results involve the spectral projection relative
to σ+(Ã), i.e. the operator

1
2πi

∫
γ+

R(λ,A− ωI)dλ =
1

2πi

∫
γ++ω

R(z,A)dz := Pω, (5.27)
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where the path γ+ + ω surrounds σω
+ := {λ ∈ σ(A) : Reλ > ω} and is contained in the

halfplane {Reλ > ω}. Set moreover σω
− := {λ ∈ σ(A) : Reλ < ω}. Note that if ω > s(A)

then Pω = 0.
Applying the results of Propositions 5.3.1 and 5.3.2 we get the following theorem.

Theorem 5.4.1 Under assumption (5.24) let Pω be defined by (5.27). The following
statements hold:

(i) If f ∈ Cω((0,+∞);X) and u0 ∈ X, the mild solution u of problem (5.15) belongs to
Cω((0,+∞);X) if and only if

Pωu0 = −
∫ +∞

0
e−s(A−ωI)e−ωsPωf(s)ds,

that is (2)

Pωu0 = −
∫ +∞

0
e−sAPωf(s)ds.

In this case u is given by (5.17), and there exists C1 = C1(ω) such that

sup
t≥0

‖e−ωtu(t)‖ ≤ C1(‖u0‖+ sup
t≥0

‖e−ωtf(t)‖).

(ii) If g ∈ Cω((−∞, 0);X) and v0 ∈ X, problem (5.18) has a mild solution v ∈ Cω((−∞,
0];X) if and only if (5.21) holds. In this case the solution is unique in Cω((−∞, 0];X)
and it is given by (5.22). There is C2 = C2(ω) such that

sup
t≤0

‖e−ωtv(t)‖ ≤ C2(‖v0‖+ sup
t≤0

‖e−ωtg(t)‖).

Remark 5.4.2 The definition 5.3 of a hyperbolic operator requires that X be a complex
Banach space, and the proofs of the properties of P , PetA etc., rely on properties of
Banach space valued holomorphic functions.

If X is a real Banach space, we have to use the complexification of X as in Remark
1.3.17. If A : D(A) → X is a linear operator such that the complexification Ã is sectorial
in X̃, the projection P maps X into itself. To prove this claim, it is convenient to choose
as γ+ a circumference C = {ω′ + reiη : η ∈ [0, 2π]} with centre ω′ on the real axis. For
each x ∈ X we have

Px =
1
2π

∫ 2π

0
reiηR(ω′ + reiη, A)x dη

=
r

2π

∫ π

0

(
eiηR(ω′ + reiη, A)− e−iηR(ω′ + re−iη, A)

)
x dη,

and the imaginary part of the function in the integral is zero. Therefore, P (X) ⊂ X, and
consequently (I −P )(X) ⊂ X. Thus, the results of the last two sections remain true even
if X is a real Banach space.

2Note that since σω
+ is bounded, etAPω is well defined also for t < 0, and the results of Proposition 5.2.1

hold, with obvious modifications.
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Example 5.4.3 Consider the nonhomogeneous heat equation
ut(t, x) = uxx(t, x) + f(t, x), t > 0, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

(5.28)

where f : [0,+∞)× [0, 1] → R is continuous, u0 is continuous and vanishes at x = 0, x = 1.
We choose as usual X = C([0, 1]), A : D(A) = {u ∈ C2([0, 1]) : u(0) = u(1) = 0} → X,
Au = u′′. Since s(A) = −π2, then A is hyperbolic, and in this case the projection P defined
in (5.6) vanishes. Proposition 5.3.1 implies that for every bounded and continuous f and
for every u0 ∈ C([0, 1]) such that u0(0) = u0(1) = 0, the solution of (5.28) is bounded.
Note that u0(0) = u0(1) = 0 is a compatibility condition (i.e. a necessary condition) for
the solution of problem (5.28) to be continuous up to t = 0 and to satisfy u(0, ·) = u0.

As far as exponentially decaying solutions are concerned, we use Theorem 5.4.1(i).
Fixed ω 6= π2n2 for each n ∈ N, f continuous and such that

sup
t≥0, 0≤x≤1

|eωtf(t, x)| < +∞

the solution u of (5.28) satisfies

sup
t≥0, 0≤x≤1

|eωtu(t, x)| < +∞

if and only if (5.16) holds. This is equivalent to (see Example 5.2.4)∫ 1

0
u0(x) sin(kπx) dx = −

∫ +∞

0
ek

2π2s

∫ 1

0
f(s, x) sin(kπx) dx ds,

for every natural number k such that π2k2 < ω. (We remark that since A sin(kπx) =
−k2π2 sin(kπx) we have etA sin(kπx) = e−tπ2k2

sin(kπx), for every t ∈ R).
Let us now consider the backward problem

vt(t, x) = vxx(t, x) + g(t, x), t < 0, 0 ≤ x ≤ 1,

v(t, 0) = v(t, 1) = 0, t ≤ 0,

v(0, x) = v0(x), 0 ≤ x ≤ 1,

(5.29)

to which we apply Proposition 5.3.2. Since P = 0, if g : (−∞, 0] × [0, 1] → R is bounded
and continuous, there is only a final datum v0 such that the solution is bounded, and it is
given by (see formula (5.21))

v0(x) =
(∫ 0

−∞
e−sAg(s, ·)ds

)
(x), 0 ≤ x ≤ 1.

By Theorem 5.4.1(i), a similar conclusion holds if g is continuous and it decays exponen-
tially,

sup
t≤0, 0≤x≤1

|e−ωtg(t, x)| < +∞

with ω > 0.



76 Chapter 5

Exercises 5.4.4

1. Let A be a hyperbolic sectorial operator. Using Propositions 5.3.1 and 5.3.2, prove
that for every h ∈ Cb(R;X) the problem

z′(t) = Az(t) + h(t), t ∈ R, (5.30)

has a unique mild solution z ∈ Cb(R;X), given by

z(t) =
∫ t

−∞
e(t−s)A(I − P )h(s)ds−

∫ ∞

t
e(t−s)APh(s)ds, t ∈ R.

(The definition of a mild solution of (5.30) is like the definition of a mild solution to
(5.18)). Prove that

(i) if h is constant, then z is constant;

(ii) if limt→+∞ h(t) = h∞ (respectively, limt→−∞ h(t) = h−∞) then

lim
t→+∞

z(t) =
∫ +∞

0
esA(I − P )h∞ds−

∫ 0

−∞
esAPh∞ds

(respectively, the same with +∞ replaced by −∞);

(iii) if h is T -periodic, then z is T -periodic.

2. Prove that the spectrum of the realization of the Laplacian in Cb(RN ) and in Lp(RN )
(1 ≤ p < +∞) is (−∞, 0].

[Hint: To prove that λ ≤ 0 belongs to σ(∆), use or approximate the functions
f(x1, . . . , xN ) = ei

√
−λx1 ].

3. Let Ω be a bounded open set with a boundary of class C2. Let moreover

D(A1) =
{
u ∈

⋂
1≤p<+∞

W 2,p(Ω) : ∆u ∈ C(Ω), u = 0 on ∂Ω
}
,

D(A2) =
{
u ∈

⋂
1≤p<+∞

W 2,p(Ω) : ∆u ∈ C(Ω),
∂u

∂n
= 0 on ∂Ω

}
and Aiu = ∆u for any u ∈ D(Ai), i = 1, 2.

Show that A1 and A2 have compact resolvent and that s(A1) < 0 and s(A2) = 0.
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Nonlinear problems

6.1 Nonlinearities defined in X

Consider the initial value problem{
u′(t) = Au(t) + F (t, u(t)), t > 0,

u(0) = u0,
(6.1)

where A : D(A) ⊂ X → X is a sectorial operator and F : [0, T ] ×X → X. Throughout
this section we shall assume that F is continuous, and that for every R > 0 there is L > 0
such that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖, t ∈ [0, T ], x, y ∈ B(0, R). (6.2)

This means that F is Lipschitz continuous with respect to x on any bounded subset of X,
with Lipschitz constant independent of t.

As in the case of linear problems, we say that a function u defined in an interval
I = [0, τ) or I = [0, τ ], with τ ≤ T , is a strict solution of problem (6.1) in I if it is
continuous with values in D(A) and differentiable with values in X in the interval I, and
it satisfies (6.1). We say that it is a classical solution if it is continuous with values in
D(A) and differentiable with values in X in the interval I \ {0}, it is continuous in I with
values in X, and it satisfies (6.1). We say that it is a mild solution if it is continuous with
values in X in I \ {0} and it satisfies

u(t) = etAu0 +
∫ t

0
e(t−s)AF (s, u(s))ds, t ∈ I. (6.3)

By Proposition 4.1.2 every strict or classical solution satisfies (6.3).
For notational convenience, throughout this section we set

M0 = sup
0≤t≤T

‖etA‖L(X). (6.4)

6.1.1 Local existence, uniqueness, regularity

It is natural to solve (6.3) using a fixed point theorem to find a mild solution, and then
to show that, under appropriate assumptions, the mild solution is classical or strict.

Theorem 6.1.1 The following statements hold.

77
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(a) If u, v ∈ Cb((0, a];X) are mild solutions for some a ∈ (0, T ], then u ≡ v.

(b) For every u ∈ X there exist r, δ > 0, K > 0 such that for ‖u0 − u‖ ≤ r problem
(6.1) has a mild solution u = u(·;u0) ∈ Cb((0, δ];X). The function u belongs to
C([0, δ];X) if and only if u0 ∈ D(A).

Moreover for every u0, u1 ∈ B(u, r) we have

‖u(t;u0)− u(t;u1)‖ ≤ K‖u0 − u1‖, 0 ≤ t ≤ δ. (6.5)

Proof. Proof of (a). Let u, v ∈ Cb((0, a];X) be mild solutions to (6.1) and set w = v− u.
By (6.3), the function w satisfies

w(t) =
∫ t

0
e(t−s)A (F (s, v(s))− F (s, u(s))) ds, 0 ≤ t < a.

Using (6.2) with R = max{sup0<t≤a ‖u(t)‖, sup0<t≤a ‖v(t)‖} we see that

‖w(t)‖ ≤ LM0

∫ t

0
‖w(s)‖ds.

The Gronwall lemma (see Exercise 3 in §1.2.4) implies that w = 0 in [0, a].

Proof of (b). Fix R > 0 such that R ≥ 8M0‖u‖, so that if ‖u0 − u‖ ≤ r = R/(8M0)
we have

sup
0≤t≤T

‖etAu0‖ ≤ R/4.

Here M0 is given by (6.4). Moreover, let L > 0 be such that

‖F (t, v)− F (t, w)‖ ≤ L‖v − w‖, 0 ≤ t ≤ T, v, w ∈ B(0, R).

We look for a mild solution belonging to the metric space

Y = {u ∈ Cb((0, δ];X) : ‖u(t)‖ ≤ R ∀t ∈ (0, δ]},

where δ ∈ (0, T ] has to be chosen properly. Y is the closed ball with centre at 0 and radius
R in the space Cb((0, δ];X), and for every v ∈ Y the function t 7→ F (t, v(t)) belongs to
Cb((0, δ];X). We define the operator Γ in Y , by means of

Γ(v)(t) = etAu0 +
∫ t

0
e(t−s)AF (s, v(s))ds, 0 ≤ t ≤ δ. (6.6)

Clearly, a function v ∈ Y is a mild solution of (6.1) in [0, δ] if and only if it is a fixed point
of Γ.

We shall show that Γ is a contraction and maps Y into itself provided that δ is suffi-
ciently small.

Let v1, v2 ∈ Y . We have

‖Γ(v1)− Γ(v2)‖Cb((0,δ];X) ≤ δM0‖F (·, v1(·))− F (·, v2(·))‖Cb((0,δ];X)

≤ δM0L‖v1 − v2‖Cb((0,δ];X).
(6.7)
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Therefore, if
δ ≤ δ0 = (2M0L)−1,

Γ is a contraction with constant 1/2 in Y . Moreover if δ ≤ δ0, for every v ∈ Y we have

‖Γ(v)‖Cb((0,δ];X) ≤ ‖Γ(v)− Γ(0)‖Cb((0,δ];X) + ‖Γ(0)‖C((0,δ];X)

≤ R/2 + ‖e·Au0‖Cb((0,δ];X) +M0δ‖F (·, 0)‖Cb((0,δ];X)

≤ R/2 +R/4 +M0δ‖F (·, 0)‖Cb((0,δ];X).

(6.8)

Therefore if δ ≤ δ0 is such that

M0δ‖F (·, 0)‖Cb((0,δ];X) ≤ R/4,

then Γ maps Y into itself, so that it has a unique fixed point in Y .
Concerning the continuity of u up to t = 0, we remark that the function t 7→ u(t)−etAu0

belongs to C([0, δ];X), whereas by Proposition 1.3.6(i) t 7→ etAu0 belongs to C([0, δ];X)
if and only if u0 ∈ D(A). Therefore, u ∈ C([0, δ];X) if and only if u0 ∈ D(A).

Let us prove the statement about the dependence on the initial data. Let u0, u1 belong
to B(u, r). Since Γ is a contraction with constant 1/2 in Y and both u(·;u0), u(·;u1) belong
to Y , we have

‖u(·;u0)− u(·;u1)‖Cb((0,δ];X) ≤ 2‖e·A(u0 − u1)‖Cb((0,δ];X) ≤ 2M0‖u0 − u1‖,

so that (6.5) holds, with K = 2M0. �

6.1.2 The maximally defined solution

Now we can construct a maximally defined solution as follows. Set
τ(u0) = sup{a > 0 : problem (6.1) has a mild solution ua in [0, a]}

u(t) = ua(t), if t ≤ a.

Recalling Theorem 6.1.1(a), u is well defined in the interval

I(u0) := ∪{[0, a] : problem (6.1) has a mild solution ua in [0, a]},

and we have τ(u0) = sup I(u0).
Let us now prove results concerning regularity and existence in the large of the solution.

Proposition 6.1.2 Assume that there is θ ∈ (0, 1) such that for every R > 0 we have

‖F (t, x)− F (s, x)‖ ≤ C(R)(t− s)θ, 0 ≤ s ≤ t ≤ T, ‖x‖ ≤ R. (6.9)

Then, for every u0 ∈ X, u ∈ Cθ([ε, τ(u0) − ε];D(A)) ∩ C1+θ([ε, τ(u0) − ε];X) and u′ ∈
B([ε, τ(u0) − ε];DA(θ,∞)) for every ε ∈ (0, τ(u0)/2). Moreover the following statements
hold.

(i) If u0 ∈ D(A) then u is a classical solution of (6.1).

(ii) If u0 ∈ D(A) and Au0 + F (0, u0) ∈ D(A) then u is a strict solution of (6.1).
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Proof. Let a < τ(u0) and 0 < ε < a. Since t 7→ F (t, u(t)) belongs to Cb((0, a];X), Propo-
sition 4.1.5 implies that the function v(t) :=

∫ t
0 e

(t−s)AF (s, u(s))ds belongs to Cα([0, a];X).
Moreover, t 7→ etAu0 belongs to C∞([ε, a];X). Summing up, we find that u belongs to
Cθ([ε, a];X). Assumptions (6.2) and (6.9) imply that the function t 7→ F (t, u(t)) belongs
to Cθ([ε, a];X). Since u satisfies

u(t) = e(t−ε)Au(ε) +
∫ t

ε
e(t−s)AF (s, u(s))ds, ε ≤ t ≤ a, (6.10)

we may apply Theorem 4.1.7 in the interval [ε, a] (see Remark 4.1.12), and we get u ∈
Cθ([2ε, a]; D(A)) ∩ C1+θ([2ε, a];X) for each ε ∈ (0, a/2), and

u′(t) = Au(t) + F (t, u(t)), ε < t ≤ a.

