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Introduction

These lectures deal with the functional analytical approach to linear and nonlinear parabolic
problems.
The simplest significant example is the heat equation, either linear

ur(t, @) = ugz(t,x) + f(t,z), 0<t<T, 0<x<l1,
u(t,0) =u(t,1) =0, 0<t<T, (1)
u(0,x) = up(x), 0<z<1,

or nonlinear,
ut(t,x) = ugz(t, ) + f(u(t,z)), t>0, 0<z<1,
u(t,0) =u(t,1) =0, t>0, (2)
u(0,z) = up(x), 0<z<1.

In both cases, u is the unknown, and f, ug are given. We will write problems (1), (2) as
evolution equations in suitable Banach spaces. To be definite, let us consider problem (1),
and let us set

ut,)=U(t), f(t,)=F(), 0<t<T,

so that for every ¢t € [0,7], U(t) and F(t) are functions, belonging to a suitable Banach
space X. The choice of X depends on the type of the results expected, or else on the
regularity properties of the data. For instance, if f and ug are continuous functions the
most natural choice is X = C([0,1]); if f € LP((0,T) x (0,1)) and up € LP(0,1), p > 1,
the natural choice is X = LP(0,1), and so on.

Next, we write (1) as an evolution equation in X,

U'(t) = AU(t) + F(t), 0<t<T,
i

U(0) = uo,

where A is the realization of the second order derivative with Dirichlet boundary condition
in X (that is, we consider functions that vanish at z = 0 and at = 1). For instance, if
X = C(]0,1]) then

D(A) = {p € C*([0,1]) : 0(0) = ¢(1) = 0}, (Ap)(z) = ¢"(2).

Problem (3) is a Cauchy problem for a linear differential equation in the space X =
C([0,1]). However, the theory of ordinary differential equations is not easily extendable
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to this type of problems, because the linear operator A is defined on a proper subspace of
X, and it is not continuous.

What we use is an important spectral property of A: the resolvent set of A contains a
sector S ={A € C: X\ #0, |arg\| < 0}, with 6 > 7/2 (precisely, it consists of a sequence
of negative eigenvalues), and moreover

_ M
IO = ) o < 5y A€ S (4)
This property will allow us to define the solution of the homogeneous problem (i.e., when
F = 0), that will be called e/4uy. We shall see that for each ¢ > 0 the linear operator
ug +— eug is bounded. The family of operators {e!4 : ¢ > 0} is said to be an analytic

semigroup: semigroup, because it satisfies
e(t-l—s)A _ etAESA, t,s>0, GOA =1,

analytic, because the function (0, +o00) — L£(X), t — !4 is analytic.

Then we shall see that the solution of (3) is given by the variation of constants formula
t
U(t) = efug + / eU=DAR(s)ds, 0<t<T,
0

that will let us study several properties of the solution to (3) and of wu, recalling that
U(t) = ult,-).

We shall be able to study the asymptotic behavior of U as t — 400, in the case that
F is defined in [0, +00). As in the case of ordinary differential equations, the asymptotic
behavior depends heavily on the spectral properties of A.

Also the nonlinear problem (2) will be written as an abstract Cauchy problem,

U'(t) = AU(t) + F(U(t)), t >0,
{ (5)

U(O) = Uuo,

where F' : X — X is the composition operator, or Nemitzky operator, F'(v) = f(v(-)).
After stating local existence and uniqueness results, we shall see some criteria for existence
in the large. As in the case of ordinary differential equations, in general the solution is
defined only in a small time interval [0,6]. The problem of existence in the large is of
particular interest in equations coming from mathematical models in physics, biology,
chemistry, etc., where existence in the large is expected. Some sufficient conditions for
existence in the large will be given.

Then we shall study the stability of the (possible) stationary solutions, that is all
the w € D(A) such that Au + F(u) = 0. We shall see that under suitable assumptions
the Principle of Linearized Stability holds. Roughly speaking, @ has the same stability
properties of the null solution of the linearized problem

VI(t) = AV (t) + F'(@)V (t).

A similar study will be made in the case that F' is not defined in the whole space X, but
only in an intermediate space between X and D(A). For instance, in several mathematical
models the nonlinearity f(u(t,z)) in problem 2 is replaced by f(u(t, ), us(¢,x)). Choosing
again X = C([0,1]), the composition operator v — F(v) = f(v(:),v(+)) is well defined in
(o, 1]).



Chapter 1

Sectorial operators and analytic
semigroups

1.1 Introduction

The main topic of our first lectures is the Cauchy problem in a general Banach space X,

{ u'(t) = Au(t), t > 0,

(1.1)
u(0) =z,

where A : D(A) — X is a linear operator and z € X. Of course, the construction and the
properties of the solution depends upon the class of operators that is considered. The most
elementary case, which we assume to be known to the reader, is that of a finite dimensional
X and a matrix A. The case of a bounded operator A in general Banach space X can be
treated essentially in the same way, and we are going to discuss it briefly in Section 1.2.
We shall present two formulae for the solution, a power series expansion and an integral
formula with a complex contour integral. While the first one cannot be generalized to
the case of an unbounded A, the contour integral admits a generalization to the sectorial
operators. This class of operators is discussed in Section 1.3. If A is sectorial, then the
solution map x — u(t) of (1.1) is given by an analytic semigroup. Sectorial operators and
analytic semigroups are basic tools in the theory of abstract parabolic problems, and of
partial differential equations and systems of parabolic type.

1.2 Bounded operators

Let A € L£(X). First, we give the solution of (1.1) as the sum of a power series of
exponential type.

Proposition 1.2.1 Let A € L(X). Then, the series

T 4k Ak
t"A
T, t e Re, (12)
k=0
converges in L(X) uniformly on bounded subsets of Re. Setting u(t) := > 720tk Akz k!,

the restriction of u to [0,+00) is the unique solution of the Cauchy problem (1.1).

7
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Proof. Ezistence. Using Theorem A.3 as in the finite dimensional case, it is easily checked
that solving (1.1) is equivalent to finding a continuous function v : [0,+00) — X which
satisfies

t
v(t) == +/ Av(s)ds, t>0. (1.3)
0
In order to show that u solves (1.3), let us fix an interval [0, 7] and define
t
up(t) =, ups1(t) =2 +/ Aup(s)ds, n € N. (1.4)
0
We have
=tk AR
un(t) = Z % nE N.
k=0
Since " Al
t T
e e !

the series 3720 t* A /k! converges in £(X), uniformly with respect to ¢ in [0, 7]. Moreover,
the sequence {uy(t)}nen converges to w(t) uniformly for ¢ in [0,7]. Letting n — oo in
(1.4), we conclude that u is a solution of (1.3).

Uniqueness. If u,v are two solutions of (1.3) in [0, 7], we have by Proposition A.2(c)

t
[u(t) —o@)] < IIAII/0 [u(s) = v(s)l|ds

and from Gronwall’s lemma (see Exercise 3 in §1.2.4 below), the equality u = v follows at
once. 0

As in the finite dimensional setting, we define

A +oo tk Ak
A=Y o teR (1.5)
k=0

In the proof of Proposition 1.2.1 we have seen that for every bounded operator A the above
series converges in £(X) for each t € R. If A is unbounded, the domain of A* may become
smaller and smaller as k increases, and even for x € ﬂkeND(Ak) it is not obvious that
the series > 2% t* A¥z /k! converges. For instance, take X = C([0, 1]), D(A) = C*([0,1]),
Af = f.

Therefore, we have to look for another representation of the solution to (1.1) if we
want to extend it to the unbounded case. As a matter of fact, it is given in the following
proposition.

Proposition 1.2.2 Let A € L(X) and let v C C be any circle with centre 0 and radius
r > ||All. Then

et — 2% / PR AL, tER. (1.6)
Y

Proof. From (1.5) and the power series expansion

+o0 Ak
RNA) =) 5 > 4],
A
k=0
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(see (B.10)), we have

Jr
1 [, 1 X 4m
— MNA) AN = — ST [ AR, A)dA
271'2'/76 R(), 4) 2m’Z'/ R, 4)

as the integrals in the last series equal 277 if n = k, 0 otherwise. Note that the exchange
of integration and summation is justified by the uniform convergence. O

Let us see how it is possible to generalize to the infinite dimensional setting the variation
of constants formula, that gives the solution of the non-homogeneous Cauchy problem

W(t) = Au(t) + f(t), 0<t<T,
{ )

where A € L(X),z € X, fe C([0,T);X) and T > 0.

Proposition 1.2.3 The Cauchy problem (1.7) has a unique solution in [0,T], given by

u(t) = ez + /0 s f(s)ds, te][0,T). (1.8)

Proof. It can be directly checked that u is a solution. Concerning uniqueness, let uy, uso
be two solutions; then, v = uj; — ug satisfies v/'(t) = Awv(t) for 0 <t < T, v(0) = 0. By
Proposition 1.2.1, we conclude that v = 0. O

Exercises 1.2.4

1. Prove that e!4e*4 = e(t+9)4 for any ¢, s € R and any A € £(X).

2. Prove that if the operators A, B € £(X) commute (i.e. AB = BA), then e'4e'P =
e!A+B) for any t € R.

3. Prove the following form of Gronwall’s lemma:

Let u,v : [0,400) — [0,400) be continuous functions, and assume that
¢
u(t) < « +/ u(s)v(s)ds
0

for some a > 0. Then, u(t) < aexp{fo s)ds}, for any ¢t > 0.

4. Check that the function u defined in (1.8) is a solution of problem (1.7).
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1.3 Sectorial operators

Definition 1.3.1 We say that a linear operator A : D(A) C X — X is sectorial if there
are constants w € R, 8 € (w/2,7), M > 0 such that

(1) p(A) D Spw ={AeC: A#w,|arg(A —w)| <0},

.. M
() HR()\»A)HL(X) < ma A € Sp -

Note that every sectorial operator is closed, because its resolvent set is not empty.

For every ¢t > 0, the conditions (1.9) allow us to define a bounded linear operator e
on X, through an integral formula that generalizes (1.6). For r > 0, n € (7/2,0), let v,
be the curve

tA

{AeC:largA =n, |A| >r}U{AeC:larg\| <n, |\ =r},

oriented counterclockwise, as in Figure 1.

Figure 1.1: the curve v, .
For each t > 0 set

1
et = / ePR(N, A)dA, t> 0. (1.10)
Yr,ntw

T 2mi

Using the obvious parametrization of v, , we get

ewt

+
etA — <_/ Ooe(pcosnfipsinn)tR(w_'_pefi'luA)efindp
T

2mi

n I ; i
+/ e(rcosa-}-zrsma)tR(w_}_,r.ewé’A)Z'Telada (111)
-n

+
+/ ooe(PCOSW+iPSiH77)tR(W_|_pei777A)6i77dp)’
r

for every t > 0 and for every r > 0, n € (7/2,0).
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Lemma 1.3.2 If A is a sectorial operator, the integral in (1.10) is well defined, and it is
independent of r >0 and n € (7/2,0).

Proof. First of all, notice that for each ¢t > 0 the mapping A — e R(\, A) is a L(X)-
valued holomorphic function in the sector Sy, (see Proposition B.4). Moreover, for any
A =w+ re?, the estimate

e R(N, A)llzxy < exp(wt) exp(tr cos n)g (1.12)

holds for each A in the two half-lines, and this easily implies that the improper integral is
convergent. Now take any 7' > 0,7" € (7/2,6) and consider the integral on ~,/,» + w. Let
D be the region lying between the curves v, , + w and 7,/ ;7 + w and for every n € N set
D, = DN {|z —w| < n}, as in Figure 1.2. By Cauchy integral theorem A.9 we have

/ e R(\, A)d\ = 0.
0Dy,

By estimate (1.12), the integrals on the two arcs contained in {|z — w| = n} tend to 0 as
n tends to +o00, so that

/ RN, A)d)\ = / e R(N, A) dX
Yr,ntw Vot ! +w

and the proof is complete. O

Vet W

Yrn W

Figure 1.2: the region D,,.

Let us also set
e =2, zeX. (1.13)

In the following theorem we summarize the main properties of e!4 for t > 0.
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Theorem 1.3.3 Let A be a sectorial operator and let et be given by (1.10). Then, the
following statements hold.

(i) ez € D(AF) for allt >0, x € X, k € N. If x € D(AF), then

AbetAy — etAAkx, t>0.

(ii) ettesA = et+9)4 for any t, s > 0.
(iii) There are constants My, My, Ma, ..., such that
(@) [le"|zx) < Moe*t, t >0,

(1.14)
(b) |tF(A —wD)*e' | ox) < Mpe?t, ¢ >0,

where w is the number in (1.9). In particular, from (1.14)(b) it follows that for every
e >0 and k € N there is C . > 0 such that

[tF AR £ (x) < O e ¢ > 0. (1.15)
(iv) The function t — e belongs to C*°((0,400); L(X)), and the equality
d—ke“‘ = Akt >0 (1.16)
dtk ) )

holds for every k € N. Moreover, it has an analytic continuation e** to the sector
So_r/2,0, and, for z = pei € So—ns2,0, 0 € (7/2,0 — ), the equality

1
el = / M R(\, A)dA
7r,9/+w

T omi
holds.

Proof. Replacing A by A —wlI if necessary, we may suppose w = 0. See Exercise 1, §1.3.5.

Proof of (i). First, let k = 1. Recalling that A is a closed operator and using Lemma A.4
with f(t) = eMR(\, A), we deduce that e!4z belongs to D(A) for every = € X, and that

1 1
Aetty = — / ePMARN, Az d) = — / NePR(X, Az d, (1.17)
2mi ), i ),
because AR(A, A) = AR(\, A) — I, for every A € p(A), and f%n et*d\ = 0. Moreover, if
x € D(A), the equality Aet4z = 4 Ax follows since AR(\, A)z = R(\, A)Azx. Tterating
this argument, we obtain that e*4z belongs to D(A¥) for every k € N; moreover

1
Aketh = — / MNeAR(N, A)dA,
21 e

and (i) can be easily proved by recurrence.

Proof of (it). Since

1\2
etesh = <> / eAtR()\,A)d)\/ e’ R(u, A)dpu,
Yrn

2mi Yap
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with o' € (§,7), using the resolvent identity it follows that

1 2
etAeSA — <2> / / )\t—l-/.ts ) R( )d)\d,u
T e Iy —A

2r,n/

1\? A dp
= <> / e tR()\,A)d)\/ ets
2mi Yrm Vo T A
1\2
() /.

GMSR(N,A)CZ/L/ eAtﬂ _ e(tJrs)A,
where we have used the equalities

Yryn 'u_)\
B [ o
ns =2 AL N€ R — =0, € ' 1.18
/y € ,U'_)‘ e Yrm ., € N_)‘ H < Yorn ( )

r,n’

2r,n/
that can be easily checked (Exercise 2, §1.3.5).

Proof of (iii). Let us point out that if we estimate ||e’”|| integrating [|eMR(, A)|| over v,
we get a singularity near ¢ = 0, because the norm of the integrand behaves like M /|A| for
|A| small. We have to be more careful. Setting At = £ in (1.10) and using Lemma 1.3.2,
we get

etA = 1/ AR §,A df_l/ AR é,Aﬁ
211 ot t t 211 ~ t t
rt,mn n
1 +oo in pein ein +o0 —in pe*m e*in
= — Pe"R —dp — N A d
27ri</r€ <t’>tp/re <t’ t
n 1Q
+/ eremR(Te A> ire@ doz>.
—n t t

et < 2 { [ areremn e = M ia ).
™ T

The estimate of ||Ae*4|| is easier, and we do not need the above procedure. Recalling that
|AR(A, A)|| < M + 1 for each X € ,.,, and using (1.11) we get

+
HAetAH < M+1/ Ooeptcosndp+ (M—l—l)?” /”7 ertcosocda’
T r _n

It follows that

2

so that, letting r — 0,

|4t < m — g £ 0.
From the equality Ae!4z = e Az, which is true for each z € D(A), it follows that
AketA — (Aex ) for all k € N, so that

1A | poxy < (NRETHF = Myt .

Proof of (iv). This follows easily from Exercise A.6 and from (1.17). Indeed,

d a1

L At _ g tA
7 _QWi[y AV R(A, A)dA = Ae™?, t>0.
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The equality
dk tA k tA
—e't = A", t>0
dtk
can be proved by the same argument, or by recurrence. Now, let 0 < a@ < 6 — /2 be
given, and set n = 6 — . The function

1
2 et = — / e R(\, A)d\
21 ~

N

is well defined and holomorphic in the sector
Sa={2€C:2#0, |argz| <0 — /2 — a},

because we can differentiate with respect to z under the integral, again by Exercise A.6.
Indeed, if A = & and z = pe'?, then Re(z)\) = £pcos(n + ¢) < —c€p for a suitable ¢ > 0.
Since the union of the sectors Sy, for 0 < a < 0 — /2, is Sg_%@, (iv) is proved. O

Statement (ii) in Theorem 1.3.3 tells us that the family of operators ' satisfies the
semigroup law, an algebraic property which is coherent with the exponential notation.
Statement (iv) tells us that e is analytically extendable to a sector. Therefore, it is
natural to give the following deefinition.

Definition 1.3.4 Let A be a sectorial operator. The function from [0,+00) to L(X),
t e (see (1.10), (1.13)) is called the analytic semigroup generated by A (in X ).

!
! ’}/27.,77/

Figure 1.3: the curves for Exercise 2.

Exercises 1.3.5

1. Let A: D(A) C X — X be sectorial, let « € C, and set B : D(B) := D(A) — X,
Bx = Az —ax, C : D(C) = D(A) — X, Cz = aAz. Prove that the operator B is
sectorial, and that e'® = e~et4. Use this result to complete the proof of Theorem
1.3.3 in the case w # 0. For which « is the operator C sectorial?

2. Prove that (1.18) holds, integrating over the curves shown in Figure 1.3.
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3. Let A: D(A) C X — X be sectorial and let z € D(A) be an eigenvector of A with
eigenvalue A.

(a) Prove that R(u, A)z = (u — A\) "1z for any u € p(A).
(b) Prove that ef4z = Mgz for any t > 0.

4. Prove that if both A and —A are sectorial operators in X, then A is bounded.

Given z € X, the function ¢t — e*Ax is analytic for ¢ > 0. Let us consider its behavior
for ¢ close to 0.

Proposition 1.3.6 The following statements hold.

(i) If x € D(A), then lim, o+ ez = . Conversely, if y = lim, o+ ez exists, then

x € D(A) and y = x.
(ii) For every x € X and t > 0, the integral fg e*Ax ds belongs to D(A), and
t
A/ e ds = ela — . (1.19)
0
If, in addition, the function s — Ae®x is integrable in (0,¢) for some € > 0, then

t
ety — o = / Aet Az ds, t>0.
0

(iii) If x € D(A) and Ax € D(A), then lim,_ g+ (e!dx — x)/t = Ax. Conversely, if
z = lim,_ o+ (e!d2 — x)/t exists, then x € D(A) and Az = z € D(A).

(iv) If x € D(A) and Az € D(A), then lim,_ g+ Aetdx = Ax.

Proof. Proof of (i). Notice that we cannot let ¢ — 0T in the Definition (1.10) of e*4z,
because the estimate [|[R(A, A)|| < M/|A — w| does not suffice to use any convergence
theorem.

But if x € D(A) things are easier: indeed fix £, r such that w < £ € p(4),0 <71 < {—w,
and set y = {x — Az, so that z = R(&, A)y. We have

1
o= MR A= o [ PROARE Ay
270 )y,
n
— 1 : et)\ R()\’ A) d\ — 1 : et)\ R(f, A)yd)\
2mi )y, E—A 2mi )y, E—A
1 A
— et)\R()‘v )yd/\,

271 S E—A

because the integral f’an o eAR(&, A)y/(€ — N\)d\ vanishes (why?). Here we may let
t — 0T because |[R(\, A)y/( — N)|| < CIA|72 for A € 4, + w. We get
tA 1 R(AA)

lim "'z = —
t—0+ 27'[-7/ ’Y’Py”]+w 5 - )\

ydA = R(§, Ay = x.
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The second equality follows using Cauchy’s Theorem with the curve {\ € v, + w :
IA—w|] <n}U{|A—w| =n, arg(A —w) € [-n,n]} and then letting n — +oo. Since D(A)
is dense in D(A) and ||e!4]| is bounded by a constant independent of ¢ for 0 < ¢ < 1, then
limy_,o+ ez = x for all x € D(A), see Lemma A.1.

Conversely, if y = lim;_,o+ e, then y € D(A) because ez € D(A) for t > 0, and
we have R(&, A)y = lim,_ g+ R(¢, Atz = lim,_o+ eAR(E, A)x = R(E, A)x as R(¢, A)x €
D(A). Therefore, y = =.

Proof of (ii). To prove the first statement, take £ € p(A) and x € X. For every ¢ € (0,t)
we have

t t
/ eArds = / (€ — AR(E, A)eta ds
g 13 . . d
= ¢ / R(&, A)e* Az ds — / £(R(§,A)65Aa:)ds
¢
=  (R(£A) / e Ards — e R(E, A)x + EAR(E, A)x.
Since R(&, A)z belongs to D(A), letting ¢ — 0% we get
¢ ¢
/ e Ards = ER(E, A) / eArds — R(E,A)(ex — ). (1.20)
0 0
Therefore, fg esAxds € D(A), and
t ¢
(&I — A)/ e ds = §/ e Axds — (e — x),
0 0
whence the first statement in (ii) follows. If in addition s — ||Ae*42| belongs to L'(0,T),
)

we may commute A with the integral by Lemma A.4 and the second statement in (ii) is
proved.

Proof of (iii). If x € D(A) and Az € D(A), we have

tA t t
S 1A e ds = 1/ e Az ds.
t ) t Jo
Since the function s — e*4 Az is continuous on [0, ¢] by (i), then lim,_,o+ (e z — )/t = Az
by Theorem A.3.

Conversely, if the limit z := lim,_, o+ (e!42 — )/t exists, then lim,_,+ e
both z and z belong to D(A). Moreover, for every £ € p(A) we have

tAy — 1, so that

€tA.T,' — T

R(¢,A)z = lim R(, A) ;
t—0+ t

and from (ii) it follows
t
R(£,A)z = hm Rf A)A / eAxds = lim+(§R(§,A) —I)i/ e Az ds.
t—0 0

Since x € D(A), the function s — e54x is continuous at s = 0, and then
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In particular, x € D(A) and z = &x — (§ — A)x = Ax.

Proof of (iv). Statement (iv) is an easy consequence of (i), since Aetdz = ef4Ax for
x € D(A). O

Formula (1.19) is very important. It is the starting point of several proofs and it will
be used throughout these lectures. Therefore, remind it!

It has several variants and consequences. For instance, if w < 0 we may let t — 400
and, using (1.14)(a), we get f0+°° esAzds € D(A) and

+oo
ZL':—A/ eAxds, veX.
0

In general, if Re A > w, replacing A by A — A\l and using (1.19) and Exercise 1, §1.3.5, we
get

t
e Mty —x = (A— /\I)/ e MeArds, e X,
0

so that N
x= (N — A)/ e MeArds, xe X. (1.21)
0

An important representation formula for the resolvent R(\, A) of A follows.

Proposition 1.3.7 Let A : D(A) C X — X be a sectorial operator. For every A € C
with Re A > w we have

+oo
R\ A) = / e MelAdt. (1.22)
0

Proof. The right hand side is well defined as an element of £(X) by estimate (1.14)(a).
The equality follows applying R(A, A) to both sides of (1.21). O

Corollary 1.3.8 For allt > 0 the operator €' is one to one.

Proof. ¢’ = I is obviously one to one. If there are ty > 0, € X such that ¢4z = 0,
then for ¢ > tg, etdz = e(t=t0)A¢toAy — (. Since the function t — ez is analytic, ez = 0
in (0,+00). From Proposition 1.3.7 we get R(\, A)x = 0 for A > w, so that = 0. O

Remark 1.3.9 Formula (1.22) is used to define the Laplace transform of the scalar func-
tion t — €4, if A € C. The classical inversion formula to recover e from its Laplace
transform is given by a complex integral on a suitable vertical line; in our case the vertical
line has been replaced by a curve joining coe™" to ooe™ with n > 7/2, in such a way that
the improper integral converges by assumption (1.9).

Of course, the continuity properties of semigroups of linear operators are very impor-
tant in their analysis. The following definition is classical.

Definition 1.3.10 Let (T'(t))i>0 be a family of bounded operators on X. If T(0) = I,
T(t+s)=T(t)T(s) for allt,s > 0 and the map t — T(t)x is continuous from [0, +00) to
X then we say that (T'(t))e>0 is a strongly continuous semigroup.
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By Proposition 1.3.6(i) we immediately see that the semigroup {e!4};>q is strongly
continuous in X if and only if D(A) is dense in X.

In any case some weak continuity property of the function ¢t — e*4z holds for a general
r € X; for instance we have

lim, R\, A)e ez = R\, A)z (1.23)
t—

for every A € p(A). Indeed, R(\, A)e!dz = e R(\, A)z for every t > 0, and R(\, A)z €
D(A). In the case when D(A) is not dense in X, a standard way to obtain a strongly
continuous semigroup from a sectorial operator A is to consider the part of A in D(A).

Definition 1.3.11 Let L : D(L) C X — X be a linear operator, and let Y be a subspace
of X. The part of L in Y is the operator Ly defined by

D(Ly) ={x e D(L)NY : Lz €Y}, Loz = Lux.

It is easy to see that the part Ag of A in D(A) is still sectorial. Since D(Ay) is dense in
D(A) (because for each 2 € D(A) we have z = lim;_g e, then the semigroup generated
by Ay is strongly continuous in D(A). By (1.10), the semigroup generated by Ay coincides
of course with the restriction of ¢4 to D(A).

Coming back to the Cauchy problem (1.1), let us notice that Theorem 1.3.3 implies
that the function
u(t) = ez, t>0

is analytic with values in D(A) for ¢ > 0, and it is a solution of the differential equation
in (1.1) for ¢ > 0. Moreover, u is continuous also at ¢ = 0 (with values in X) if and only
if £ € D(A) and in this case u is a solution of the Cauchy problem (1.1). If x € D(A)
and Ax € D(A), then u is continuously differentiable up to t = 0, and it satisfies the
differential equation also at t = 0, i.e., /(0) = Az. Uniqueness of the solution to (1.1)
will be proved in Proposition 4.1.2, in a more general context.

Let us give a sufficient condition, seemingly weaker than (1.9), in order that a linear
operator be sectorial. It will be useful to prove that the realizations of some elliptic partial
differential operators are sectorial in the usual function spaces.

Proposition 1.3.12 Let A: D(A) C X — X be a linear operator such that p(A) contains
a halfplane {\ € C: Re X > w}, and

[IARN, A)llz(x) £ M, Re) > w, (1.24)
with w >0, M > 1. Then A is sectorial.

Proof. By Proposition B.3, for every r > 0 the open disks with centre w % ir and radius
|w + ir|/M is contained in p(A). Since |w + 4r| > r, the union of such disks and of the
halfplane {Re A > w} contains the sector {\ € C: A # w, |arg(A —w)| < m — arctan(M)}
and, hence, it contains S = {\ # w : |arg(A —w)| < m — arctan(2M)}. If A € S and
Re A < w, we write A\ = w £ ir — (0r)/(2M) for some 6 € (0,1). Since by (B.4)

R\ A)=Rw=+ir, A) (I +(A\—wTFir)Rw+ir, A)~"
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and ||(I + (A —w Fir)R(w +ir, A)) 7| < 2, we have

2M 2M 4M? + 1
S gt G St M
lwxirl = r = | A—uw|

1R A <

If A € S and Re A > w, estimate (1.24) yields |R(\, A)|| < M/|X — w|, and the statement
follows. O

Next, we prove a useful perturbation theorem.

Theorem 1.3.13 Let A: D(A) — X be a sectorial operator, and let B : D(B) — X be a
linear operator such that D(A) C D(B) and

|Bz|| < a||Az| + b||x]|, xz € D(A). (1.25)
There is 6 > 0 such that if a € [0,0] then A+ B : D(A) — X is sectorial.