Exercise 2 in §4.1.13 implies that u′ is bounded with values in DA(θ,∞) in [2ε, a]. Since
a and ε are arbitrary, then u ∈ Cθ([ε, τ(u0)− ε];D(A)) ∩ C1+θ([ε, τ(u0)− ε];X) for each
ε ∈ (0, τ(u0)/2). If u0 ∈ D(A), then t 7→ etAu0 is continuous up to 0, and statement (i)
follows.

Let us prove (ii). By Proposition 4.1.5, we already know that the function v defined
above is θ-Hölder continuous up to t = 0 with values in X. Since u0 ∈ D(A) ⊂ DA(θ,∞),
then the function t 7→ etAu0 is θ-Hölder continuous up to t = 0, too. Therefore u is
θ-Hölder continuous up to t = 0 with values in X, so that t 7→ F (t, u(t)) is θ-Hölder
continuous in [0, a] with values in X. Statement (ii) follows now from Theorem 4.1.7(ii).
�

Proposition 6.1.3 Let u0 be such that I(u0) 6= [0, T ]. Then t 7→ ‖u(t)‖ is unbounded in
I(u0).

Proof. Assume by contradiction that u is bounded in I(u0) and set τ = τ(u0). Then
t 7→ F (t, u(t;u0)) is bounded and continuous with values in X in the interval (0, τ). Since
u satisfies the variation of constants formula (6.3), it may be continuously extended to
t = τ , in such a way that the extension is Hölder continuous in every interval [ε, τ ], with
0 < ε < τ . Indeed, t 7→ etAu0 is well defined and analytic in the whole halfline (0,+∞),
and u− etAu0 belongs to Cα([0, τ ];X) for each α ∈ (0, 1) by Proposition 4.1.5.

By Theorem 6.1.1, the problem

v′(t) = Av(t) + F (t, v(t)), t ≥ τ, v(τ) = u(τ),

has a unique mild solution v ∈ C([τ, τ + δ];X) for some δ > 0. Note that v is continuous
up to t = τ because u(τ) ∈ D(A) (why? See Exercise 6, §6.1.5, for a related stronger
statement).

The function w defined by w(t) = u(t) for 0 ≤ t < τ , and w(t) = v(t) for τ ≤ t ≤ τ +δ,
is a mild solution of (6.1) in [0, τ + δ]. See Exercise 2 in §6.1.5. This is in contradiction
with the definition of τ . Therefore, u cannot be bounded. �

Note that the proof of proposition 6.1.3 shows also that if I(u0) 6= [0, T ] then τ(u0) =
sup I(u0) /∈ I(u0).

The result of Proposition 6.1.3 is used to prove existence in the large when we have an
a priori estimate on the norm of u(t). Such a priori estimate is easily available for each
u0 if f does not grow more than linearly as ‖x‖ → +∞. Note that Proposition 6.1.3 and
next Proposition 6.1.4 are quite similar to the case of ordinary differential equations.
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Proposition 6.1.4 Assume that there is C > 0 such that

‖F (t, x)‖ ≤ C(1 + ‖x‖) x ∈ X, t ∈ [0, T ]. (6.11)

Let u : I(u0) → X be the mild solution to (6.1). Then u is bounded in I(u0) with values
in X. Consequently, I(u0) = [0, T ].

Proof. For each t ∈ I(u0) we have

‖u(t)‖ ≤M0‖u0‖+M0C

∫ t

0
(1 + ‖u(s)‖)ds = M0‖u0‖+M0C

(
T +

∫ t

0
‖u(s)‖ds

)
.

Applying the Gronwall lemma to the real-valued function t 7→ ‖u(t)‖ we get

‖u(t)‖ ≤ (M0‖u0‖+M0CT )eM0Ct, t ∈ I(u0),

and the statement follows. �

We remark that (6.11) is satisfied if F is globally Lipschitz continuous with respect to
x, with Lipschitz constant independent of t.

Exercises 6.1.5

1. Let F : [0, T ]×X → X be a continuous function. Prove that

(a) if F satisfies (6.2) and u ∈ Cb((0, δ];X) with 0 < δ ≤ T , then the composition
ϕ(t) := F (t, u(t)) belongs to Cb((0, δ];X),

(b) if F satisfies (6.2) and (6.9), and u ∈ Cθ([a, b];X) with 0 ≤ a < b ≤ T ,
0 < θ < 1, then the composition ϕ(t) := F (t, u(t)) belongs to Cθ([a, b];X).

These properties have been used in the proofs of Theorem 6.1.1 and of Proposition
6.1.2.

2. Prove that if u is a mild solution to (6.1) in an interval [0, t0] and v is a mild solution
to {

v′(t) = Av(t) + F (t, v(t)), t0 < t ≤ t1,

v(t0) = u(t0),

then the function z defined by z(t) = u(t) for 0 ≤ t ≤ t0, and z(t) = v(t) for
t0 ≤ t ≤ t1, is a mild solution to (6.1) in the interval [0, t1].

3. Under the assumptions of Theorem 6.1.1, for t0 ∈ (0, T ) let u(·; t0, x) : [t0, τ(t0, x)) →
X be the maximally defined solution to problem u′ = Au+F (t, u), t > t0, u(t0) = x.

(a) Prove that for each a ∈ (0, τ(0, x)) we have τ(a, u(a; 0, x)) = τ(0, x) and for
t ∈ [a, τ(0;x)) we have u(t; a, u(a; 0, x)) = u(t; 0, x).

(b) Prove that if F does not depend on t, then τ(0, u(a; 0, x)) = τ(0, x)− a, and for
t ∈ [0, τ(0, x)− a) we have u(t; 0, u(a; 0, x)) = u(a+ t; 0, x).

4. Under the assumptions of Theorem 6.1.1 and with the notation of Exercise 3, prove
that for each u0 and for each b ∈ (0, τ(0, u0)) there are r > 0, K > 0 such that if
‖u0 − u1‖ ≤ r then τ(0, u1) ≥ b and ‖u(t; 0, u0)− u(t; 0, u1)‖ ≤ K‖u0 − u1‖ for each
t ∈ [0, b].

[Hint: cover the orbit {u(t; 0, u0) : 0 ≤ t ≤ b} with a finite number of balls as in the
statement of Theorem 6.1.1].
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5. (A variant of Theorem 6.1.1) Let O be a nonempty open set in X, and let F :
[0, T ]×O → X be a continuous function which is locally Lipschitz continuous in x,
uniformly with respect to time, i.e. for each x0 ∈ O there are r > 0, L > 0 such
that ‖F (t, x) − F (t, y)‖ ≤ L‖x − y‖ for each x, y ∈ B(x0, r). Prove that for every
u ∈ O there exist s, δ > 0, K > 0 such that for every u0 ∈ D(A) ∩ B(u, s) the
problem (6.1) has a unique mild solution u = u(·;u0) ∈ C([0, δ];X). Moreover for
u0, u1 ∈ D(A) ∩B(u, s) we have

‖u(t;u0)− u(t;u1)‖ ≤ K‖u0 − u1‖, 0 ≤ t ≤ δ.

[Hint: follow the proof of Theorem 6.1.1, with Y = B(0, ρ) ⊂ C([0, δ];X), but now
ρ has to be small].

6. Prove that if F satisfies (6.2), then for every u0 ∈ X, the mild solution u of problem
(6.1) is bounded with values in DA(β,∞) in the interval [ε, τ(u0) − ε], for each
β ∈ (0, 1) and ε ∈ (0, τ(u0)/2).

6.2 Reaction–diffusion equations and systems

Let us consider a differential system in [0, T ] × Rn. Let d1, . . . , dm > 0 and let D be the
diagonal matrix D = diag(d1, . . . , dm). Consider the problem{

ut(t, x) = D∆u(t, x) + f(t, x, u(t, x)), t > 0, x ∈ Rn;

u(0, x) = u0(x), x ∈ Rn,
(6.12)

where u = (u1, . . . , um) is unknown, and the regular function f : [0, T ]×Rn ×Rm → Rm,
the bounded and continuous u0 : Rn → Rm are given.

This type of problems are often encountered as mathematical models in chemistry and
in biology. The part D∆u in the system is called the diffusion part, the numbers di are
called the diffusion coefficients, f(t, x, u) is called the reaction part. Detailed treatments
of these problems may be found in the books of Rothe [14], Smoller [15], Pao [12].

Set
X = Cb(Rn; Rm).

The linear operator A defined by D(A) = {u ∈W 2,p
loc (Rn; Rm), p ≥ 1 : u, ∆u ∈ X},

A : D(A) → X, Au = D∆u,

is sectorial in X, see Section 2.3 and Exercise 1 in §1.3.18, and

D(A) = BUC(Rn; Rm).

We assume that f is continuous, and that there exists θ ∈ (0, 1) such that for every R > 0
there is K = K(R) > 0 such that

|f(t, x, u)− f(s, x, v)|Rm ≤ K((t− s)θ + |u− v|Rm), (6.13)

for 0 ≤ s < t ≤ T , x ∈ Rn, u, v ∈ Rm, |u|Rm , |v|Rm ≤ R. Moreover we assume that

sup
0≤t≤T, x∈Rn

f(t, x, 0) < +∞, (6.14)
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so that for every ϕ ∈ Cb(Rn; Rm) and t ∈ [0, T ] the composition f(t, ·, ϕ(·)) is in Cb(Rn; Rm).
Then we may apply the general results of Section 6.1 to get a regular solution of problem
(6.12).

Proposition 6.2.1 Under the above assumptions, for each u0 ∈ Cb(Rn,Rm) there are
a maximal interval I(u0) and a unique solution u to (6.12) in I(u0) × Rn, such that
u ∈ C(I(u0) × Rn; Rm), ut, Diu, and ∆u are bounded and continuous in the interval
[ε, τ(u0)− ε] for each ε ∈ (0, τ(u0)/2), where τ(u0) = sup I(u0).

Proof. Setting

F (t, ϕ)(x) = f(t, x, ϕ(x)), 0 ≤ t ≤ T, x ∈ Rn, ϕ ∈ X,

the function F : [0, T ]×X → X is continuous, and it satisfies (6.2) and (6.9). Indeed, fix
any ϕ1, ϕ2 ∈ B(0, R) ⊂ X. Then, for all x ∈ Rn, |ϕ1(x)|Rm ≤ R, |ϕ2(x)|Rm ≤ R, so that
for 0 ≤ s ≤ t ≤ T we get from (6.13)

|F (t, ϕ1)(x)− F (s, ϕ2)(x)| ≤ K((t− s)θ + |ϕ1(x)− ϕ2(x)|Rm),

which implies
‖F (t, ϕ1)− F (s, ϕ2)‖∞ ≤ K((t− s)θ + ‖ϕ1 − ϕ2‖∞).

The local existence and uniqueness Theorem 6.1.1 implies that there exists a unique mild
solution t 7→ u(t) ∈ Cb((0, δ];X) of (6.1), that may be extended to a maximal time interval
I(u0).

By Proposition 6.1.2, u, u′, and Au are continuous in (0, τ(u0)) with values in X
(in fact, they are Hölder continuous in each compact subinterval). Then the function
(t, x) 7→ u(t, x) := u(t)(x) is bounded and continuous in [0, a] × Rn for each a ∈ I(u0)
(why is it continuous up to t = 0? Compare with Section 2.3, part (a), and Proposition
4.1.5), and it is continuously differentiable with respect to t in I(u0) \ {0} × Rn.

Notice D(A) is continuously embedded in C1
b (Rn; Rm). This may be seen as a con-

sequence of (3.10), or it may be proved directly using estimate (3.12)(a) and then the
representation formula (1.22) for the resolvent. In any case, it follows that all the first
order space derivatives Diu are continuous in (0, τ(u0))×Rn too. The second order space
derivatives Diju(t, ·) are in Lp

loc(R
n; Rm), ∆u is continuous in I(u0)× Rn, and u satisfies

(6.12). �

Concerning existence in the large, Proposition 6.1.3 implies that if u is bounded in
I(u0)× Rn then I(u0) = [0, T ].

A sufficient condition for u to be bounded is given by Proposition 6.1.4:

|f(t, x, u)|Rm ≤ C(1 + |u|Rm), t ∈ [0, T ], x ∈ Rn, u ∈ Rm. (6.15)

Indeed, in this case the nonlinear function

F : [0, T ]×X → X, F (t, ϕ)(x) = f(t, x, ϕ(x))

satisfies (6.11), for

‖F (t, ϕ)‖∞ = sup
x∈Rn

|f(t, x, ϕ(x))|Rm ≤ C(1 + ‖ϕ‖∞).

Estimate (6.15) is satisfied if (6.13) holds with a constant K independent of R.
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Similar results hold for reaction – diffusion systems in [0, T ]×Ω, where Ω is a bounded
open set in Rn with C2 boundary.

The simplest case is a single equation,{
ut(t, x) = ∆u(t, x) + f(t, x, u(t, x)), t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,
(6.16)

with Dirichlet boundary condition,

u(t, x) = 0, t > 0, x ∈ ∂Ω, (6.17)

or Neumann boundary condition,

∂u(t, x)
∂n

= 0, t > 0, x ∈ ∂Ω. (6.18)

Here f : [0, T ]×Ω×R → R is a regular function satisfying (6.13); u0 : Ω → R is continuous
and satisfies the compatibility condition u0(x) = 0 for x ∈ ∂Ω in the case of the Dirichlet
boundary condition. Such a condition is necessary to have u continuous up to t = 0.

Again, we set our problem in the space X = C(Ω). Since the realization of the
Laplacian in C(Ω) with homogeneous Dirichlet conditions is a sectorial operator (see
Section 2.4), then problem (6.16) has a unique classical solution in a maximal time interval.
Arguing as before, we see that if there is C > 0 such that

|f(t, x, u)| ≤ C(1 + |u|) t ∈ [0, T ], x ∈ Ω, u ∈ R

then for each initial datum u0 the solution exists globally. But this assumption is rather
restrictive, and it is not satisfied in many mathematical models. In the next subsection
we shall see a more general assumption that yields existence in the large.

In this section, up to now we have chosen to work with real-valued functions just
because in most mathematical models the unknown u is real valued. But we could replace
Cb(Rn,Rm) and C(Ω; R) by Cb(Rn; Cm) and C(Ω; C) as well without any modification in
the proofs, getting the same results in the case of complex-valued data. On the contrary,
the results of the next subsection only hold for real-valued functions.

6.2.1 The maximum principle

Using the well known properties of the first and second order derivatives of real-valued
functions at relative maximum or minimum points it is possible to find estimates on the
solutions to several first or second order partial differential equations. Such techniques are
called maximum principles.

To begin with, we give a sufficient condition for the solution of (6.16)–(6.17) or of
(6.16)–(6.18) to be bounded (and hence, to exist in the large).

Proposition 6.2.2 Let Ω be a bounded open set in RN with C2 boundary, and let f :
[0, T ]× Ω× R → R be a continuous function satisfying

|f(t, x, u)− f(s, x, v)| ≤ K((t− s)θ + |u− v|),

for any 0 ≤ s < t ≤ T , any x ∈ Ω, any u, v ∈ R such that |u|, |v| ≤ R and for some
positive constant K = K(R). Assume moreover that

uf(t, x, u) ≤ C(1 + u2), 0 ≤ t ≤ T, x ∈ Ω, u ∈ R, (6.19)
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for some C ≥ 0. Then for each initial datum u0 the solution to (6.16)–(6.17) or to (6.16)–
(6.18) satisfies

sup
t∈I(u0), x∈Ω

|u(t, x)| < +∞.

If C = 0 in (6.19), then
sup

t∈I(u0), x∈Ω

|u(t, x)| = ‖u0‖∞.

Proof. Fix λ > C, a < τ(u0) and set

v(t, x) = u(t, x)e−λt, 0 ≤ t ≤ a, x ∈ Ω.