Proof. Let > 0 be such that R(\, A) exists and [|[AR(A, A)|| < M for Re A > r. We write
A—A—-—B=(I—-BR(M\A))(A—A) and we observe that

bM 1
IBR(A, A)z|| < all AR(A, A)z[| + bl[R(X, Az < <a(M+ 1)+ |/\|) Izl < 5[l

if a(M + 1) < 1/4 and bM/|\| < 1/4. Therefore, if a < § := (4(M + 1))~! and for Re A
sufficiently large, ||BR(X, A)|| < 1/2 and

A= A= B)7Y < [RO A (I~ BR(A, A) Y| < 2&4

The statement now follows from Proposition 1.3.12. U
Corollary 1.3.14 If A is sectorial and B : D(B) D D(A) — X is a linear operator such
that for some 6 € (0,1), C > 0 we have

B2l < Cllelylallic?, = € D(A),
then A+ B : D(A+ B) := D(A) — X is sectorial.

Remark 1.3.15 In fact the proof of Theorem 1.3.13 shows that if A : D(A) — X is a
sectorial operator and B : D(B) — X is a linear operator such that D(A) C D(B) and
limRe A— 100, AeSp., IBR(A, A)|| =0, then A+ B : D(A) — X is a sectorial operator.

The next theorem is sometimes useful, because it allows to work in smaller subspaces
of D(A). A subspace D as in the following statement is called a core for the operator A.

Theorem 1.3.16 Let A be a sectorial operator with dense domain. If a subspace D C
D(A) is dense in X and e!*(D) C D for eacht > 0, then D is dense in D(A) with respect
to the graph norm.
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Proof. Fix x € D(A) and a sequence (z,) C D which converges to = in X. Since D(A) is
dense, then by Proposition 1.3.6(iii)

tA t

. ez —=x . A

Az = lim ——~ = lim = [ e*xds,
t—0t+ t t—0+t 0

and the same formula holds with x, in place of x. Therefore it is convenient to set

1t 1t 1t
Ynt = — / e Ax,ds = = / e*A(xy — x) ds + / Az ds.
o tJo tJo tJo

For each n, the map s — 54

Xy is continuous in D(A) and takes values in D; it follows that
fg e*Ax,ds, being the limit of the Riemann sums, belongs to the closure of D in D(A),

and then each y,,; does. Moreover |y, — z|| tends to 0 as t — 0", n — 400, and

etA(

R _ t
Ayp s — Az = Zn =) = (@0~ 7) —i—l/ A Axds — Ax.

¢ t Jo

Given € > 0, fix 7 so small that ||[77! [ e Az ds — Az|| < ¢, and then choose n large,
in such a way that (Moe“” 4+ 1)||x,, — z||/7 < e. For such choices of 7 and n we have
| Ay » — Az|| < 2e, and the statement follows. O

Theorem 1.3.16 implies that the operator A is the closure of the restriction of A to D,
i.e. D(A) is the set of all x € X such that there is a sequence (z,) C D with the property
that z,, — = and Ax,, converges as n — +00; in this case we have Az = limy,— 400 AZp,.

Remark 1.3.17 Up to now we have considered complex Banach spaces, and the operators
e!4 have been defined through integrals over paths in C. But in many applications we
have to work in real Banach spaces.

If X is a real Banach space, and A : D(A) C X — X is a closed linear operator, it is
however convenient to consider its complex spectrum and resolvent. So we introduce the
complexifications of X and of A, defined by

X={o+iy: z, ye X} |z 4yl = sup [zcosf 4 ysind)|

—m<O<m

and
D(/T) ={z+iy: z, y € D(A)}, E(m +1y) = Ax + iAy.

With obvious notation, we say that x and y are the real and the imaginary part of x + y.
Note that the “euclidean norm” /|z||?2 + |ly||? is not a norm, in general. See Exercise 5
in §1.3.18.

If the complexification Aof Ais sectorial, so that the semigroup e/ is analytic in X )

then the restriction of et‘Z to X maps X into itself for each ¢ > 0. To prove this statement
it is convenient to replace the path =, , by the path v = {A € C: A = o' + peF?  p >0},
with w’ > w, in formula (1.10). For each x € X we get
tA L [T o (iotptei® / 0 —i0+pte—® / -0 7
el =5 e (e PETR(w' + pe”, A) — e TP T R(W 4+ pe ,A))xdp, t > 0.
™ Jo

The real part of the function under the integral vanishes (why?), and then ey belongs
to X. So, we have a semigroup of linear operators in X which enjoys all the properties
that we have seen up to now.
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Exercises 1.3.18

1.

Let X%, k = 1,...,n be Banach spaces, and let Ay : D(A;) — X be sectorial

operators. Set
n

X =[] xw D(4) =[] D(4w).
k=1

k=1
and A(x1,...,z,) = (A121, ..., Apxy,), and show that A is a sectorial operator in
X. X is endowed with the product norm ||(z1,...,z,)|| = (X, ka||2)1/2.
(a) Let A, B be sectorial operators in X. Prove that e/4et? = etBet4 for any ¢t > 0
if and only if et4esB = 5Bt for any t,s > 0.
(b) Prove that if A and B are as above, then e!4eB = e5Bet4 for any ¢, s > 0 if and
only if R(A\, A)R(u, B) = R(p, B)R(X, A) for large Re A and Re p.
Let A: D(A) C X — X and B : D(B) C X — X be, respectively, a sectorial
operator and a closed operator such that D(A) C D(B).

(i) Show that there exist two positive constants a and b such that
|Bz|| < af|Az|| + blj«]

for every x € D(A).

[Hint: use the closed graph theorem to show that BR(A, A) is bounded for any
A€ p(A)].

(ii) Prove that if BR(X\g,A) = R(M\o,A)B in D(B) for some Ay € p(A), then
BR(\, A) = R(A\, A)B in D(B) for any A € Sp,.

[Hint: use Proposition B.3].

(iii) Show that if BR(A\g, A) = R(\g, A)B in D(B), then Be!4 = 4B in D(B) for
every t > 0.

Prove Corollary 1.3.14.

. Let X be a real Banach space. Prove that the function f : X x X — R defined by

fz,y) = Vlz||* + ||ly||? for any x,y € X, may not satisfy, in general, the homo-
geneity property

fA\(z,y)) = [Alf(z,y), AeC.
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Examples of sectorial operators

In this chapter we show several examples of sectorial operators.

The leading example is the Laplace operator A in one or more variables, i.e., Au = u”
if N=1and Au = Zf\i 1 Diu if N > 1. We shall see some realizations of the Laplacian
in different Banach spaces, and with different domains, that turn out to be sectorial
operators.

The Banach spaces taken into consideration are the usual spaces of complex valued
functions defined in RY or in an open set  of RV, that we recall briefly below.

The Lebesgue spaces LP(£2), 1 < p < 400, are endowed with the norms

1/p
1l = ( /Q !f(w)lpda?> 1<p<too

£l oo (@) = esssup | f(z)].
HISY)
When no confusion may arise, we write || f||, for ||f||zr)-

The Sobolev spaces W*P(Q), where k is any positive integer and 1 < p < 400, consist
of all the functions f in LP(€2) which admit weak derivatives D®f for |a| < k belonging
to LP(Q2). They are endowed with the norm

I lwroy = D IDFlp-

o<k

If p = 2, we write H*(Q) for W»P(Q).
Cy(Q) (resp., BUC(Q)) is the space of all the bounded and continuous (resp., bounded
and uniformly continuous) functions f : Q — C. They are endowed with the L norm.
If k € N, CF(Q) (resp. BUC*(2)) is the space of all the functions f in Cy(Q) (resp. in
BUC(£2)) which are k times continuously differentiable in €2, with all the derivatives up

to the order k in C(2) (resp. in BUC(S?)). They are endowed with the norm

1 lles = > 1Dl

la|<k
If Q is bounded, we drop the subindex b and we write C(Q2), C*(Q).

23
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2.1 The operator Au = u"

2.1.1 The second order derivative in the real line

Throughout the section we shall use square roots of complex numbers, defined by VA =
IN[1/2e%/2 if arg A = 0 € (—m, 7r]. Therefore, Re VA > 0if A € C\ (—o0,0].

Let us define the realizations of the second order derivative in LP(R) (1 < p < +00),
and in Cp(R), endowed with the maximal domains

D(Ap) = W?P(R) C LP(R), Apu=1", 1 <p<+oo,
D(Ax) = CZ(R), Asou = u".

Let us determine the spectrum of A, and estimate the norm of its resolvent.

Proposition 2.1.1 For all 1 < p < +oo the spectrum of Ay is the halfline (—o0,0]. If
A = |\e? with |0] < 7 then

1
< —
) = X cos(6/2)

Proof. First we show that (—o0,0] C o(A4p,). Fix A < 0 and consider the function
u(z) = exp(iv/—z) which satisfies u” = Au. For p = +o0, u is an eigenfunction of A,
with eigenvalue A. For p < 400, u does not belong to LP(R). To overcome this difficulty,
consider a cut-off function ¢ : R — R, supported in [—2,2] and identically equal to 1 in
[—1,1] and set ¢, (x) = ¢(z/n), for any n € N.

If u, = Ynu, then u, € D(A,) and |luy|, ~ n'/P as n — +oo. Moreover, |Au, —

Mip||p, < Cn'/P=1. Setting vy, = up /||unp, it follows that ||(A — A)v,|l, — 0 as n — +oo,
and then \ € 0(A). See Exercise B.9.
Now let A & (—o0,0]. If p = +o0, the equation Au — v” = 0 has no nonzero bounded
solution, hence Al — A, is one to one. If p < +o00, it is easy to see that all the nonzero
solutions u € Wfof (R) to the equation Au—u" = 0 belong to C*°(R) and they are classical
solutions, but they do not belong to LP(R), so that the operator AI — A, is one to one.
We recall that VV;?(R) denotes the set of all the functions f : R — R which belong to
W2P(I) for any bounded interval I C R.

Let us show that A\ — A, is onto. We write VA = p. If f € Cy(R) the variation of
constants method gives the (unique) bounded solution to Au — v’ = f, written as

RN A)ll (e r

x —+o00
u(z) = 2 ( [ ey | e“@wf(y)dy):(f*m)(ac» (2.1)

- ﬂ —00 x
where hy,(z) = e 21 /2;1. Since Ihullprg) = (Il Re p) ™!, we get
1
[ulloo < Pullprm)ll flloo = annom

where § = arg \. If |0] < 6y < 7 we get ||ullo < (|A| cos(00/2)) 7| flloo, and therefore Ay
is sectorial, with w = 0 and any 0 € (7/2, 7).

If p < 400 and f € LP(R), the natural candidate to be R(X, A) f is still the function u
defined by (2.1). We have to check that v € D(A,) and that (A\] — Ay)u = f. By Young’s
inequality (see e.g. [3, Th. IV.15]), u € LP(R) and again

1

< hullv < 7750
ol < bl < ot

1/ 1lp-
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That v € D(A,) may be seen in several ways; all of them need some knowledge of ele-
mentary properties of Sobolev spaces. The following proof relies on the fact that smooth
functions are dense in W1HP(R)(1),

Approximate f € LP(R) by a sequence (f,) C C§°(R). The corresponding solutions
Up, 10 Au,, —ull = f,, are smooth and they are given by formula (2.1) with f,, instead of f,
therefore they converge to u by Young’s inequality. Moreover,

I I
wle) =5 [ eIy g [ ey
converge to the function
L A, L[ w(z—y)
gl@)=—5 [ e Fly)dy + 5 e f(y)dy

again by Young’s inequality. Hence g = v’ € LP(R), and u], = A\u,, — f,, converge to \u— f,
hence \u — f = u” € LP(R). Therefore u € W2P(R) and the statement follows. O

Note that D(As) is not dense in Cp(R), and its closure is BUC(R). Therefore, the
associated semigroup e*4> is not strongly continuous. But the part of A, in BU C(R),

i.e. the operator
BUC*(R) — BUC(R), u s u”

has dense domain in BUC(R) and it is sectorial, so that the restriction of e!4>~ to BUC(R)
is strongly continuous. If p < 400, D(A,) is dense in LP(R), and e'4» is strongly continuous
in LP(R).

This is one of the few situations in which we have a nice representation formula for
etr for 1 < p < +oo, and precisely

(@ )@) = i | fway, 10, aer (2:2)

This formula will be discussed in Section 2.3, where we shall use a classical method,
based on the Fourier transform, to obtain it. In principle, since we have an explicit
representation formula for the resolvent, plugging it in (1.10) we should get (2.2). But the
contour integral obtained in this way is not very easy to work out.

2.1.2 The operator Au = v” in a bounded interval, with Dirichlet bound-
ary conditions

Without loss of generality, we fix I = (0, 1), and we consider the realizations of the second
order derivative in LP(0,1), 1 < p < +o0,

D(A,) = {u € W*P(0,1) : u(0) = u(l) =0} C LP(0,1), Ayu =",
as well as its realization in C([0, 1]),

D(Ay) = {u e C*([0,1]) : u(0) =u(1) =0}, Asu=1".

'Precisely, a function v € LP(R) belongs to W P(R) iff there is a sequence (v,) C C°°(R) with vy,
vy, € LP(R), such that v, — v and v;, — g in L?(R) as n — +oo. In this case, g is the weak derivative of
v. See [3, Chapter 8§].
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We could follow the same approach of Subsection 2.1.1, by computing the resolvent oper-
ator R(\, Ax) for A ¢ (—o00,0] and then showing that the same formula gives R(X, A4p).
The formula turns out to be more complicated than before, but it leads to the same final
estimate, see Exercise 3 in §2.1.3. Here we do not write it down explicitly, but we estimate
separately its components, arriving at a less precise estimate for the norm of the resolvent,
with simpler computations.

Proposition 2.1.2 The operators A, : D(Ap) — LP(0,1), 1 < p < 400 and A
D(Ax) — C([0,1]) are sectorial, with w =0 and any 0 € (7/2,7).

Proof. For A ¢ (—00,0] set u = VA, so that Reu > 0. For every f € X, X = LP(0,1)
or X = C([0,1]), extend f to a function f € LP(R) or f € Cy(R), in such a way that
£l = IIf]l. For instance we may define f(z) = 0 for = ¢ (0,1) if X = L?(0,1), f(x ) = f(1)
for z > 1, f( ) = f(0) for x < 0if X = C([0,1]). Let u be defined by (2.1) with f instead
of f. We already know from Proposition 2.1.1 that wp; is a solution of the equation
Au— " = f satistying [Jull, < ||f]lp/(JA] cos(6/2)), where § = arg A\. However, it does not
necessarily satisfy the boundary conditions. To find a solution that satisfies the boundary
conditions we set

0= 5 [ € I(s) ds = (0
and .
= 2M/ “H=slF(s) ds = a(1).

All the solutions of the equation Au — u” = f belonging to W?2P(0,1) or to C%([0,1]) are
given by

u(z) = u(z) + crur () + cous(x),
where uj(x) := e™** and ug(z) := e** are two independent solutions of the homogeneous
equation Au—u” = 0. We determine uniquely ¢; and ¢o imposing u(0) = u(1) = 0 because
the determinant

D) = e — "

is nonzero since Re > 0. A straightforward computation yields

1

1
1= ——[m—€e"), co=——|-7+e ",
D) | ] D) | )

so that for 1 < p < 400

1 elen

< . < .
Hual — (pRe/,L)l/p’ HUQHP — (pRelu)l/pv

while [|u1]|eo = 1, ||t2]|o = eR°H. For 1 < p < 400 by the Holder inequality we also obtain

1 1
ol < Sl Re j) 7 1/ 1lps 7l < 2W(p,ReM)1/p,Hpr
and
il < 2 ,Hle, if felL'0,1), j=0,1
751 < " IReMHfHoo, if fec(o,1]), j=0, 1.
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Moreover |D(p)| = eRe# for |u| — 4oo. If X = [N with |f] < 6y < 7 then Repu >

|| cos(6p/2) and we easily get

<
Al

<

<
||61U1||p = ’A’

Ifllp  and  [leauz]lp <

£l

for a suitable C' > 0 and A as above, || large enough. Finally

C
lullp < meHp

for |A| large, say |[A| > R, and |arg A| < 6.

For |A] < R we may argue as follows: one checks easily that the spectrum of A, consists
only of the eigenvalues —n?m% n € N. Since A — R(), A,) is holomorphic in the resolvent
set, it is continuous, hence it is bounded on the compact set {|A| < R, |arg A| < 6y} U{0}.

O

Exercises 2.1.3

1. Let A be the operator defined in Subsection 2.1.1.

(a) Prove that the resolvent R(\, A) leaves invariant the subspaces

Co(R) :={ue CR): lim wu(z)=0}

|z| =00

and
Cr(R):={u e CR): u(z) =u(x+1T), x € R},

with 7" > 0.

(b) Using the previous results show that the operators

Ag : D(Ap) :={u e C?*(R) N Cy(R) : u”’ € Cy(R)} — Co(R), Agu = u”,

and
Ap : D(Ar) :== C*(R) N Cr(R) — Cp(R), Apu ="

are sectorial in Cy(R) and in Cp(R), respectively.
2. (a) Let A > 0 and set

+oo 1

0 VAart

ef/\tefa:2/4tdt.

¢(z) =

Prove that ¢” = A¢ and ¢(0) = (2v/7\)7'T(1/2) = 2VA)™, é(z) — 0 as |z| —
+00, so that ¢ coincides with the function h s in (2.1). (b) Use (a) and Proposition

1.3.7 to prove formula (2.2).

3. Consider again the operator u — u” in (0,1) as in Subsection 2.1.2, with the domains
D(A,) defined there, 1 < p < +o00. Solving explicitly the differential equation

Mu—u" = fin D(A,), show that the eigenvalues are —n?

resolvent as an integral operator.

2, n € N, and express the
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4. Consider the operator Ayu = u" in LP(0,1), 1 < p < oo, with the domain
D(A,) = {u e W*P(0,1) : /(0) =4/(1) = 0} C LP(0, 1),
or in C([0,1]), with the domain
D(Au) = {u € C2((0,1)) N C((0,1]) : (0) = /(1) = 0},

corresponding to the Neumann boundary condition. Use the same argument of
Subsection 2.1.2 to show that A, is sectorial.

5. Let A be the realization of the second order derivative in C([0,1]) with Dirichlet
boundary condition, as in Subsection 2.1.2. Prove that for each a € (0, 1) the part
of As in C%([0,1]), i.e. the operator

{u € C*"([0,1]) : w(0) = u(1) = 0} — C*([0,1]), u+> u”

is not sectorial in C'*([0,1]), although the function (0,+oc0) — L(C([0,1])), t —

tAco . .
€ ca(0,1]) 18 analytic.

[Hint: take f = 1, compute explicitly u := R(\, Ax)f for A > 0, and show that
lim supy_, 4 oo AT 2u(A71/2) = 400, so that A[R(), As) f]ce is unbounded as A —
+00. |

Taking into account the behavior of R(\, A)1, deduce that HetAHL(Ca([O,”)) is un-
bounded for ¢ € (0,1).

2.2 Some abstract examples

The realization of the second order derivative in L?(R) is a particular case of the following
general situation. Recall that, if H is a Hilbert space, and A : D(A) C H — H is a linear
operator with dense domain, the adjoint A* of A is the operator A* : D(A*) C X — X
defined as follows,

D(A*) ={x € H : 3y € H such that (Az,z) = (z,y), Vz € D(A)}, Arz =y.

The operator A is said to be self-adjoint if D(A) = D(A*) and A = A*. It is said to be
dissipative if
1A = Az = All]], (2.3)
for all z € D(A) and A > 0, or equivalently (see Exercises 2.2.4) if Re(Ax, z) < 0 for every
x € D(A).
The following proposition holds.

Proposition 2.2.1 Let H be a Hilbert space, and let A : D(A) C H — H be a self-adjoint
dissipative operator. Then A is sectorial, with an arbitrary 0 < w and w = 0.

Proof. Let us first show that 0(A) C R. Let A =a +ib € C. Since (Az,x) € R for every
x € D(A), we have

1AL — A)z||* = (a® + b%)||z[|* — 2alz, Az) + | Az||* > 0*||z]*. (2.4)
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Hence, if b # 0 then A\ — A is one to one. Let us check that the range is both closed
and dense in H, so that A is onto. Take x,, € D(A) such that Az, — Ax,, converges as
n — +o00. From the inequality

[T = A)(xn = 2n) > = 0%l — @m|?, 1, m €N,

it follows that (x,) is a Cauchy sequence, and by difference (Ax,) is a Cauchy sequence
too. Hence there are x,y € H such that z, — x, Az, — y. Since A is self-adjoint, it is
closed, and then z € D(A), Ax = y, and Az, — Ax,, converges to Az —Ax € Range (\[—A).
Therefore, the range of A\ — A is closed.

If y is orthogonal to the range of A\I — A, then for every x € D(A) we have (y, \e —Az) =
0. Hence y € D(A*) = D(A) and Ay — A*y = Ay — Ay = 0. Since A\I — A is one to one,
then y = 0, and the range of A\l — A is dense.

Let us check that o(A) C (—o0,0]. Indeed, if A > 0 and = € D(A), we have

1AL — A)a|? = N[|z ]| — 2X(z, Az) + || Az]|* > A, (2.5)

and arguing as above we get A € p(A).

Let us now verify condition (1.9)(ii) for A = pe?, with p > 0, —7 < 6 < 7. Take z € H
and u = R(\, A)z. From the equality Au — Au = x, multiplying by e~*/2 and taking the
inner product with u, we deduce

pe 2l — /2 A ) = 2, ),
from which, taking the real part,
peos(8/2)||ul|?* — cos(6/2)(Au, u) = Re(e™/*(z,u)) < |z |[ul.
Therefore, taking into account that cos(6/2) > 0 and (Au,u) < 0, we get

]

|A| cos(0/2)’
with 8 = arg A. O

lull <

Let us see another example, where X is a general Banach space.

Proposition 2.2.2 Let A be a linear operator such that the resolvent set p(A) contains
C\ iR, and there exists M > 0 such that |[R(\, A)|| < M/|Re | for Re X # 0. Then A2 is

sectorial, with w =0 and any 0 < .

Proof. For every A € C\ (—o0,0] and for every y € X, the resolvent equation Az — A%z = y
is equivalent to

(VAL — A)(VAT + A)z = y.
Since Re v/A > 0, then VA € p(A) N (p(—A)), so that
= R(VA ARNA —A)y = —R(VX, A)R(—V\, A)y (2.6)
and, since | Re V| = /|| cos(0/2) if arg A = 0, we get
2
Aitcos(@rye

for A € S0, and the statement follows. O

]| <
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Remark 2.2.3 The proof of Proposition 2.2.2 shows that limre x— 100, AeSy., |AR(A, A?)|| =
0. Therefore, Remark 1.3.15 implies that A?+«A is the generator of an analytic semigroup
for any o € R.

Proposition 2.2.2 gives an alternative way to show that the realization of the second
order derivative in LP(R), or in Cy(R), is sectorial. But there are also other interesting
applications. See next exercise 3.

Exercises 2.2.4

1. Let A be a sectorial operator with § > 37/4. Show that —A? is sectorial.

2. Let H be a Hilbert space and A : D(A) C H — H be a linear operator. Show that
the dissipativity condition (2.3) is equivalent to Re(Ax,z) < 0 for any x € D(A).

3. (a) Show that the operator A : D(A) = {f € C,(R)N CYR\ {0}) : = — zf'(z) €
Cy(R), limypxf'(z) = 0}, Af(x) = zf'(x) for x # 0, Af(0) = 0, satisfies the
assumptions of Proposition 2.2.2, so that A? is sectorial in Cj(R).

(b) Prove that for each a, b € R a suitable realization of the operator A defined by
(Af)(x) = 22 f"(x) + ax f'(z) + bf (x) is sectorial.

[Hint. First method: use (a), Exercise 1 and Remark 2.2.3. Second method: de-

termine explicitly the resolvent operator using the changes of variables x = e’ and
¢

x = —e'].

2.3 The Laplacian in RY

Let us consider the heat equation

{ ug(t, r) = Au(t, x), t>0, zeRVN, e

U(O,l') = f($)7 T € RNa
where f is a given function in X, X = LP(RV), 1 < p < +oo, or X = C,(RM).
To get a representation formula for the solution, let us apply (just formally) the Fourier

transform, denoting by (¢, ) the Fourier transform of u with respect to the space variable
z. We get

’[Lt(tvf) = _|£|2ﬂ(ta£)v > 07 g € RNa
a(0,€) = £(). §ERY,
whose solution is a(t,&) = f(€)e €. Taking the inverse Fourier transform, we get

u="T(-)f, where the heat semigroup {T'(t) }+>0 is defined by the Gauss-Weierstrass formula

o2
TON) = i [, S0y, t>0, 2 € RY (28)
(as usual, we define (T'(0)f)(z) = f(x)). The verification that (T'(¢)):>0 is a semigroup is
left as an exercise.

Now, we check that formula (2.8) gives in fact a solution to (2.7) and defines an
analytic semigroup whose generator is a sectorial realization of the Laplacian in X. For
clarity reason, we split the proof in several steps.
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(a) Let us first notice that T'(¢)f = Gy x f, where

1 _l=?
Gt(l’) = W e 4t o Gt(.’B)d.%' = 1, t> O,

and x denotes the convolution. By Young’s inequality,
IT@fllp < fllp, >0, 1<p<+o0. (2.9)

Since G; and all its derivatives belong to C®(RY) N LP(RY), 1 < p < +oo, it readily
follows that the function u(t,z) := (T'(t)f)(z) belongs to C>°((0, +00) x RY), because we
can differentiate under the integral sign. Since 0G;/0t = AG,, then u solves the heat
equation in (0, +o00) x RV,

Let us show that T(t)f — fin X ast — 0% if f € LP(RY) or f € BUC(RY). If
f € LP(RY) we have

1T@)f = £l

L[ wie -y @ a
RN I JRN

=[] 6wl - )i iz
]RN RN

= [ ||, erlse = vio) - f@)a|'da
RN RN

< / / G1(0)|f (& — VEv) = f(2)Pdv da
RN JRN

= [, ) [ 1 Vie) - fa)pdzde,
RN ]RN

Here we used twice the property that the integral of Gy is 1; the first one to put f(x)
under the integral sign and the second one to get

P
| [ 61l Vi) - s@lae] < [ Gi)ife - Vo) - fa) P
R R
through Hélder inequality, if p > 1. Now, the function ¢(t,v) := [pn | f(@—Vtv)— f(z)[Pdx
goes to zero as t — 07 for each v, by a well known property of the L? functions, and it

does not exceed 27| f||5. By dominated convergence, ||T(t)f — f||b tends to 0 as ¢t — 0.
If f € BUC(RY) we have

sup [(T(t)f — f)(=)] < sup | Gi)|f(z—y)— fz)ldy

rERN z€RN JRN
— s [ G Viv) - f(@)|dv
zeRN JRN
< [ Gilo) swp 1fla = Vi) = f(o)lde
RN zeRN

Again, the function ¢(t,v) := sup,cpn |f(z — Vtv) — f(x)| goes to zero as t — 0 for
each v by the uniform continuity of f, and it does not exceed 2| f|loo. By dominated
convergence, T'(t)f — f goes to 0 as t — 01 in the supremum norm.
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If f € Cy(RY) the same argument shows that T'(t)f — f, as t — 0T, uniformly on
compact sets. In particular, the function (¢,z) — (T'(t)f)(z) is continuous and bounded
in [0, +00) x RY.

(b) If f € X, the function
+oo
RO\ f = / e NT(t) fdt
0

is well defined and holomorphic in the halfplane IT := {\ € C : Re A > 0}. Observe that
t + T(t)f is continuous from [0, +oc) to X, if X = LP(RY) and bounded and continuous
from (0, +00) to X, if X = Cy(RY) (the continuity in (0, +00) follows from the fact that
T(s)f € BUC(RY) for every s > 0, see Exercise 5 in §2.3.1 below). In both cases R(\)f
is well defined.

It is easily seen that R verifies the resolvent identity in the halfplane II: indeed, for
A, A p €11, we have

RMNR(p)f = /0+°O e MT(t) /0+OO e MT(s)fdsdt = /0+00 /0+00 e MTHST(t 4 5) f dt ds

+oo o +oo elb=No _ 1
:/ e“UT(U)f/ =Nt do :/ e "T(o)f————do
0 0 0 p—A
1
= 7# —

Let us prove that R()) is one to one for A\ € II. Suppose that there are f € X, Ao € II
such that R(\g)f = 0. From the resolvent identity it follows that R(A)f = 0 for all A € II,
hence, for all g € X’

(RA)f = R(p)[)-

+o0
(RN f,g) = /O e N(T(t)f,g)dt =0, X\ell

Since (R(\)f,g) is the Laplace transform of the scalar function t — (T'(t)f,g), we get
(T(t)f,g) = 0 in (0,400), and then T(t)f = 0 in (0, +00), since g is arbitrary. Letting
t — 0% ge get f = 0. Thus, by Proposition B.2 there is a linear operator A : D(A) C
X — X such that p(A) D IT and R(\, A) = R(\) for A € II.

(c) Let us show that the operator A is sectorial in X and that T(t) = e!4 for any ¢ > 0.
For Rez > 0, f € X, we define T'(z)f = G, * f where

= T T -
Zx_(47rz)N/2€ ’ RN AT\ Re 2 '

By Young’s inequality | T(2)f|l, < (cos8)~™2||f|, if 2 € Sg,.0 and 6y < 7/2. Moreover,
since G, — G, in Ll(RN ) as z — zq in II (this is easily seen using dominated convergence),
the map z — T'(z) [ is continuous from II to X. Writing for every f € LP(RN), g € L (RY)

(I/p+1/p'=1),

1 ly|?
T = — T (f(-— d
T).0) = s [, & F U= gbdy
and using Theorem A.6 one sees that z + T'(z)f is holomorphic from II to LP(RY). In
the case p = +00, X = Cy(RY), the function z — T'(2)f(x) is holomorphic in II for every
r € RV,
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Now we prove the resolvent estimate in the halfplane {Rez > 0}. If A\ = a + ib with
a > 0 and b > 0, by Cauchy integral theorem we have

RN A f = /0 o e NT(t) fdt = / e MT(2) fdz
Y

where v = {z = z —ixz,x > 0}. Therefore

400 1 2N/4
[R(X, A)fllp < 2N/4Hpr/ e dp < —— (VN2 fllp < S £l
0 a+b Al
If b < 0 one gets the same estimate considering ¥ = {z = = + iz, > 0}.
By Proposition 1.3.12, A is sectorial in X.
Let !4 be the analytic semigroup generated by A. By Proposition 1.3.7, for Re A > 0
we have

RN A f = /0 o~ e Mt fdt = /0 o e NT(t) fdt

hence for every f € X, g € X/,

+oo “+oo
| et g = [ e g
0 0

This shows that the Laplace transforms of the scalar-valued functions ¢ — <etA fig), t—
(T(t)f,g) coincide, hence {e/1f, g) = (T(t)f,g). Since f,g are arbitrary, !4 = T(¢t).

(d) Let us now show that A is an extension of the Laplacian defined in W?2P(RY), if
X = LP(RY), and in CZ(RY) if X = C,(RY).

To begin with, we consider the case of LP(R"™). The Schwartz space S(R') is invariant
under each T'(t) and it is dense in LP(RY) because it contains C5°(RY)(?). For f € S(RYN),
it is easily checked that u := T(-)f belongs to C2([0,400) x RY) (in fact, it belongs to
C>®([0,4+oc) x RY)) and that u; = Au = T(t)Af. Therefore

u(t,z) —u(0,z) 1

t t
. = t/ ug(s, x)ds = 1/ Au(s,z)ds — Af(z) ast — 0T (2.10)
0 0

pointwise and also in LP(R™), because

t
i [ 18u(s) = Aflyds < sup [T()AF = Af]s
0 0<s<t

Then, by Proposition 1.1.6(iii), S(R") is contained in D(A) and Au = Au for u € S(RY).
Moreover, by Theorem 1.3.16 it is a core for A. Let u € W2P(RY) and let u, € S(RV)
be such that u, — u in W2?P(RY). Then Au, = Au, — Au in LP(RY) and, since 4 is
closed, u € D(A) and Au = Au.

In the case of Cy(RY) we argue differently because the Schwartz space is not dense
in Cy(RY) and in CZ(RY). Instead, we use the identities T(t)Af = AT(t)f = %T(t)f
which hold pointwise in (0, +00) x RY. Setting g = f — Af we have

+00 +o0
R, A)g — /0 T (f — Af)dt — /0 eI — AYT(t) fdt

2We recall that S(RY) is the space of all the functions f : RY — R such that |z|*|D” f(z)| tends to 0 as
|| tends to 4-oo for any multiindices a and B; C§°(RY) is the space of all compactly supported infinitely
many times differentiable functions f : RY — R.
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+o0 . o
- /0 e (I—at>T(t)fdt:f,

by a simple integration by parts in the last identity and using the fact that T'(¢)f — f
pointwise as ¢ — 0%. This shows that f € D(A) and that Af = Af.

(e) If N =1 we already know that D(A) = W2P(R) if X = LP(R), and D(A) = C}(R), if
X = Cp(R). The problem of giving an explicit characterization of D(A) in terms of known
functional spaces is more difficult if N > 1. The answer is nice, i.e. D(A) = W2P(RV)
if X = LP(RV) and 1 < p < +oo, but the proof is not easy for p # 2. For p = 1,
W2LRN) £ D(A) and for p = +oo, CZ(RY) # D(A) (see next Exercise 6 in §2.3.1).

Here we give an easy proof that the domain of A in L2(RY) is H2(RYN).

The domain of A in L? is the closure of S(RY) with respect to the graph norm u
ull 2wy + [[Aul| f2(mny, which is weaker than the H?-norm. To conclude it suffices to
show that the two norms are in fact equivalent on S(R™): indeed, in this case D(A) is
the closure of S(RY) in H?(RY), that is H?(R"). The main point to be proved is that
| Dijull 2@y < [[Aull L2y for each u € S(R¥)and i, j = 1,...,N. Integrating by parts
twice we get

N N
ij=17RN ij=17RN
N
= > /RN DiyuDjudr = || Aul|3. (2.11)
ij=1

The L? norm of the first order derivatives of u may be estimated as follows. For u €
H?(RN), the identity

Auudr = —/ | Du|?dz
RN RN
yields ||Dul|3 < ||Aul|z||u||2, and this concludes the proof.
Exercises 2.3.1

1. (a) Using the Fourier transform show that T'(t) maps S(RY) into itself for each t > 0
and that
TWT(s)f =T(t+s)f, t, s>0,
for every f € S(RY) and, hence, for every f € LP(RY), 1 < p < +o0.
(b) Show that if f,, f € Co(RY), f, — f pointwise and || f,||ec < C, then T(t)f, —
T(t)f pointwise. Use this fact to prove the semigroup law in C(RY).
2. Show that BUC?(RY) is a core of the Laplacian in BUC(RY).

3. Use the Fourier transform to prove the resolvent estimate for the Laplacian in
L2(RM), lull2may < [l fll2/ Re A, if ReA > 0 and [luflz < [|fl2/[ImA] if ImA # 0,
where \u — Au = f.

4. Prove that the Laplace operator is sectorial in LP(R™) and in Cy(RY) with w = 0
and every 6 < 7. [Hint: argue as in (c)].
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5. (a) Using the representation formula (2.8), prove the following estimates for the heat
semigroup T(t) in LP(RN), 1 < p < +oo:

ID°TW) Nl < s 1 (2.12)

for every multiindex o, 1 < p < 400 and suitable constants cq,.

(b) Let 0 < 6 < 1, and let CY(RY) be the space of all functions f such that
[f]cg(RN) i=sup,, | f(2) — f(y)l/lz—y|? < +00. Use the fact that D;G; is odd with

respect to x; to prove that for each f € Cg(RN), and for eachi=1,..., N

C
I1DT() flloo < m[ﬂ(}g(ﬂ%f\’)v t>0.

(c) Use the estimates in (a) for |a| = 1 to prove that

| Dsul|x < C1t?||Aullx + Cot ™2 ||ul|x, t >0,

1/2 1/2
IDiullx < Csl| Aull ¥ |lul}?,

for X = LP(RV), 1 < p < 400, X = Cy(RY), and u in the domain of the Laplacian
in X.

6. (a) Let B be the unit ball of R%. Show that the function u(x,y) = xylog(z? + y?)
belongs to C'(B) and that gy, uy, € L>®(B) whereas ugy, ¢ L™(B).

(b) Using the functions u.(z,y) = xylog(e + x> + y?), show that there exists no
C > 0 such that HUHCl?(R?) < C(JJulloe + [|Aul|oo) for any u € C§°(R?). Deduce that

the domain of the Laplacian in Cy(R?) is not CZ(R?).

2.4 The Dirichlet Laplacian in a bounded open set

Now we consider the realization of the Laplacian with Dirichlet boundary condition in
LP(Q), 1 < p < 400, where 2 is an open bounded set in RY with C? boundary 6. Even
for p = 2 the theory is much more difficult than in the case = R™. In fact, the Fourier
transform is useless, and estimates such as (2.11) are not available integrating by parts
because boundary integrals appear.

In order to prove that the operator A, defined by

D(A,) = W2P(Q)NnWyP(Q),  Apu=Au, uc D(A)
is sectorial, one shows that the resolvent set p(A,) contains a sector
Spg={AeC:N#£0,|arg\| < 6}

for some 6 € (7/2,7), and that the resolvent estimate

M

RN Ap)ll2(zr@)) < o

holds for some M > 0 and for all A € Sy,,. The hard part is the proof of the existence of
a solution u € D(A4,) to Au — Au = f, i.e. the following theorem that we state without
any proof.
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Theorem 2.4.1 Let Q C RY be a bounded open set with C? boundary, and let f € LP(S),
A & (—00,0]. Then, there is u € D(Ap) such that A\u — Au = f, and the estimate

ullwzr < C|flp (2.13)

holds, with C' depending only upon Q and A.

The resolvent estimate is much easier. Its proof is quite simple for p > 2, and in fact
we shall consider only this case. For 1 < p < 2 the method still works, but some technical
problems occur.

Proposition 2.4.2 Let 2 < p < +oo, let A\ € C with ReXA > 0 and let u € W*P(Q) N
Wol’p(Q), be such that A\u — Au = f € LP(Q). Then

p? || £llp
Al

[ully <4/1 + T

Proof. To simplify the notation, throughout the proof, we denote simply by |- || the usual
LP-norm.

If w = 0 the statement is obvious. If u # 0, we multiply the equation A\u — Au = f
by |u|P~2@, which belongs to W' (Q) (see Exercises 2.2.4), and we integrate over Q. We

have
AlJull” + /E o (Mp u )dﬂf—/fIU\p uda.
Tk

Notice that

_ Ly _
8i|u‘p—2ﬂ — ’u|p—2867“ + P . alulp— <u8u + u(‘)u)
Lk Lk

Setting

0
|u\(p—4)/2u% = aj+ibg, k=1,...,N,
k

with ay, b € R, we have

— | |uP2 >d:v
/Qk 1a$k 8$k<| |

8u ou -2 8u ou ou
- u|P—9/2)2 p (p—4)/2)2 o

= /Qz<ak+b (p — 2)ak(ak+ibk)>d:z:,

k=1

whence

N N
AlullP + / > ((p = 1)af + b)dz +i(p — 2) / > axby do = / flufP~*u d.
Q=1 Qp— Q
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Taking the real part we get

N
ReAIIuH’”r/ > ((p—1)af + b})de = Re/ flulP~adz < || £ flulP~,
Q- Q

and then
(a) ReA[jull <If[;

[ 3= e+ e < 17l
le

Taking the imaginary part we get

N
Im)‘Hqu"i‘(p_z)/ Zakbkdm: Im/ f’u‘P*QEdw
@ j=1 Q

and then N
Tm A ulfP < 222 /QZ (af + b)da + || 1] fJulP~,
k=1

so that, using (b),
p—2 -
o fal? < (P52 1)1l

ie.,

p
[T Al ffull < SI1£l

From this inequality and from (a), squaring and summing, we obtain

2
p
ARl < (1 2 1P,

and the statement follows. O

2.5 More general operators

In this section we state without proofs some important theorems about generation of
analytic semigroups by second order strongly elliptic operators. Roughly speaking, the
realizations of elliptic operators with good coefficients and good boundary conditions are
sectorial in the most common functional spaces. This is the reason why the general theory
has a wide range of applications.

Let us consider general second order elliptic operators in an open set Q2 C RY. Q is
either the whole RY or a bounded open set with C? boundary 9€2. Let us denote by n(z)
the outer unit vector normal to 02 at x.

Let A be the differential operator

N N

(Au)(e) = 3 asj(@)Dijule) + Y bile) Duz) + c(w)u(z) (214)

i,j=1 i=1
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with real, bounded and continuous coefficients a;j, b;, ¢ on Q. We assume that for every
x € § the matrix [a;j(x)]; j=1,.,~ is symmetric and strictly positive definite, i.e.,

N

3 ai(@)& > vfg?, zeQ, eRY, (2.15)
ij=1

for some v > 0. Moreover, if 2 = RY we need that the leading coefficients a;; are uniformly
continuous.
The following results hold.

Theorem 2.5.1 (S. Agmon, [1]) Let p € (1,+00).

(i) Let A, : W2P(RN) — LP(RN) be defined by Apu = Au. The operator A, is sectorial
in LP(RN) and D(Ay) is dense in LP(RY).

(it) Let Q and A be as above, and let A, be defined by
D(A,) = W2P(Q) n W, P(Q), Ayu= Au.
Then, the operator Ay, is sectorial in LP(Q2), and D(Ap) is dense in LP(Q).
(tit) Let Q and A be as above, and let A, be defined by
D(A,) = {u e W*P(Q) : Bujgq =0}, Apu= Au, u € D(Ay),

where
N

(Bu)(2) = bo(z)u(x) + > bi(z) Diu(z), (2.16)

i=1

the coefficients b;, i = 1,..., N are in C*(Q) and the transversality condition

N
> bi(z)ni(z) #0, z € 0Q (2.17)
=1

holds. Then, the operator Ay is sectorial in LP(SY), and D(Ap) is dense in LP(Q).
We have also the following result.
Theorem 2.5.2 (H.B. Stewart, [16, 17]) Let A be the differential operator in (2.14).
(i) Consider the operator A: D(A) — X = Cy(RY) defined by
{ D(A) = {u € Co(RY) Ny cpeyoo Wi (RN Au € Cy(RY)}, 218
Au = Au, uwe D(A).

Then, A is sectorial in X, and D(A) = BUC(RY).
(ii) Let Q C RN be a bounded open set with C? boundary 092, and consider the operator

{ D(A) ={u € MNi<peioo W2P(Q) : ugn =0, Au e C(Q)},

(2.19)
Au = Au, u e D(A).

Then, the operator A is sectorial in X, and D(A) = Co(Q) = {u € C(Q) : u =
0 at 0Q}.
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(111) Let Q be as in (ii), and let X = C(Q2),

{ D(A) = {u € Micpe o W(Q) : Bupp =0, Au € C(Q)}, (2.20)

Au = Au, u € D(A),

where B is defined in (2.16) and the coefficients b;, i = 1,..., N are in C1(Q) and
satisfy (2.17). Then, the operator A is sectorial in X, and D(A) is dense in X.

Moreover, in all the cases above there is M > 0 such that A € Sp ., implies

M .
ID;R(A, A) flloo < W Ifllooy, fEX,i=1,...,N. (2.21)

Exercises 2.5.3

1. Show that if p > 2 and v € W P(Q) then the function |u[P~2u belongs to W (£2).
Is this true for 1 < p < 27

2. Let A be the Laplacian in L?(R") with domain D(A) = H?(RY). Prove that the
operator —A? is sectorial in L?(R"™) and characterize its domain.
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Chapter 3

Intermediate spaces

3.1 The interpolation spaces D 4(«, c0)

Let A: D(A) C X — X be a sectorial operator, and set

My = sup |le!]|, M; = sup |[tAe. (3.1)
0<t<1 0<t<1

We have seen in Proposition 1.3.6 that for all z € D(A) the function t — u(t) = ez
belongs to C([0,7]; X), and for all z € D(A) such that Az € D(A), it belongs to
C([0,T); X). We also know that for z € X the function t — v(t) = ||Ae!4z| has in
general a singularity of order 1 as t — 07, whereas for x € D(A) it is bounded near 0. It
is then natural to raise the following related questions:

1. how can we characterize the class of initial data such that the function u(t) = et4x

has an intermediate regularity, e.g., it is a-Holder continuous for some 0 < o < 17

2. how can we characterize the class of initial data = such that the function ¢ — || Aet4z||
has a singularity of order «, with 0 < a < 17

To answer such questions, we introduce some intermediate Banach spaces between X
and D(A).

Definition 3.1.1 Let A: D(A) C X — X be a sectorial operator, and fir 0 < o < 1. We
set
Da(a,00) ={z € X : [z]a = supg4<y Htl_O‘AetA:CH < 400},
(3.2)
1211 D A (a00) = 2]l + [2]a

Note that what characterizes Da(a,00) is the behavior of |[t!=®Aet4z| near t = 0.
Indeed, for 0 < a < b < 400 and for each z € X, estimate (1.15) with £ = 1 implies that
SUp,<i<p [t "% Atz < C||z||, with C = C(a,b,a). Therefore, the interval (0,1] in the
definition of D 4(a,o0) could be replaced by any (0,T] with T > 0, and for each T > 0
the norm z + ||z|| + supges<p |[t! @ Ae42|| is equivalent to the norm in (3.2).

Once we have an estimate for || Aet4|| L(Da(a,00):X) We easily obtain estimates for
||AketA]\£(DA(a7m);X) for every k € N, just using the semigroup law and (1.15). For instance
for k = 2 and for each = € Dy (a, 00) we obtain

sup [[*A%Mal| < sup [[A2A oo [ At Az]| < Ol by (ayo0)-
0<t<T 0<t<T

41
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It is clear that if z € Da(e, 00) and T > 0, then the function s — || Ae*4z|| belongs to
L(0,T), so that, by Proposition 1.3.6(ii),

t
ey —x= [ Ae*dzds, t >0, x=limea.
0 t—0

In particular, all the spaces D 4(«a, 00) are contained in the closure of D(A). The following
inclusions follow, with continuous embeddings:

D(A) C Dy(a,00) C Da(fB,00) C D(A), 0<f<a<]l.
Proposition 3.1.2 For 0 < a < 1 the equality

Da(e,00) = {z € X : [[#]]p s (a0) = Oiliglt’“\le”‘x — || < +o0}

holds, and the norm
z = [zl + [[2]] D s(a,00)

is equivalent to the norm of D4(a, 00).

Proof. Let z € Ds(a,o0) be given. For 0 < ¢t < 1 we have

t
1
(e —2) = to‘/ s'7Aet My 2 ds, (3.3)
0 S
so that
[#]]Daace) = sup [[t7%(ez = 2)|| < o™ 2] p 4 (a00)- (3.4)
0<t<1

Conversely, let [[z]]p, (a,00) < +00, and write

1 [t I
Aetty = A= / (z — e*z)ds + etAA/ e Aads.
t ) )y
It follows that

M t _ SA
o-eactal < el [l aeegete ol o)
0

and the function s — ||z — e542||/s* is bounded, so that t — t! = Ae!z is also bounded,
and

[x]DA(Oé,OO) = Osggl ”tl_aAetAxH < (Ml (Oé + 1)_1 + MO)Hx]]DA((LOO)' (3'6)
<t<
We can conclude that the seminorms [ - |p, (a,00) a0d [[ - || p (a,00) are equivalent. O

The next corollary follows from the semigroup law, and it gives an answer to the first
question at the beginning of this section.

Corollary 3.1.3 Given = € X, the function t — !4z belongs to C*([0,1]; X) if and only
if © belongs to D (v, 00). In this case, t — e*Ax belongs to C([0,T); X) for every T > 0.
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Proof. The proof follows from the equality

tA

Ay — 4

t—s)A

e(

7= GSA(

x—uzxz), 0<s<t,

recalling that ||ef4|| £(x) is bounded by a constant independent of £ if { runs in any bounded
interval. O

It is easily seen that the spaces Da(«a,o0) are Banach spaces. Moreover, it can be
proved that they do not depend explicitly on the operator A, but only on its domain D(A)
and on the graph norm of A. More precisely, for every sectorial operator B : D(B) — X
such that D(B) = D(A), with equivalent graph norms, the equality D 4(a, 00) = Dp(a, 00)
holds, with equivalent norms.

Starting from D 4(«, 00) we define other normed spaces, as follows.

Definition 3.1.4 Let A : D(A) C X — X be a sectorial operator. For any k € N and
any a € (0,1) we set

Dy(k +a,00) = {z € D(A¥) : A*z € Dy(a,0)},
(3.7)
HmHDA(k-f—a,oo) = H:EHD(AIC) + [Akl']a

Corollary 3.1.3 yields that the function ¢ — u(t) := e!4z belongs to C*([0,1];D(A))
(and then to C*([0,T]; D(A)) for all T > 0) if and only if x belongs to Da(1 + «, c0).
Similarly, since £e'dz = ' Az for € D(A), u belongs to C17%([0,1]; X) (and then to
C*([0,T]; X) for all T > 0) if and only if x belongs to D4(1 + @, 00).

An important feature of spaces D4(«, o0) is that the part of A in D4(a, 00), i.e.
Ay Da(14 a,00) — Da(a,0), Apz = Az,
is a sectorial operator.

Proposition 3.1.5 For 0 < a < 1 the resolvent set of A, contains p(A), the restriction
of R(A\, A) to Da(a,00) is R(\, Aa), and the inequality

IR, Aa)ll£(D 4 (a,00)) < [1R(A, Al 2(x)

holds for every A € p(A). In particular, A, is a sectorial operator in D 4(a, 00) and e
is the restriction of et to D 4(a, 00).

tAq

Proof. Fix A € p(A) and x € Dj(a,00). The resolvent equation \y — Ay = =z has
a unique solution y € D(A), and since D(A) C D(a,00) then Ay € Dy(a,0) and
therefore y = R(\, A)x € D4(1 + o, 00).

Moreover for 0 < ¢t < 1 the inequality

[t~ A R(A, A)z|| = [ R(A, A)t' = Ae e < [[R(A, A)||gx) 11!~ Aet
holds. Therefore,
[R(A, A)z] Dy (a,00) < RN A)ll2x) [2]D 4 (0,00)
and the claim is proved. ]

Let us see an interpolation property of the spaces D 4(a, 00).
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Proposition 3.1.6 Let My, M; be the constants in (3.1). For every v € D(A) we have
[2]D 4 (a00) < MG M| Az |17
Proof. For all t € (0,1) we have

Mt Aa
e Act e <
Mit=||x||.

It follows that
17 A || < (Mot' || Az |))™ (Mt~ [|a]|)' = Mg M~ || Az||* |||~
O

An immediate consequence of Proposition 3.1.6 are estimates for ||et|| L(X,Da(,00))
and more generally for ||A”etAH£(X7DA(a’OO)), n € N: indeed, for each z € X and ¢ > 0,
etz belongs to D(A), so that

C
A - A A — T
2] D@00y < Mg ML Al et~ < <o llzll, 0<t<T, (3.8)
and similarly, for each n € N,
sup [t A" £(x Dy (a00)) < OO (3.9)

o<t<T

Let us discuss in detail a fundamental example. We recall that for any open set Q C RY
and any 6 € (0,1) the Holder space CY(Q2) consists of the bounded functions f : @ — C

such that
|f(=) = fw)l

|x—y|9 < 400,

[f]cg(g) = sup
z,y€Q, x#y

and it is a Banach space with the norm
1 lles = 1l + Fles -

Moreover, for k € N, C’If*e(ﬁ) denotes the space of all the functions f which are
differentiable up to the k-th order in 2, with bounded derivatives, and such that D*f €
C?(Q) for any multiindex o with |a| = k. It is a Banach space with the norm

||f||c{)€+9(§) = Z HDafHOO + Z [Daf]Cg(ﬁ)

lor|<k lor|=k
We drop the index b when €2 is bounded.

Example 3.1.7 Let us consider X = Cy(RY), and let A : D(A) — X be the realization
of the Laplacian in X. For 0 < a <1, a # 1/2, we have

Da(a, 0) = C2¢(RN), (3.10)

Da(1+ a,00) = CFH2(RY), (3.11)

with equivalence of the respective norms.
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Proof. We prove the statement for o < 1/2. Let T'(¢) be the heat semigroup, given by
formula (2.8). We recall that for each f € Cy(RY) we have

(@) [IDT@)f oo < 0) [AT@) flloo < %HfHoo, (3.12)

C
%Hfﬂoo,

for some ¢ > 0, by (2.12).
Let us first prove the inclusion D4(a, 00) D CZ¥(RN). If f € C2(RYN) we write

.J;

(Tt)f)(x) = f(x flz—Vty) — f(z)]dy,

and we get

1 o 7M o
ITOF = Ml < Ut [ e iy

Therefore, f € Da(a,00) and [[f]]p,(a,00) < C[f]cga(RN).

Conversely, let f € D(a,00). Then, for every ¢ > 0 we have

[f(@) = fyl < |T@f(=) = f@)]+[T@)f(x) = TOLOI+ T () = f)l

< 2[fMpatace)t® + DT f] ool = yl-
(3.13)
We want to choose t = |z —y|? to get the statement, but estimate (3.12)(a) is not sufficient
for this purpose. To get a better estimate we use the equality

Tn)f-Tt)f = / AT (s)fds, 0 <t <m,
t
that implies, for each i =1,..., N,
T(n)f—DiT)f = / D;AT(s)fds, 0<t<n. (3.14)
t

Note that ||AT(t)f|lec < t* f]a for 0 < t < 1 by definition, and ||AT(t)f]lcc <
Ct7 | flloo < Ct* Y| f|loo for t > 1 by (3.12)(b). Using this estimate and (3.12)(a) we get

IDiAT(s)flle = [I1DiT(s/2)AT(5/2) flloc < [IDiT(s/2)|l £(c,ma)) IIAT (5/2) f oo

C
< m“fHDA(a,oo)

so that we may let n — 400 in (3.14), to get

+00
DlT(t)f = — DZAT(S)f ds, t>0,
t
and to g (o)
(07
||D1T(t)f||00 S ||f”DA(Oé,OO)/t 53/2704 dS = tl/Q*a ||f||DA(a,OO) (315)

This estimate is what we need for (3.13) to prove that f is 2a-Ho6lder continuous. For
|z —y| <1 choose t = |z — y|? to get

[f@) = fl < 20 patan)z = y** + C@)| s ao0) e —y*
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< CHfHDA(a,oo)’x_yFa'
If [z — y| > 1 then | f(z) — f(¥)] < 2] flloo < 201 fllDa(a00)lz — y**.

Let us prove (3.11). The embedding CZ2*(RY) C D4(1 + a,c0) is an obvious con-
sequence of (3.10), since C;T**(Re™) € D(A). To prove the other embedding we have
to show that the functions in D4(1 + «,00) have second order derivatives belonging to
C2(RY).

Fix any A > 0 and any f € D4(1+ «,00). Then f = R(\, A)g where g := \f — Af €
D 4(a, 00) = C2*(RY), and by (1.22) we have

_ oo — At N
f(a:)—/o e M(T(t)g)(w)dt, = cRY.