The function v satisfies

vt(t, x) = ∆v(t, x) + f(t, x, eλtv(t, x))e−λt − λv(t, x), 0 < t ≤ a, x ∈ Ω, (6.20)

and it satisfies the same boundary condition as u, and v(0, ·) = u0. Since v is continuous,
there exists (t0, x0) such that v(t0, x0) = ±‖v‖C([0,a]×Ω). (t0, x0) is either a point of positive
maximum or of negative minimum for v. Assume for instance that (t0, x0) is a maximum
point. If t0 = 0 we have obviously ‖v‖∞ ≤ ‖u0‖∞. If t0 > 0 and x0 ∈ Ω we rewrite
(6.20) at (t0, x0) and we multiply both sides by v(t0, x0) = ‖v‖∞. Since vt(t0, x0) ≥ 0 and
∆v(t0, x0) ≤ 0, we get

λ‖v‖2
∞ ≤ C(1 + |eλt0v(t0, x0)|2)e−2λt0 = C(1 + e2λt0‖v‖2

∞)e−2λt0 ,

so that
‖v‖2

∞ ≤ C

λ− C
.

Let us consider the case t0 > 0, x0 ∈ ∂Ω. If u satisfies the Dirichlet boundary condition,
then v(t0, x0) = 0. If u satisfies the Neumann boundary condition, we have Div(t0, x0) = 0
for each i, ∆v(t0, x0) ≤ 0 (see Exercise 2, §6.2.6), and we go on as in the case x0 ∈ Ω.

If (t0, x0) is a minimum point the proof is similar. Therefore we have

‖v‖∞ ≤ max{‖u0‖∞,
√
C/(λ− C)} (6.21)

so that
‖u‖∞ ≤ eλT max{‖u0‖∞,

√
C/(λ− C)}

and the first statement follows.
If C = 0 we obtain ‖u‖∞ ≤ eλT ‖u0‖∞ for every λ > 0 and letting λ → 0 the second

statement follows. �

A similar result holds if Ω is replaced by the whole space RN , but the proof has to be
adapted to the noncompact domain case. Indeed, if a function v is bounded and continuous
in [0, a] × RN , it may have no maximum or minimum points, in general. We state this
result, without a proof, in the following proposition.

Proposition 6.2.3 Let f : [0, T ] × RN × R → R be a continuous function satisfying the
assumptions of Proposition 6.2.2 with Ω replaced by RN . Consider problem (6.12) with
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m = 1, d1 = 1. Then for each bounded and continuous initial datum u0 the solution to
(6.12) satisfies

sup
t∈I(u0), x∈RN

|u(t, x)| < +∞,

and therefore it exists in the large. If C = 0 in (6.19), then

sup
t∈I(u0), x∈RN

|u(t, x)| = ‖u0‖∞.

Let us remark that (6.15) is a growth condition at infinity, while (6.19) is an algebraic
condition and it is not a growth condition. For instance, it is satisfied by f(t, x, u) =
λu − u2k+1 for each k ∈ N and λ ∈ R. The sign − is important: for instance, in the
problem 

ut = ∆u+ |u|1+ε, t > 0, x ∈ Ω,

∂u

∂n
(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u, x ∈ Ω,

(6.22)

with ε > 0 and constant initial datum u, the solution is independent of x and it coincides
with the solution to the ordinary differential equation{

ξ′(t) = |ξ(t)|1+ε, t > 0,

ξ(0) = u,

which blows up in a finite time if u > 0.

In the proof of Propositions 6.2.2 and 6.2.3 we used a property of the functions ϕ ∈
D(A), where A is either the realization of the Laplacian in Cb(RN ) or the realization of
the Laplacian with Dirichlet or Neumann boundary condition in C(Ω): if x ∈ Ω (and also
if x ∈ ∂Ω in the case of Neumann boundary conditions) is a relative maximum point for
ϕ, then ∆ϕ(x) ≤ 0. While this is obvious if ϕ ∈ C2(Ω), it has to be proved if ϕ is not
twice differentiable pointwise. We provide a proof only in the case of interior points.

Lemma 6.2.4 Let x0 ∈ RN , r > 0, and let ϕ : B(x0, r) → R be a continuous function.
Assume that ϕ ∈ W 2,p(B(x0, r)) for each p ∈ [1,+∞), that ∆ϕ is continuous, and that
x0 is a maximum (respectively, minimum) point for ϕ. Then ∆ϕ(x0) ≤ 0 (respectively,
∆ϕ(x0) ≥ 0).

Proof. Assume that x0 is a maximum point. Possibly replacing ϕ by ϕ + c, we may
assume ϕ(x) ≥ 0 for |x − x0| ≤ r. Let θ : RN → R be a smooth function with support
contained in B(x0, r), such that 0 ≤ θ(x) ≤ 1 for each x, θ(x0) > θ(x) for x 6= x0, and
∆θ(x0) = 0. Define

ϕ̃(x) =

{
ϕ(x)θ(x), x ∈ B(x0, r),

0, x ∈ RN \B(x0, r).

Then ϕ̃(x0) is the maximum of ϕ̃, and it is attained only at x = x0. Moreover, ϕ̃ and ∆ϕ̃
are continuous in the whole RN and vanish outside B(x0, r), so that there is a sequence
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(ϕ̃n)n∈N ⊂ C2
b (RN ) such that ϕ̃n → ϕ̃, ∆ϕ̃n → ∆ϕ̃ uniformly and each ϕ̃n has support

contained in the ball B(x0, 2r). For instance, we can take ϕ̃n = ηT (1/n)ϕ̃ where T (t) is
the heat semigroup defined in (2.8) and η is a smooth function with support contained in
B(x0, 2r) and equal to 1 in B(x0, r). Since x0 is the unique maximum point of ϕ̃, there is
a sequence (xn) ⊂ B(x0, 2r) converging to x0 as n→∞ such that xn is a maximum point
of ϕ̃n, for each n. Since ϕ̃n is twice continuously differentiable, we have ∆ϕ̃n(xn) ≤ 0.
Letting n→ +∞ we get ∆ϕ̃(x0) ≤ 0, and consequently ∆ϕ(x0) ≤ 0.

If x0 is a minimum point the proof is similar. �

The maximum principle may be also used in some systems. For instance, let us consider
ut(t, x) = ∆u(t, x) + f(u(t, x)), t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where the unknown u is a Rm-valued function, Ω is a bounded open set in RN with C2

boundary, f : Rm → Rm is a locally Lipschitz continuous function such that

〈y, f(y)〉 ≤ C(1 + |y|2), y ∈ Rm (6.23)

and u0 is a continuous function vanishing on ∂Ω.
As in the case of a single equation, it is convenient to fix a ∈ (0, τ(u0)) and to introduce

the function v : [0, a]× Ω → Rm, v(t, x) = u(t, x)e−λt with λ > C, that satisfies
vt(t, x) = ∆v(t, x) + f(eλtv(t, x))e−λt − λv(t, x), t > 0, x ∈ Ω,

v(t, x) = 0, t > 0, x ∈ ∂Ω,

v(0, x) = u0(x), x ∈ Ω.

Instead of |v| it is better to work with ϕ(t, x) = |v(t, x)|2 =
∑m

i=1 vi(t, x)2, which is more
regular. Let us remark that

ϕt = 2〈vt, v〉, Djϕ = 2〈Djv, v〉, ∆ϕ = 2
m∑

i=1

|Dvi|2 + 2〈v,∆v〉.

If (t0, x0) ∈ (0, a]×Ω is a positive maximum point for ϕ (i.e. for |v|) we have ϕt(t0, x0) ≥
0, ∆ϕ(t0, x0) ≤ 0 and hence 〈v(t0, x0),∆v(t0, x0)〉 ≤ 0. Writing the differential system at
(t0, x0) and taking the inner product with v(t0, x0) we get

0 ≤ 〈vt(t0, x0), v(t0, x0)〉

= 〈∆v(t0, x0), v(t0, x0)〉+ 〈f(eλt0v(t0, x0)), v(t0, x0)e−λt0〉 − λ|v(t0, x0)|2

≤ C(1 + |v(t0, x0)|2)− λ|v(t0, x0)|2

so that ‖v‖2
∞ ≤ C/(λ − C). Therefore, ‖v‖∞ ≤ max{‖u0‖∞,

√
C/(λ− C)}, and con-

sequently ‖u‖∞ ≤ eλT max{‖u0‖∞,
√
C/(λ− C)}, the same result as in the scalar case.

Therefore, u exists in the large.
The maximum principle is used also to prove qualitative properties of the solutions,

for instance to prove that the solutions are nonnegative for nonnegative initial data, or
nonpositive for nonpositive initial data.
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Consider for example the heat equation with Dirichlet boundary condition in a regular
bounded open set Ω ⊂ RN ,

ut(t, x) = ∆u(t, x), t > 0, x ∈ Ω,

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

with u0 = 0 on ∂Ω and u0(x) ≥ 0 for each x ∈ Ω. To show that u(t, x) ≥ 0 for each (t, x)
we consider the function v(t, x) := e−tu(t, x) which satisfies the same boundary condition
as u, v(0, x) = u0(x) and vt(t, x) = ∆v(t, x) − v(t, x). If v has a negative minimum at
(t0, x0), then t0 > 0, x0 ∈ Ω and hence vt(t0, x0) ≤ 0, ∆v(t0, x0) ≥ 0, contradicting the
equation at (t0, x0).

More general situations, even in nonlinear problems, can be treated with the following
comparison result.

Proposition 6.2.5 Let Ω ⊂ RN be a bounded open set, let f ∈ C1(R) and let u, v ∈
C([0, a]×Ω)∩C1((0, a]×Ω) be such that, for every t ∈ (0, a], u(t, ·), v(t, ·) ∈W 2,p(Ω) for
every p < +∞ and ∆u(t, ·),∆v(t, ·) ∈ C(Ω).

Assume that ut ≥ ∆u + f(u), vt ≤ ∆v + f(v) in (0, a] × Ω, that u(0, x) ≥ v(0, x) for
x ∈ Ω and that u(t, x) ≥ v(t, x) for (t, x) ∈ (0, a]×∂Ω. Then u(t, x) ≥ v(t, x) in [0, a]×Ω.

Proof. The function w = u− v has the same regularity properties as u, v, and it satisfies

wt(t, x) ≥ ∆w(t, x) + f(u(t, x))− f(v(t, x)) = ∆w(t, x) + h(t, x)w(t, x)

in (0, a]× Ω, where h(t, x) =
∫ 1
0 f

′ (v(t, x) + ξ(u(t, x)− v(t, x))) dξ is a bounded function.
Let λ > ‖h‖∞ and set z(t, x) := e−λtw(t, x). Then zt ≥ ∆z + (h − λ)z in (0, a] × Ω,
z(0, x) ≥ 0 for any x ∈ Ω, z(t, x) ≥ 0 for any t > 0, x ∈ ∂Ω so that, if z has a negative
minimum at (t0, x0), then t0 > 0, x0 ∈ Ω and therefore zt(t0, x0) ≤ 0, ∆z(t0, x0) ≥ 0 in
contradiction with the differential inequality satisfied by z at (t0, x0). Therefore z ≥ 0
everywhere, i.e., u ≥ v. �

As an application we consider the problem
ut(t, x) = ∆u(t, x) + λu(t, x)− ρu2(t, x), t > 0, x ∈ Ω,

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(6.24)

Here λ, ρ > 0. By comparing the solution u with the function v ≡ 0, it follows that
u(t, x) ≤ 0 if u0(x) ≤ 0 and u(t, x) ≥ 0 if u0(x) ≥ 0. Therefore, by Proposition 6.2.2,
τ(u0) = +∞ if u0 ≥ 0. See Exercise 4, §6.2.6.

Finally, let us see a system from combustion theory. Here u and v are a concentration
and a temperature, respectively, both normalized and rescaled. The numbers Le, ε, q are
positive parameters, Le is called the Lewis number. Ω is a bounded open set in RN with
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C2 boundary. The system is

ut(t, x) = Le∆u(t, x)− εu(t, x)f(v(t, x)), t > 0, x ∈ Ω,

vt(t, x) = ∆v(t, x) + qu(t, x)f(v(t, x)), t > 0, x ∈ Ω,

∂u

∂n
(t, x) = 0, v(t, x) = 1, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(6.25)

f is the Arrhenius function
f(v) = e−h/v,

with h > 0. The initial data u0 and v0 are continuous nonnegative functions, with v0 ≡ 1
on ∂Ω. Replacing the unknowns (u, v) by (u, v − 1), problem (6.25) reduces to a problem
with homogeneous boundary conditions, which we locally solve using the above techniques.

The physically meaningful solutions are such that u, v ≥ 0. Using the maximum
principle we can prove that for nonnegative initial data we get nonnegative solutions.

Let us consider u: if, by contradiction, there is a > 0 such that the restriction of u to
[0, a]× Ω has a negative minimum, say at (t0, x0) we have t0 > 0, x0 ∈ Ω and

0 ≥ ut(t0, x0) = Le∆u(t0, x0)− εu(t0, x0)f(v(t0, x0)) > 0,

a contradiction. Therefore u cannot have negative values.
To study the sign of v it is again convenient to introduce the function z(t, x) :=

e−λtv(t, x) with λ > 0. If there is a > 0 such that the restriction of z to [0, a] × Ω has a
negative minimum, say at (t0, x0) we have t0 > 0, x0 ∈ Ω and

0 ≥ zt(t0, x0) = ∆z(t0, x0)− λz(t0, x0) + qu(t0, x0)f(z(t0, x0)eλt0)e−λt0 > 0,

again a contradiction. Therefore, v too cannot have negative values.

Exercises 6.2.6

1. Prove the following additional regularity properties of the solution to (6.12):

(i) if u0 ∈ BUC(Rn,Rm), then u(t, x) → u0(x) as t→ 0, uniformly for x in Rn;

(ii) if for every R > 0 there is K = K(R) > 0 such that

|f(t, x, u)− f(s, y, v)|Rm ≤ K((t− s)θ + |x− y|θRn + |u− v|Rm),

for 0 ≤ s < t ≤ T , x, y ∈ Rn, u, v ∈ Rm, |u|Rm , |v|Rm ≤ R, then all the second order
derivatives Diju are continuous in I(u0)× Rn.

[Hint: u′ and F (t, u) belong to B([ε, τ(u0)−ε];DA(θ/2,∞)), hence u ∈ B([ε, τ(u0)−
ε];C2+θ

b (RN )). To show Hölder continuity of Diju with respect to t, proceed as in
Corollary 4.1.11].

2. Let Ω be an open set in RN with C1 boundary, and let x0 ∈ ∂Ω be a relative
maximum point for a C1 function v : Ω → R. Prove that if the normal derivative of
v vanishes at x0 then all the partial derivatives of v vanish at x0.

If ∂Ω and v are C2, prove that we also have ∆v(x0) ≤ 0.
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3. Construct explicitly a function θ as in the proof of Lemma 6.2.4.

4. Prove that for each continuous nonnegative initial function u0 such that u0 = 0 on
∂Ω, the solution to (6.24) exists in the large.

5. Show that the solution u to
ut(t, x) = ∆u(t, x) + u2(t, x)− 1, t ≥ 0, x ∈ Ω,

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω

u(0, x) = u0(x), x ∈ Ω

with u0 = 0 on ∂Ω and ‖u0‖∞ ≤ 1 exists in the large.

6. Let u be the solution to
ut(t, x) = uxx(t, x) + u2(t, x), t ≥ 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), x ∈ [0, 1]

with u0(0) = u0(1) = 0.

(i) Prove that if 0 ≤ u0(x) ≤ π2 sin(πx) for each x ∈ [0, 1], then u exists in the large.

[Hint: compare u with v(t, x) := π2 sin(πx)].

(ii) Set h(t) :=
∫ 1
0 u(t, x) sin(πx)dx and prove that h′(t) ≥ (π/2)h2 − π2h(t) for

each t ∈ I(u0). Deduce that if h(0) > 2π then u blows up (i.e., ‖u(t, ·)‖∞ becomes
unbounded) in finite time.