We can differentiate twice with respect to x, because for each i, j = 1,..., N, both
e~ D;T(t)g|loo and |le=D;;T(t)g||oo are integrable in (0, +oc). Indeed, (3.15) implies
| D:T(t/2)glloe < C(a)(t/2)*1/2 for every i, so that using once again (3.12)(a) we get

I1D5T)glloe = [I1D5T(#/2)DiT(t/2)glloo
c C(a)
< (t/2)1/2 (t/2)1/2_aHgHDA(Oé,OO)

k
=a 191D (a,00)- (3.16)

Therefore, the integral f0+°° e MT(t)gdt is well defined as a CZ(RY)-valued integral, so
that f € CZ(RY). We could go on estimating the seminorm [D;;7'(t) g]cbza(RN), but we get
[DijT(t)g]Cga(RN) < Cllgllp 4(a,00)/t; and it is not obvious that the integral is well defined
as a Cf”a (R™)-valued integral. So, we have to choose another approach. Since we already
know that D 4(a,00) = CZ*(RY), it is sufficient to prove that D;;f € Da(a, o0), i.e. that

sup [|€1 AT (€)Dy; flloo < +00, i,j=1,...,N.
0<¢<1

Let k be the constant in formula (3.16). Using (3.16) and (3.12)(b), for each & € (0,1) we
get

I€ AT (€) Dy flloe =

/ = e MAT (€ 4+ t/2) Dy T(t)2)g dtH
0

oo -« ck
< loloses | € e

Foo 2¢ck
= —————ds. 1
e A e (3.17)

dt

Therefore, all the second order derivatives of f are in Da(a, 00) = C2*(RY), their CZ*
norm is bounded by Cllglla < COflla + A flla) < max{AC, CHIfl b1 o), and the
statement follows. O

Remark 3.1.8 The case a = 1/2 is more delicate. In fact, the inclusion Lip(RY) C
D(1/2,00) follows as in the first part of the proof, but it is strict. Indeed, it is possible
to prove that

Da(1/2,00) = {u € CyEM) : sup [M0)F () —2u(w +9)/2)

< —i—oo},
THY |$—y|
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and this space is strictly larger than Lip(RY) (see [19]).

Example 3.1.7 and Corollary 3.1.3 imply that the solution u(t,x) = (T'(t)uo)(z) of the
Cauchy problem for the heat equation in RY,

u(t,z) = Au(t,z), t>0, &RV,
u(0,x) = up(z), r € RN,

is a-Hélder continuous with respect to ¢ on [0, 7] x RV, with Holder constant independent
of z, if and only if the initial datum wug belongs to CZ*(RY). In this case, Proposition
3.1.5 implies that |[u(t, )| p,(a,00) < Clluollp,(a,e0) for 0 <t < T, so that u is 2a-Holder
continuous with respect to = as well, with Holder constant independent of t. We say that
u belongs to the parabolic Holder space C*2%([0,T] x RY), for all T > 0.

This is a first example of a typical feature of second order parabolic partial differential
equations: time regularity implies space regularity, and the degree of regularity with
respect to time is one half of the regularity with respect to the space variables.

Moreover, Example 3.1.7 gives an alternative proof of the classical Schauder Theorem
for the Laplacian (see e.g. [7, ch. 6]).

Theorem 3.1.9 If u € CZ(RY) and Au € C2(RYN) for some a € (0,1), then u €
i)

Proof. In fact such a u belongs to Da(1 + a/2,00) = CZT*(RY). O

As a consequence of Proposition 3.1.5 and of Example 3.1.7 we also obtain that the
Laplacian with domain CZt*(R¥) is sectorial in C{*(RV) for every a € (0,1). The proof
follows immediately from the equalities

Da(1+ a/2,00) = CFT*(RY), Da(a/2,00) = Cg{(RY).

A characterization of the spaces D 4(«, 00) for general second order elliptic operators
is similar to the above one, but the proof is less elementary since it relies on the deep
results of Theorem 2.5.2 and on general interpolation techniques.

Theorem 3.1.10 Let o € (0,1), o # 1/2. The following statements hold.

(i) Let X = Cy,(RY), and let A be defined by (2.18). Then, Da(a, 00) = C2*(R"), with
equivalence of the norms.

(i) Let Q be an open bounded set of RN with C? boundary, let X = C(Q), and let A be
defined by (2.19). Then,

Da(a,00) = C3(Q) := {f € C**(Q) : fion = 0},
with equivalence of the norms.

(iii) Let 2 be an open bounded set of RN with C? boundary, let X = C(Q), and let A be
defined by (2.20). Then

C?(Q), if0<a<1/2,
D (e, 00) =
{feC®™Q): Bfjpo =0}, if1/2<a<]1,

with equivalence of the norms.
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Remark 3.1.11 Proposition 3.1.5 and Theorem 3.1.10(ii) show that, for any « € (0, 1),
the operator A : {u € C?**22([0,1]) : u(0) = u"(0) = u(1) = «”"(1) = 0} — C?*([0,1]),
Au = u” is sectorial. This result should be compared with Exercise 2.1.3(5) which states
that the realization of the second order derivative with Dirichlet boundary condition in
C?*([0,1]) is not sectorial.

Exercises 3.1.12

1. Show that if w < 0 in Definition 1.3.1 then Dg(a,00) = {z € X : |z|o, =
SUpssg |[t' T AetAz| < 400}, and that = +— |z|, is an equivalent norm in D 4(c, o0)
for each o € (0,1). What about w = 07

2. Show that D g(«,00) = Dg4xr(cr, 00) for each A € R and a € (0, 1), with equivalence
of the norms.

3. Show that D4(«, o0) is a Banach space.

4. Show that
D (a,00) = Dy, (e, 00),

where Ay is the part of A in Xy := D(A) (see Definition 1.3.11).

5. Show that the closure of D(A) in D 4(«a, 00) is the subspace of all x € X such that
limy_ot!~*Aet4z = 0. This implies that, even if D(A) is dense in X, it is not
necessarily dense in D4 (a, 00).

[Hint: to prove that e!4z — 2 tends to zero in D («, 00) provided t!~*Aet4x tends
to zero as t — 0, split the supremum over (0, 1] in the definition of [-], into the
supremum over (0,¢] and over [g, 1], € small].

3.2 Spaces of class J,

Definition 3.2.1 Given three Banach spaces Z CY C X (with continuous embeddings),
and given « € (0,1), we say that Y is of class J, between X and Z if there is C > 0 such
that

lylly < CliylZllylly®, v e 2.

From Proposition 3.1.6 it follows that for all o € (0,1) the space D(«, o) is of class
Jo between X and the domain of A. From Exercise 5(c) in §2.3.1 we obtain that WP (RY)
is in the class Jj 5 between LP(RY) and W2P(R¥) for each p € [1,400), and that C}(RY)
is in the class J; /o between Cy(RY) and the domain of the Laplacian in Cy(RY).

Other examples of spaces of class J, between a Banach space X and the domain of
a sectorial operator A are the real interpolation spaces D4(«,p) with 1 < p < 400, the
complex interpolation spaces [X, D(A)],, the domains of the fractional powers D(—A%),
... but the treatment of such spaces goes beyond the aims of this introductory course. The
main reference on the subject is the book [18], a simplified treatment may be found in the
lecture notes [11].

Several properties of the spaces D 4(«, c0) are shared by any space of class J,.

Proposition 3.2.2 Let A : D(A) — X be a sectorial operator, and let X, be any space
of class Jo, between X and D(A), 0 < a < 1. Then the following statements hold:
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(i) Fore € (0,1 — ) we have
Da(a+e,00) C Xq,

with continuous embedding.

(i) For k € NU{0} there are constants My, o > 0 such that

My,
AR | £ ox x.) < tkTs 0<t<l1.

(iii) If B € L(X4,X) then A+ B: D(A+ B) := D(A) — X is sectorial.

Proof. Proof of (i). Let © € Da(a + €,00). From formula (1.19) with ¢t = 1 we obtain
1
r=elr - / Ae* iz ds.
0

The function s — Ae*42 is integrable over [0, 1] with values in X, because

|Aez] x, < C(|Ae*Az|| p(a))® || Aes x| x )~

< Ca(si2+a+€HxHDA(a—i-a,oo))a(371+a+€HxHDA(a-i-a,oo))lia = CasilJrEH‘rHDA(a-ﬁ—E,oo)-
Therefore, © € X,, and the statement follows.

Proof of (ii). For each z € X we have ||AFe!dz|x, < C’(HAketAxHD(A))O‘(HAketAxHX)lfa,
and the statement follows using (1.15).

Proof of (i1i). 1t is an immediate consequence of corollary 1.3.14. O

Note that in general a space X, of class J, between X and D(A) may not be contained
in any D4 (8, 00). For instance, if X = C([0,1]), A is the realization of the second order
derivative with Dirichlet boundary condition X, i.e. D(A) = {u € C?([0,1]) : u(0) =
u(1) = 0} and Au = u”, then C'([0,1]) is of class J; /2 between X and D(A) but it is not
contained in D(A) (and hence, in any D 4(3, 00)) because the functions in D(A) vanish at
r=0and at x = 1.

Similarly, the part A, of A in X, could not be sectorial. Note that the embeddings
D(A) C X, C X imply that ¢t — ' is analytic in (0,+o00) with values in £(X,),
hence ||e4|| £(X.) is bounded by a constant independent of ¢ if ¢ runs in any interval
[a,b] C (0,+00), but it could blow up as t — 0.

Exercises 3.2.3

1. Let A: D(A) — X be a sectorial operator. Prove that D(A) is of class J; /o between
X and D(A?).

[Hint: If w = 0, use formula (1.19) to get ||Az| < M|jz||/t + Mot|A%x| for each
t > 0 and then take the minimum for ¢ € (0, +00). If w > 0, replace A by A—wlI...].

2. Let A: D(A) — X be a linear operator satisfying the assumptions of Proposition
2.2.2. Prove that D(A) is of class J; 5 between X and D(A?).

[Hint: Setting Ax — A%z = y for x € D(A?) and A > 0, use formula (2.6) to estimate
|Az|| and then take the minimum for A € (0, +00)].
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3. Prove that C}(R) is of class .J; /4 between Cy(R) and Cy(R).

4. (a) Following the proof of Proposition 3.1.6, show that D4(a,00) is of class J, g
between X and D4(6,00), for every 6 € (a, 1).

(b) Show that any space of class J, between X and D(A) is of class J, /s between
X and D4(6,0), for every 6 € (a, 1).

(c) Using (a), prove that any function which is continuous with values in X and
bounded with values in D 4(#, 00) in an interval [a, b], is also continuous with values
in D(a,0) in [a,b], for a < 6.

5. Prove that for every 6 € (0, 1) there is C'= C(6) > 0 such that

IDiglloo < Clllollcaso @) T2l cp ) 72,

)1—0/2( 9/2,

1Digelloe < Cllellczra ) (lellos @)

for every ¢ € C’g+9(RN), i, j =1,...,N. Deduce that C}(RY) and CZ(RY) are of
class J1_g)/2 and Ji_g/o, respectively, between Cg(RN) and C’IJQJFG(RN).

[Hint: write ¢ = ¢ — T(t)p + T(t)p = — f(f T(s)Apds + T(t)p, T(t) = heat semi-
group, and use the estimates || D;T(t)f|lcc < Ct*1/2+0/2HfHCg, | Di;T(t) flloo <
CH14912 | .

6. Let bj, i =1,...,N, ¢ : RY — C be given functions, and let A be the differential
operator (Au)(xz) = Au(x) +Z£\i1 bi(z)Diu(x)+ c(z)u(z). Following the notation of
Section 2.3, let D(A,) be the domain of the Laplacian in LP(RY) for 1 < p < 400,
in Cy(RY) for p = +o0.

Show that if b;, ¢ € L°°(RY) then the operator D(4,) — LP(RY), u — Au is
sectorial in LP(RY) for 1 < p < +oo, and if b;, ¢ € Cy(RY) then the operator
D(As) — Co(RN), u — Au is sectorial in Cy(RY).



Chapter 4

Non homogeneous problems

Let A: D(A) C X — X be a sectorial operator and let 7" > 0. In this chapter we study
the nonhomogeneous Cauchy problem

{ u'(t) = Au(t) + f(t), 0<t<T,
u(0) = =z,

(4.1)

where f:[0,7] — X.

Throughout the chapter we use standard notation. We recall that if Y is any Banach
space and a < b € R, B([a,b];Y) and C([a,b];Y) are the Banach spaces of all bounded
(respectively, continuous) functions from [a, b] to Y, endowed with the sup norm || f]|ec =
sup,<s<p 1 f(8)]ly - C%([a,b];Y) is the Banach space of all a-Holder continuous functions
from [a,b] to Y, endowed with the norm [ flloaapyy = Iflloo + [floa(ap;y), where

[floa(ably) = SuPa<se<s 1/ (8) = F(s)lly /(£ = 5)*.

4.1 Strict, classical, and mild solutions

Definition 4.1.1 Let f:[0,7] — X be a continuous function, and let x € X. Then:

(i) u € C([0,T); X) N C([0,T); D(A)) is a strict solution of (4.1) in [0,T] if u'(t) =
Au(t) + f(t) for every t € [0,T], and u(0) = z.

(i) w € CY((0,T); X) N C((0,T); D(A)) N C([0,T]; X) is a classical solution of (4.1) in

[0, T] if u'(t) = Au(t) + f(t) for every t € (0,T], and u(0) = x.
From Definition 4.1.1 it is easily seen that if (4.1) has a strict solution, then
z € D(A), Az + f(0) =/(0) € D(A), (4.2)
and if (4.1) has a classical solution, then
z € D(A). (4.3)

We will see that if (4.1) has a classical (or a strict) solution, then it is given, as in the
case of a bounded A, by the variation of constants formula (see Proposition 1.2.3)

t
u(t) = e —i—/ et f(s)ds, 0<t<T. (4.4)
0

Whenever the integral in (4.4) does make sense, the function u defined by (4.4) is said to
be a mild solution of (4.1).
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Proposition 4.1.2 Let f € C((0,T],X) be such that t — | f(t)| € L'(0,T), and let

x € D(A) be given. If u is a classical solution of (4.1), then it is given by formula (4.4).

Proof. Let u be a classical solution, and fix t € (0,7]. Since u € C'((0,7];X) N
C((0,T]; D(A)) N C([0,T]; X), the function

v(s) = e =Dy(s), 0<s<t,
belongs to C([0,t]; X) N C*((0,t), X), and
v(0) = ez, wu(t) = u(t),
V(s) =  —AeD(s) + DA Au(s) + f(s) = eTDAf(s), 0< s <t

As a consequence, for 0 < 2¢ < t we have

v(t—e)—wv(e) = / - =94 £ (5)ds,

so that letting ¢ — 07 we get

and the statement follows. O

Remark 4.1.3 Under the assumptions of Proposition 4.1.2, the classical solution of (4.1)
is unique. In particular, for f =0 and = € D(A), the function

tu(t) = ez, t>0,

is the unique solution of the homogeneous problem (4.1). Of course, Proposition 4.1.2 also
implies uniqueness of the strict solution.

Therefore, existence of a classical or strict solution of (1.1) is reduced to the problem
of regularity of the mild solution. In general, even for x = 0 the continuity of f is not
sufficient to guarantee that the mild solution is classical. Trying to show that u(t) € D(A)
by estimating || Ae(=9)4 f(s)|| is useless, because we have || Aet=9)4 f(s)|| < C|| flloo(t—5)"
and this is not sufficient to make the integral convergent. More sophisticated arguments,
such as in the proof of Proposition 1.3.6(ii), do not work. We refer to Exercise 3 in §4.1.13
for a rigorous counterexample.

The mild solution satisfies an integrated version of (4.1), as the next lemma shows.

Proposition 4.1.4 Let f € Cyp((0,7); X), and let x € X. If u is defined by (4.4), then
for every t € [0,T] the integral fg u(s)ds belongs to D(A), and

u(t):x—i—A/Otu(s)ds—i—/Otf(s)ds, 0<t<T. (4.5)
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Proof. For every t € [0,7] we have

t t t s

/u(s)ds = /eSAa;d8+/ ds/ =¥ (0)do
0 0 0 0
t t t

= /eSA:Uds—i—/do/ e~ f(5)ds
0 0 o

The integral [ e(=4f(0)ds = fg_o e™ f(o)dr belongs to D(A) by Proposition 1.3.6(ii)
and A [LeG=Af(0)ds = (=4 — ) f(0). Lemma A4 yields

/0 t do /U t e~ f(0)ds € D(A)
A/t do /t e f(0)ds = /t (e(tfa)A - I) flo)do.

Hence, using once again Proposition 1.3.6(ii), the integral fo s)ds belongs to D(A) and

and

t
A/ s)ds = ' :n—:L‘+/ (e(t_")A—I>f(0)da, 0<t<T,
0

so that (4.5) holds. O

In the next proposition we show that the mild solution with x = 0 is Hélder continuous
in all intervals [0, 7. For the proof we define

My := sup |tFAR), k=0,1,2, (4.6)
0<t<T+1
and
t
v(t) = (e« f)(t) = / e=9Af(s)ds, 0<t<T, (4.7)
0

Proposition 4.1.5 Let f € Cy((0,7); X). Then the function v defined above belongs to
CY([0,T); X) for every a € (0,1), and there is C = C(«,T) such that

[ollceomix) < € Sup £ ()] (4.8)
<s<T

Proof. For 0 <t < 7T we have
o) < Mot|| f oo (4.9)

whereas for 0 < s <t < 7T we have

/OS (e(t_”)A — e(S_U)A) flo)do + /t e(t_”)Af(a)da

S

s t—o t
= / da/ A f(o)dr + / e=Af(0)do
0 s—o s

v(t) —v(s)
(4.10)
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Since 7 > s — o, this implies that

s t—UdT
o) =@l < Milfle [ dor [ Mol et =)

s do t—o

< Ml | o [+ Mol e =)

e (4.11)

s d t—s

< Ml | o [ o Mol el =9

(25— (e 11

so that v is a-Holder continuous. Estimate (4.8) follows immediately from (4.9) and (4.11).
O

The result of Proposition 4.1.4 is used in the next lemma, where we give sufficient
conditions in order that a mild solution be classical or strict.

Lemma 4.1.6 Let f € Cy((0,T); X), let x € D(A), and let u be the mild solution of (4.1).
The following conditions are equivalent.

(a) we C((0,T]; D(A)),
(b) uwe CH(0,T]; X),
(c) w is a classical solution of (4.1).
If in addition f € C([0,T]; X), then the following conditions are equivalent.
(@) we C([0,T); D(A)),
(') we CH([0,T}; X),

(') w is a strict solution of (4.1).

Proof. Of course, (c) implies both (a) and (b). Let us show that if either (a) or (b) holds,
then w is a classical solution. We already know that u belongs to C([0,T]; X) and that it
satisfies (4.5). Therefore, for every ¢, h such that t, t + h € (0,71,

U —u t+h t+h
R S [ s [ s (4.12)

Since f is continuous at ¢, then
lim — f(s)ds = f(t). (4.13)

Let (a) hold. Then Aw is continuous at t, so that

. 1 t+h ] 1 t+h
hli%l-*- EA t u(s)ds = hli%{r nl Au(s)ds = Au(t).
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By (4.12) and (4.13) we obtain that u is differentiable at the point ¢, with «/(¢) = Au(t) +
f(t). Since both Au and f are continuous in (0,77, then u’ is continuous, and u is a
classical solution.

Now let (b) hold. Since u is continuous at ¢, then

t+h
hi% h / = ul®).

On the other hand, (4.12) and (4.13) imply the existence of the limit

lim A (;L /t t+hu(s)ds> — () — (b,

h—0t

Since A is a closed operator, then u(t) belongs to D(A), and Au(t) = «'(t) — f(t). Since
both v/ and f are continuous in (0,77, then Au is also continuous in (0,77, so that u is a
classical solution.

The equivalence of (a’), (V/), (¢') may be proved in the same way. O

In the following two theorems we prove that, under some regularity conditions on f,
the mild solution is strict or classical. In the theorem below we assume time regularity
whereas in the next one we assume “space” regularity on f.

Theorem 4.1.7 LetO<a <1, fe CY[0,T],X), z € X, an let u be the function defined
n (4.4). Then u belongs to Ca([E,T} D(A)) N C*e([e,T), X) for every e € (0,T), and
the following statements hold:

(i) if x € D(A), then u is a classical solution of (4.1);

(ii) if v € D(A) and Ax+ f(0) € D(A), then u is a strict solution of (4.1), and there is
C > 0 such that

lullero,r1,x) + lulleqo,m,nay < CUL llceqom,x) + 1zl pay)- (4.14)

(iii) if x € D(A) and Az + f(0) € Da(a,00), then v’ and Au belong to C*([0,T],X), '
belongs to B([0,T]; Da(a,0)), and there is C' such that

ullor+e o) + 1 Au]lcao,r1,x) + 114 1B (0,770 4 (as00)
(4.15)

< C(Ifllcaqom;x) + 1zl peay + 1Az + FO) D4 (a,00))-

Proof. We are going to show that if z € D(A) then u € C((0,T]; D(A)), and that if
x € D(A) and Az + f(0) € D(A) then u € C([0,T]; D(A)). In both cases statements (i)
and (ii) will follow from Lemma 4.1.6.

Set

w@)= [ D) - g0, 05T,
" (4.16)

t
us(t) = etx + / =)Af(t)ds, 0<t<T,
0
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so that u = w1 +wug. Notice that both u;(¢) and ua(t) belong to D(A) for t > 0. Concerning
u1(t), the estimate

My

494 1(s) - O] < 7

(t —5)*[flce

implies that the function s — e(=)4( f(s)— f(t)) is integrable with values in D(A), whence
ui(t) € D(A) for every t € (0,T] (the same holds, of course, for t = 0 as well). Concerning
us(t), we know that e belongs to D(A) for t > 0, and that fg et=9)4 f(t)ds belongs to
D(A) by Proposition 1.3.6(ii). Moreover, we have

(1)  Auy(t) = /OtAe(t_S)A(f(s) — f(t))ds, 0<t<T, i)

(i1)  Aug(t) = Aelz + (e — D) f(t), 0<t<T.

If x € D(A), then equality (4.17)(ii) holds for ¢ = 0, too. Let us show that Au; is Holder
continuous in [0,7]. For 0 < s <t < T we have
Aur(t) = Aur(s) = [ (A (f() = F10) - A 50) = £(5) ) do
0
t
+ [ A4 (1(0) - f(e)do
- / ’ (Ae(t_")A - Ae<s—0>A) (f(o) — f(s))do (4.18)
0
+ [M A1 (6) — sapao + [ 494 510) ~ S0
0 s
= [ [T aeranso) - oo
0 s—o

+(e = I (1)~ f(0) + [ AL (1) — f(t)do,

S

so that

t—o

J4u1(0) — Aun(s)] < Malflew [ =0y [ ardo

—0

+2Mo[flen(t — 5)° + My[flge /t(t o) ldo (4.19)
<aniflce [ do [ v+ @M+ M0 flentt - o

Mo M,
< | ———— +2Mp+ — ot —s)”
< (s 2o+ 2 ) [flen(e - o),
where My, k = 0,1,2, are the constants in (4.6). Hence, Au; is a-Holder continuous
in [0,7]. Moreover, it is easily checked that Aus is a-Holder continuous in [e,T] for
every ¢ € (0,7, and therefore Au € C%([e,T]; X). Since u € C%([e,T]; X) (because
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t s etz € 0°((0,T]; X) and ¢ v fg =94 f(s)ds € C*([0,T]; X) by Proposition 4.1.5),
it follows that u € C*([e, T]; D(A)). Since € is arbitrary, then u € C((0,T7; D(A)).
Concerning the behavior as t — 0%, if 2 € D(A), then t — ¢4z € C([0,T], X) and
then u € C([0,T], X), see Proposition 4.1.5. This concludes the proof of (i).
If x € D(A), we may write Aug(¢) in the form

Aug(t) = e (Az + F(0) + A(F(1) — F0) — f(t), 0<t<T.  (4.20)

If Az + f(0) € D(A), then lim; o+ Aua(t) = Az, hence Aus is continuous at ¢ = 0,
u = u1 + ug belongs to C([0,T]; D(A)) and it is a strict solution of (4.1). Estimate (4.14)
easily follows since ' = Au + f and

t
JAus ()] < Milflen [ (= 5) s = X flente,

[Auz($)[| < Mol Az[| + (Mo + 1) f]oo-

This concludes the proof of (ii).

If Az + f(0) € Da(a,o0), we already know that t — e!4(Az + £(0)) € C([0,T], X),
with C“ norm estimated by C||Az+ f(0)|| p, (a,00), for some positive constant C. Moreover
f € C*([0,T],X) by assumption, so we have only to show that ¢t — e*A(f(t) — £(0)) is
o-Holder continuous.

For 0 < s <t < T we have

e (£ () = £(0)) = e*4(F(s) = SOOI < [I(e = e>1)(F(s) = SO + e (£ () = F(s))l]

t
A/ " do

< Milflees [ 4 Milfleatt -9 (421

S

< 5Yf]ce + Mo(t — 5)*[flce

L(X)

t
SMM@/5H®+%mmWﬂW

M
< (4 00) (¢~ 971l
Hence Aus is a-Holder continuous as well, and the estimate

[wllerva(o,m;x) + 1Aullcagorx) < ellflleeqom,x) + [12llx + 1Az + £(0)[| D4 (a,00))

follows, since v’ = Au + f and v = uy + us.
Let us now estimate [u'(t)]p, (a,00)- For 0 <t < T we have

t
uw»:/l%Wﬂ%ﬂ@—f@ww+aﬂAm+ﬂmw+&%ﬂw—fm»
0
so that for 0 < £ <1 we deduce

€1 At (1)) < ‘61““j/t142e<t+f—8%4<f<s><— J(t)ds
0

+ 1€ AeTOA Az + f(0))]| + (|1 AeTOA(F(2) — £(0))]
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t
< My[floag! ™ /0 (= 5)(t+ € — )23 (1.22)
+ MO[Ax + f( )]DA (a,00) + Ml[f]C"‘gl_a(t + 5)_1ta
< M[f]ee /OOO (04 1)2do + My[Az + F(0)] (o) + Mi[flco

Then, [v'(t)]p,(a,00) is bounded in [0, 7], and the proof is complete. O

Remark 4.1.8 The proof of Theorem 4.1.7 implies that the condition Az + f(0) €
D 4(a,00) is necessary in order that Au € C*([0,7]; X). Once this condition is satis-
fied, it is preserved through the whole interval [0, T, in the sense that Au(t)+ f(t) = u'(t)
belongs to D 4(a, 00) for each t € [0,T].

In the proof of the next theorem we use the constants

Mk,a = sup ”tk_aAketAHC(DA(a,oo),X) <400, k=1,2. (423)
0<t<T+1
Theorem 4.1.9 Let 0 < a < 1, and let f € C([0,T]; X) N B([0,T]; Da(a,00)). Then

0
the function v = (e % f) belongs to C([0,T]; D(A)) N CY([0,T]; X), and it is the strict
solution of

{ V'(t) = Av(t) + f(t), 0<t<T,
(4.24)

v(0) = 0.