6.3 Nonlinearities defined in intermediate spaces

Let A : D(A) ⊂ X → X be a sectorial operator, and let Xα be any space of class Jα

between X and D(A), with α ∈ (0, 1). Consider the Cauchy problem{
u′(t) = Au(t) + F (t, u(t)), t > 0,

u(0) = u0,
(6.26)

where u0 ∈ Xα and F : [0, T ] ×Xα → X is a continuous function, for some T > 0. The
definition of strict, classical, or mild solution to (6.26) is similar to the definition in Section
6.1.

The Lipschitz condition (6.2) is replaced by a similar assumption: for each R > 0 there
exists L = L(R) > 0 such that

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖Xα , t ∈ [0, T ], x, y ∈ B(0, R) ⊂ Xα. (6.27)

Because of the embeddings D(A) ⊂ Xα ⊂ X, then t 7→ etA is analytic in (0,+∞) with
values in L(Xα). But the norm ‖etA‖L(Xα) could blow up as t → 0, see Exercise 5 in
§2.1.3. We want to avoid this situation, so we assume throughout

lim sup
t→0

‖etA‖L(Xα) < +∞. (6.28)
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It follows that ‖etA‖L(Xα) is bounded on every compact interval contained in [0,+∞).
Moreover, we set

M := sup
0≤t≤T

‖etA‖L(Xα). (6.29)

6.3.1 Local existence, uniqueness, regularity

As in the case of nonlinearities defined in the whole X, it is convenient to look for a local
mild solution at first, and then to see that under reasonable assumptions the solution is
classical or strict.

The proof of the local existence and uniqueness theorem for mild solutions is quite
similar to the proof of Theorem 6.1.1, but we need an extension of Proposition 4.1.5. We
set

Mk,α := sup{tk+α‖AketA‖L(X,Xα) : 0 < t ≤ T}, k = 0, 1, 2.

By Proposition 3.2.2(ii), Mk,α < +∞.
In the proof of the next results, we use the following generalization of the Gronwall

lemma, whose proof may be found for instance in [9, p. 188].

Lemma 6.3.1 Let 0 ≤ a < b < ∞, and let u : [a, b] → R be a nonnegative function,
bounded in any interval [a, b− ε], integrable and such that

u(t) ≤ k + h

∫ t

a
(t− s)−αu(s)ds, a ≤ t ≤ b,

with 0 ≤ α < 1, h, k > 0. Then there exists C1 > 0, independent of a, b, k such that

u(t) ≤ C1k, a ≤ t < b.

Using the generalized Gronwall Lemma and Exercise 1 in §4.1.13, the proof of the
local existence and uniqueness theorem for mild solutions goes on as the proof of Theorem
6.1.1, with minor modifications.

Theorem 6.3.2 The following statements hold.

(a) If u, v ∈ Cb((0, a];Xα) are mild solutions of (6.26) for some a ∈ (0, T ], then u ≡ v.

(b) For each u ∈ Xα there are r, δ > 0, K > 0 such that if ‖u0−u‖Xα ≤ r then problem
(6.26) has a mild solution u = u(·;u0) ∈ Cb((0, δ];Xα). The function u belongs to
C([0, δ];Xα) if and only if u0 ∈ D(A)

Xα := closure of D(A) in Xα.

Moreover, for u0, u1 ∈ B(u, r) we have

‖u(t;u0)− u(t;u1)‖Xα ≤ K‖u0 − u1‖Xα , 0 ≤ t ≤ δ. (6.30)

Proof. Proof of (a). The proof can be obtained arguing as in the proof of Theorem
6.1.1(a), using the generalized Gronwall lemma 6.3.1.

Proof of (b). Let M be defined by (6.29). Fix R > 0 such that R ≥ 8M‖u‖Xα , so that
if ‖u0 − u‖Xα ≤ r := R/(8M) then

sup
0≤t≤T

‖etAu0‖Xα ≤ R/4.
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Moreover, let L be such that

‖F (t, v)− F (t, w)‖ ≤ L‖v − w‖Xα 0 ≤ t ≤ T, v, w ∈ B(0, R) ⊂ Xα.

We look for a local mild solution of (6.26) in the metric space Y defined by

Y = {u ∈ Cb((0, δ];Xα) : ‖u(t)‖Xα ≤ R, ∀t ∈ (0, δ]},

where δ ∈ (0, T ] will be chosen later. The space Y is the closed ball with centre at 0
and radius R in Cb((0, δ];Xα), and for each v ∈ Y the function t 7→ F (t, v(t)) belongs to
Cb((0, δ];X). We define a nonlinear operator Γ in Y,

Γ(v)(t) = etAu0 +
∫ t

0
e(t−s)AF (s, v(s))ds, 0 ≤ t ≤ δ.

A function v ∈ Y is a mild solution to (6.26) in [0, δ] if and only if it is a fixed point of Γ.
We shall show that Γ is a contraction, and it maps Y into itself, provided δ is small

enough.
Let v1, v2 ∈ Y. By Exercise 1 in §4.1.13, Γ(v1) and Γ(v2) belong to Cb((0, δ];Xα) and

‖Γ(v1)− Γ(v2)‖C([0,δ];Xα) ≤ M0,α

1− α
δ1−α‖F (·, v1(·))− F (·, v2(·))‖Cb((0,δ];X)

≤ M0,α

1− α
δ1−αL‖v1 − v2‖Cb((0,δ];Xα).

Therefore, if

δ ≤ δ0 :=
(

2M0,αL

1− α

)−1/(1−α)

,

then Γ is a contraction in Y with constant 1/2. Moreover for each v ∈ Y and t ∈ [0, δ],
with δ ≤ δ0, we have

‖Γ(v)‖Cb((0,δ];Xα) ≤ ‖Γ(v)− Γ(0)‖Cb((0,δ];Xα) + ‖Γ(0)‖Cb((0,δ];Xα)

≤ R/2 + ‖e·Au0‖Cb((0,δ];Xα) + Cδ1−α‖F (·, 0)‖Cb((0,δ];X)

≤ R/2 +R/4 + Cδ1−α‖F (·, 0)‖C([0,δ];X).

Therefore, if δ ≤ δ0 is such that

Cδ1−α‖F (·, 0)‖C([0,δ];X) ≤ R/4,

then Γ maps Y into itself, and it has a unique fixed point in Y.
Concerning the continuity of u up to t = 0, we remark that the function t 7→ v(t) :=

u(t)− etAu0 is in C([0, δ];Xα), while t 7→ etAu0 belongs to C([0, δ];Xα) if and only if u0 ∈
D(A)

Xα . See Exercise 1, §6.3.7. Therefore, u ∈ C([0, δ];Xα) if and only if u0 ∈ D(A)
Xα .

The statements about continuous dependence on the initial data may be proved pre-
cisely as in Theorem 6.1.1. �

The local mild solution to problem (6.26) is extended to a maximal time interval I(u0)
as in §6.1.1. We still define τ(u0) := sup I(u0).

Without important modifications in the proofs it is also possible to deal with regu-
larity and behavior of the solution near τ(u0), obtaining results similar to the ones of
Propositions 6.1.2 and 6.1.3.
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Proposition 6.3.3 If there exists θ ∈ (0, 1) such that for every R > 0 we have

‖F (t, x)− F (s, x)‖ ≤ C(R)(t− s)θ, 0 ≤ s ≤ t ≤ T, ‖x‖Xα ≤ R, (6.31)

then the solution u of (6.26) belongs to Cθ([ε, τ(u0)− ε];D(A)) ∩ C1+θ([ε, τ(u0)− ε];X),
and u′ belongs to B([ε, τ − ε];DA(θ,∞)) for each ε ∈ (0, τ(u0)/2). Moreover, if also
u0 ∈ D(A) then u(·;u0) is a classical solution to (6.26). If u0 ∈ D(A) and Au0+F (0, u0) ∈
D(A) then u is a strict solution to (6.26).

Proposition 6.3.4 Let u0 ∈ Xα be such that I(u0) 6= [0, T ]. Then t 7→ ‖u(t)‖Xα is
unbounded in I(u0).

The simplest situation in which it is possible to show that ‖u(t)‖Xα is bounded in
I(u0) for each initial datum u0 is again the case when F grows not more than linearly
with respect to x as ‖x‖Xα → +∞.

Proposition 6.3.5 Assume that there exists C > 0 such that

‖F (t, x)‖ ≤ C(1 + ‖x‖Xα), t ∈ [0, T ], x ∈ Xα. (6.32)

Let u : I(u0) → Xα be the mild solution to (6.26). Then u is bounded in I(u0) with values
in Xα, and hence I(u0) = [0, T ].

Proof. Recall that
‖etAx‖Xα ≤

M0,α

tα
‖x‖, x ∈ X, 0 < t ≤ T.

For each t ∈ I(u0) we have

‖u(t)‖Xα ≤ M‖u0‖Xα +M0,α

∫ t

0
(t− s)−αC(1 + ‖u(s)‖Xα)ds

≤ M‖u0‖Xα + CM0,α

(
T 1−α

1− α
+

∫ t

0

‖u(s)‖Xα

(t− s)α
ds

)
.

The generalized Gronwall lemma implies the inequality

‖u(t)‖Xα ≤ C1

(
M‖u0‖Xα +

CM0,αT
1−α

1− α

)
, t ∈ I(u0),

and the statement follows. �

The growth condition (6.32) is apparently rather restrictive. If we have some a priori
estimate for the solution to (6.26) in the X-norm (this happens in several applications to
PDE’s), it is possible to find a priori estimates in the DA(θ,∞)-norm if F satisfies suitable
growth conditions, less restrictive than (6.32). Since DA(θ,∞) is continuously embedded
in Xα for θ > α by Proposition 3.2.2, we get an a priori estimate for the solution in the
Xα-norm, that yields existence in the large.

Proposition 6.3.6 Assume that there exists an increasing function µ : [0,+∞) →
[0,+∞) such that

‖F (t, x)‖ ≤ µ(‖x‖)(1 + ‖x‖γ
Xα

), 0 ≤ t ≤ T, x ∈ Xα, (6.33)

with 1 < γ < 1/α. Let u : I(u0) → Xα be the mild solution to (6.26). If u is bounded in
I(u0) with values in X, then it is bounded in I(u0) with values in Xα.
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Proof. Let us fix 0 < a < I(u0) and set Ia = {t ∈ I(u0) : t ≥ a}. Since u ∈ Cb((0, a];Xα)
it suffices to show that it is bounded in Ia with values in Xα. We show that it is bounded
in Ia with values in DA(θ,∞), when θ = αγ. This will conclude the proof by Proposition
3.2.2(i).

Set
K : sup

t∈I(u0)
‖u(t)‖.

Observe that u(a) ∈ DA(θ,∞) and that it satisfies the variation of constants formula

u(t) = e(t−a)Au(a) +
∫ t

a
e(t−s)AF (s, u(s))ds, t ∈ I(a).

Using the interpolatory estimate

‖x‖Xα ≤ c‖x‖1−α/θ‖x‖α/θ
DA(θ,∞),

with c = c(α, θ), that holds for every x ∈ DA(θ,∞), see Exercise 4(b) in §3.2.3, we get

‖u(s)‖γ
Xα

≤ c‖u(s)‖γ(1−α/θ)‖u(s)‖αγ/θ
DA(θ,∞) ≤ cKγ(1−α/θ)‖u(s)‖DA(θ,∞), s ∈ Ia,

so that
‖F (s, u(s))‖ ≤ µ(K)(1 + cKγ(1−α/θ)‖u(s)‖DA(θ,∞)), s ∈ Ia.

Let Mθ > 0 be such that for all t ∈ (0, T ] we have ‖tθetAx‖DA(θ,∞) ≤ Mθ‖x‖ for x ∈ X,
and ‖etAx‖DA(θ,∞) ≤ Mθ‖x‖DA(θ,∞) for x ∈ DA(θ,∞). Then for t ∈ Ia we have

‖u(t)‖DA(θ,∞) ≤ Mθ‖u(a)‖DA(θ,∞)

+Mθµ(K)
∫ t

a
(t− s)−θ(1 + cKγ(1−α/θ)‖u(s)‖DA(θ,∞))ds, (6.34)

and the generalized Gronwall lemma implies that u is bounded in Ia with values in
DA(θ,∞). �

The exponent γ = 1/α is called critical growth exponent. If γ = 1/α the above method
does not work: one should replace DA(αγ,∞) by D(A) or by DA(1,∞), and the integral in
(6.34) would be +∞. We already know that in general we cannot estimate the D(A)-norm
(and, similarly, the DA(1,∞) norm) of v(t) = (etA ∗ ϕ)(t) in terms of sup ‖ϕ(t)‖.

Exercises 6.3.7

1. Show that the function t 7→ etAu0 belongs to C([0, δ];Xα) if and only if u0 ∈ D(A)
Xα .

This fact has been used in Proposition 6.3.2.

2. Prove Propositions 6.3.3 and 6.3.4.

3. Let F : [0, T ] × Xα → X satisfy (6.27). Prove that, for any u0 ∈ Xα, the mild
solution of (6.26) is bounded in the interval [ε, τ(u0) − ε] with values in DA(β,∞)
for any β ∈ (0, 1) and any ε ∈ (0, τ(u0)/2).
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6.3.2 Second order PDE’s

Let Ω be a bounded open set in RN with regular boundary. Let us consider the problem
ut(t, x) = ∆u(t, x) + f(t, x, u(t, x), Du(t, x)), t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(6.35)

We denote by Du the gradient of u with respect to the space variables, Du = (∂u/∂x1,
. . . , ∂u/∂xN ). We assume that the function

(t, x, u, p) 7→ f(t, x, u, p), t ∈ [0, T ], x ∈ Ω, u ∈ R, p ∈ RN ,

is continuous, Hölder continuous with respect to t, locally Lipschitz continuous with respect
to (u, p). More precisely, we assume that there exists θ ∈ (0, 1) such that for every R > 0
there is K = K(R) > 0 such that

|f(t, x, u, p)− f(s, x, v, q)| ≤ K((t− s)θ + |u− v|+ |p− q|RN ), (6.36)

for 0 ≤ s < t ≤ T , (u, p), (v, q) ∈ B(0, R) ⊂ RN+1.
We choose as X the space of the continuous functions in Ω. Then the realization A of

the Laplacian with Dirichlet boundary condition is sectorial in X, and Theorem 3.1.10(ii)
implies that for α ∈ (1/2, 1) we have

DA(α,∞) = C2α
0 (Ω) = {u ∈ C2α(Ω) : u(x) = 0 x ∈ ∂Ω}.

Therefore, choosing Xα = DA(α,∞) with α > 1/2, the nonlinear function

F (t, ϕ)(x) = f(t, x, ϕ(x), Dϕ(x))

is well defined in [0, T ]×Xα, with values in X. We recall that the part of A in DA(α,∞)
is sectorial in DA(α,∞) and hence (6.28) holds.

We could also take α = 1/2 and X1/2 = {ϕ ∈ C1(Ω) : ϕ = 0 on ∂Ω}. Indeed, it is
possible to show that assumption (6.28) holds in such a space.

If the initial datum u0 is in C2α
0 (Ω) with α ∈ (1/2, 1), we may rewrite problem (6.35) in

the abstract formulation (6.26). The local existence and uniqueness theorem 6.3.2 yields
a local existence and uniqueness result for problem (6.35).

Proposition 6.3.8 Under the above assumptions, for ach u0 ∈ C2α
0 there exists a maxi-

mal time interval I(u0) such that problem (6.35) has a unique solution u : I(u0)×Ω → R,
such that u and the space derivatives Diu, i = 1, . . . , N , are continuous in I(u0)×Ω, and
ut, ∆u are continuous in (ε, τ(u0)−ε)×Ω for any ε ∈ (0, τ(u0)/2). Here τ(u0) = sup I(u0),
as usual.

Proof. With the above choice, the assumptions of Theorem 6.3.2 are satisfied, so that
problem (6.35) has a unique local solution u = u(t;u0) ∈ Cb((0, a];C2α

0 (Ω)) for each a <
τ(u0), that belongs to C([ε, τ(u0)−ε];D(A)) ∩ C1([ε, τ(u0)−ε];X) for each ε ∈ (0, τ(u0)),
by Proposition 6.3.3. Consequently, the function

u(t, x;u0) = u(t;u0)(x), 0 ≤ t ≤ δ, x ∈ Ω,
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is a solution to (6.35) with the claimed regularity properties. The continuity of the first
order space derivatives Diu up to t = 0 follows from Exercise 4(c) in §3.2.3 and from the
continuous embedding DA(β,∞) ⊂ C1(Ω) for β > 1/2. �

By Proposition 6.3.5, a sufficient condition for existence in the large is

|f(t, x, u, p)| ≤ C(1 + |u|+ |p|RN ), t ∈ [0, T ], x ∈ Ω, u ∈ R, p ∈ RN . (6.37)

Indeed, in this case the nonlinear function

F : [0, T ]×Xα → X, F (t, u)(x) = f(t, x, u(x), Du(x))

satisfies condition (6.32).
In general, one can find an a priori estimate for the sup norm of the solution provided

that

uf(t, x, u, 0) ≤ C(1 + u2), 0 ≤ t ≤ T, x ∈ Ω, u ∈ R. (6.38)

Indeed, in this case we may use again the procedure of Proposition 6.2.2. Once we know
that u is bounded in I(u0) with values in X, we may use Proposition 6.3.6. Assume that
there is an increasing function µ : [0,+∞) → [0,+∞) such that for some ε > 0 we have

|f(t, x, u, p)| ≤ µ(|u|)(1 + |p|2−ε), 0 ≤ t ≤ T, x ∈ Ω, u ∈ R, p ∈ RN . (6.39)

Then the nonlinearity

F (t, u)(x) = f(t, x, u(x), Du(x)), 0 ≤ t ≤ T, u ∈ C2α
0 (Ω), x ∈ Ω,

satisfies (6.33) with γ = 2− ε, because

‖F (t, u)‖∞ ≤ µ(‖u‖∞)(1 + ‖u‖2−ε
C1 ) ≤ µ(‖u‖∞)(1 + ‖u‖2−ε

C2α), 0 ≤ t ≤ T, u ∈ C2α
0 (Ω).

Then, Proposition 6.3.6 yields existence in the large provided that (2− ε)α < 1.
A class of equations that fits the general theory are the equations in divergence form,

ut =
N∑

i=1

Di(ϕi(u) +Diu) = ∆u+
N∑

i=1

ϕ′i(u)Diu, t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(6.40)

for which we have existence in the large for all initial data if the functions ϕi : R → R are
differentiable with locally Lipschitz continuous derivatives. Indeed, the function

f(t, x, u, p) =
N∑

i=1

ϕ′i(u)pi

satisfies conditions (6.38) and (6.39).
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6.3.3 The Cahn-Hilliard equation

Let us consider a one dimensional Cahn-Hilliard equation,
ut =

(
− uxx + f(u)

)
xx

, t > 0, x ∈ [0, 1],

ux(t, 0) = ux(t, 1) = uxxx(t, 0) = uxxx(t, 1) = 0, t > 0,

u(0, x) = u0(x), x ∈ [0, 1],

(6.41)

under the following assumptions on f and u0:

f ∈ C3(R), f has a nonnegative primitive Φ,

u0 ∈ C2([0, 1]), u′0(0) = u′0(1) = 0.

Assumption f ∈ C3(R) and the assumptions on u0 are sufficient to obtain a local solution.
The positivity of a primitive of f will be used to get a priori estimates on the solution
that guarantee existence in the large.

Set X = C([0, 1]) and

D(B) = {ϕ ∈ C2([0, 1]) : ϕ′(0) = ϕ′(1) = 0}, Bϕ = ϕ′′,

D(A) = {ϕ ∈ C4([0, 1]) : ϕ′(0) = ϕ′(1) = ϕ′′′(0) = ϕ′′′(1) = 0}, Aϕ = −ϕ′′′′.

The operator A has a very special form; specifically A = −B2, where B is sectorial by
Exercise 4, §2.1.3, and (1.9) holds with any θ ∈ (π/2, π). Then A is sectorial in X by
Exercise 1, §2.2.4, and D(B) is of class J1/2 between X and D(A) by Exercise 1, §3.2.3.
Therefore we may choose

α = 1/2, X1/2 = D(B).

Note that both D(B) and D(A) are dense in X. Since B commutes with R(λ,A) on D(B)
for each λ ∈ ρ(A), then it commutes with etA on D(B), and for each ϕ ∈ D(B) and
t ∈ [0, T ] we have

‖etAϕ‖D(B) = ‖etAϕ‖∞ +
∥∥∥∥ d2

dx2
etAϕ

∥∥∥∥
∞

= ‖etAϕ‖∞ + ‖etAϕ′′‖∞ ≤M0‖ϕ‖D(B),

for some M0 > 0, so that condition (6.28) is satisfied.
The function

F : X1/2 → X,

F (ϕ) =
d2

dx2
f(ϕ) = f ′(ϕ)ϕ′′ + f ′′(ϕ)(ϕ′)2

is Lipschitz continuous on each bounded subset of X1/2, because f ′′ is locally Lipschitz
continuous.

Theorem 6.3.2 implies that for each u0 ∈ D(B) there is a maximal τ = τ(u0) > 0 such
that problem (6.41) has a unique solution u : [0, τ)× [0, 1] → R, such that u, ux, uxx are
continuous in [0, τ) × [0, 1], and ut, uxxx, uxxxx are continuous in (0, τ) × [0, 1]. Notice
that, since D(B) is dense in X, then D(A) = D(B2) is dense in D(B). In other words,
the closure of D(A) in X1/2 is the whole X1/2.
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Since we have a fourth order differential equation, the maximum principles are not of
help to prove that u is bounded. We shall prove that the norm ‖ux(t, ·)‖L2 is bounded in
I(u0); this will imply that u is bounded in I(u0) through a Poincaré-Sobolev inequality.

Since ut = (−uxx + f(u))xx for each t > 0, for ε ∈ (0, τ(u0)) we have∫ 1

0
(u(t, x)− u(ε, x))dx =

∫ t

ε
dt

∫ 1

0
ut(s, x)dx = 0, ε ≤ t < τ(u0). (6.42)

Letting ε tend to 0 we get∫ 1

0
u(t, x)dx =

∫ 1

0
u0(x)dx, 0 < t < τ(u0),

so that the mean value of u(t, ·) is a constant, independent of t(1).
Fix again ε ∈ (0, τ(u0)), multiply both sides of the equation by −uxx + f(u), and

integrate over [ε, t]× [0, 1] for t ∈ (ε, τ(u0)). We get

−
∫ t

ε

∫ 1

0
utuxxds dx+

∫ t

ε

∫ 1

0
utf(u)ds dx =

∫ t

ε

∫ 1

0
(−uxx + f(u))(−uxx + f(u))xxds dx

Note that we may integrate by parts with respect to x in the first integral, because utx

exists and it is continuous in [ε, t] × [0, 1], see Exercise 2(a), §6.3.9. Hence, we integrate
by parts in the first integral, we rewrite the second integral recalling that f = Φ′, and we
integrate by parts in the third integral too. We get∫ t

ε

∫ 1

0
ux(s, x)utx(s, x)ds dx+

∫ t

ε

d

ds

∫ 1

0
Φ(u(s, x))dx ds

= −
∫ t

ε

∫ 1

0

(
(−uxx(s, x) + f(u(s, x))x

)2

dx ds

so that

1
2

∫ 1

0
ux(t, x)2dx− 1

2

∫ 1

0
ux(ε, x)2dx+

∫ 1

0
[Φ(u(t, x)− Φ(u(ε, x))]dx ≤ 0,

and letting ε→ 0 we get

‖ux(t, ·)‖2
L2 + 2

∫ 1

0
Φ(u(t, x))dx ≤ ‖u′0‖2

L2 + 2
∫ 1

0
Φ(u0(x))dx, 0 < t < τ(u0).

Since Φ is nonnegative, then ux(t, ·) is bounded in L2 for t ∈ I(u0). Since u(t, ·) has
constant mean value, inequality (6.45) yields that u(t, ·) is bounded in the sup norm.

Now we may use Proposition 6.3.6, because F satisfies (6.33) with γ = 1. Indeed, for
each ϕ ∈ X1/2 we have

‖F (ϕ)‖ ≤ sup
|ξ|≤‖ϕ‖∞

|f ′(ξ)| · ‖ϕ′′‖∞ + sup
|ξ|≤‖ϕ‖∞

|f ′′(ξ)| · ‖ϕ′‖2
∞

≤ sup
|ξ|≤‖ϕ‖∞

|f ′(ξ)| · ‖ϕ′′‖∞ + sup
|ξ|≤‖ϕ‖∞

|f ′′(ξ)| · C‖ϕ‖∞‖ϕ′′‖∞

≤ µ(‖ϕ‖)‖ϕ‖D(B)

where µ(s) = max{sup|ξ|≤s |f ′(ξ)|, Cs sup|ξ|≤s |f ′′(ξ)|}, and C is the constant in Exercise
2(b), §6.3.9. Therefore F has subcritical growth (the critical growth exponent is 2). By
Proposition 6.3.6, the solution exists in the large.

1We take ε > 0 in (6.42) because our solution is just classical and it is not strict in general, so that it
is not obvious that ut is in L1((0, t)× (0, 1)).
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6.3.4 The Kuramoto-Sivashinsky equation

This equation arises as a mathematical model in a two dimensional combustion phe-
nomenon. At time t, the combustion takes place along an unknown curve with equation
x = ξ(t, y), and the open set {(x, y) ∈ R2 : x < ξ(t, y)} is the fresh region, the open set
{(x, y) ∈ R2 : x > ξ(t, y)} is the burnt region at time t. As time increases, the curve
moves to the left, and under suitable assumptions the function Φ(t, y) = ξ(t, y)+ t satisfies
the Kuramoto-Sivashinsky equation

Φt(t, y) + 4Φyyyy(t, y) + Φyy(t, y) +
1
2
(Φy)

2 = 0, t ≥ 0, y ∈ R. (6.43)

The Cauchy problem
Φ(0, y) = Φ0(y), y ∈ R (6.44)

for equation (6.43) may be treated with the methods of §6.3.3. Set

X = Cb(R),

and
A : D(A) = C4

b (R), Au = −4u′′′′ − u′′.

To prove that A is sectorial, it is convenient to write it as

A = −4B2 −B

where B is the realization of the second order derivative in X, that is sectorial by §2.1.1.
By Exercise 1, §2.2.4, −4B2 is sectorial, and by Exercise 1, §3.2.3, the domain D(B) is of
class J1/2 between X and D(B2). Then Proposition 3.2.2(iii) yields that A is sectorial.

Since the nonlinearity 1
2(Φy)

2 depends on the first order space derivative, it is conve-
nient to choose α = 1/4 and

X1/4 := C1
b (R).

Such a space belongs to the class J1/4 between X and D(A), by Exercise 3, §3.2.3. The
nonlinear function

F (u)(y) = − 1
2
(u′(y))2, u ∈ X1/4, y ∈ R,

is Lipschitz continuous on the bounded subsets of X1/4, and it is not hard to prove that
‖etA‖L(X1/4) ≤ ‖etA‖L(X) for each t > 0, see Exercise 4 below.

So, we may rewrite problem (6.43)–(6.44) in the form (6.26), with F independent of
t. All the assumptions of Theorem 6.3.2 are satisfied. Moreover, X1/4 is contained in
D(A) = BUC(R), since all the elements of X1/4 are bounded and Lipschitz continuous
functions.

It follows that for each Φ0 ∈ C1
b (R) problem (6.43)–(6.44) has a unique classical solution

Φ(t, y), defined for t in a maximal time interval [0, τ(Φ0)) and for y in R, such that for
every a ∈ (0, τ(Φ0)), Φ ∈ Cb([0, a]×R), and there exist Φt, Φyyyy ∈ C((0, a]×R), that are
bounded in each [ε, a]× R with 0 < ε < a.

Exercises 6.3.9

1. Prove that the conclusions of Proposition 6.2.2 hold for the solution of problem
(6.35), provided that (6.38) holds.
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2. (a) Referring to §6.3.3, prove that utx exists and it is continuous in [ε, τ − ε]× [0, 1]
for each ε ∈ (0, τ/2).

[Hint: use Proposition 6.3.3 to get t 7→ ut(t, ·) ∈ B([ε, τ − ε];DA(θ,∞)) for each
θ ∈ (0, 1), and then Exercise 4(c), §3.2.3, to conclude].

(b) Prove that there is C > 0 such that for each ϕ ∈ C2([0, 1]) satisfying ϕ′(0) =
ϕ′(1) = 0 we have

‖ϕ′‖2
∞ ≤ C‖ϕ‖∞‖ϕ′′‖∞.

3. Prove the inequality

‖ϕ−
∫ 1

0
ϕ(y)dy‖∞ ≤

( ∫ 1

0
(ϕ′(x))2dx

)1/2

, (6.45)

for each ϕ ∈ C1([0, 1]).

4. Referring to §6.3.4, prove that ‖etA‖L(X1/4) ≤ ‖etA‖L(X), for every t > 0.

[Hint: show that etA commutes with the first order derivative on X1/4. For this
purpose, use Exercise 1.3.18].
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Behavior near stationary solutions

7.1 The principle of linearized stability

Let A : D(A) ⊂ X → X be a sectorial operator. We use the notation of Chapter 6, so Xα

is a space of class Jα between X and D(A), that satisfies (6.28), and 0 < α < 1.
Let us consider the nonlinear equation

u′(t) = Au(t) + F (u(t)), t > 0, (7.1)

where F : X → X, or F : Xα → X satisfies the assumptions of the local existence
Theorems 6.1.1 or 6.3.2. Throughout this section we assume that F (0) = 0, so that
problem (7.1) admits the stationary (:= constant in time) solution u ≡ 0, and we study
the stability of the null solution.

From the point of view of the stability, the case where F is defined in Xα does not
differ much from the case where it is defined in the whole space X, and they will be treated
together, setting X0 := X and considering α ∈ [0, 1).

In any case we assume that the Lipschitz constant

K(ρ) := sup
{
‖F (x)− F (y)‖
‖x− y‖Xα

: x, y ∈ B(0, ρ) ⊂ Xα

}
(7.2)

satisfies
lim

ρ→0+
K(ρ) = 0. (7.3)

This implies that F is Fréchet differentiable at 0, with null derivative.
We recall that if X, Y are Banach spaces and y ∈ Y , we say that a function G defined

in a neighborhood of y with values in X is Fréchet differentiable at y if there exists a linear
bounded operator L ∈ L(Y,X) such that

lim
h→0

‖G(y + h)−G(y)− Lh‖X

‖h‖Y
= 0.

In this case, L is called the derivative of G at y and we set L = G′(y). If O ⊂ Y is an
open set, we say that G : O → X is continuously differentiable in O if it is differentiable
at each y ∈ O and the function G′ : O → L(Y,X) is continuous in O.

It is clear that if F is Fréchet continuously differentiable in a neighborhood of 0, and
F ′(0) = 0, then limρ→0+ K(ρ) = 0.

101
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By Theorem 6.1.1 (if α = 0) or Theorem 6.3.2 (if α ∈ (0, 1)), for every initial datum
u0 ∈ Xα the Cauchy problem for equation (7.1) has a unique solution u(·;u0) defined in a
maximal time interval [0, τ(u0)).

Definition 7.1.1 We say that the null solution of (7.1) is stable (in Xα) if for every
ε > 0 there exists δ > 0 such that

u0 ∈ Xα, ‖u0‖Xα ≤ δ =⇒ τ(u0) = +∞, ‖u(t;u0)‖Xα ≤ ε, ∀t ≥ 0.