Moreover, v' and Av belong to B([0,T]; Da(a, 0)), Av belongs to C*([0,T); X), and there
is C' such that

10| B(10,17; 0. (a,00)) 1AV B((0,77; D4 (0,00)) F 1AV ca(0,77,%) < ClFB(10,11:D.4(0,00)) - (4:25)

Proof. Let us prove that v is a strict solution of (4.24), and that (4.25) holds. For
0 <t <T,wv(t) belongs to D(A), and, denoting by |f| the norm of f in B([0,T]; Da(«, o))

TMla

400 < Myals] [ (6= 57 s < T2 g (4.20

Moreover, for 0 < £ < 1 we have

t
|61 AcEA A (1) | = €1 / A2l 1 (5)ds
0

t
—a a— M. o
<Moo [l < T2 @2

so that Av is bounded with values in D 4(«, 00). Let us prove that Av is Hélder continuous
with values in X: for 0 < s <t < T we have

| Av() — Av(s)] < HA / (el = -94) f(o)o| + HA / DA £ () dor
0 s

s t—o t
<Malf] [ o [ et bl [0 o
0 s—o s
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M, o My «
< : — | (t —s)” 4.2
< (sazog+Mee ) a-oeil (1.28)
hence Av is a-Hoélder continuous in [0,7]. Estimate (4.25) follows from (4.26), (4.27),
(4.28).
The differentiability of v and the equality v'(t) = Av(t) + f(¢) follow from Lemma
4.1.6. O

Corollary 4.1.10 Let 0 < o < 1, z € X, f € C([0,T); X) N B([0,T); Da(cv,0)) be
given, and let u be given by (4.4). Then, u € C((0,T]; X) N C((0,T); D(A)), and u €
B([e,T]; Da(a+ 1,00)) for every e € (0,T). Moreover, the following statements hold:

(i) If x € D(A), then u is the classical solution of (4.1);

(ii) If v € D(A), Ax € D(A), then u is the strict solution of (4.1);

(11i) If © € Dg(a + 1,00), then v’ and Au belong to B([0,T]; Da(a,0)) N C([0,T]; X),
Au belongs to C([0,T]; X), and there is C > 0 such that

4] B([0,77:D 4 (@,00)) F 1A% B([0,71;D 4 (,00)) T+ [ AUl o (j0,77:x)
(4.29)

< C(HfHB([O,T];DA(Oc,oo)) + ||$HDA(OC,OO))‘

Proof. Let us write u(t) = 4z + (!4 * f)(t). If z € D(A), the function ¢ — €'z is the
classical solution of w’ = Aw, ¢t >0, w(0) =z If z € D(A) and Az € D(A) it is in
fact a strict solution; if z € D4(ar+ 1, 00) then it is a strict solution and it also belongs to
C([0,T); X) N B([0,T); Da(ca + 1,00)). The claim then follows from Theorem 4.1.9. [

As a consequence of Theorem 4.1.7 and of Corollary 4.1.10 we get a classical theorem
of the theory of PDE’s. We need some notation.

We recall that for 0 < @ < 1 the parabolic Hélder space C%29([0, T] x RV) is the space
of the continuous functions f : RY — C such that

[fllcorzeo.myxrny = [ flloo + sup [f (-, 2)] ooy + sup [F(E;)]co@ay < +o0,
zeRN t€[0,7)

and C'F0/22+9([0, T] x RVN) is the space of the bounded functions u such that u;, Djju
exist for all 4, j = 1,..., N and belong to C%29([0, T] x RY). The norm is

N
||UH(,’1+9/272+9([0,T]><]RN) i=|lullo + Z | Diulloo

=1
N
+ luellcorzo oy xmyy + Z [ Dsjull corzo(0,m)xrN)-
i,j=1

Note that f € C%29([0,T] x RV) if and only if ¢ — f(t,-) belongs to C?/2([0,T]; C»(RN))
N B([0, T]; CY(RY)).
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Corollary 4.1.11 (Ladyzhenskaja — Solonnikov — Ural’ceva) Let 0 < 0 < 1, T' > 0 and
let up € C’g+9(RN), f e c?29((0,T) x RN). Then the initial value problem

u(t,r) = Au(t,z) + f(t,z), 0<t<T, z€RY,
{ (4.30)

u(0,x) = up(x), r € RV,

has a unique solution u € C'9/22+0([0, T] x RN), and there is C' > 0, independent of ug
and f, such that

HUHCHQ/Z’?JW([O,T}xRN) < C(HUOHCSW(RN) + Hf”C’e/?»@([O,T]XRN))'

Proof. Set X = Cy(RY), A : D(A) — X, Ap = Ay, T(t) = heat semigroup. The
function ¢ — f(t,-) belongs to C?2([0,T];X) N B([0,T];D(0/2,00)), thanks to the
characterization of example 3.1.7. The initial datum ug is in D(A), and both Auy and
f(0,-) are in D4(0/2,00). Then we may apply both Theorem 4.1.7 and Corollary 4.1.10
with @ = /2. They imply that the function u given by the variation of constants formula
(4.4) is the unique strict solution to problem (4.1), with initial datum wug and with f(t) =
f(t,-). Therefore, the function

t
u(t, z) = u(t)(z) = (T(t)uo)(x) +/0 (T'(t = 5)f(s,-))(x)ds,

is the unique bounded classical solution to (4.30) with bounded u;. Moreover, The-
orem 4.1.7 implies that v/ € C%2([0,T7;C,(RY)) N B([0,T); C/(RY)), so that u; €
C?729(10,T] x RY), with norm bounded by C(HU0||C§+6(RN) + 1 llcerzoo,r1xmvy) for some
C > 0. Corollary 4.1.10 implies that u is bounded with values in D4(0/2 4 1, 00), so that
u(t,-) € C§+9(RN) for each ¢, and

S0 10t g, < CCluollcgroqam, + 1 lcorsaqo ),

for some C' > 0, by estimate (4.29).
To finish the proof it remains to show that each second order space derivative D;;u is
6/2-Holder continuous with respect to ¢. To this aim we use the interpolatory inequality

[ Dijplloc < C(||80Hcg+9(RN))1_0/2(H90||C,f(RN))9/27

that holds for every ¢ € C§+9(RN), i,7=1,...,N. See Exercise 5 in §3.2.3. Applying it
to the function ¢ = u(t,-) — u(s,-) we get

|Digut, ) — Digu(s,
< C(llult, ) = uls, )l gzraggny) 2 (lult, ) = uls, o)/
/2

< C(2 sup ||lu(t,- 1=072(1t — 5| sup ||ug(t, - 0
< 02 sup [t egrogeny)' 2t =l sup fueft. ) legean)

< 't~ 5!9/2(||U0ch2+9(sz) + I fllcorao o, xryy)s

and the statement follows. O
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Remark 4.1.12 If we have a Cauchy problem in an interval [a, b] # [0,T],

V(t) = Av(t) + g(t), a<t<b,
(4.31)
v(a) =y,
we obtain results similar to the case [a,b] = [0,7T], by the change of time variable 7 =

T(t —a)/(b— a). The details are left as (very easy) exercises. We just write down the
variation of constants formula for v,

t
v(t) = e(t*a)Ay +/ e(t*S)Ag(s)ds, a<t<hb. (4.32)

a

Exercises 4.1.13

1. Let f € Cy((0,7); X) and set v = (e* % f). Let X, be a space of class .J, between
X and D(A) (a € (0,1)). Using the technique of Proposition 4.1.5 prove that
(a) v e B([0,T]; Xa) and [|v][ p(j0,71;x,) < C1supo<ir I/ (D)]];
(b) v e C1=((0,T; Xa) and [vllongorix,) < Cosupocyer |F(E)]|

2. Let A: D(A) — X be a sectorial operator, and let 0 < a < 1, a < b € R. Prove

that if a function u belongs to C1*%([a, b]; X) N C%([a, b]; D(A)) then u’ is bounded
in [a,b] with values in D 4(a, 00).

[Hint: set ug = u(a), f(t) = v/(t) — Au(t), and use Theorem 4.1.7(iii) and Remark
4.1.8).

3. Consider the sectorial operators A, in the sequence spaces #, 1 <p < oo given by
D(A,) = {(zyn) € 7 : (nxy,) € (P}, Ap(xn) = —(nxzy) for (x,) € D(Ap)

and assume that for every f € C([0,T];¢P) the mild solution of (4.1) with initial
value x = 0 is a strict one.

(i) Use the closed graph theorem to show that the linear operator
§:C([0,1];7) — C([0,1]; D(4p)),  Sf=exf

is bounded.

(ii) Let (ey) be the canonical basis of % and consider a nonzero continuous function
g : [0,400) — [0,1] with support contained in [1/2,1]. Let f,(t) = g(2"(1 —
t))ean; then f,, € C([0,1];€P), || fullco < 1. Moreover, setting hy = f1+---+ fn,
we have also hy € C([0,1];4,), ||hn|loo < 1, since the functions f, have disjoint
supports. Show that (e x f,,)(1) = 2 "egn where ¢ = [ e~*g(s)ds, hence
(€' % h)(1)] pca,) > eNV/P. This implies that S is unbounded, contradicting

().
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Chapter 5

Asymptotic behavior in linear
problems

5.1 Behavior of ¢4

One of the most useful properties of analytic semigroups is the so called spectrum deter-
mining condition: roughly speaking, the asymptotic behavior (as ¢ — 400) of €4, and,
more generally, of A"e!4, is determined by the spectral properties of A. This is an anal-
ogy with the finite dimensional case where the asymptotic behavior of the solutions of the
differential equation u’ = Au depends on the eigenvalues of the matrix A.

Define the spectral bound of any sectorial operator A by

s(A) =sup{ReA: A€ o(A)}. (5.1)
Clearly s(A) < w for any real number w satisfying (1.9).
Proposition 5.1.1 For every n € NU {0} and € > 0 there exists My . > 0 such that

[£ A" | £ ox) < Mip eS¢ > 0., (5.2)

Proof. Let w € R, 6 € (7/2, ) satisfy (1.9), and fix n € (7/2,0).

For 0 < t < 1, estimates (5.2) are an easy consequence of (1.15). If ¢ > 1 and
s(A) + e > w, (5.2) is still a consequence of (1.15). Let us consider the case in which
t > 1 and s(A) +¢ < w. Since p(4) D Sp, U{A € C: ReX > s(A)}, setting a =
(w—s(A) —¢)|cosn|™L, b= (w— s(A) — )| tann]|, the path

Ie= {AeC: A=¢e+w, ¢>alu{reC : AN=¢(+w, £€>a}
U{AeC : ReA=3s(A)+e¢, ImA <b}

(see Figure 5.1) is contained in p(A), and [[R(), A)| z(x) < Me on I'¢, for some M. > 0.
Since for every ¢ the function A — e*R(, A) is holomorphic in p(A), the path w+ 7,
in the definition of e*4 may be replaced by I, obtaining for each t > 1,

= / RN, A)d)\H

tA| _
141 = | 55

g
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Figure 5.1: the curve I'..

< M/ (w+£cosn td€ 4L == M / +E)tdy
™ a
1

< Me < N b) L(s(A)+e)t
m \|cosn|

Estimate (5.2) follows for n = 0. Arguing in the same way, for ¢ > 1 we get

1
| Aet4|| = sz/ )\eMR()\,A)d)\H
Vs I

+o00 b
<2/ e(w+§cosn)td§+/ e(s(A)-l-E)tdy)
a —b

(| cos |t + BelsAHa)t < MT (s(A)+2)t.

<

<

1|2 YIS

Since ¢ is arbitrary, (5.2) follows also for n = 1.
From the equality A" = (AetA/™)™ we get, for n > 2,

HAnetAHL(X) < (Mljent—let(s(A)-ﬁ—E)/n)n _ (]\4178n)nt—ne(s(A)-&-a)t7
and (5.2) is proved. O

We remark that in the case s(A) = w = 0, estimates (1.14) are sharper than (5.2) for
t large.

From Proposition 5.1.1 it follows that if s(A) < 0, then t — e*4z is bounded in [0, +00)
for every x € X. In the case s(A) > 0, it is interesting to characterize the elements = such
that t — ez is bounded in [0, +00). We shall see that this is possible in the case where
the spectrum of A does not intersect the imaginary axis.

5.2 Behavior of e/ for a hyperbolic A

In this section we assume that
o(A)NiR = @. (5.3)
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In this case A is said to be hyperbolic. Set 0(A) = 0_(A) U o (A), where
o_(A)=0c(A)N{A e C: ReA <0}, 04(A)=0(A)N{reC: Re >0} (5.4)

We write o and o_, respectively for o4 (A) and o_(A) when there is no danger of confu-
sion. Note that o, is bounded. On the contrary, o_ may be bounded or unbounded. For
instance using Proposition 2.1.1 and Exercise 1, §1.3.5, we easily see that the spectrum of
the realization of v’ — u in Cp(R) is the unbounded set (—oo, —1]. On the other hand if
A € L(X) then A is sectorial and o_ is bounded.

Since both o_, o are closed we have

—w_:=sup{ReA: N€0o_} <0, wy:=inf{ReX: X€oy}>0. (5.5)
o_ and o4 may also be empty: in this case we set w_ = +00, wy = 400. Let P be the
operator defined by
1
P=— A, A)dA .
27 R(X, A)dx, (56)

Y+
where v is a closed regular curve contained in p(A), surrounding o, oriented counter-
clockwise, with index 1 with respect to each point of oy, and with index 0 with respect
to each point of o_. P is called spectral projection relative to o..

Figure 5.2: the curves vy, v_.

Proposition 5.2.1 The following statements hold.
(i) P is a projection, that is P? = P.

(ii) For each t > 0 we have
1
AP = pett = / eMR(N, A)dA. (5.7)
2 )y,

Consequently, e (P(X)) C P(X), (I — P)(X)) c (I — P)(X).
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(iii)) P € L(X,D(A™)) for every n € N. Therefore, P(X) C D(A) and the operator
Alpx) : P(X) — P(X) is bounded.

(i) For every w € [0,wy ) there exists N, > 0 such that for every x € P(X) we have?)

letz| < Noe“t|z|, t<o. (5.8)

(v) For each w € [0,w_) there exists M, > 0 such that for every x € (I — P)(X) we
have

etz < M,e~t|z||, t>0. (5.9)

Proof. Proof of (i). Let v4, 7/, be regular curves contained in p(A) surrounding o, with
index 1 with respect to each point of o4, and such that v4 is contained in the bounded
connected component of C\ +/,.. By the resolvent identity we have

P2:<2m) / R{Adﬁw (A, A)dA

27m> [R(X, A) — R(&, A)J(§ — X) " d&dA

XY

(
(;my o [ i () e | -

The proof of (ii) is similar and it is left as an exercise.

Proof of (iii). Since the path 74 is bounded and A — R(A, A) is continuous with values
in £L(X,D(A)), then P € L(X,D(A)), and

AP = 2 [ AR, A)dr = = / AR(A, A)dA.
2m )y, T Jy,

Therefore, AP € L(X,D(A)) too. Moreover, if € D(A) then PAz = APx. By recur-
rence, P € L(X, D(A™)) for every n € N.

Proof of (iv). Since the part of A in P(X) is bounded and its spectrum is o4 (see Exercise
3, the restriction of ¢4 to P(X) may be analytically continued to (—oo,0), using formula
(5.7). See Proposition 1.2.2.

For w € [0,w; ), we choose 74 such that infye,, ReX = w. Then for each ¢t < 0 and
x € P(X) we have

/ MR, A)x d)\H < ¢ sup |eM] ]| = ce!|Jz],
Y+

27 ’ AEY+

with ¢ = (27) "My [sup{[|R(A, A)[| : A € 74}, [7+| = lenght of .

1For obvious notational reasons for each z € P(X) and t < 0 we write e‘*z instead of ! 1P(X) g,
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Proof of (v). For t small, say ¢t < 1, estimate (5.9) is a consequence of (1.15). For ¢ > 1
we write et4(I — P) as

eI —P) = = (/ —/ > MR\, A)d\ = 1/ eMR(N, A)d,
2mi \Jy oy 27 )y

where 7 is the curve used in the definition of ¢4 (see (1.10)), v~ = {A € C: X =
—w +ret™ r >0} is oriented as usual and n > 7/2. See Figure 5.2. The estimate is
obtained as in the proof of Proposition 5.1.1, and it is left as an exercise. 0

Corollary 5.2.2 Let x € X. Then
(i) We have

sup ||e'z|| < +o0 <= Pz =0.
>0

In this case, ||| decays exponentially to 0 as t — ~+oo.
(ii) For x € X, the backward Cauchy problem

{ V'(t) = Av(t), ¢t <0,

(5.10)
v(0) = =z,

has a bounded solution in (—oo,0] if and only if x € P(X). In this case, the bounded
solution is unique, it is given by v(t) = etAx, and it decays exponentially to 0 ast — —oo.

Proof. (i) Split every = € X as x = Pz + (I — P)z, so that et4z = A Px + !4 (I — P)z.
The norm of the second addendum decays exponentially to 0 as ¢ — +o0o. The norm
of the first one is unbounded if Pz # 0. Indeed, Pz = e *4e!4 Pz, so that ||Pz| <
||e_tAH£(p(X))HetAPx|| < Nye “e!4Pz| with w > 0, which implies that ||e/4Pz| >
e“t|| Pz||/N,,. Therefore t — e*4x is bounded in R, if and only if Pz = 0.

(ii) If z € P(X), the function t + €'z is a strict solution of the backward Cauchy
problem, and it decays exponentially as ¢ — —oo. Conversely, if a backward bounded
solution v does exist, then for a < ¢t < 0 we have

o(t) = eV (a) = DT — P)u(a) + e D4 Pu(a),

where e*"DA(T — P)v(a) = (I — P)u(t), e*"D4Py(a) = Pu(t). Since ||e*~DA(I — P)| <
Me~“(=9) letting a — —oo we get (I — P)v(t) = 0 for each ¢t < 0, so that v is a solution
to the backward problem in P(X), v(0) = z € P(X) and hence v(t) = e!4x. O

Note that problem (5.10) is ill posed in general. Changing t to —t, it is equivalent to a
forward Cauchy problem with A replaced by —A, and —A may have very bad properties.
If A is sectorial, —A is sectorial if and only if it is bounded (see Exercise 4, §1.3.5).

The subspaces (I — P)(X) and P(X) are often called the stable subspace and the
unstable subspace, respectively.

Example 5.2.3 Let us consider again the operator Ay : CZ(R) — Cp(R) studied in
Subsection 2.1.1. We have p(As) = C\ (—00,0], AR\, Aso)|| < (cosf/2)71, with § =
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arg A\. In this case w = s(Ax) = 0, and estimates (5.2) are worse than (1.14) for large ¢.
It is convenient to use (1.14), which gives

||| < My, |[tFAF etA=| < My, keN, t>0.

Therefore et4ug is bounded for every initial datum wug, and the k-th derivative with respect

to time, the 2k-th derivative with respect to x decay at least like t =%, as t — 400, in the
sup norm.

Example 5.2.4 Let us now consider the problem
ut(t, ) = ugz (t, ) + au(t,z), t>0, 0<az <1,
u(t,0) = u(t,1) =0, t >0, (5.11)
u(0, ) = ug(x), 0<z<1,

with o € R. Choose X = C([0,1]), A: D(A) = {f € C*([0,1]) : f(0) = f(1) =0} — X,
Au = u” 4+ au. Then the spectrum of A consists of the sequence of eigenvalues

Ay = —m*n? 4+, neN.

In particular, if o < 72 the spectrum is contained in the halfplane {\ € C : Re A < 0},
and by Proposition 5.1.1 the solution u(t,-) = e*4uq of (5.11) and all its derivatives decay
exponentially as t — 400, for any initial datum ug.

If a = 72, assumption (1.9) holds with w = 0. This is not immediate. A possible way
to show it is to study the explicit expression of R(\, A) (which coincides with R(\A — 72, B)
where B : D(A) — X, Bf = f”) near A\ = 0, see Example 2.1.2). Here we follow another
approach. We observe that the operator Asu = u” + 7?u with domain D(4s) = {u €
H?(0,1) : u(0) = u(1) = 0} is sectorial in L2(0,1) and e*42 coincides with e*4 on C([0, 1]).
Indeed, if f € C(]0,1]) any solution u € D(Ag) of Au — Asu = f actually belongs to
C?%(]0,1]), so that R(\,A4) = R(\, Az) in C([0,1]) for any A € p(As) = p(A). Since the
functions uy(r) = sin(kmx) are eigenfunctions of As with eigenvalue (—k? + 1)72 for any
k € N, then (see Exercise 3, §1.3.5) e'42uy, = e~ ** =Dty for any ¢ > 0.

If f € C([0,1]) € L?(0,1), we expand it in a sine series in L?(0, 1),

00 1
f= chuk, cp = 2/ f(@)ug(z)dz. (5.12)
k=1 0

To justify the expansion, it suffices to observe that (5.12) is the Fourier series of the
function f :[~1,1] — R which is the odd extension of f. Hence,

+00
12 1\-2
etAf:etAgf: E ce (k 1)71' tuk7 tZO,
k=1

yields
+00

(k2 — 2
e Flloe < 2[[flloo D e~ ® U™ ¢ > 0.
k=1

tA

which is bounded in [1,+0c). Since e/ is an analytic semigroup, then ||e*4|| is bounded

in [0,1].



5.2. Behavior of €' for a hyperbolic A 69

If o > 72, there are elements of the spectrum of A with positive real part. In the case
where o # n?n? for every n € N, assumption (5.3) is satisfied. Let m € N be such that
72m? < a < 7%(m + 1)2. By Corollary 5.2.2, the initial data ug such that the solution is
bounded are those which satisfy Pug = 0. The projection P may be written as

m
P=>) P, (5.13)
k=1

where P, = f|)\*)\k‘<5 R(\, A)d)\/(27i), and the numbers \;, = —72k% +a, k= 1,...,m,

are the eigenvalues of A with positive real part, € small. Let us show that

1
(Pef)(z) = QSin(kwx)/O sin(kmy) f(y)dy, = €[0,1]. (5.14)

For any A # A\, expand f € C([0,1]) as in (5.12). Using Exercise 3 in §1.3.5 we get

—+00
Cn

RNAf =R\ A)f=> ot
n=1 n

Hence .
P.f = / R(X\, A)f d\ = crug.
A=A |<e

21

Consequently, from (5.13) and (5.14) it follows that the solution of (5.11) is bounded in
[0, +00) if and only if

1
/ sin(kmy) uo(y)dy =0, k=1,...,m.
0

Exercises 5.2.5

1. Prove statement (ii) of Proposition 5.2.1 and complete the proof of statement (v).

2. Let A be a sectorial operator in X. Define the growth bound
wa =inf{y e R:3IM > 0 s.t. [[e¥] < Me, t > 0}.

Show that s(A) = wa.
[Hint: show that if Re A > wy then

is the inverse of \I — A].
3. Prove that the spectrum of the restrictions A, and A_ of A to P(X) and to (I —

P)(X) are, respectively, o, and o_.

[Hint: Prove that
1 R(&, A)
MAL) = — d
R(A, Ay) 2m'/7+ N_g 4
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if A ¢ o4 and ~, is suitably chosen, and that

_ 1 [ R(A)
ROA-) =35 | T2

if A\ ¢ o_ and 74 is suitably chosen.]

4. Let a, B € R, and let A be the realization of the second order derivative in C(]0, 1]),
with domain {f € C?([0,1]) : af(i) + B3f'(i) =0, i = 0,1}. Find s(A).

5. Let A satisfy (5.3), and let 7" > 0, f : [-T,0] — P(X) be a continuous function.
Prove that for every x € P(X) the backward problem

{ W(t) = Au(t) + f(t), —-T<t<0,
u(0) = z,

has a unique strict solution in the interval [—T', 0] with values in P(X), given by the
variation of constants formula

¢
u(t) = e —I—/ =941 (s)ds, —T <t <0.
0

Prove that for each w € [0,wy) we have

Jutoll < 81l + 2 sup (1701

-T<t<

6. (A generalization of Proposition 5.2.1). Let A be a sectorial operator such that
o0(A) = 01 U og, where o7 is compact, o3 is closed, and 01 N oy = &. Define @ by

1
Q=5 [ ROA)A
271 y

where v is any regular closed curve in p(A), around o7, with index 1 with respect to
each point in o; and with index 0 with respect to each point in .

Prove that @ is a projection, that the part A; of A in Q(X) is a bounded operator,
and that the group generated by A; in Q(X) may be expressed as

1
et = — / eMR(N, A)dA.
211 o

5.3 Bounded solutions of nonhomogeneous problems in un-
bounded intervals

In this section we consider nonhomogeneous Cauchy problems in halflines. We start with
u'(t) = Au(t) + f(t), t >0,
u(0) = wo,

(5.15)

where f : [0,+00) — X is a continuous function and ug € X. We assume throughout that
A is hyperbolic, i.e. (5.3) holds, and we define o_, o and w_, w; as in Section 5.2.
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Let P be the projection defined by (5.6). Fix once and for all a positive number w
such that
—wo < —w < w < wy,

and let M,,, N, be the constants given by Proposition 5.2.1(iv)(v).

Proposition 5.3.1 Let f € Cyp([0,+00); X), ug € X. Then the mild solution u of (5.15)
is bounded in [0,+00) with values in X if and only if

+oo
Pug = — / e AP f(s)ds. (5.16)
0
If (5.16) holds we have

t +o00o
u(t) = et (I — P)ug + / eU=DA(1 — P)f(s)ds — / e=DAPf(s)ds, t>0. (5.17)
0 t

Proof. For every t > 0 we have u(t) = (I — P)u(t) + Pu(t), where
t
(I — P)u(t) = A(I — P)ug + / =4 — P) f(s)ds,
0

and .
Pu(t) = etAPuo—F/ et=)APf(s)ds
0

+o0 +00
= e Puy+ (/ —/ > et=9)AP f(s)ds
0 t
+oo +oo
= 4 (Puo+/ e_SAPf(s)ds> —/ eU=DAP f(s)ds.
0

¢
For every t > 0 we have

t
I(I = Plu@®)] < Mue™ (I = P)uo| +/O Me~""*)ds sup ||(I - P)f(s)l|

0<s<t
1
< Mol =P)lI{ lluoll + =1 £lles ),

so that (I — P)u is bounded in [0, +00) with values in X. The integral f;roo e(=)APf(s)ds
is bounded too, and its norm does not exceed

x)w —s AL
N“/ ) ds sup [PFS)] = 2| Pl [1f]oe-
t s>0 w

Hence u is bounded if and only if ¢ — e*4 (Puo + f0+°° e_SAPf(s)ds) is bounded. On the

other hand y := Pug + f0+°° e *APf(s)ds is an element of P(X). By Corollary 5.2.2, ey
is bounded if and only if y = 0, namely (5.16) holds. In this case, u is given by (5.17). O

Now we consider a backward problem,
V'(t) = Av(t) + g(t), t <0,
v(0) = vy,

(5.18)
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where ¢ : (—00,0] — X is a bounded and continuous function, and vy € X.

Problem (5.18) is in general ill posed, and to find a solution we will have to assume
rather restrictive conditions on the data. On the other hand, such conditions will ensure
nice regularity properties of the solutions.

Note that the variation of constants formula (4.4) is well defined only for forward
problems. Therefore, we have to make precise the concept of mild solution. A function
v € C((—00,0]; X) is said to be a mild solution of (5.18) in (—oc, 0] if v(0) = vy and for
each a < 0 we have

t
o(t) = e~V (a) +/ et=9)4g(s)ds, a <t<0. (5.19)

In other words, v is a mild solution of (5.18) if and only if for every a < 0, setting y = v(a),
v is a mild solution of the problem

V(t) = Av(t) + g(t), a<t <0,

{ (5.20)
v(a) =y,

and moreover v(0) = vy.

Proposition 5.3.2 Let g € Cy((—00,0]; X), vog € X. Then problem (5.18) has a mild
solution v € Cp((—00,0]; X) if and only if

0
(I — Py = / e A (I — P)g(s)ds. (5.21)
If (5.21) holds, the bounded mild solution is unique and it is given by
t t
v(t) = e Pug —l—/ et=)APg(s)ds +/ et =)A= P)g(s)ds, t<O0. (5.22)
0 —00
Proof. Assume that (5.18) has a bounded mild solution v. Then for every a < 0 and for
every t € [a,0] we have v(t) = (I — P)v(t) + Pv(t), where

(I-Pwt) = 94— Pla)+ / te(t_s)A(I — P)g(s)ds
= DA~ Pyo(a) + ( | -/ ) =4I — P)g(s)ds

= eltma)A ((I — P)v(a) — / ’ ele=9) A — P)g(s)ds> +v1(t)

= =DA(] = P)u(a) — vi(a)) + vi(t).
The function ‘
w) = [ I Pigs)ds, e <0,

is bounded in (—o0, 0]. Indeed,

t
—w(t—s M"J
o @)1} < Mo sup [[(T = P)Q(S)II/ e ™ds < —2||T = P |lgl|oc- (5.23)
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Moreover v is bounded by assumption, hence sup,< ||(I — P)v(a)|| < +oco. Letting a —
—oo and using estimate (5.9) we get

(I — P)u(t) =wvi(t), t<0.