The null solution of (7.1) is said to be asymptotically stable if it is stable and moreover
there exists δ0 > 0 such that if ‖u0‖Xα ≤ δ0 then limt→+∞ ‖u(t;u0)‖Xα = 0.

The null solution of (7.1) is said to be unstable if it is not stable.

The principle of linearized stability says that in the noncritical case s(A) 6= 0 the
null solution to the nonlinear problem (7.1) has the same stability properties of the null
solution to the linear problem u′ = Au. Note that by assumption (7.3) the linear part of
Ax+ F (x) near x = 0 is just Ax, so that the nonlinear part F (u) in problem (7.1) looks
like a small perturbation of the linear part u′ = Au, at least for solutions close to 0. In
the next two subsections we make this argument rigorous.

The study of the stability of other possible stationary solutions, that is of the u ∈ D(A)
such that

Au+ F (u) = 0,

can be reduced to the case of the null stationary solution by defining a new unknown

v(t) = u(t)− u,

and studying the problem

v′(t) = Ãv(t) + F̃ (v(t)), t > 0,

where Ã = A + F ′(u) and F̃ (v) = F (v + u) − F (u) − F ′(u)v, provided that F is Fréchet
differentiable at u. Note that in this case the Fréchet derivative of F̃ vanishes at 0.

7.1.1 Linearized stability

The main assumption is
s(A) < 0. (7.4)

(The spectral bound s(A) is defined in (5.1)). In the proof of the linearized stability
theorem we shall use the next lemma, which is a consequence of Proposition 5.1.1.

Lemma 7.1.2 Let (7.4) hold, and fix ω ∈ [0,−s(A)). If f ∈ C−ω((0,+∞);X) and
x ∈ Xα then the function

v(t) = etAx+
∫ t

0
e(t−s)Af(s)ds, t > 0,

belongs to C−ω((0,+∞);Xα), and there is a constant C = C(ω) such that

sup
t>0

eωt‖v(t)‖Xα ≤ C(‖x‖Xα + sup
t>0

eωt‖f(t)‖).
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Proof. By Proposition 5.1.1, for each ω ∈ [0,−s(A)) there is M(ω) > 0 such that
‖etA‖L(X) ≤M(ω)e−ωt, for every t > 0. Therefore, for t ≥ 1,

‖etA‖L(X,Xα) ≤ ‖eA‖L(X,Xα)‖e(t−1)A‖L(X) ≤ Ce−ωt (7.5)

with C = M(ω)eω‖eA‖L(X,Xα), while for 0 < t < 1 we have ‖etA‖L(X,Xα) ≤ Ct−α for some
constant C > 0, by Proposition 3.2.2(ii). Since ω ∈ [0,−s(A)) is arbitrary, this implies

sup
t>0

eωttα‖etA‖L(X,Xα) := Cω < +∞.

Since Xα is continuously embedded in X, (7.5) implies also that ‖etA‖L(Xα) ≤ Ĉe−ωt for
t ≥ 1 and some positive constant Ĉ. Since ‖etA‖L(Xα) is bounded for t ∈ (0, 1) by a
constant independent of t by assumption (6.28), we get

sup
t>0

eωt‖etA‖L(Xα) := C̃ω < +∞.

Therefore ‖etAx‖Xα ≤ C̃ωe
−ωt‖x‖Xα , and for any fixed ω′ ∈ (ω,−s(A)),

‖eωt(etA ∗ f)(t)‖Xα ≤ Cω′e
ωt

∫ t

0

e−ω′s

sα
‖f(t− s)‖ds ≤ Cω′Γ(1− α)

(ω′ − ω)1−α
sup
r>0

eωr‖f(r)‖,

for every t > 0, and the statement follows. �

Theorem 7.1.3 Let A satisfy (7.4), and let F : Xα → X be Lipschitz continuous in a
neighborhood of 0 and satisfy (7.3). Then for every ω ∈ [0,−s(A)) there exist positive
constants M = M(ω), r = r(ω) such that if u0 ∈ Xα, ‖u0‖Xα ≤ r, we have τ(u0) = +∞
and

‖u(t;u0)‖Xα ≤Me−ωt‖u0‖Xα , t ≥ 0. (7.6)

Therefore the null solution is asymptotically stable.

Proof. Let Y be the closed ball centered at 0 with small radius ρ in the space C−ω((0,+∞);
Xα), namely

Y = {u ∈ C−ω((0,+∞);Xα) : sup
t≥0

‖eωtu(t)‖Xα ≤ ρ}.

We look for the mild solution to (7.1) with initial datum u0 as a fixed point of the operator
G defined on Y by

(Gu)(t) = etAu0 +
∫ t

0
e(t−s)AF (u(s))ds, t ≥ 0. (7.7)

If u ∈ Y , by (7.2) we get

‖F (u(t))‖ = ‖F (u(t))− F (0)‖ ≤ K(ρ)‖u(t)‖Xα ≤ K(ρ)ρe−ωt, t ≥ 0, (7.8)

so that F (u(·)) ∈ C−ω((0,+∞);X). Using Lemma 7.1.2 we get

‖Gu‖C−ω((0,+∞);Xα) ≤ C
(
‖u0‖Xα + ‖F (u(·))‖C−ω((0,+∞);X)

)
≤ C (‖u0‖Xα + ρK(ρ)) .

(7.9)
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If ρ is so small that

K(ρ) ≤ 1
2C

,

and
‖u0‖Xα ≤ r :=

ρ

2C
,

then Gu ∈ Y . Moreover, for u1, u2 ∈ Y we have, again by Lemma 7.1.2,

‖Gu1 − Gu2‖C−ω((0,+∞);Xα) ≤ C‖F (u1(·))− F (u2(·))‖C−ω((0,+∞);X),

and (7.2) yields

‖F (u1(t))− F (u2(t))‖ ≤ K(ρ)‖u1(t)− u2(t)‖Xα , t > 0.

It follows that

‖Gu1 − Gu2‖C−ω((0,+∞);Xα) ≤
1
2
‖u1 − u2‖C−ω((0,+∞);Xα),

so that G is a contraction with constant 1/2. Consequently there exists a unique fixed point
of G in Y , which is the solution of (7.1) with initial datum u0. Note that the Contraction
Theorem gives a unique solution in Y , but we already know by Theorems 6.1.1 and 6.3.2
that the mild solution is unique.

Moreover from (7.8), (7.9) we get

‖u‖C−ω = ‖Gu‖C−ω ≤ C(‖u0‖Xα +K(ρ)‖u‖C−ω) ≤ C‖u0‖Xα +
1
2
‖u‖C−ω

which implies (7.6), with M = 2C. �

Remark 7.1.4 Note that any mild solution to problem (7.1) is smooth for t > 0. Pre-
cisely, Proposition 6.1.2 if α = 0 and Proposition 6.3.3 if α > 0 imply that for each
θ ∈ (0, 1) and for each interval [a, b] ⊂ (0, τ(u0)), the restriction of u(·;u0) to [a, b] belongs
to C1+θ([a, b];X) ∩ Cθ([a, b];D(A)).

7.1.2 Linearized instability

Assume now that 
σ+(A) := σ(A) ∩ {λ ∈ C : Reλ > 0} 6= ∅,

inf{Reλ : λ ∈ σ+(A)} := ω+ > 0.
(7.10)

Then it is possible to prove an instability result for the null solution. We shall use the
projection P defined by (5.6), i.e.

P =
1

2πi

∫
γ+

R(λ,A)dλ,

γ+ being any closed regular path with range in {Reλ > 0}, with index 1 with respect to
each λ ∈ σ+.

For the proof of the instability theorem we need the next lemma, which is a corollary
of Theorem 5.4.1(ii). It is a counterpart of Lemma 7.1.2 for the unstable case.
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Lemma 7.1.5 Let (7.10) hold, and fix ω ∈ [0, ω+). If g ∈ Cω((−∞, 0);X) and x ∈ P (X),
then the function

v(t) = etAx+
∫ t

0
e(t−s)APg(s)ds+

∫ t

−∞
e(t−s)A(I − P )g(s)ds, t ≤ 0 (7.11)

is a mild solution to v′(t) = Av(t) + g(t), t ≤ 0, it belongs to Cω((−∞, 0];Xα), and there
is a constant C = C(ω) such that

sup
t≤0

e−ωt‖v(t)‖Xα ≤ C(‖x‖+ sup
t<0

e−ωt‖g(t)‖). (7.12)

Conversely, if v is a mild solution belonging to Cω((−∞, 0];Xα) then there is x ∈ P (X)
such that v has the representation (7.11).

Proof. That v is a mild solution belonging to Cω((−∞, 0];X) follows as in Theorem
5.4.1(ii), because the vertical line Reλ = ω does not intersect the spectrum of A.

Conversely, if v is a mild solution in Cω((−∞, 0];Xα) then it is in Cω((−∞, 0];X) and
Theorem 5.4.1(ii) implies (7.11).

Now we prove (7.12). Let w(t) = e−ωtv(t). Then

w(t) = et(A−ω)x+
∫ t

0
e(t−s)(A−ω)Pg(s)e−ωsds+

∫ t

−∞
e(t−s)(A−ω)(I − P )g(s)e−ωsds

and A−ωI is hyperbolic with σ+(A−ωI) = σ+(A)−ω and σ−(A−ωI) = (σ(A)\σ+(A))−ω.
Using Proposition 5.2.1 we take a small σ > 0 such that

‖et(A−ωI)(I − P )‖L(X) ≤ Ce−2σt, t ≥ 0,

‖et(A−ωI)P‖L(X) ≤ Ceσt, t ≤ 0.

Since the part of A in P (X) is bounded,

‖et(A−ωI)P‖L(X,D(A)) ≤ C ′eσt, t ≤ 0,

hence
‖et(A−ωI)P‖L(X,Xα) ≤ C ′′eσt, t ≤ 0.

Moreover, if t ≥ 1,

‖et(A−ωI)(I − P )‖L(X,Xα) ≤ ‖eA−ω‖L(X,Xα)‖e(t−1)(A−ωI)(I − P )‖L(X) ≤ C1e
−σt

and for 0 < t ≤ 1
‖et(A−ωI)(I − P )‖L(X,Xα) ≤ C2t

−α,

so that
‖et(A−ωI)(I − P )‖L(X,Xα) ≤ C3t

−αe−σt, t ≥ 0.

Therefore, for t ≤ 0

‖w(t)‖Xα ≤ Ceσt‖x‖+ C‖P‖ sup
s≤0

(e−ωs‖g(s)‖)
∫ 0

t
eσsds

+C3‖I − P‖ sup
s≤0

(e−ωs‖g(s)‖)
∫ t

−∞
e−σ(t−s)(t− s)−αds

and (7.12) follows easily.
�
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Theorem 7.1.6 Let A satisfy (7.10), and let F : Xα → X be Lipschitz continuous in a
neighborhood of 0 and satisfy (7.3). Then there exists r+ > 0 such that for every x ∈ P (X)
satisfying ‖x‖ ≤ r+, the problem{

v′(t) = Av(t) + F (v(t)), t ≤ 0,

Pv(0) = x,
(7.13)

has a backward solution v such that limt→−∞ v(t) = 0.

Proof. Let Y+ be the closed ball centered at 0 with small radius ρ+ in Cω((−∞, 0];Xα).
In view of Lemma 7.1.5, we look for a solution to (7.13) as a fixed point of the operator
G+ defined on Y+ by

(G+v)(t) = etAx+
∫ t

0
e(t−s)APF (v(s))ds+

∫ t

−∞
e(t−s)A(I − P )F (v(s))ds, t ≤ 0.

If v ∈ Y+, then F (v(·)) ∈ Cω((−∞, 0];X) and Lemma 7.1.5 implies G+v ∈ Cω((−∞, 0];X),
with

‖G+v‖Cω((−∞,0];Xα) ≤ C
(
‖x‖+ ‖F (v(·))‖Cω((−∞,0];X)

)
.

The rest of the proof is quite similar to the proof of Theorem 7.1.3 and it is left as an
exercise. �

Remark 7.1.7 The existence of a backward mild solution v to problem (7.13) implies
that the null solution to (7.1) is unstable. For, let xn = v(−n). Of course xn → 0 as n
tends to +∞. For any n ∈ N consider the forward Cauchy problem u(0) = xn for the
equation (7.1), and as usual denote by u(·;xn) its mild solution. Then τ(xn) ≥ n and
u(t;xn) = v(t− n) for any t ∈ [0, n]. Hence

sup
t∈I(xn)

‖u(t;xn)‖Xα ≥ sup
0≤t≤n

‖u(t;xn)‖Xα = sup
−n≤t≤0

‖v(t)‖Xα ≥ ‖v(0)‖Xα > 0

which implies that the null solution is unstable since supt≥0 ‖u(t;xn)‖Xα does not tend to
0 as n tends to +∞.

7.2 A Cauchy-Dirichlet problem

In order to give some examples of PDE’s to which the results of this chapter can be
applied, we need some comments on the spectrum of the Laplacian with Dirichlet boundary
conditions.

Let Ω be a bounded open set in RN with C2 boundary ∂Ω. We choose X = C(Ω) and
define

D(A) =
{
ϕ ∈

⋂
1≤p<+∞

W 2,p(Ω) : ∆ϕ ∈ C(Ω), ϕ|∂Ω = 0
}

and Aϕ = ∆ϕ for ϕ ∈ D(A).
From Exercise 3, §5.4.4, we know that the spectrum of A consists of isolated eigenvalues

and that s(A) is negative. In order to give an explicit estimate of s(A) we recall the so
called Poincaré inequality: there is a constant CΩ > 0 such that∫

Ω
|ϕ|2dx ≤ CΩ

∫
Ω
|Dϕ|2dx, ϕ ∈W 1,2

0 (Ω). (7.14)
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A proof of (7.14) as well as the inequality CΩ ≤ 4d2, where d is the diameter of Ω, is
outlined in Exercise 4 below.

If ϕ ∈ D(A) and −λϕ−∆ϕ = 0, then ϕ ∈W 1,2
0 (Ω). Multiplying by ϕ and integrating

over Ω we find ∫
Ω
|Dϕ|2dx = λ

∫
Ω
|ϕ|2dx

and therefore λ ≥ C−1
Ω , that is s(A) ≤ −C−1

Ω .

We now study the stability of the null solution of{
ut(t, x) = ∆u(t, x) + f(u(t, x), Du(t, x)), t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,
(7.15)

where f = f(u, p) : R× RN → R is continuously differentiable and f(0, 0) = 0. The local
existence and uniqueness Theorem 6.3.2 may be applied to the initial value problem for
equation (7.15),

u(0, x) = u0(x), x ∈ Ω, (7.16)

choosing X = C(Ω), Xα = C2α
0 (Ω) with 1/2 < α < 1. The function

F : Xα → X, (F (ϕ))(x) = f(ϕ(x), Dϕ(x)),

is continuously differentiable, and

F (0) = 0, (F ′(0)ϕ)(x) = aϕ(x) + 〈b,Dϕ(x)〉, ϕ ∈ Xα.

Here a = fu(0, 0), b = Dpf(0, 0).
Then, set D(B) = D(A) and Bϕ = ∆ϕ + 〈b,Dϕ〉 + aϕ. The operator B is sectorial,

see Corollary 1.3.14, and
s(B) ≤ −C−1

Ω + a. (7.17)

Indeed we observe that the resolvent of B is compact and therefore its spectrum consists
of isolated eigenvalues. Moreover, if λ ∈ σ(B), ϕ ∈ D(B), and λϕ−∆ϕ−〈b,Dϕ〉−aϕ = 0,
then multiplying by ϕ and integrating over Ω we get∫

Ω

(
(λ− a)|ϕ|2 + |Dϕ|2 − 〈b,Dϕ〉ϕ

)
dx = 0.

Taking the real part∫
Ω

(
(Reλ− a)|ϕ|2 + |Dϕ|2 − 1

2
b ·D|ϕ|2

)
dx =

∫
Ω

(
(Reλ− a)|ϕ|2 + |Dϕ|2

)
dx = 0

and hence Reλ− a ≤ −C−1
Ω . Therefore (7.17) holds.

Since u0 ∈ Xα ⊂ D(A), Theorem 6.3.2 and Proposition 6.3.3 guarantee the existence
of a unique local classical solution u : [0, τ(u0)) → Xα of the abstract problem (7.1) with
u(0) = u0 having the regularity properties specified in Proposition 6.3.3. Setting as usual

u(t, x) := u(t)(x), t ∈ [0, τ(u0)), x ∈ Ω,

the function u is continuous in [0, τ(u0)) × Ω, continuously differentiable with respect to
time for t > 0, and it satisfies (7.15), (7.16).
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Concerning the stability of the null solution, Theorem 7.1.3 implies that if s(B) < 0,
in particular if a < C−1

Ω , then the null solution of (7.15) is exponentially stable: for every
ω ∈ (0,−s(B)) there exist r, C > 0 such that if ‖u0‖Xα ≤ r, then

τ(u0) = +∞, ‖u(t)‖Xα ≤ Ce−ωt‖u0‖Xα .

On the contrary, if s(B) > 0 then there are elements in the spectrum of B with positive
real part. Since they are isolated they satisfy condition (7.10). Theorem 7.1.6 implies that
the null solution of (7.15) is unstable: there exist ε > 0 and initial data u0 with ‖u0‖Xα

arbitrarily small, but supt≥0 ‖u(t)‖Xα ≥ ε.
Finally we remark that if f is independent of p, i.e. the nonlinearity in (7.15) does not

depend on Du, we can take α = 0 and work in the space X.

Exercises 7.2.1

1. Complete the proof of Theorem 7.1.6.

2. Prove that the stationary solution (u ≡ 0, v ≡ 1) to system (6.25) is asymptotically
stable in C(Ω)× C(Ω).

3. Assume that the functions ϕi in problem (6.40) are twice continuously differentiable
and that ϕ′i(0) = 0 for each i = 1, . . . , N . Prove that the null solution to problem
(6.40) is asymptotically stable in C1+θ(Ω), for each θ ∈ (0, 1).

4. Let Ω be a bounded set in RN and let d be its diameter. Prove the Poincaré inequality
(7.14) with CΩ ≤ 4d2.

[Hint: assume that Ω ⊂ B(0, d) and for ϕ ∈ C∞
0 (Ω) write

ϕ(x1, . . . , xN ) =
∫ x1

−d

∂ϕ

∂x1
(s, x2, . . . , xN )ds].

5. Let X be a Banach space and Ω be an open set in R (or in C). Moreover let
Γ : X × Ω → X be such that

‖Γ(y, λ)− Γ(x, λ)‖ ≤ C(λ)‖y − x‖

for any λ ∈ Ω, any x, y ∈ X and some continuous function C : Ω → [0, 1). Further,
suppose that the function λ 7→ Γ(λ, x) is continuous in Ω for any x ∈ X. Prove that
for any λ ∈ Ω the equation x = Γ(x, λ) admits a unique solution x = x(λ) and that
the function λ 7→ x(λ) is continuous in Ω.

6. Let u be the solution to the problem
ut = uxx + u2, t ≥ 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), x ∈ [0, 1]

with u0(0) = u0(1) = 0. Show that if ‖u0‖∞ is sufficiently small, then u exists in
the large.

[Hint: use the exponential decay of the heat semigroup in the variation of constants
formula].





Appendix A

Linear operators and
vector-valued calculus

In this appendix we collect a few basic results on linear operators in Banach spaces and on
calculus for Banach space valued functions defined in a real interval or in an open set in
C. These results are assumed to be either known to the reader, or at least not surprising
at all, as they follow quite closely the finite-dimensional theory.

Let X be a Banach space with norm ‖ · ‖. We denote by L(X) the Banach algebra of
linear bounded operators T : X → X, endowed with the norm

‖T‖L(X) = sup
x∈X: ‖x‖=1

‖Tx‖ sup
x∈X\{0}

‖Tx‖
‖x‖

.

If no confusion may arise, we write ‖T‖ for ‖T‖L(X).
Similarly, if Y is another Banach space we denote by L(X,Y ) the Banach space of linear

bounded operators T : X → Y , endowed with the norm ‖T‖L(X,Y ) = supx∈X: ‖x‖=1 ‖Tx‖Y .

If D(A) is a vector subspace of X and A : D(A) → X is linear, we say that A is closed
if its graph

GA = {(x, y) ∈ X ×X : x ∈ D(A), y = Ax}

is a closed set of X × X. In an equivalent way, A is closed if and only if the following
implication holds:

{xn} ⊂ D(A), xn → x, Axn → y =⇒ x ∈ D(A), y = Ax.

We say that A is closable if there is an (obviously unique) operator A, whose graph is the
closure of GA. It is readily checked that A is closable if and only if the implication

{xn} ⊂ D(A), xn → 0, Axn → y =⇒ y = 0.

holds. If A : D(A) ⊂ X → X is a closed operator, we endow D(A) with its graph norm

‖x‖D(A) = ‖x‖+ ‖Ax‖.

D(A) turns out to be a Banach space and A : D(A) → X is continuous.
Next lemma is used in Chapter 1.

A1
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Lemma A.1 Let X, Y be two Banach spaces, let D be a subspace of X, and let {An}n≥0

be a sequence of linear bounded operators from X to Y such that

‖An‖ ≤M, n ∈ N, lim
n→+∞

Anx = A0x, x ∈ D.

Then
lim

n→∞
Anx = A0x x ∈ D,

where D is the closure of D in X.

Proof. Let x ∈ D and ε > 0 be given. For y ∈ D with ‖x − y‖ ≤ ε and for every n ∈ N
we have

‖Anx−A0x‖ ≤ ‖An(x− y)‖+ ‖Any −A0y‖+ ‖A0(y − x)‖.
If n0 is such that ‖Any −A0y‖ ≤ ε for every n > n0, we have

‖Anx−A0x‖ ≤Mε+ ε+ ‖A0‖ε

for all n ≥ n0. �

Let I ⊂ R be an interval. We denote by C(I;X) the vector space of the continuous
functions u : I → X, by B(I;X) the space of the bounded functions, endowed with the
supremum norm

‖u‖∞ = sup
t∈I

‖u(t)‖.

We also set Cb(I;X) = C(I;X) ∩ B(I;X). The definition of the derivative is readily
extended to the present situation: a function f ∈ C(I;X) is differentiable at an interior
point t0 ∈ I if the following limit exists,

lim
t→t0

f(t)− f(t0)
t− t0

.

As usual, the limit is denoted by f ′(t0) and is it called derivative of f at t0. In an analogous
way we define right and left derivatives.

For every k ∈ N (resp., k = +∞), Ck(I;X) denotes the space of X-valued functions
with continuous derivatives in I up to the order k (resp., of any order). We write Ck

b (I;X)
to denote the space of all the functions f ∈ Ck(I;X) which are bounded in I together
with their derivatives up to the k-th order.

Note that if A : D(A) → X is a linear closed operator, then a function u : I → D(A)
belongs to B(I;D(A)) (resp., to C(I;D(A)), Ck(I;D(A))) if and only if both u and Au
belong to B(I;X) (resp., to C(I;X), Ck(I;X)).

Let us define the Riemann integral of an X-valued function on a real interval.
Let f : [a, b] → X be a bounded function. We say that f is integrable on [a, b] if there

is x ∈ X with the following property: for every ε > 0 there is a δ > 0 such that for every
partition P = {a = t0 < t1 < . . . < tn = b} of [a, b] with ti − ti−1 < δ for all i, and for any
choice of the points ξi ∈ [ti−1, ti] we have∥∥∥x− n∑

i=1

f(ξi)(ti − ti−1)
∥∥∥ < ε.

In this case we set ∫ b

a
f(t)dt = x.

From the above definition we obtain immediately the following
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Proposition A.2 Let α, β ∈ C, and let f, g be integrable on [a, b] with values in X. Then

(a)
∫ b
a (αf(t) + βg(t))dt = α

∫ b
a f(t)dt+ β

∫ b
a g(t)dt;

(b) ||
∫ b
a f(t)dt|| ≤ supt∈[a,b] ||f(t)||(b− a);

(c) ||
∫ b
a f(t)dt|| ≤

∫ b
a ||f(t)||dt;

(d) if A ∈ L(X,Y ), where Y is another Banach space, then Af is integrable with values
in Y and A

∫ b
a f(t)dt =

∫ b
a Af(t)dt;

(e) if (fn) is a sequence of continuous functions and there is f such that

lim
n→+∞

max
t∈[a,b]

||fn(t)− f(t)|| = 0,

then limn→+∞
∫ b
a fn(t)dt =

∫ b
a f(t)dt.

It is also easy to generalize to the present situation the Fundamental Theorem of Calculus.
The proof is the same as for the real-valued case.

Theorem A.3 (Fundamental Theorem of Calculus) Let f : [a, b] → X be continu-
ous. Then the integral function

F (t) =
∫ t

a
f(s) ds

is differentiable, and F ′(t) = f(t) for every t ∈ [a, b].

Improper integrals of unbounded functions, or on unbounded intervals are defined as
in the real-valued case. Precisely, If I = (a, b) is a (possibly unbounded) interval and
f : I → X is integrable on each compact interval contained in I, we set∫ b

a
f(t)dt := lim

r→a+, s→b−

∫ s

r
f(t)dt,

provided that the limit exists in X. Note that statements (a), (d) of Proposition A.2 still
hold for improper integrals. Statement (d) may be extended to closed operators too, as
follows.

Lemma A.4 Let A : D(A) ⊂ X → X be a closed operator, let I be a real interval with
inf I = a, sup I = b (−∞ ≤ a < b ≤ +∞) and let f : I → D(A) be such that the functions
t 7→ f(t), t 7→ Af(t) are integrable on I. Then∫ b

a
f(t)dt ∈ D(A), A

∫ b

a
f(t)dt =

∫ b

a
Af(t)dt.

Proof. Assume first that I is compact. Set x =
∫ b
a f(t)dt and choose a sequence Pk =

{a = tk0 < . . . < tknk
= b} of partitions of [a, b] such that maxi=1,...,nk

(tki − tki−1) < 1/k. Let
ξk
i ∈ [tki , t

k
i−1] for i = 0, . . . , nk, and consider

Sk =
nk∑
i=1

f(ξi)(ti − ti−1).
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All Sk are in D(A), and

ASk =
nk∑
i=1

Af(ξi)(ti − ti−1).

Since both f and Af are integrable, Sk tends to x and ASk tends to y :=
∫ b
a Af(t)dt.

Since A is closed, x belongs to D(A) and Ax = y.
Now let I be unbounded, say I = [a,+∞); then, for every b > a the equality

A

∫ b

a
f(t)dt =

∫ b

a
Af(t)dt

holds. By hypothesis,∫ b

a
Af(t)dt →

∫ +∞

a
Af(t)dt and

∫ b

a
f(t)dt →

∫ +∞

a
f(t)dt as b→ +∞,

hence

A

∫ b

a
f(t)dt→

∫ +∞

a
Af(t)dt

and the thesis follows since A is closed. �

Now we review some basic facts concerning vector-valued functions of a complex vari-
able.

Let Ω be an open subset of C, f : Ω → X be a continuous function and γ : [a, b] → Ω
be a piecewise C1-curve. The integral of f along γ is defined by∫

γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

Let Ω be an open subset of C and let f : Ω → X be a continuous function.
As usual, we denote byX ′ the dual space ofX consisting of all linear bounded operators

from X to C. For each x ∈ X, x′ ∈ X ′ we set x′(x) = 〈x, x′〉.

Definition A.5 f is holomorphic in Ω if for each z0 ∈ Ω the limit

lim
z→z0

f(z)− f(z0)
z − z0

:= f ′(z0)

exists in X. f is weakly holomorphic in Ω if it is continuous in Ω and the complex-valued
function z 7→ 〈f(z), x′〉 is holomorphic in Ω for every x′ ∈ X ′.

Clearly, any holomorphic function is weakly holomorphic; actually, the converse is also
true, as the following theorem shows.

Theorem A.6 Let f : Ω → X be a weakly holomorphic function. Then f is holomorphic.

Proof. Let B(z0, r) be a closed ball contained in Ω; we prove that for all z ∈ B(z0, r)
the following Cauchy integral formula holds:

f(z) =
1

2πi

∫
∂B(z0,r)

f(ξ)
ξ − z

dξ. (A.1)
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First of all, we observe that the right hand side of (A.1) is well defined because f is con-
tinuous. Since f is weakly holomorphic in Ω, the complex-valued function z 7→ 〈f(z), x′〉
is holomorphic in Ω for all x′ ∈ X ′, and hence the ordinary Cauchy integral formula in
B(z0, r) holds, i.e.,

〈f(z), x′〉 =
1

2πi

∫
∂B(z0,r)

〈f(ξ), x′〉
ξ − z

dξ =
〈

1
2πi

∫
∂B(z0,r)

f(ξ)
ξ − z

dξ, x′
〉
.

Since x′ ∈ X ′ is arbitrary, we obtain (A.1). We can differente with respect to z under the
integral sign, so that f is holomorphic and

f (n)(z) =
n!
2πi

∫
∂B(z0,r)

f(ξ)
(ξ − z)n+1

dξ

for all z ∈ B(z0, r) and n ∈ N. �

Definition A.7 Let f : Ω → X be a vector-valued function. We say that f admits a
power series expansion around a point z0 ∈ Ω if there exist a X-valued sequence (an) and
r > 0 such that B(z0, r) ⊂ Ω and

f(z) =
+∞∑
n=0

an(z − z0)n in B(z0, r).

Theorem A.8 Let f : Ω → X be a continuous function; then f is holomorphic if and
only if f has a power series expansion around every point of Ω.

Proof. Assume that f is holomorphic in Ω. Then, if z0 ∈ Ω and B(z0, r) ⊂ Ω, the Cauchy
integral formula (A.1) holds for every z ∈ B(z0, r).

Fix z ∈ B(z0, r) and observe that the series

+∞∑
n=0

(z − z0)n

(ξ − z0)n+1
=

1
ξ − z

converges uniformly for ξ in ∂B(z0, r), since
∣∣(z−z0)/(ξ−z0)| = r−1|z−z0|. Consequently,

by (A.1) and Proposition A.2(e), we obtain

f(z) =
1

2πi

∫
∂B(z0,r)

f(ξ)
+∞∑
n=0

(z − z0)n

(ξ − z0)n+1
dξ

=
+∞∑
n=0

[ 1
2πi

∫
∂B(z0,r)

f(ξ)
(ξ − z0)n+1

dξ
]
(z − z0)n,

the series being convergent in X.
Conversely, suppose that

f(z) =
+∞∑
n=0

an(z − z0)n, z ∈ B(z0, r),

where (an) is a sequence with values in X. Then f is continuous, and for each x′ ∈ X ′,

〈f(z), x′〉 =
+∞∑
n=0

〈an, x
′〉(z − z0)n, z ∈ B(z0, r).
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This implies that the complex-valued function z 7→ 〈f(z), x′〉 is holomorphic in B(z0, r)
for all x′ ∈ X ′ and hence f is holomorphic by Theorem A.6. �

Now we extend some classical theorems of complex analysis to the case of vector-valued
holomorphic functions.

Theorem A.9 (Cauchy) Let f : Ω → X be holomorphic in Ω and let D be a regular
domain contained in Ω. Then ∫

∂D
f(z)dz = 0.

Proof. For each x′ ∈ X ′ the complex-valued function z 7→ 〈f(z), x′〉 is holomorphic in Ω
and hence

0 =
∫

∂D
〈f(z), x′〉dz

〈 ∫
∂D

f(z)dz, x′
〉
.