Taking ¢ = 0, we get (5.21). On the other hand, Pv is a mild (in fact, strict) solution to
w'(t) = Aw(t) + Pg(t), and since Pv(0) = Puvg, by Exercise 5 in §5.2.5, we have for ¢ < 0,

t
Pou(t) = et Pog + / e(t_s)APg(s)ds.
0
Summing up, v is given by (5.22).

Conversely, assume that (5.21) holds, and define the function v(t) := vy (t) + va(t),
where v; is defined above and v (t) := et4 Pvg + fot et=9)4Pg(s)ds. Then v; is bounded
by estimate (5.23), and v9 is bounded by Exercise 5 in §5.2.5 again, so that v is bounded.

One checks easily that v is a mild solution of (5.20) for every a < 0, and, since (5.21)
holds, we have v(0) = Pvy + fi)oo e I — P)g(s)ds = Pvy+ (I — P)vg = vg. Then v is
a bounded mild solution to (5.18). O

5.4 Solutions with exponential growth and exponential de-
cay
We now replace assumption (5.3) by
g(A)N{AeC: RedA=w} =2, (5.24)

for some w € R. Note that (5.24) is satisfied by every w > s(A). If I is any (unbounded)
interval and w € R we set

Co(I; X) :={f : I — X continuous, | f|c, :=sup e f(t)| < +oc}.
tel
Let f € C,((0,+00); X), g € Cu((—00,0); X). Since efA=wI) = =wtet4 one checks

easily that problems (5.15) and (5.18) have mild solutions u € C,((0,400);X), v €
Cy((—00,0]; X) if and only if the problems

{ ' (t) = (A—wla(t) + e “f(t), t>0,
(5.25)
u(0) = uo,
{ U'(t) = (A—wl)o(t) + e “g(t), t<0,
(5.26)
v(0) = vo,

have mild solutions @ € Cy((0,+00); X), o € Cp((—00,0]; X), and in this case we have
u(t) = e*ta(t), v(t) = e“to(t). On the other hand, the operator A = A —wl : D(A) — X
is sectorial and hyperbolic, hence all the results of the previous section may be applied to
problems (5.25) and (5.26). Note that such results involve the spectral projection relative
to o4 (A), i.e. the operator

1 1

R(ANA—wl)d\ = / R(z,A)dz := P, (5.27)
T+tw

2T vy 21
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where the path v, 4+ w surrounds ¢4 := {\ € 0(A) : ReA > w} and is contained in the
halfplane {Re A > w}. Set moreover 0¥ :={X € 6(A): ReA < w}. Note that if w > s(A)
then P, = 0.

Applying the results of Propositions 5.3.1 and 5.3.2 we get the following theorem.

Theorem 5.4.1 Under assumption (5.24) let P, be defined by (5.27). The following
statements hold:

(1) If f € Cyu((0,+00); X) and ug € X, the mild solution u of problem (5.15) belongs to
Cu((0,400); X) if and only if

+00
P, ug = —/ e_S(A_‘”I)e_wstf(s)ds,
0

that is (2) N
P,ug = —/ e*SAow(s)ds.
0

In this case u is given by (5.17), and there exists C; = C1(w) such that

sup [le”“ u(t)]| < Cr([Juoll + sup [le™" f(#)]])-
£>0 >0

(ii) If g € Cpy((—00,0); X) and vy € X, problem (5.18) has a mild solution v € C,,((—o0,
0); X) if and only if (5.21) holds. In this case the solution is unique in Cy,((—o0, 0]; X)
and it is given by (5.22). There is Cy = Co(w) such that

sup [le”“"v(t)]| < Ca([lvoll + sup [le™"g(£)])).
t<0 t<0

Remark 5.4.2 The definition 5.3 of a hyperbolic operator requires that X be a complex
Banach space, and the proofs of the properties of P, Pe!” etc., rely on properties of
Banach space valued holomorphic functions.

If X is a real Banach space, we have to use the complexification of X as in Remark
1.3.17. If A: D(A) — X is a linear operator such that the complexification A is sectorial
in X, the projection P maps X into itself. To prove this claim, it is convenient to choose
as v4 a circumference C' = {w' + re' : n € [0,27]} with centre ' on the real axis. For
each x € X we have

1 2

Pr = — re"R(w' + re™, A)x dn
2 0

™
= QL (e""R(W' + e A) — e R(wW +re” ™, A)) zdp,
T Jo
and the imaginary part of the function in the integral is zero. Therefore, P(X) C X, and
consequently (I — P)(X) C X. Thus, the results of the last two sections remain true even
if X is a real Banach space.

2Note that since 0% is bounded, et P, is well defined also for ¢ < 0, and the results of Proposition 5.2.1
hold, with obvious modifications.
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Example 5.4.3 Consider the nonhomogeneous heat equation
ug(t, ) = ugy(t,x) + f(t,x), t>0, 0<z <1,
u(t,0) = u(t,1) =0, t >0, (5.28)
u(0,x) = up(z), 0<z<1,

where f : [0,400) x [0, 1] — R is continuous, g is continuous and vanishes at z = 0, z = 1.
We choose as usual X = C([0,1]), A : D(A) = {u € C?([0,1]) : u(0) = u(1) = 0} — X,
Au = u". Since s(A) = —n2, then A is hyperbolic, and in this case the projection P defined
in (5.6) vanishes. Proposition 5.3.1 implies that for every bounded and continuous f and
for every ug € C([0,1]) such that up(0) = ug(1) = 0, the solution of (5.28) is bounded.
Note that up(0) = up(1) = 0 is a compatibility condition (i.e. a necessary condition) for
the solution of problem (5.28) to be continuous up to ¢t = 0 and to satisfy u(0, ) = uo.

As far as exponentially decaying solutions are concerned, we use Theorem 5.4.1(i).
Fixed w # 72n? for each n € N, f continuous and such that

sup e f(t,7)| < 4o
>0, 0<z<1

the solution u of (5.28) satisfies

sup  |e¥tu(t, z)| < +oo
>0, 0<z<1

if and only if (5.16) holds. This is equivalent to (see Example 5.2.4)

1 +o00 1
/ uo(x) sin(krz) de = —/ ekQﬂQS/ f(s,x)sin(knrx) dx ds,
0 0 0

for every natural number k such that 72k? < w. (We remark that since Asin(kmz) =
—k2n?sin(krz) we have et sin(krz) = e~ % sin(krz), for every ¢ € R).

Let us now consider the backward problem
ve(t,x) = vge(t, ) + g(t,x), t<0, 0<x<1,
v(t,0) =v(t,1) =0, t <0, (5.29)
v(0,z) = vo(x), 0<z<I1,
to which we apply Proposition 5.3.2. Since P =0, if g : (—00,0] x [0,1] — R is bounded

and continuous, there is only a final datum vy such that the solution is bounded, and it is
given by (see formula (5.21))

By Theorem 5.4.1(i), a similar conclusion holds if g is continuous and it decays exponen-
tially,
sup e “g(t,z)| < +oo
<0,0<z<1

with w > 0.
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Exercises 5.4.4

1. Let A be a hyperbolic sectorial operator. Using Propositions 5.3.1 and 5.3.2, prove
that for every h € Cp(R; X) the problem

Z(t)=Az(t) + h(t), teR, (5.30)

has a unique mild solution z € Cy(R; X), given by

t 00
2(t) = / =4I — P)h(s)ds — / e APh(s)ds, t€R.
—00 t

(The definition of a mild solution of (5.30) is like the definition of a mild solution to
(5.18)). Prove that
(i) if h is constant, then z is constant;
(ii) if limy—yoo A(t) = hoo (respectively, lim;,_ oo h(t) = h_o) then
400 0
lim z(t) :/ eI — P)hoods —/ e*A Phaods
0

t——+o0 oo

(respectively, the same with +o0 replaced by —o0);
(iii) if h is T-periodic, then z is T-periodic.
2. Prove that the spectrum of the realization of the Laplacian in Cy,(R"Y) and in LP(RY)
(1 <p<+400)is (—o0,0].
[Hint: To prove that A < 0 belongs to o(A), use or approximate the functions
flz1,...,zN) = ei\/j“"“"l].

3. Let © be a bounded open set with a boundary of class C2. Let moreover

D(A;) = {ue m W2P(Q) : Au € C(Q), u=0on OQ},
1<p<+o0
— Ou
g 2’p M _— =
D(As) {ue 1<Q+OOW () : Aue C(@), 5 =0on o0}

and A;u = Au for any u € D(4;), i =1,2.
Show that A; and Az have compact resolvent and that s(A;) < 0 and s(Ag2) = 0.
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Nonlinear problems

6.1 Nonlinearities defined in X

Consider the initial value problem

{ u'(t) = Au(t) + F(t,u(t)), t >0,
(6.1)

u(0) = uy,

where A : D(A) C X — X is a sectorial operator and F : [0,7] x X — X. Throughout
this section we shall assume that F' is continuous, and that for every R > 0 thereis L > 0
such that

|E(t,z) = F(t,y)| < Llz —yl, t€[0,T], x,y € B(0,R). (6.2)

This means that F' is Lipschitz continuous with respect to x on any bounded subset of X,
with Lipschitz constant independent of ¢.

As in the case of linear problems, we say that a function u defined in an interval
I =[0,7) or I = [0,7], with 7 < T, is a strict solution of problem (6.1) in I if it is
continuous with values in D(A) and differentiable with values in X in the interval I, and
it satisfies (6.1). We say that it is a classical solution if it is continuous with values in
D(A) and differentiable with values in X in the interval I \ {0}, it is continuous in I with
values in X, and it satisfies (6.1). We say that it is a mild solution if it is continuous with
values in X in I \ {0} and it satisfies

t
u(t) = e"ug +/ e=DAF (s, u(s))ds, tel. (6.3)
0

By Proposition 4.1.2 every strict or classical solution satisfies (6.3).
For notational convenience, throughout this section we set

Mo = sup [le“z(x). (6.4)
0<t<T

6.1.1 Local existence, uniqueness, regularity

It is natural to solve (6.3) using a fixed point theorem to find a mild solution, and then
to show that, under appropriate assumptions, the mild solution is classical or strict.

Theorem 6.1.1 The following statements hold.

77
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(a) If u,v € Cy((0,al; X) are mild solutions for some a € (0,T], then u = v.

(b) For every u € X there exist v, 6 > 0, K > 0 such that for ||ugp — @l < r problem
(6.1) has a mild solution u = u(-;up) € Cp((0,0]; X). The function u belongs to
C([0,0]; X) if and only if uy € D(A).

Moreover for every ug, uy € B(u,r) we have

lu(t;uo) — u(t;ur)|| < K|lug —ur], 0<t<4. (6.5)

Proof. Proof of (a). Let u,v € Cp((0,al; X) be mild solutions to (6.1) and set w = v — u.
By (6.3), the function w satisfies

w(t) = /0 =4 (P(s, v(s)) — F(s,uls))) ds, 0<t<a.

Using (6.2) with R = max{supg.,<, [[u(t)[, supg;<, [[v(t)||} We see that

|m@|SM@Anw$M&

The Gronwall lemma (see Exercise 3 in §1.2.4) implies that w = 0 in [0, a.

Proof of (b). Fix R > 0 such that R > 8My||al|, so that if |jug — @l < r = R/(8Mp)
we have

sup_[letuo| < R/4.
0<t<T

Here M is given by (6.4). Moreover, let L > 0 be such that
|E(t,v) — F(t,w)|| < Lljv —wl|, 0<t<T, v,wée B(0,R).
We look for a mild solution belonging to the metric space
Y = {u € Cy((0,6]; X) : [Ju(®)|| < R Vt € (0,6]},

where § € (0, 7] has to be chosen properly. Y is the closed ball with centre at 0 and radius
R in the space Cy((0,d]; X), and for every v € Y the function ¢ — F(t,v(t)) belongs to
Cy((0,6]; X). We define the operator I' in Y, by means of

L(v)(t) = eug + /Ot eU=DAF (s, v(s))ds, 0<t<Sé. (6.6)

Clearly, a function v € Y is a mild solution of (6.1) in [0, d] if and only if it is a fixed point
of T'.

We shall show that I' is a contraction and maps Y into itself provided that ¢ is suffi-
ciently small.

Let vy, v2 € Y. We have

IN

SMol|F'(+,v1(-)) — F (-5 v2(-)) loy (0,60;)
< 0MoLllvr — valle,((0.6),%)-

[T (1) = T(v2) ey (0.00:) 67)

N
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Therefore, if
§ < g = (2MyL)™ L,

" is a contraction with constant 1/2 in Y. Moreover if § < §g, for every v € Y we have

IT@leyoax) < IT@) =TOleyax) + ITO) e
< Rf2+lletulleyosrx) + MOIFC Olleyosrx)  (68)
< R/2+4 R/4+ Myd||F(-,0)lc,(0.5:)-

Therefore if § < §g is such that
Mod[[F (-, 0)[lcy(0.81,x) < /4,

then I maps Y into itself, so that it has a unique fixed point in Y.

Concerning the continuity of u up to t = 0, we remark that the function ¢ — u(t)—e4ug
belongs to C([0,d]; X), whereas by Proposition 1.3.6(i) ¢ — e*4ug belongs to C([0,d]; X)
if and only if ug € D(A). Therefore, u € C([0,0]; X) if and only if ugp € D(A).

Let us prove the statement about the dependence on the initial data. Let ug, u1 belong
to B(w,r). Since I is a contraction with constant 1/2 in Y and both u(-; ug), u(-; u;) belong

to Y, we have

u(3u0) — (5 un) oy 0.5 < 2lle? (uo — u)lloy(0.8.3) < 2Molluo — ],

so that (6.5) holds, with K = 2M,. O

6.1.2 The maximally defined solution

Now we can construct a maximally defined solution as follows. Set
7(up) = sup{a > 0 : problem (6.1) has a mild solution u, in [0, a]}
u(t) = uq(t), ift <a.

Recalling Theorem 6.1.1(a), u is well defined in the interval
I(up) := U{[0, a] : problem (6.1) has a mild solution u, in [0, a|},

and we have 7(ug) = sup I (up).
Let us now prove results concerning regularity and existence in the large of the solution.

Proposition 6.1.2 Assume that there is 6 € (0,1) such that for every R > 0 we have
|F(t,z) — F(s,z)|| <C(R)(t—s)?, 0<s<t<T, |z| <R. (6.9)

Then, for every ug € X, u € C%([e, 7(up) — €]; D(A)) N CYH0([e, 7(ug) — €]; X) and v’ €
B([e, m(ug) — €]; Da(0,00)) for every e € (0,7(ug)/2). Moreover the following statements
hold.

(i) If up € D(A) then u is a classical solution of (6.1).

(ii) If ugp € D(A) and Aug + F(0,ug) € D(A) then u is a strict solution of (6.1).



80 Chapter 6

Proof. Let a < 7(up) and 0 < £ < a. Since t — F(t,u(t)) belongs to Cy((0, a]; X ), Propo-
sition 4.1.5 implies that the function v(t) := fg e=9)AF (5, u(s))ds belongs to C*([0, a]; X).
Moreover, t — e*4ug belongs to C*([e,a]; X). Summing up, we find that u belongs to
C?%[e,a); X). Assumptions (6.2) and (6.9) imply that the function ¢ +— F(¢,u(t)) belongs
to C%([e, a]; X). Since u satisfies
t
u(t) = e y(e) +/ et =)AF (s, u(s))ds, € <t<a, (6.10)
3
we may apply Theorem 4.1.7 in the interval [e,a] (see Remark 4.1.12), and we get u €
C%([2¢,a]; D(A)) N C9([2¢,al]; X) for each ¢ € (0,a/2), and

u'(t) = Au(t) + F(t,u(t)), e <t<a.

Exercise 2 in §4.1.13 implies that «’ is bounded with values in D4(6,00) in [2¢,a]. Since
a and ¢ are arbitrary, then u € C%([e, 7(ug) — €]; D(A)) N C**([e, 7(ug) — €]; X) for each
e € (0,7(ug)/2). If ug € D(A), then t — e!4uq is continuous up to 0, and statement (i)
follows.

Let us prove (ii). By Proposition 4.1.5, we already know that the function v defined
above is #-Holder continuous up to ¢t = 0 with values in X. Since ug € D(A) C D4 (0, 00),
then the function ¢ — e*4uq is 6-Holder continuous up to ¢ = 0, too. Therefore u is
f-Holder continuous up to ¢ = 0 with values in X, so that ¢t — F(t,u(t)) is 6-Holder
continuous in [0, a] with values in X. Statement (ii) follows now from Theorem 4.1.7(ii).
U

Proposition 6.1.3 Let ug be such that I(ug) # [0,T]. Then t — ||u(t)| is unbounded in
I(UO) .

Proof. Assume by contradiction that u is bounded in I(ug) and set 7 = 7(ug). Then
t — F(t,u(t;up)) is bounded and continuous with values in X in the interval (0, 7). Since
u satisfies the variation of constants formula (6.3), it may be continuously extended to
t = 7, in such a way that the extension is Holder continuous in every interval [e, 7], with
0 < e < 7. Indeed, t — e'4ug is well defined and analytic in the whole halfline (0, 4+00),
and u — ey belongs to C*([0,7]; X) for each o € (0,1) by Proposition 4.1.5.

By Theorem 6.1.1, the problem

V() = Av(t) + F(t,o(t), t>7, o(r)=u(r),

has a unique mild solution v € C([r,7 + d]; X) for some 6 > 0. Note that v is continuous
up to t = 7 because u(r) € D(A) (why? See Exercise 6, §6.1.5, for a related stronger
statement).

The function w defined by w(t) = u(t) for 0 <t < 7, and w(t) = v(t) for 7 <t < 7494,
is a mild solution of (6.1) in [0,7 + ¢]. See Exercise 2 in §6.1.5. This is in contradiction
with the definition of 7. Therefore, v cannot be bounded. O

Note that the proof of proposition 6.1.3 shows also that if I(ug) # [0, 7] then 7(ug) =
sup I (uo) ¢ I (uo).

The result of Proposition 6.1.3 is used to prove existence in the large when we have an
a priori estimate on the norm of u(t). Such a priori estimate is easily available for each
ug if f does not grow more than linearly as ||z|| — 4+o00. Note that Proposition 6.1.3 and
next Proposition 6.1.4 are quite similar to the case of ordinary differential equations.
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Proposition 6.1.4 Assume that there is C' > 0 such that

|E(t,x)|]| < C(1+|z||) z€ X, tel0,T]. (6.11)
Let u : I(up) — X be the mild solution to (6.1). Then u is bounded in I(ug) with values
in X. Consequently, I(ug)=[0,T].

Proof. For each t € I(up) we have

lu(®)]l < Mo[uol| +MOC/O (1 + lJu(s)[Dds = Molluol| + MoC <T+/O HU(S)HdS>-

Applying the Gronwall lemma to the real-valued function ¢ — |lu(t)|| we get
lu()|| < (Molluo|| + MoCT)e™ ", ¢ € I(uo),
and the statement follows. O

We remark that (6.11) is satisfied if F' is globally Lipschitz continuous with respect to
x, with Lipschitz constant independent of ¢.

Exercises 6.1.5
1. Let F':[0,T] x X — X be a continuous function. Prove that
(a) if F satisfies (6.2) and u € Cy((0,6]; X) with 0 < § < T, then the composition
@(t) := F(t,u(t)) belongs to Cy((0,d]; X),
(b) if F satisfies (6.2) and (6.9), and u € C%([a,b]; X) with 0 < a < b < T,
0 < 0 < 1, then the composition ¢(t) := F(t,u(t)) belongs to C%([a, b]; X).

These properties have been used in the proofs of Theorem 6.1.1 and of Proposition
6.1.2.

2. Prove that if u is a mild solution to (6.1) in an interval [0, o] and v is a mild solution
to
V'(t) = Av(t) + F(t,o(t), to <t<ti,
v

(o) = u(to),
then the function z defined by z(t) = w(t) for 0 < ¢t < tg, and z(¢) = v(t) for
to <t < tp,is a mild solution to (6.1) in the interval [0, ¢;].

3. Under the assumptions of Theorem 6.1.1, for tg € (0,T") let u(-; to, x) : [to, T(to,z)) —
X be the maximally defined solution to problem v’ = Au+ F(t,u), t > tg, u(ty) = x.

(a) Prove that for each a € (0,7(0,z)) we have 7(a,u(a;0,z)) = 7(0,z) and for
t € [a,7(0;2)) we have u(t;a,u(a;0,z)) = u(t; 0, x).

(b) Prove that if F' does not depend on ¢, then 7(0,u(a;0,2)) = 7(0,2) — a, and for
t €[0,7(0,2) — a) we have u(t;0,u(a;0,z)) = u(a +¢;0, ).

4. Under the assumptions of Theorem 6.1.1 and with the notation of Exercise 3, prove
that for each up and for each b € (0,7(0,ug)) there are r > 0, K > 0 such that if
|lup — u1]] < then 7(0,u1) > b and [Ju(t;0,up) — u(t; 0,u1)|| < K||lug — up]| for each
t €[0,0].

[Hint: cover the orbit {u(t;0,up) : 0 <t < b} with a finite number of balls as in the
statement of Theorem 6.1.1].



82 Chapter 6

5. (A wvariant of Theorem 6.1.1) Let O be a nonempty open set in X, and let F :
[0,7] x O — X be a continuous function which is locally Lipschitz continuous in z,
uniformly with respect to time, i.e. for each zg € O there are r > 0, L > 0 such
that [|F(t,2) — F(t,y)|| < L||x — y|| for each z, y € B(zo,r). Prove that for every
u € O there exist s, § > 0, K > 0 such that for every ug € D(A) N B(w,s) the
problem (6.1) has a unique mild solution v = u(-;up) € C([0,4]; X). Moreover for

ug, u1 € D(A) N B(w, s) we have

[u(t; uo) — u(t; ur)|| < Kllup —ur]l, 0 <2<
[Hint: follow the proof of Theorem 6.1.1, with Y = B(0, p) C C([0, ¢]; X), but now
p has to be small].

6. Prove that if F' satisfies (6.2), then for every ug € X, the mild solution u of problem
(6.1) is bounded with values in D4(f,00) in the interval [e,7(ug) — €], for each
B €(0,1) and ¢ € (0,7(ug)/2).

6.2 Reaction—diffusion equations and systems

Let us consider a differential system in [0,7] x R™. Let d,...,d; > 0 and let D be the
diagonal matrix D = diag(ds,...,d,,). Consider the problem

ut(t,x) = DAu(t,x) + f(t,z,u(t,z)), t>0, xeR™ (6.12)
U(Oa‘r) = uO(x)v r € R, ‘
where u = (uq, ..., uy) is unknown, and the regular function f : [0, 7] x R" x R™ — R™,

the bounded and continuous ug : R” — R™ are given.

This type of problems are often encountered as mathematical models in chemistry and
in biology. The part DAwu in the system is called the diffusion part, the numbers d; are
called the diffusion coefficients, f(t,z,u) is called the reaction part. Detailed treatments
of these problems may be found in the books of Rothe [14], Smoller [15], Pao [12].

Set

X = Gp(R™;R™).

The linear operator A defined by
D(A) = {u e WZP(R™R™), p>1: u, Aue X},

C
A:D(A) - X, Au= DAu,
is sectorial in X, see Section 2.3 and Exercise 1 in §1.3.18, and
D(A) = BUC(R™;R™).

We assume that f is continuous, and that there exists 6 € (0,1) such that for every R > 0
there is K = K(R) > 0 such that

|f(t,x,u) — f(s,2,0)|pm < K((t—9) + |u—vlgm), (6.13)
for0<s<t<T,zeR" u,velR™ |ugm,|vgm < R. Moreover we assume that

sup  f(t,z,0) < +oo, (6.14)
0<t<T,z€R™
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so that for every ¢ € C,(R"™;R™) and ¢ € [0, T] the composition f(t, -, p(-)) is in Cp(R™; R™).
Then we may apply the general results of Section 6.1 to get a regular solution of problem
(6.12).

Proposition 6.2.1 Under the above assumptions, for each ug € Cp(R™,R™) there are
a mazximal interval I(ug) and a unique solution u to (6.12) in I(ug) x R™, such that
u € C(I(ug) x R™;R™), uy, Diu, and Au are bounded and continuous in the interval
[e,T(ug) — €] for each ¢ € (0,7(up)/2), where T(ug) = sup I(up).

Proof. Setting
F@t,o)(x) = f(t,z,0(x), 0<t<T, zeR" peX,

the function F': [0,7] x X — X is continuous, and it satisfies (6.2) and (6.9). Indeed, fix
any ¢1, g2 € B(0,R) C X. Then, for all z € R", |p1(z)|rm < R, |p2(z)|rm < R, so that
for 0 < s <t <T we get from (6.13)

|F(t,01)(2) = F(s, 02)(2)] < K((t = 5)° + |1(2) — pa(@)|rm),

which implies
1F(t, 1) = Fs,02)[lo0 < K((t = 5)" + 01 = @2llo0).

The local existence and uniqueness Theorem 6.1.1 implies that there exists a unique mild
solution t — u(t) € Cy((0,9]; X) of (6.1), that may be extended to a maximal time interval
I(UQ)

By Proposition 6.1.2, u, v/, and Au are continuous in (0,7(ug)) with values in X
(in fact, they are Holder continuous in each compact subinterval). Then the function
(t,x) — u(t,x) := u(t)(x) is bounded and continuous in [0,a] x R™ for each a € I(uyp)

why is it continuous up to t = 07 Compare with Section 2.3, part (a), and Proposition
4.1.5), and it is continuously differentiable with respect to ¢ in I(up) \ {0} x R™.

Notice D(A) is continuously embedded in C}(R™;R™). This may be seen as a con-
sequence of (3.10), or it may be proved directly using estimate (3.12)(a) and then the
representation formula (1.22) for the resolvent. In any case, it follows that all the first
order space derivatives D;u are continuous in (0, 7(ug)) X R™ too. The second order space
derivatives Djju(t,-) are in L} (R™R™), Au is continuous in I(ug) x R", and u satisfies
(6.12). O

Concerning existence in the large, Proposition 6.1.3 implies that if u is bounded in
I(up) x R™ then I(up) = [0,T].
A sufficient condition for u to be bounded is given by Proposition 6.1.4:

|f(t,z,u)|lgm < C(1+ |ulgm), t€[0,T], x€R", ueR™ (6.15)
Indeed, in this case the nonlinear function
Fi0T|xX =X, F(te)(x)= [z o)
satisfies (6.11), for

IF(t, @)oo = sup |f(t, 2z, () |rm < C(1+ [l¢lloo)-

Estimate (6.15) is satisfied if (6.13) holds with a constant K independent of R.
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Similar results hold for reaction — diffusion systems in [0, 7] x , where € is a bounded
open set in R” with C? boundary.
The simplest case is a single equation,

w(t,z) = Au(t,z) + f(t,x,ult,x)), t>0, z€Q,
. (6.16)
u(0,x) = ug(z), x €,
with Dirichlet boundary condition,
u(t,z) =0, t >0, z €09, (6.17)
or Neumann boundary condition,
Ju(t
whT) o 0 2o (6.18)
on

Here f: [0,T] x QxR — R is a regular function satisfying (6.13); ug : © — R is continuous
and satisfies the compatibility condition ug(z) = 0 for z € 9 in the case of the Dirichlet
boundary condition. Such a condition is necessary to have u continuous up to ¢t = 0.
Again, we set our problem in the space X = C(f). Since the realization of the
Laplacian in C(£2) with homogeneous Dirichlet conditions is a sectorial operator (see
Section 2.4), then problem (6.16) has a unique classical solution in a maximal time interval.

Arguing as before, we see that if there is C' > 0 such that
Fltew)| <CA+lul) te0,T], € ueR

then for each initial datum wug the solution exists globally. But this assumption is rather
restrictive, and it is not satisfied in many mathematical models. In the next subsection
we shall see a more general assumption that yields existence in the large.

In this section, up to now we have chosen to work with real-valued functions just
because in most mathematical models the unknown w is real valued. But we could replace
Cp(R™,R™) and C(Q;R) by Cp(R™; C™) and C(Q;C) as well without any modification in
the proofs, getting the same results in the case of complex-valued data. On the contrary,
the results of the next subsection only hold for real-valued functions.

6.2.1 The maximum principle

Using the well known properties of the first and second order derivatives of real-valued
functions at relative maximum or minimum points it is possible to find estimates on the
solutions to several first or second order partial differential equations. Such techniques are
called mazimum principles.

To begin with, we give a sufficient condition for the solution of (6.16)—(6.17) or of
(6.16)—(6.18) to be bounded (and hence, to exist in the large).

Proposition 6.2.2 Let Q be a bounded open set in RN with C? boundary, and let f :
[0,T] x 2 x R — R be a continuous function satisfying

’f(t7x7u) - f(s,x,v)\ < K((t - 8)9 + ’u_UD7

for any 0 < s <t <T, anyx € Q, any u,v € R such that |u|, [v] < R and for some
positive constant K = K(R). Assume moreover that

uwf(t,z,u) < C(1+u?), 0<t<T,z€Q, uek, (6.19)
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for some C > 0. Then for each initial datum wg the solution to (6.16)—(6.17) or to (6.16)—
(6.18) satisfies
sup fu(t, )] < +oo.
tel(uog),z€Q
If C =0 in (6.19), then

sup  |u(t, )| = ||uolloo-
tel(uo), z€Q

Proof. Fix A > C, a < 7(up) and set
v(t,x) = u(t,z)e ™, 0<t<a, zc
The function v satisfies
vi(t,z) = Av(t,z) + f(t,z, Mot z)e ™ = M(t,z), 0<t<a, zecQ, (6.20)

and it satisfies the same boundary condition as u, and v(0, ) = ug. Since v is continuous,
there exists (fo, zo) such that v(to, z0) = %||v[[¢((0,4jxq)- (to, %0) is either a point of positive
maximum or of negative minimum for v. Assume for instance that (o, xo) is a maximum
point. If tg = 0 we have obviously [|v||cc < |Juolleo. If to > 0 and zp € Q we rewrite
(6.20) at (to,zo) and we multiply both sides by v(tp, z¢) = ||v||co. Since vi(to,xo) > 0 and
Awv(to, xo) < 0, we get

Aoll3s < CL+ [eX0u(to, o)) Y0 = C(1+ e20v]|3,)e M,

so that
ol < <
= AN=C
Let us consider the case tg > 0, xg € 0. If u satisfies the Dirichlet boundary condition,
then v(tg, xzg) = 0. If u satisfies the Neumann boundary condition, we have D;v(tg, xg) =0
for each i, Av(tg, o) < 0 (see Exercise 2, §6.2.6), and we go on as in the case zg € €.
If (to,x0) is a minimum point the proof is similar. Therefore we have

[0jco < max{{luolloc, vVC/(A = C)} (6.21)

so that

lulloe < X max{]|uofloc, vVO/(A = C)}

and the first statement follows.
If C = 0 we obtain |[u]e < e*||ug|loo for every A > 0 and letting A — 0 the second
statement follows. O

A similar result holds if € is replaced by the whole space R, but the proof has to be
adapted to the noncompact domain case. Indeed, if a function v is bounded and continuous
in [0,a] x RY, it may have no maximum or minimum points, in general. We state this
result, without a proof, in the following proposition.

Proposition 6.2.3 Let f:[0,T] x RN x R — R be a continuous function satisfying the
assumptions of Proposition 6.2.2 with Q replaced by RY. Consider problem (6.12) with
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m =1, dy = 1. Then for each bounded and continuous initial datum ug the solution to
(6.12) satisfies
sup [u(t, z)| < +oo,
tel(ug), zeRN

and therefore it exists in the large. If C =0 in (6.19), then

sup |u(t, )| = [luo||co-
tel(up), z€RN

Let us remark that (6.15) is a growth condition at infinity, while (6.19) is an algebraic
condition and it is not a growth condition. For instance, it is satisfied by f(t,z,u) =
Au — u?R*! for each k € N and A € R. The sign — is important: for instance, in the
problem

ug = Au+ [ul'te, >0, z€Q,

@ (tvl’) =0, t>0, xedf, (6.22)
on
U(O’ Z‘) =u, T € ﬁ,

with € > 0 and constant initial datum w, the solution is independent of x and it coincides
with the solution to the ordinary differential equation

{ g(t) =g+, t>0,
£(0) =1,
which blows up in a finite time if @ > 0.

In the proof of Propositions 6.2.2 and 6.2.3 we used a property of the functions ¢ €
D(A), where A is either the realization of the Laplacian in Cy(RY) or the realization of
the Laplacian with Dirichlet or Neumann boundary condition in C(Q): if z € Q (and also
if z € 99 in the case of Neumann boundary conditions) is a relative maximum point for
¢, then Ap(x) < 0. While this is obvious if ¢ € C?(Q), it has to be proved if ¢ is not

twice differentiable pointwise. We provide a proof only in the case of interior points.

Lemma 6.2.4 Let xg € RY, r > 0, and let ¢ : B(zo,7) — R be a continuous function.
Assume that o € W2P(B(zq,7)) for each p € [1,+00), that Ay is continuous, and that
xo s a mazimum (respectively, minimum) point for . Then Ap(xg) < 0 (respectively,
Ap(zg) >0).

Proof. Assume that zy is a maximum point. Possibly replacing ¢ by ¢ + ¢, we may
assume o(x) > 0 for |z — 29| < r. Let 6 : RY — R be a smooth function with support
contained in B(z,r), such that 0 < #(x) < 1 for each z, 6(xo) > 0(z) for x # xg, and
AfO(xg) = 0. Define

. )_{ o(x)0(x), x € B(xzg,r),
e 0, z € RN\ B(xg,7).

Then @(z) is the maximum of ¢, and it is attained only at z = x. Moreover, ¢ and Ap
are continuous in the whole RY and vanish outside B(zg,), so that there is a sequence
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(Pn)nen C CEZ(RY) such that ¢, — @, A@, — AP uniformly and each @, has support
contained in the ball B(xzg,2r). For instance, we can take ¢, = nT'(1/n)p where T'(t) is
the heat semigroup defined in (2.8) and 7 is a smooth function with support contained in
B(xg,2r) and equal to 1 in B(xg,r). Since xg is the unique maximum point of @, there is
a sequence (z,,) C B(xg, 2r) converging to xg as n — oo such that z;, is a maximum point
of ¢, for each n. Since @, is twice continuously differentiable, we have Agy(z,) < 0.
Letting n — 400 we get Ap(zg) < 0, and consequently Ap(xg) < 0.

If 2 is a minimum point the proof is similar. ([

The maximum principle may be also used in some systems. For instance, let us consider
ue(t,z) = Au(t,z) + f(u(t,x)), t>0, z€Q,
u(t,x) =0, t>0, ze€df,

u(0,x) = up(z), x €,

where the unknown u is a R™-valued function, € is a bounded open set in R with C?
boundary, f : R™ — R™ is a locally Lipschitz continuous function such that

(y, f()) < C(L+[y[), yeR™ (6.23)

and ug is a continuous function vanishing on 0f2.
As in the case of a single equation, it is convenient to fix a € (0, 7(up)) and to introduce
the function v : [0,a] x © — R™ v(t,x) = u(t,r)e ™ with A > C, that satisfies

vi(t,z) = Av(t, ) + f(eMo(t,z))e ™M — \o(t,z), t>0, z€Q,

v(t,z) =0, t>0, =€,

v(0,z) = up(x), r €.
Instead of |v| it is better to work with o(¢,z) = |[v(t,z)|> = Y.I*, vi(t, #)?, which is more
regular. Let us remark that

m
th:2<vt7v>, ng0:2<DjU7’U>, AQOZQZ|D’UZ|2+2<U,A’U>
i=1

If (to, o) € (0,a]x € is a positive maximum point for ¢ (i.e. for |v|) we have ¢(to, zo) >
0, Ap(tg, z9) < 0 and hence (v(tg, zo), Av(to, xo)) < 0. Writing the differential system at
(to, zo) and taking the inner product with v(tg, z¢) we get

0 < (v(to, o), v(to,z0))

(ve
= (Av(to, z0), v(to, z0)) + (f(eMv(to, 0)), v(to, xo)e ) — AJv(to, z0)|?
< C(1+ v(to, z0)*) — Alv(to, zo)|?
<

so that |[v]|2, < C/(\ — C). Therefore, ||v|l < max{|uo|co, /C/(A—C)}, and con-
sequently |lufo < e max{||uol/oo, /C/(A — C)}, the same result as in the scalar case.
Therefore, u exists in the large.

The maximum principle is used also to prove qualitative properties of the solutions,
for instance to prove that the solutions are nonnegative for nonnegative initial data, or
nonpositive for nonpositive initial data.
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Consider for example the heat equation with Dirichlet boundary condition in a regular
bounded open set Q C RV,

u(t,r) = Au(t,z), t>0, z€Q,

u(t,x) =0, t>0, ze€df,

u(O,x) = UO(:E)a T €,

with ug = 0 on 99 and ug(z) > 0 for each z € Q. To show that u(t,x) > 0 for each (t,z)
we consider the function v(t,z) := e ‘u(t, z) which satisfies the same boundary condition
as u, v(0,z) = up(x) and v(t,z) = Av(t,x) — v(t,z). If v has a negative minimum at
(to, o), then tg > 0, xg € Q and hence vy (tg, xg) < 0, Av(tg, o) > 0, contradicting the
equation at (g, zg).

More general situations, even in nonlinear problems, can be treated with the following
comparison result.

Proposition 6.2.5 Let Q C RN be a bounded open set, let f € CY(R) and let u,v €
C([0,a] x Q)N CL((0,a] x Q) be such that, for every t € (0,al, u(t,-),v(t,-) € W2P(Q) for
every p < +oo and Au(t,-), Av(t,-) € C(Q).

Assume that uy > Au+ f(u), ve < Av+ f(v) in (0,a] x Q, that w(0,z) > v(0,z) for

x € Q and that u(t,z) > v(t,z) for (t,x) € (0,a] x IQ. Then u(t,x) > v(t,x) in [0,a] x Q.

Proof. The function w = v — v has the same regularity properties as u, v, and it satisfies
wit,2) > Aw(t,z) + f(ult,2)) — f(o(t,2) = Aw(t,z) + h(t, D)w(t, )

n (0,a] x Q, where h(t, ) fo I (w(t,z) + E(u(t,z) — v(t,x))) d€ is a bounded function.
Let A > ||h|loo and set z(t,z) := e /\ w(t,x). Then z; > Az + (h — X)z in (0,a] x Q,
2(0,z) > 0 for any x € Q, 2(t,z) > 0 for any t > 0,z € O so that, if 2z has a negative
minimum at (o, zg), then ty > 0, g € Q and therefore z;(tg, zo) < 0, Az(tg,x9) > 0 in
contradiction with the differential inequality satisfied by z at (¢g,z¢). Therefore z > 0
everywhere, i.e., u > v. O

As an application we consider the problem

u(t,z) = Au(t,z) + Mu(t,x) — pu®(t,x), t>0, =€,
u(t,z) =0, t>0, €0, (6.24)
u(0,x) = ug(x), €.

Here A, p > 0. By comparing the solution u with the function v = 0, it follows that
u(t,z) < 0if uo(x) < 0 and u(t,z) > 0 if up(z) > 0. Therefore, by Proposition 6.2.2,
T(up) = 400 if ug > 0. See Exercise 4, §6.2.6.

Finally, let us see a system from combustion theory. Here v and v are a concentration
and a temperature, respectively, both normalized and rescaled. The numbers Le, €, q are
positive parameters, Le is called the Lewis number. € is a bounded open set in RY with
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C? boundary. The system is

u(t,x) = Le Au(t,x) —eu(t,z) f(v(t,z)), t>0, x€Q,

vty ) = Dol 2) + quit, D) (o), >0, ze®,

ou (6.25)
%(t,x)zo, v(t,x) =1, t>0, ze€0dQ,

U(O,.’L‘) = UO(x)7 U(va) = U0($)7 T € ﬁ)

f is the Arrhenius function
f)=e ",

with h > 0. The initial data ug and vg are continuous nonnegative functions, with vg = 1
on 092. Replacing the unknowns (u,v) by (u,v — 1), problem (6.25) reduces to a problem
with homogeneous boundary conditions, which we locally solve using the above techniques.
The physically meaningful solutions are such that u,v > 0. Using the maximum
principle we can prove that for nonnegative initial data we get nonnegative solutions.
Let us consider u: if, by contradiction, there is a > 0 such that the restriction of u to
[0,a] x Q has a negative minimum, say at (g, zo) we have tg > 0, 2o € Q and

0 > u(to, xo) = Le Aulty, zo) — eulto, o) f (v(to, z0)) > 0,

a contradiction. Therefore u cannot have negative values.

To study the sign of v it is again convenient to introduce the function z(t,z) :=
e Muy(t,z) with A > 0. If there is a > 0 such that the restriction of z to [0,a] x Q has a
negative minimum, say at (tg,z¢) we have tg > 0, ¢ € 2 and

0> z(to, z0) = Az(to, z0) — Nz(to, z0) + qulto, zo) f (2(to, T9)e 0 )e M0 > 0,
again a contradiction. Therefore, v too cannot have negative values.
Exercises 6.2.6

1. Prove the following additional regularity properties of the solution to (6.12):
(i) if up € BUC(R™,R™), then u(t,z) — ug(x) as t — 0, uniformly for z in R";
(ii) if for every R > 0 there is K = K(R) > 0 such that

|f(t,x,u) - f(S,y,'U)hRm < K((t - 5)0 + |$ - y|?&” + |u - U|Rm)?

for0<s<t<T,z,y €R" u,veR™ |ulgm, [vj]gm < R, then all the second order
derivatives D;;ju are continuous in I(ug) x R".

[Hint: « and F(t,u) belong to B([e, 7(ug) —¢]; Da(0/2,0)), hence u € B([e, T(up) —
e]; CZT9(RN)). To show Hélder continuity of D;ju with respect to ¢, proceed as in
Corollary 4.1.11].

2. Let Q be an open set in RY with C! boundary, and let g € 09 be a relative
maximum point for a C! function v : @ — R. Prove that if the normal derivative of
v vanishes at x( then all the partial derivatives of v vanish at z.

If OQ and v are C?, prove that we also have Av(xq) < 0.
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3. Construct explicitly a function # as in the proof of Lemma 6.2.4.

4. Prove that for each continuous nonnegative initial function ug such that ug = 0 on
092, the solution to (6.24) exists in the large.

5. Show that the solution u to
u(t,z) = Au(t,z) +u(t,z) — 1, t>0, z€Q,
u(t,z) =0, t>0, €0
u(0,x) = up(z), x €
with up = 0 on 92 and |Jup||cc < 1 exists in the large.
6. Let u be the solution to
up(t, r) = Uz (t,x) + u?(t,x), t>0, z€][0,1],
u(t,0) = u(t,1) =0, t>0,
u(0,z) = up(z), z € [0,1]
with up(0) = up(1) = 0.
(i) Prove that if 0 < ug(x) < w2sin(rx) for each x € [0,1], then u exists in the large.

[Hint: compare u with v(t,z) := 72 sin(7x)].

(ii) Set h(t fo u(t, ) sin(rx)dr and prove that h'/(t) > (7/2)h% — 72h(t) for
each t € I(uo) Deduce that if A(0) > 27 then u blows up (i.e., ||u(t,-)||c becomes
unbounded) in finite time.

6.3 Nonlinearities defined in intermediate spaces

Let A: D(A) C X — X be a sectorial operator, and let X, be any space of class J,
between X and D(A), with a € (0,1). Consider the Cauchy problem

{ u'(t) = Au(t) + F(t,u(t)), t >0,
u(0) = uo,

where ug € X, and F : [0,7] x X, — X is a continuous function, for some 7" > 0. The
definition of strict, classical, or mild solution to (6.26) is similar to the definition in Section
6.1.

The Lipschitz condition (6.2) is replaced by a similar assumption: for each R > 0 there
exists L = L(R) > 0 such that

(6.26)

[F(t,z) = F(t,y)| < Llz —yllx., t€[0,T], =,y€ B(0,R) C Xa. (6.27)

Because of the embeddings D(A) C X, C X, then t +— e/ is analytic in (0, +00) with
values in £(X,). But the norm HetAH[;(Xa) could blow up as t — 0, see Exercise 5 in
§2.1.3. We want to avoid this situation, so we assume throughout

lim sup ||| z(x.) < +00. (6.28)
t—0
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It follows that ||e!4|| £(X.) is bounded on every compact interval contained in [0, +00).
Moreover, we set

M := sup HetAHE(Xa). (6.29)
0<t<T

6.3.1 Local existence, uniqueness, regularity

As in the case of nonlinearities defined in the whole X, it is convenient to look for a local
mild solution at first, and then to see that under reasonable assumptions the solution is
classical or strict.

The proof of the local existence and uniqueness theorem for mild solutions is quite
similar to the proof of Theorem 6.1.1, but we need an extension of Proposition 4.1.5. We
set

My o = sup{tk+°‘|]AketAH£(X7Xa) 0<t<T}, k=0,1,2.

By Proposition 3.2.2(ii), My o < +00.
In the proof of the next results, we use the following generalization of the Gronwall
lemma, whose proof may be found for instance in [9, p. 188].

Lemma 6.3.1 Let 0 < a < b < o0, and let u : [a,b] — R be a nonnegative function,
bounded in any interval [a,b — €|, integrable and such that

t
u(t) < k+ h/ (t—s) “u(s)ds, a<t<b,

with 0 < a <1, h, k > 0. Then there exists C1 > 0, independent of a, b, k such that
u(t) < Cik, a<t<b.

Using the generalized Gronwall Lemma and Exercise 1 in §4.1.13, the proof of the
local existence and uniqueness theorem for mild solutions goes on as the proof of Theorem
6.1.1, with minor modifications.

Theorem 6.3.2 The following statements hold.
(a) If u,v € Cy((0,al; Xo) are mild solutions of (6.26) for some a € (0,T], then u = v.

(b) For eachu € X, there arer, § > 0, K > 0 such that if ||uo —ul|x, < r then problem
(6.26) has a mild solution u = u(-;up) € Cp((0,0]; Xa). The function u belongs to

C([0,0]; Xa) if and only if ug € (A)Xa := closure of D(A) in X,.

Moreover, for ug, u1 € B(u,r) we have

lu(t; uo) — w(t;ur)||x, < K|luwo —uillx,, 0<t<ad. (6.30)

Proof. Proof of (a). The proof can be obtained arguing as in the proof of Theorem
6.1.1(a), using the generalized Gronwall lemma 6.3.1.

Proof of (b). Let M be defined by (6.29). Fix R > 0 such that R > 8M|u||x,,, so that
if ||ug —@l|x, <7:=R/(8M) then

sup_ [l g x, < R/4.
0<t<T
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Moreover, let L be such that
|F(t,v) — F(t,w)|| < Lljv —w|x, 0<t<T, v,we B(0,R) C X,.
We look for a local mild solution of (6.26) in the metric space ) defined by

Y = {u € Cy((0,0]; Xa) : [lu(t)llx, <R, Vt € (0,0]},

where § € (0,7] will be chosen later. The space Y is the closed ball with centre at 0
and radius R in Cy((0,0]; X4), and for each v € Y the function ¢ — F'(¢,v(t)) belongs to
Cy((0,6]; X). We define a nonlinear operator I' in ),

t

L(v)(t) = efug + / e =9DAF (s, v(s))ds, 0<t<34.
0

A function v € Y is a mild solution to (6.26) in [0,0] if and only if it is a fixed point of T'.

We shall show that I' is a contraction, and it maps ) into itself, provided ¢ is small

enough.
Let vy, v2 € Y. By Exercise 1 in §4.1.13, I'(v1) and I'(v2) belong to Cy((0,d]; X) and

IP(1) = T)lloqosixa < 720 “IFCvi()) = FCoa0))lleyos:x)

M07a 1—
T “Ll|v1 = v2llcy (0,6 X0)-

IN

Therefore, if

l—«

~1/(1-a)
5 <6 <2M07OCL) |

then I' is a contraction in ) with constant 1/2. Moreover for each v € ) and t € [0, d],
with § < dg, we have

A

IT@)lley0ax0 < IT@) = T0) ey (0,6x0) + 1T ey(0,61:x0)
R/2 + [leAuolle, (0.01:xa) + CO T F G 0)lley 0.:x)
< R/2+ R/A+ C'F (-, 0)llopo,0:x)-

IN

Therefore, if § < §g is such that
C5"IF (-, 0)llcqo,sx) < R/4,

then I' maps ) into itself, and it has a unique fixed point in ).
Concerning the continuity of u up to ¢t = 0, we remark that the function ¢t — v(t) :=
u(t) — eug is in C([0, 6]; X4 ), while t — e*Aug belongs to C([0, 8]; X, ) if and only if ug €

D(A)Xa. See Exercise 1, §6.3.7. Therefore, u € C([0,6]; X,) if and only if ug € D(A)Xa.
The statements about continuous dependence on the initial data may be proved pre-

cisely as in Theorem 6.1.1. U

The local mild solution to problem (6.26) is extended to a maximal time interval I (ug)
as in §6.1.1. We still define 7(ug) := sup I (uo).

Without important modifications in the proofs it is also possible to deal with regu-
larity and behavior of the solution near 7(up), obtaining results similar to the ones of
Propositions 6.1.2 and 6.1.3.
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Proposition 6.3.3 If there exists 0 € (0,1) such that for every R > 0 we have
|F(t,z) — F(s,z)|| < C(R)(t—s)?, 0<s<t<T, |z|x, <R, (6.31)

then the solution u of (6.26) belongs to C%([e, T(ug) —€]; D(A)) N CYF0([e, T(ug) —€]; X),
and u' belongs to B([e,7 — €]; D(0,00)) for each ¢ € (0,7(ug)/2). Moreover, if also
ug € D(A) then u(-;up) is a classical solution to (6.26). Ifug € D(A) and Aug+F(0,up) €
D(A) then u is a strict solution to (6.26).

Proposition 6.3.4 Let ug € X, be such that I(ug) # [0,T]. Then t — |u(t)|x, is
unbounded in I(ug).

The simplest situation in which it is possible to show that ||u(t)| x, is bounded in
I(ug) for each initial datum wug is again the case when F' grows not more than linearly
with respect to z as ||z|/x, — +oc.

Proposition 6.3.5 Assume that there exists C > 0 such that
|E(t,x)| < C(1+|z]x,), te€[0,T], =€ X,. (6.32)

Let w: I(ug) — Xq be the mild solution to (6.26). Then u is bounded in I(ug) with values
in Xq, and hence I(ug) = [0,T].

Proof. Recall that
MO,a

A
ez, < =2

lzl, z€ X, 0<t<T.

For each t € I(ug) we have

[u(®)]xa

IN

t
AMuwxa+A%@/Xt—s>acu+wwwwxgds
0

l1—a t
T sl )
l—a  Jy (t—s)~

IN

Mww&+oMM(

The generalized Gronwall lemma implies the inequality

C My T
[0

@l < 1 (Mol + <

> , te I (UO),
and the statement follows. O

The growth condition (6.32) is apparently rather restrictive. If we have some a priori
estimate for the solution to (6.26) in the X-norm (this happens in several applications to
PDE’s), it is possible to find a priori estimates in the D 4(6, co0)-norm if F satisfies suitable
growth conditions, less restrictive than (6.32). Since D 4(6, c0) is continuously embedded
in X, for 8 > a by Proposition 3.2.2, we get an a priori estimate for the solution in the
X,-norm, that yields existence in the large.

Proposition 6.3.6 Assume that there exists an increasing function p : [0,+00) —
[0, 4+00) such that

IFE )l < pllzD@ + lllk,), 0<t<T, z€ Xa, (6.33)

with 1 <y < 1/a. Let u: I(ug) — X4 be the mild solution to (6.26). If u is bounded in
I(ug) with values in X, then it is bounded in I(ug) with values in X,.
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Proof. Let us fix 0 < a < I(up) and set I, = {t € I(up) : t > a}. Since u € Cp((0,al; X,)
it suffices to show that it is bounded in I, with values in X,. We show that it is bounded
in I, with values in D4 (60, 00), when § = ay. This will conclude the proof by Proposition
3.2.2(i).
Set
K : sup |u(t).
tel(uo)

Observe that u(a) € D4(0,00) and that it satisfies the variation of constants formula
t
u(t) = e®Yy(a) + / DR (s, u(s))ds, te I(a).

Using the interpolatory estimate

a/b

—a/f
Izl x. < el 1217 5,00y

with ¢ = ¢(«, 8), that holds for every z € D (6, c0), see Exercise 4(b) in §3.2.3, we get

-« ay/0 -
lu(s) 1%, < elu(s) I )5 0 < KD u(s) | py000): 5 € Lu

so that
1F (s, u(s))]| < p(E) (1 + KD u(s)|1p,(9,00): 5 € La.

Let My > 0 be such that for all ¢ € (0,7] we have HteetAxHDA(g,oo) < My||z|| for z € X,
and ||etA:L‘HDA(97OO) < My||z||p,(0,00) for z € Da(0,00). Then for t € I, we have
[u()lDa00) < Mollu(a)llpyo,00)
t
+M9M(K)/ (t =) (L4 K7D u(s) | p s (9,00)) s, (6.34)
a
and the generalized Gronwall lemma implies that uw is bounded in I, with values in
DA(Q, OO) O

The exponent v = 1/« is called critical growth exponent. If v = 1/a the above method
does not work: one should replace D4 (a7, 00) by D(A) or by D4(1,00), and the integral in
(6.34) would be +o0o. We already know that in general we cannot estimate the D(A)-norm
(and, similarly, the D4(1,00) norm) of v(t) = (e!4 * ©)(t) in terms of sup || (t)]|.

Exercises 6.3.7
—X

1. Show that the function ¢ — e*4ug belongs to C ([0, 6]; X4 ) if and only if ug € D(A)"“.
This fact has been used in Proposition 6.3.2.

2. Prove Propositions 6.3.3 and 6.3.4.

3. Let F' : [0,T] x X, — X satisfy (6.27). Prove that, for any ug € X,, the mild
solution of (6.26) is bounded in the interval [e, 7(ug) — ¢] with values in D4 (f3, o0)
for any 8 € (0,1) and any € € (0,7(ug)/2).
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6.3.2 Second order PDE’s

Let  be a bounded open set in RY with regular boundary. Let us consider the problem
u(t,z) = Au(t,z) + f(t,2,u(t,x), Du(t,x)), t>0, z€Q,

u(t,z) =0, t>0, xedf, (6.35)

u(0,x) = up(x), x €,

We denote by Du the gradient of u with respect to the space variables, Du = (Qu/0x1,
..., 0u/0xN). We assume that the function

(t’x7u7p)Hf(t7x7u7p)7 t6[07T]7 xeﬁ’ u€R7pERN’

is continuous, Holder continuous with respect to ¢, locally Lipschitz continuous with respect
to (u,p). More precisely, we assume that there exists 6 € (0, 1) such that for every R > 0
there is K = K(R) > 0 such that

|f(t,x,u,p) - f(s,:v,v,q)| < K((t - 8)0 + |U - U| + |p - q|RN)’ (636)

for 0 <s<t<T, (u,p), (v,q) € B(0O,R) c RN*L,

We choose as X the space of the continuous functions in . Then the realization A of
the Laplacian with Dirichlet boundary condition is sectorial in X, and Theorem 3.1.10(ii)
implies that for a € (1/2,1) we have

Da(a,00) = CE*(Q) = {u € C**(Q) : u(z) =0 z € IN}.
Therefore, choosing X, = Da(a,00) with a > 1/2, the nonlinear function

F(t,g&)(az) = f(t7x790(x)7D90($))

is well defined in [0,T] x X, with values in X. We recall that the part of A in Dy(a, 00)
is sectorial in D 4(a, 00) and hence (6.28) holds.