�

Remark A.10 [improper complex integrals] As in the case of vector-valued functions
defined on a real interval, it is possible to define improper complex integrals in an obvious
way. Let f : Ω → X be holomorphic, with Ω ⊂ C possibly unbounded. If I = (a, b) is a
(possibly unbounded) interval and γ : I → C is a piecewise C1 curve in Ω, then we set∫

γ
f(z)dz := lim

s→a+, t→b−

∫ t

s
f(γ(τ))γ′(τ)dτ,

provided that the limit exists in X.

Theorem A.11 (Laurent expansion) Let f : D := {z ∈ C : r < |z − z0| < R} → X be
holomorphic. Then, for every z ∈ D

f(z) =
+∞∑

n=−∞
an(z − z0)n,

where
an =

1
2πi

∫
∂B(z0,%)

f(z)
(z − z0)n+1

dz, n ∈ Z,

and r < % < R.

Proof. Since for each x′ ∈ X ′ the function z 7→ 〈f(z), x′〉 is holomorphic in D the usual
Laurent expansion holds, that is

〈f(z), x′〉 =
+∞∑

n=−∞
an(x′)(z − z0)n

where the coefficients an(x′) are given by

an(x′) =
1

2πi

∫
∂B(z0,%)

〈f(z), x′〉
(z − z0)n+1

dz, n ∈ Z.

By Proposition A.2(d), it follows that

an(x′) = 〈an, x
′〉, n ∈ Z,

where the an are those indicated in the statement. �
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Exercises

A.1 Given a function u : [a, b] × [0, 1] → R, set U(t)(x) = u(t, x). Show that U ∈
C([a, b];C([0, 1])) if and only if u is continuous, and that U ∈ C1([a, b];C([0, 1])) if
and only if u is continuous, differentiable with respect to t and the derivative ut is
continuous.

If [0, 1] is replaced by R, show that if U ∈ C([a, b];Cb(R)) then u is continuous and
bounded, but the converse is not true.

A.3 Let f : [a, b] → X be a continuous function. Show that f is integrable.

A.4 Prove Proposition A.2.

A.5 Show that if f : (a, b] → X is continuous and ‖f(t)‖ ≤ g(t) for all t ∈ (a, b], with
g ∈ L1(a, b), then the improper integral of f on [a, b] is well defined.

A.6 Let I1 and I2 be, respectively, an open set in R (or in C) and a real interval. Moreover,
let g : I1 × I2 → X be a continuous function and set

G(λ) =
∫

I2

g(λ, t)dt, λ ∈ I1.

(a) Show that if the inequality ‖g(λ, t)‖ ≤ ϕ(t) holds for every (λ, t) ∈ I1 × I2 and
some function ϕ ∈ L1(I2), then G is continuous in I1.

(b) Show that if g is differentiable with respect to λ, gλ is continuous and ‖gλ(λ, t)‖ ≤
ψ(t) for every (t, λ) ∈ I1 × I2 and some function ψ ∈ L1(I2), then G is differentiable
in I1 and

G′(λ) =
∫

I2

gλ(λ, t)dt, λ ∈ I1.





Appendix B

Basic Spectral Theory

In this appendix we collect a few basic results on elementary spectral theory. To begin
with, we introduce the notions of resolvent and spectrum of a linear operator.

Definition B.1 Let A : D(A) ⊂ X → X be a linear operator. The resolvent set ρ(A)
and the spectrum σ(A) of A are defined by

ρ(A) = {λ ∈ C : ∃ (λI −A)−1 ∈ L(X)}, σ(A) = C\ρ(A). (B.1)

If λ ∈ ρ(A), the resolvent operator (or briefly resolvent) R(λ,A) is defined by

R(λ,A) = (λI −A)−1. (B.2)

The complex numbers λ ∈ σ(A) such that λI − A is not injective are the eigenvalues
of A, and the elements x ∈ D(A) such that x 6= 0, Ax = λx are the eigenvectors (or
eigenfunctions, when X is a function space) of A relative to the eigenvalue λ. The set
σp(A) whose elements are the eigenvalues of A is the point spectrum of A.

It is easily seen (see Exercise B.1 below) that if ρ(A) 6= ∅ then A is closed.
Let us recall some simple properties of resolvent and spectrum. First of all, it is clear

that if A : D(A) ⊂ X → X and B : D(B) ⊂ X → X are linear operators such that
R(λ0, A) = R(λ0, B) for some λ0 ∈ C, then D(A) = D(B) and A = B. Indeed,

D(A) = RangeR(λ0, A) = RangeR(λ0, B) = D(B),

and for every x ∈ D(A) = D(B), setting y = λ0x − Ax, one has x = R(λ0, A)y =
R(λ0, B)y. Applying λ0I − B, we get λ0x − Bx = y, so that λ0x − Ax = λ0x − Bx and
therefore Ax = Bx.

The following formula, called the resolvent identity, can be easily verified:

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A), λ, µ ∈ ρ(A). (B.3)

In fact, write

R(λ,A) = [µR(µ,A)−AR(µ,A)]R(λ,A),

R(µ,A) = [λR(λ,A)−AR(λ,A)]R(µ,A),

and subtract the above equalities; taking into account that R(λ,A) and R(µ,A) commute,
we get (B.3).

The resolvent identity characterizes the resolvent operators, as specified in the following
proposition.

B1
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Proposition B.2 Let Ω ⊂ C be an open set, and let {F (λ) : λ ∈ Ω} ⊂ L(X) be linear
operators verifying the resolvent identity

F (λ)− F (µ) = (µ− λ)F (λ)F (µ), λ, µ ∈ Ω.

If for some λ0 ∈ Ω, the operator F (λ0) is invertible, then there is a linear operator A :
D(A) ⊂ X → X such that ρ(A) contains Ω, and R(λ,A) = F (λ) for all λ ∈ Ω.

Proof. Fix λ0 ∈ Ω, and set

D(A) = Range F (λ0), Ax = λ0x− F (λ0)−1x, x ∈ D(A).

For λ ∈ Ω and y ∈ X the resolvent equation λx − Ax = y is equivalent to (λ − λ0)x +
F (λ0)−1xy. Applying F (λ) we obtain (λ−λ0)F (λ)x+F (λ)F (λ0)−1x = F (λ)y, and using
the resolvent identity it is easily seen that

F (λ)F (λ0)−1 = F (λ0)−1F (λ) = (λ0 − λ)F (λ) + I.

Hence, if x is a solution of the resolvent equation, then x = F (λ)y. Let us check that
x = F (λ)y is actually a solution. In fact, (λ−λ0)F (λ)y+F (λ0)−1F (λ)y = y, and therefore
λ belongs to ρ(A) and the equality R(λ,A) = F (λ) holds. �

Next, let us show that ρ(A) is an open set.

Proposition B.3 Let λ0 be in ρ(A). Then, |λ−λ0| < 1/‖R(λ0, A)‖ implies that λ belongs
to ρ(A) and the equality

R(λ,A) = R(λ0, A)(I + (λ− λ0)R(λ0, A))−1 (B.4)

holds. As a consequence, ρ(A) is open and σ(A) is closed.

Proof. In fact,
(λ−A) = (I + (λ− λ0)R(λ0, A))(λ0 −A)

on D(A). Since ‖(λ − λ0)R(λ0, A)‖ < 1, the operator I + (λ − λ0)R(λ0, A) is invertible
and it has a continuous inverse (see Exercise B.2). Hence,

R(λ,A) = R(λ0, A)(I + (λ− λ0)R(λ0, A))−1.

�

Further properties of the resolvent operator are listed in the following proposition.

Proposition B.4 The function R(·, A) is holomorphic in ρ(A) and the equalities

R(λ,A) =
+∞∑
n=0

(−1)n(λ− λ0)nRn+1(λ0, A), (B.5)

dnR(λ,A)
dλn

∣∣∣∣
λ=λ0

(−1)nn!Rn+1(λ0, A), (B.6)

hold.
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Proof. (i) If |λ− λ0| < 1
‖R(λ0,A)‖ , from (B.4) we deduce

R(λ,A) = R(λ0, A)
+∞∑
n=0

(−1)n(λ− λ0)nR(λ0, A)n
+∞∑
n=0

(−1)n(λ− λ0)nR(λ0, A)n+1

and the statement follows. �

Proposition B.3 implies also that the resolvent set is the domain of analyticity of the
function λ 7→ R(λ,A).

Corollary B.5 The domain of analyticity of the function λ 7→ R(λ,A) is ρ(A), and the
estimate

‖R(λ,A)‖L(X) ≥
1

dist(λ, σ(A))
(B.7)

holds.

Proof. It suffices to prove (B.7), because it shows that R(·, A) is unbounded approaching
σ(A). From Proposition B.3 for every λ ∈ ρ(A) we get that if |z − λ| < 1/‖R(λ,A)‖L(X)

then z ∈ ρ(A), and dist (λ, σ(A)) ≥ 1/‖R(λ,A)‖L(X), that implies (B.7). �

Let us recall also some spectral properties of bounded operators.

Proposition B.6 If T ∈ L(X) the power series

F (z) =
+∞∑
k=0

zkT k, z ∈ C, (B.8)

(called the Neumann series of (I − zT )−1) is convergent in the disk B(0, 1/r(T )), where

r(T ) = lim sup
n→+∞

n
√
‖Tn‖.

Moreover, |z| < 1/r(T ) implies F (z) = (I − zT )−1, and |z| < 1/‖T‖ implies

‖(I − zT )−1‖ ≤ 1
1− |z| ‖T‖

. (B.9)

Proof. To prove the convergence of (B.8) in the disk B(0, 1/r(T )) it suffices to use Exercise
B.2, whereas (B.9) follows from the inequality

‖F (z)‖ ≤
+∞∑
k=0

|z|k‖T‖k 1
1− |z| ‖T‖

.

�

Proposition B.7 Let T ∈ L(X). Then the following properties hold.

(i) σ(T ) is contained in the disk B(0, r(T )) and if |λ| > r(T ) then

R(λ, T ) =
+∞∑
k=0

T kλ−k−1. (B.10)

For this reason, r(T ) is called the spectral radius of T . Moreover, |λ| > ‖T‖ implies

‖R(λ, T )‖ ≤ 1
|λ| − ‖T‖

. (B.11)



B4 Appendix B

(ii) σ(T ) is non-empty.

Proof. (i) follows from Proposition B.6, noticing that, for λ 6= 0, λ− T = λ(I − (1/λ)T ).
(ii) Suppose by contradiction that σ(T ) = ∅. Then, R(·, T ) is an entire function, and
then for every x ∈ X, x′ ∈ X ′ the function 〈R(·, T )x, x′〉 is entire (i.e., holomorphic on the
whole C), it tends to 0 at infinity, and then it is constant by the Liouville theorem. As a
consequence, R(λ, T ) = 0 for all λ ∈ C, which is a contradiction. �

Exercises

B.1 Show that if A : D(A) ⊂ X → X has non-empty resolvent set, then A is closed.

B.2 Show that if A ∈ L(X) and ‖A‖ < 1 then I +A is invertible, and

(I +A)−1 =
+∞∑
k=0

(−1)kAk.

B.3 Show that for every α ∈ C the equalities σ(αA) = ασ(A), σ(αI − A) = α − σ(A)
hold. Prove also that if 0 ∈ ρ(A) then σ(A−1)\{0} = 1/σ(A), and that ρ(A+αI) =
ρ(A) + α, R(λ,A+ αI) = R(λ− α,A) for all λ ∈ ρ(A) + α.

B.4 Let ϕ : [a, b] → C be a continuous function, and consider the multiplication operator
A : C([a, b]; C) → C([a, b]; C), (Af)(x) = f(x)ϕ(x). Compute the spectrum of A. In
which cases are there eigenvalues in σ(A)?

B.5 Let Cb(R) be the space of bounded and continuous functions on R, endowed with
the supremum norm, and let A be the operator defined by

D(A) = C1
b (R) = {f ∈ Cb(R) : ∃f ′ ∈ Cb(R)} → Cb(R), Af = f ′.

Compute σ(A) and R(λ,A), for λ ∈ ρ(A). Which are the eigenvalues of A?

B.6 Let P ∈ L(X) be a projection, i.e., P 2 = P . Find σ(A), find the eigenvalues and
compute R(λ, P ) for λ ∈ ρ(P ).

B.8 Let X = C([0, 1]), and consider the operators A, B, C on X defined by

D(A) = C1([0, 1]) : Au = u′,

D(B) = {u ∈ C1([0, 1]) : u(0) = 0}, Bu = u′,

D(C) = {u ∈ C1([0, 1]); u(0) = u(1)}, Cu = u′.

Show that

ρ(A) = ∅, σ(A) = C,

ρ(B) = C, σ(B) = ∅, (R(λ,B)f)(ξ) = −
∫ ξ

0
eλ(ξ−η)f(η)dη, 0 ≤ ξ ≤ 1,

ρ(C) = C \ {2kπi : k ∈ Z}, σ(C){2kπi : k ∈ Z}.

Show that 2kπi is an eigenvalue of C, with eigenfunction ξ 7→ ce2kπiξ, and that for
λ ∈ ρ(C),

(R(λ,C)f)(ξ) =
eλξ

eλ − 1

∫ 1

0
eλ(1−η)f(η)dη −

∫ ξ

0
eλ(ξ−η)f(η)dη.
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B.9 Let A : D(A) ⊂ X → X be a linear operator and let λ ∈ C. Prove that, if there
exists a sequence {un}n∈N such that ‖un‖ = 1 for any n ∈ N and λun − Aun tends
to 0 as n tends to +∞, then λ ∈ σ(A).
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Birkhäuser, Basel (1995).

[11] A. Lunardi: Interpolation Theory, Appunti, Scuola Normale Superiore (1999). The
.pdf file may be downloaded at the address http://math.unipr.it/∼lunardi.

[12] C.-V. Pao: Nonlinear parabolic and elliptic equations, Plenum Press (1992).

[13] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential
Equations, Springer-Verlag, New York (1983).

[14] F. Rothe: Global Solutions of Reaction-Diffusion Systems, Lect. Notes in Math.
1072, Springer Verlag, Berlin (1984).

[15] J. Smoller: Shock Waves and Reaction-Diffusion Equations, Springer Verlag, Berlin
(1983).

i



ii References

[16] H.B. Stewart: Generation of analytic semigroups by strongly elliptic operators,
Trans. Amer. Math. Soc. 199 (1974), 141-162.

[17] H.B. Stewart: Generation of analytic semigroups by strongly elliptic operators un-
der general boundary conditions, Trans. Amer. Math. Soc. 259 (1980), 299-310.

[18] H. Triebel: Interpolation Theory, Function Spaces, Differential Operators, North-
Holland, Amsterdam (1978).

[19] A. Zygmund: Trigonometric Series, Cambridge Univ. Press., 2nd Edition Reprinted
(1968).



Index

B(I;X), A2
B([a, b];Y ), 51
BUCk(RN ), 23
C(I;X), A2
C([a, b];Y ), 51
Ck(I;X), A2
Ck

b (I;X), A2
Ck

b (RN ), 23
C∞

0 (RN ), 33
Ck+θ

b (Ω), 44
Cb(I;X), A2
Cω(I;X), 73
DA(α,∞), 41
DA(k + α,∞), 43
I(u0), 79
Lp(Ω), 23
Sθ,ω, 10
W k,p(Ω), 23
L(X), A1
L(X,Y ), A1
ωA (growth bound), 69
σ+(A), σ+, 65
σ−(A), σ−, 65
s(A) (spectral bound), 63
S(RN ), 33

adjoint operator, 28
analytic semigroup, 14
asymptotically stable stationary solution,

102

calculus fundamental theorem, A3
Cauchy theorem, A6
classical solution, 51, 77
closable operator, A1
closed operator, A1
closure, 20
complexification, 20
core, 19
critical growth exponent, 94

dissipative operator, 28
dual space, A2
duality bracket, A4

eigenvalues, B1
eigenvectors, B1
exponential series, 7
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