We could also take v = 1/2 and Xy/5 = {¢ € C'(Q) : ¢ = 0 on 9Q}. Indeed, it is
possible to show that assumption (6.28) holds in such a space.

If the initial datum ug is in C2%(Q) with « € (1/2,1), we may rewrite problem (6.35) in
the abstract formulation (6.26). The local existence and uniqueness theorem 6.3.2 yields
a local existence and uniqueness result for problem (6.35).

Proposition 6.3.8 Under the above assumptions, for ach ug € C3% there exists a mazi-
mal time interval I(ug) such that problem (6.35) has a unique solution u : I(ug) x Q — R,
such that u and the space derivatives Dyu, i = 1,..., N, are continuous in I(ug) x Q, and
ut, Au are continuous in (g, 7(ug)—e)xQ for any e € (0,7(ug)/2). Here 7(ug) = sup I (ug),
as usual.

Proof. With the above choice, the assumptions of Theorem 6.3.2 are satisfied, so that
problem (6.35) has a unique local solution u = u(t;ug) € Cp((0,a]; C2%(Q)) for each a <
7(up), that belongs to C([e, 7(ug) —]; D(A)) N C([e, 7(ug) —e]; X) for each e € (0, 7(up)),
by Proposition 6.3.3. Consequently, the function

U(t,ﬂ?;UQ) = U(t, UO)(x)a 0<t< (57 T € 67
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is a solution to (6.35) with the claimed regularity properties. The continuity of the first
order space derivatives D;u up to t = 0 follows from Exercise 4(c) in §3.2.3 and from the
continuous embedding D 4(3,0) C C1(Q) for 3 > 1/2.

O
By Proposition 6.3.5, a sufficient condition for existence in the large is

[f(t,2,u,p)] < C(1+ |ul + [plry)

0, 7], 2€Q, ueR, peRY. (6.37)
Indeed, in this case the nonlinear function

Fi0,T)x X — X, F(t,u)() = f(t,2,u(z), Du(x))
satisfies condition (6.32)

In general, one can find an a priori estimate for the sup norm of the solution provided
that

ft,z,u,0) <C(14+u?), 0<t<T,z€Q ueck

(6.38)
Indeed, in this case we may use again the procedure of Proposition 6.2.2. Once we know

that u is bounded in I(ug) with values in X, we may use Proposition 6.3.6. Assume that

there is an increasing function p : [0, +00) — [0,400) such that for some £ > 0 we have

|f(t, 2w, p)] < p(lu))A+ [p>°), 0<t<T, 2€Q, ucR, pcRY (6.39)
Then the nonlinearity
F(t,u)(z) = f(t,z,u(z), Du(z)), 0<t<T, ucCa¥Q), z€Q
satisfies (6.33) with v = 2 — ¢, because
1F(t w)lloo < plllulloo) (1 + ullE®) < plllulloo) (1 + lullEz2), 0<t<T, uwe G5 Q)
Then, Proposition 6.3.6 yields existence in the large provided that (2 —e)a < 1

A class of equations that fits the general theory are the equations in divergence form

N
:Z i(pi(u) + Dju) = Au—&—z%

Diu, t>0,
=1
(t7 x) =

x €,
t>0, xe€d, (6.40)
u(0, ) = uo(x),

T € €,

for which we have existence in the large for all initial data if the functions ¢; : R — R are
differentiable with locally Lipschitz continuous derivatives. Indeed, the function

ft.a5) - z%

satisfies conditions (6.38) and (6.39).
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6.3.3 The Cahn-Hilliard equation

Let us consider a one dimensional Cahn-Hilliard equation,

ut:<—um—i—f(u)> , t>0, ze€l0,1],

Uz (t,0) = ug(t, 1) = tgea (t,0) = tgan(t, 1) =0, ¢ >0, (6.41)

u(0,z) = uo(x), S [0, 1],
under the following assumptions on f and ug:
f € C3(R), f has a nonnegative primitive ®,

ug € C%([0,1]), up(0) = uy(1) = 0.

Assumption f € C3(R) and the assumptions on ug are sufficient to obtain a local solution.
The positivity of a primitive of f will be used to get a priori estimates on the solution
that guarantee existence in the large.

Set X = (C([0,1]) and

D(B) ={p € C*([0,1)) : ¢'(0) = ¢'(1) =0}, By =¢",
D(A) ={p € CY([0,1]) : ¢'(0) = ¢'(1) = ¢"(0) = " (1) =0}, Ap=—¢"".

The operator A has a very special form; specifically A = —B?, where B is sectorial by
Exercise 4, §2.1.3, and (1.9) holds with any 6 € (7/2,7). Then A is sectorial in X by
Exercise 1, §2.2.4, and D(B) is of class J;/, between X and D(A) by Exercise 1, §3.2.3.
Therefore we may choose

a=1/2, X,5=D(B).

Note that both D(B) and D(A) are dense in X. Since B commutes with R(X, A) on D(B)
for each A € p(A), then it commutes with ¢*4 on D(B), and for each ¢ € D(B) and
t € [0,7] we have

d2
el = el + [ o540 = el + 46 c < Mallelip
oo
for some My > 0, so that condition (6.28) is satisfied.
The function
F X1/2 — X,
o d? o " " "2
F(p) = 75 f(9) = F()e" + [ (0)(¢)

is Lipschitz continuous on each bounded subset of X5, because f" is locally Lipschitz
continuous.

Theorem 6.3.2 implies that for each ug € D(B) there is a maximal 7 = 7(ug) > 0 such
that problem (6.41) has a unique solution w : [0,7) X [0,1] — R, such that u, uy, uy, are
continuous in [0,7) x [0,1], and u;, Upgz, Uzzer are continuous in (0,7) x [0,1]. Notice
that, since D(B) is dense in X, then D(A) = D(B?) is dense in D(B). In other words,
the closure of D(A) in X5 is the whole X .
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Since we have a fourth order differential equation, the maximum principles are not of
help to prove that u is bounded. We shall prove that the norm ||ug(¢,-)| ;2 is bounded in
I(ug); this will imply that u is bounded in I(ug) through a Poincaré-Sobolev inequality.

Since ut = (—ugy + f(u))ze for each t > 0, for € € (0,7(ug)) we have

1 t 1
/0 (u(t,x) —u(e, x))dx = /E dt/o ut(s,x)dr =0, € <t <7(up). (6.42)

Letting € tend to 0 we get

1 1
/ u(t, z)dr = / uo(x)dx, 0 <t < 7(up),
0 0

so that the mean value of u(t,-) is a constant, independent of (1),
Fix again ¢ € (0,7(up)), multiply both sides of the equation by —u., + f(u), and
integrate over [e,t] x [0,1] for ¢t € (g, 7(up)). We get

//utumdsdm%—//utf dsda:—// —Ugy + f(u))(—Uze + f(U))zeds dx

Note that we may integrate by parts with respect to x in the first integral, because uy,
exists and it is continuous in [g,t] X [0, 1], see Exercise 2(a), §6.3.9. Hence, we integrate
by parts in the first integral, we rewrite the second integral recalling that f = ®’, and we
integrate by parts in the third integral too. We get

//umsxumsmdsdx+/ ds/ ))dx ds
//( —Ugr (s, ) + f(u(s, ))x> dx ds

so that

1

1 1 1 ) 1 e
2/0 ug(t, )°dx 2/0 ug(e, x) dx—l—/o [D(u(t,x) — ®(u(e, x))]dz <0,

and letting ¢ — 0 we get

1

1
et )22 + 2 / D(ult,))dr < |uh|2, +2 /0 B (ug(x))dr, 0 < t < (ug).

Since ® is nonnegative, then wu,(t,-) is bounded in L? for ¢t € I(up). Since u(t,-) has
constant mean value, inequality (6.45) yields that u(¢,-) is bounded in the sup norm.

Now we may use Proposition 6.3.6, because F' satisfies (6.33) with v = 1. Indeed, for
each ¢ € X/ we have

IE@I < sup  [f'©] ¢"llo+ sup  [f(E)]-ll¢'ll5

e1<lelloo el<lelleo
< sup [FUOI 9"l + sup  [FU(E)] - Cllplloolle” oo
1< l¢loc el<lelleo

< ullleDlellpes)

where fi(s) = max{sup¢|<, |f'(§)], Cssupjg<, [f*(€)[}, and C is the constant in Exercise
2(b), §6.3.9. Therefore F' has subcritical growth (the critical growth exponent is 2). By
Proposition 6.3.6, the solution exists in the large.

'We take € > 0 in (6.42) because our solution is just classical and it is not strict in general, so that it
is not obvious that u, is in L*((0,t) x (0,1)).
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6.3.4 The Kuramoto-Sivashinsky equation

This equation arises as a mathematical model in a two dimensional combustion phe-
nomenon. At time ¢, the combustion takes place along an unknown curve with equation
x = £(t,y), and the open set {(z,y) € R? : = < £(t,y)} is the fresh region, the open set
{(z,y) € R? : x > £(t,y)} is the burnt region at time ¢. As time increases, the curve
moves to the left, and under suitable assumptions the function ®(t,y) = £(t,y) +1¢ satisfies
the Kuramoto-Sivashinsky equation

1
Dy(t, y) + 4Dyyyy (t,y) + yy(t,y) + 5((1)31)2 =0, 1=20,yeR. (6.43)

The Cauchy problem
®(0,y) = Po(y), yeR (6.44)

for equation (6.43) may be treated with the methods of §6.3.3. Set
X = Gp(R),

and
A:D(A)=C}(R), Au=—du"" —u".

To prove that A is sectorial, it is convenient to write it as
A=-4B>-B

where B is the realization of the second order derivative in X, that is sectorial by §2.1.1.

By Exercise 1, §2.2.4, —4B? is sectorial, and by Exercise 1, §3.2.3, the domain D(B) is of

class Jy /2 between X and D(B?). Then Proposition 3.2.2(iii) yields that A is sectorial.
Since the nonlinearity %(éy)Q depends on the first order space derivative, it is conve-

nient to choose « = 1/4 and
X1/4 = C} (R).

Such a space belongs to the class J; /4 between X and D(A), by Exercise 3, §3.2.3. The
nonlinear function

Fu)y) = — 30 (0), we Xy, y €R,

is Lipschitz continuous on the bounded subsets of X4, and it is not hard to prove that
HetAHC(Xl/4) < HetAHL(X) for each ¢ > 0, see Exercise 4 below.

So, we may rewrite problem (6.43)—(6.44) in the form (6.26), with F' independent of
t. All the assumptions of Theorem 6.3.2 are satisfied. Moreover, X,/ is contained in
D(A) = BUC(R), since all the elements of X; /4 are bounded and Lipschitz continuous
functions.

It follows that for each @y € C} (R) problem (6.43)-(6.44) has a unique classical solution
®(t,y), defined for ¢ in a maximal time interval [0,7(®Pg)) and for y in R, such that for
every a € (0,7(®g)), ® € Cp([0, a] x R), and there exist @y, Dyyyy € C((0,a] x R), that are
bounded in each [g,a] X R with 0 < € < a.

Exercises 6.3.9

1. Prove that the conclusions of Proposition 6.2.2 hold for the solution of problem
(6.35), provided that (6.38) holds.
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2. (a) Referring to §6.3.3, prove that u, exists and it is continuous in [e,7 — €] x [0, 1]

for each € € (0,7/2).
[Hint: use Proposition 6.3.3 to get t — w(t,-) € B([e,7 — €]; Da(0,00)) for each
0 € (0,1), and then Exercise 4(c), §3.2.3, to conclude].

(b) Prove that there is C' > 0 such that for each ¢ € C2([0,1]) satisfying ¢©'(0) =
¢'(1) = 0 we have
l¥'lI3 < Cllelloolle”lloo-

. Prove the inequality

lo- | o)yl < (/ 1(¢<x>>2dx> " (6.45)

for each ¢ € C([0,1]).

Referring to §6.3.4, prove that HetA|][;(X1/4) < HetAHL(X), for every ¢t > 0.

[Hint: show that et4 commutes with the first order derivative on X, /4. For this
purpose, use Exercise 1.3.18].
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Behavior near stationary solutions

7.1 The principle of linearized stability

Let A: D(A) C X — X be a sectorial operator. We use the notation of Chapter 6, so X,
is a space of class J, between X and D(A), that satisfies (6.28), and 0 < a < 1.
Let us consider the nonlinear equation

u/'(t) = Au(t) + F(u(t)), ¢t >0, (7.1)

where F' : X — X, or F' : X, — X satisfies the assumptions of the local existence
Theorems 6.1.1 or 6.3.2. Throughout this section we assume that F(0) = 0, so that
problem (7.1) admits the stationary (:= constant in time) solution u = 0, and we study
the stability of the null solution.

From the point of view of the stability, the case where F' is defined in X, does not
differ much from the case where it is defined in the whole space X, and they will be treated
together, setting X( := X and considering «a € [0,1).

In any case we assume that the Lipschitz constant

K(p) = sup{w: x, yEB(O,p)CXa} (7.2)
satisfies
lim K(p)=0. (7.3)
p—0t

This implies that F' is Fréchet differentiable at 0, with null derivative.
We recall that if X, Y are Banach spaces and y € Y, we say that a function G defined

in a neighborhood of y with values in X is Fréchet differentiable at y if there exists a linear
bounded operator L € L£(Y, X) such that

lim |G(y+h) —G(y) — Lh| x

=0.
h—0 5%

In this case, L is called the derivative of G at y and we set L = G'(y). If O C Y is an
open set, we say that G : O — X is continuously differentiable in O if it is differentiable
at each y € O and the function G’ : O — L(Y, X) is continuous in O.

It is clear that if F'is Fréchet continuously differentiable in a neighborhood of 0, and
F'(0) = 0, then lim,_o+ K(p) = 0.

101
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By Theorem 6.1.1 (if & = 0) or Theorem 6.3.2 (if o € (0, 1)), for every initial datum
ug € X the Cauchy problem for equation (7.1) has a unique solution u(-; ug) defined in a
maximal time interval [0, 7(ugp)).

Definition 7.1.1 We say that the null solution of (7.1) is stable (in X, ) if for every
e > 0 there exists § > 0 such that

uo € Xa, luollx, <6 = 7(uo) = +oo, [lu(t;uo)lx. <&, Vt=0.

The null solution of (7.1) is said to be asymptotically stable if it is stable and moreover
there exists 69 > 0 such that if ||uol||x, < do then limi o ||u(t; uo)| x, = 0.
The null solution of (7.1) is said to be unstable if it is not stable.

The principle of linearized stability says that in the noncritical case s(A) # 0 the
null solution to the nonlinear problem (7.1) has the same stability properties of the null
solution to the linear problem u' = Au. Note that by assumption (7.3) the linear part of
Az + F(x) near x = 0 is just Az, so that the nonlinear part F(u) in problem (7.1) looks
like a small perturbation of the linear part u’ = Au, at least for solutions close to 0. In
the next two subsections we make this argument rigorous.

The study of the stability of other possible stationary solutions, that is of the w € D(A)
such that
Au+ F(u) =0,

can be reduced to the case of the null stationary solution by defining a new unknown

and studying the problem

V' (t) = Av(t) + F(v(t), t>0,
where A = A+ F'(w) and F(v) = F(v +71) — F(u) — F'(u)v, provided that F" is Fréchet
differentiable at w. Note that in this case the Fréchet derivative of F' vanishes at 0.

7.1.1 Linearized stability

The main assumption is

s(A) < 0. (7.4)

(The spectral bound s(A) is defined in (5.1)). In the proof of the linearized stability
theorem we shall use the next lemma, which is a consequence of Proposition 5.1.1.

Lemma 7.1.2 Let (7.4) hold, and fix w € [0,—s(A)). If f € C_,((0,+00); X) and
x € X, then the function

t
v(t) = ez —i—/ =941 (s)ds, t >0,
0

belongs to C_,((0,+00); Xo), and there is a constant C = C(w) such that

sup e u(t) | x, < C(llllx, +sup e[ f B
t>0 t>0
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Proof. By Proposition 5.1.1, for each w € [0, —s(A)) there is M(w) > 0 such that
]| (x) < M(w)e ™", for every ¢ > 0. Therefore, for ¢ > 1,

e 2ex xa) < le?leexxalle ™D ex) < Cem! (7.5)
with C' = M(w)e“’HeAH[;(nya), while for 0 <t < 1 we have HetAHﬁ(an) < Ct~ for some
constant C' > 0, by Proposition 3.2.2(ii). Since w € [0, —s(A)) is arbitrary, this implies

sup €'1%]|e"! £ (x,x,) 1= Clo < +00.
t>0
Since X, is continuously embedded in X, (7.5) implies also that || L(Xa) < Ce*! for

t > 1 and some positive constant C. Since 4] z(x.) is bounded for t € (0,1) by a
constant independent of ¢ by assumption (6.28), we get

sup e“tHetAHE(XQ) = C, < +00.
t>0

Therefore ||z x, < Coe || x,, and for any fixed w' € (w, —s(A)),

bew's CuT(1 —a)
wt( tA < ,wt/ € o < Zw wr
e e« DO, < Coet [ N 9)lds < S supe )

for every t > 0, and the statement follows. [J

Theorem 7.1.3 Let A satisfy (7.4), and let F : X, — X be Lipschitz continuous in a
neighborhood of 0 and satisfy (7.3). Then for every w € [0,—s(A)) there exist positive
constants M = M(w), r = r(w) such that if up € Xa, |Jwollx, <7, we have T(up) = +00
and

[u(t; uo) || x. < Me™|luo|x,,, t > 0. (7.6)

Therefore the null solution is asymptotically stable.

Proof. Let Y be the closed ball centered at 0 with small radius p in the space C_,((0, +00);
X4), namely
Y = fue Coul(0,490) Xa) : sup leu(t)x, < b
24

We look for the mild solution to (7.1) with initial datum wg as a fixed point of the operator
G defined on Y by

(Gu)(t) = eug + /Ot e=AF (u(s))ds, t > 0. (7.7)

IfueY, by (7.2) we get
IF ()] = [IF(u(t)) = FO)]| < K(p)llu(t)lx, < K(p)pe™", t>0,  (7.8)
so that F'(u(+)) € C—,((0,400); X). Using Lemma 7.1.2 we get

1Gulle ((0400):x0) < C (lluollxa + IF @D lle_,0.4000:x)) < C (lluollx, + K (p)) -
(7.9)



104 Chapter 7. Behavior near stationary solutions

If p is so small that

1
K < —
and

P
<r.=-—
luollx, <7 50

then Gu € Y. Moreover, for uy, ugs € Y we have, again by Lemma 7.1.2,

[Gur — Guallc_,((0,400):x0) < CIF(u()) = Fuz()llc . ((0,400):X)5
and (7.2) yields

[ (ur(t)) = Fuz(t)]| < K(p)llua(t) = uz(t)llx,, ¢>0.

It follows that

IGus — Guzlleoreer ) < 5l = lle (o001
so that G is a contraction with constant 1/2. Consequently there exists a unique fixed point
of G in Y, which is the solution of (7.1) with initial datum ug. Note that the Contraction
Theorem gives a unique solution in Y, but we already know by Theorems 6.1.1 and 6.3.2
that the mild solution is unique.
Moreover from (7.8), (7.9) we get

1
lulle—. = lIGulle—., = Cllluollx, + K(p)llullc_.) < Clluollx. + 5 llullc_,

which implies (7.6), with M =2C. O

Remark 7.1.4 Note that any mild solution to problem (7.1) is smooth for ¢ > 0. Pre-
cisely, Proposition 6.1.2 if @ = 0 and Proposition 6.3.3 if & > 0 imply that for each
6 € (0,1) and for each interval [a,b] C (0, 7(up)), the restriction of u(+;ug) to [a, b] belongs
to C1*9([a, b]; X) N C([a, b]; D(A)).

7.1.2 Linearized instability
Assume now that

o4(A):=0(A)N{A e C: ReX >0} # 2,
(7.10)
inf{ReA: A€o (A)} :=wy >0.

Then it is possible to prove an instability result for the null solution. We shall use the
projection P defined by (5.6), i.e.

1
pP= / R(\, A)dA,
T+

2

v+ being any closed regular path with range in {Re A > 0}, with index 1 with respect to
each A € 0.

For the proof of the instability theorem we need the next lemma, which is a corollary
of Theorem 5.4.1(ii). It is a counterpart of Lemma 7.1.2 for the unstable case.
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Lemma 7.1.5 Let (7.10) hold, and fixw € [0,wy). If g € Cyy((—00,0); X) and x € P(X),
then the function

t t
o(t) = ez +/ =94 Pg(s)ds +/ et =)A= P)g(s)ds, t<0 (7.11)

0 —oo
is a mild solution to v'(t) = Av(t) + g(t), t <0, it belongs to C,((—00,0]; Xa), and there
is a constant C' = C(w) such that

sup e |o(t)||lx, < C([Jx[| + supe™*[lg(®)])- (7.12)
<0 t<0

Conversely, if v is a mild solution belonging to C,,((—o0,0]; Xo) then there is x € P(X)
such that v has the representation (7.11).

Proof. That v is a mild solution belonging to C,,((—o0,0]; X) follows as in Theorem
5.4.1(ii), because the vertical line Re A = w does not intersect the spectrum of A.
Conversely, if v is a mild solution in C,,((—o0,0]; X4) then it is in C,((—o0,0]; X) and
Theorem 5.4.1(ii) implies (7.11).
Now we prove (7.12). Let w(t) = e “!v(t). Then

t t
w(t) = pt(A=w) . +/ e(t—S)(A—w)Pg(S)e—wst _|_/ p(t=3)(A-w) (I — P)g(s)e " ds

0 —00

and A—wlI is hyperbolic with o4 (A—wl) = 04 (A)—w and o_(A—wI) = (c(A)\o+(A))—w.
Using Proposition 5.2.1 we take a small o > 0 such that

"4 = P o) < Ce™, >0,

et A<D Pl pxy < Cet, t<0.

Since the part of A in P(X) is bounded,

1" A™D Pl pix pay < C'e”', <0,
hence

e A=D Pl pox x.) < C"e%t, t<0.
Moreover, if t > 1,

A0 = P)lleix,xa) < e llexxalle™ AT = P)llgix) < Cre™
and for 0 <t <1
e AD(T = P)|lg(x,x,) < Cat ™,

so that
1 A=D(T = P)| g (x,x.) < Cat™ ™, t>0.

Therefore, for t < 0

0
lw®)xa < C€Ut|$||+C||P\|Sl<113(€_ws||g(5)|’)/t e”ds

t
+CallT = Pllsup(e* o)) [t = 5)"ds

and (7.12) follows easily.
O
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Theorem 7.1.6 Let A satisfy (7.10), and let F : X, — X be Lipschitz continuous in a
neighborhood of 0 and satisfy (7.3). Then there exists r. > 0 such that for every x € P(X)
satisfying ||z|| < r4, the problem

V'(t) = Av(t) + F(v(t)), t <0,
{ Pv(0) = z,

(7.13)

has a backward solution v such that lim;_,_ v(t) = 0.

Proof. Let Y, be the closed ball centered at 0 with small radius p4 in C,((—o0,0]; Xa).
In view of Lemma 7.1.5, we look for a solution to (7.13) as a fixed point of the operator
G+ defined on Yy by

t t
(Gyv)(t) = ez + / e =DAPF(v(s))ds + / =91 — P)F(v(s))ds, t<0.
0 —o00
Ifv e Yy, then F(v(+)) € C,((—00,0]; X) and Lemma 7.1.5 implies G1v € C,((—o0, 0]; X),
with
1G 10l ((—o00):x0) < C (2l + IIF (0()len ((—00,0:x)) -

The rest of the proof is quite similar to the proof of Theorem 7.1.3 and it is left as an
exercise. [

Remark 7.1.7 The existence of a backward mild solution v to problem (7.13) implies
that the null solution to (7.1) is unstable. For, let x,, = v(—n). Of course x,, — 0 as n
tends to +o0o0. For any n € N consider the forward Cauchy problem u(0) = =z, for the
equation (7.1), and as usual denote by u(-;z;,) its mild solution. Then 7(z,) > n and
u(t; xy) = v(t — n) for any ¢t € [0,n]. Hence

sup lu(t; zn)llx, = sup [lut;zn)|x, = |Xa = [[0(0)][x, >0
0<t<n

sup ||v(t)
tel(zn) <t<0

which implies that the null solution is unstable since sup;~ [|u(t; z,)| x, does not tend to
0 as n tends to +oo.

7.2 A Cauchy-Dirichlet problem

In order to give some examples of PDE’s to which the results of this chapter can be
applied, we need some comments on the spectrum of the Laplacian with Dirichlet boundary
conditions.

Let 2 be a bounded open set in RY with C? boundary 9. We choose X = C(Q) and
define

D) ={pe (| W*(Q):ApeC@),pp =0}
1<p<+oo

and Ap = Ap for p € D(A).

From Exercise 3, §5.4.4, we know that the spectrum of A consists of isolated eigenvalues
and that s(A) is negative. In order to give an explicit estimate of s(A) we recall the so
called Poincaré inequality: there is a constant Cq > 0 such that

/Q\g0|2d:1c < C’Q/Q|Dg0]2dx, pE Wol’Q(Q). (7.14)
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A proof of (7.14) as well as the inequality Cq < 4d?, where d is the diameter of ), is
outlined in Exercise 4 below.
If p € D(A) and —Ap — Ap =0, then ¢ € W01’2(Q). Multiplying by ¥ and integrating

over 2 we find
[ 1DePds=x [ Pz
Q Q

and therefore A > Cg,', that is s(A) < —Cg*.

We now study the stability of the null solution of

{ u(t,z) = Au(t,z) + f(u(t,x), Du(t,z)), t>0, x€Q,
(7.15)

u(t,x) =0, t>0, =€,

where f = f(u,p) : R x RNY — R is continuously differentiable and f(0,0) = 0. The local
existence and uniqueness Theorem 6.3.2 may be applied to the initial value problem for

equation (7.15),
uw(0,7) = up(z), =€, (7.16)

choosing X = C(Q), X, = C2*(Q) with 1/2 < a < 1. The function
F:Xo = X, (F(9)(x) = f(p(2), Dp(2)),
is continuously differentiable, and
F(0)=0, (F'(0)¢)(z) = ap(x) + (b, Dp(z)), ¢ € Xa.

Here a = f,,(0,0), b= D, f(0,0).
Then, set D(B) = D(A) and By = Ay + (b, Dy) + ap. The operator B is sectorial,
see Corollary 1.3.14, and
s(B) < —Cq' +a. (7.17)

Indeed we observe that the resolvent of B is compact and therefore its spectrum consists
of isolated eigenvalues. Moreover, if A € o(B), ¢ € D(B), and Ap—Ap— (b, Dp)—ap =0,
then multiplying by @ and integrating over 2 we get

(=l + Do = . D) ) do =0,

Taking the real part

1
[ ((Rex=a)lol + 1Del? = 5o DIel? ) do = [ (R~ @)l + DpP) ds =0
Q Q

and hence Re A —a < —Cg L Therefore (7.17) holds.

Since ug € Xo C D(A), Theorem 6.3.2 and Proposition 6.3.3 guarantee the existence
of a unique local classical solution w : [0, 7(up)) — X, of the abstract problem (7.1) with
u(0) = up having the regularity properties specified in Proposition 6.3.3. Setting as usual

u(t, @) = u(t)(@), te€[0,7(u)), zed

the function u is continuous in [0, 7(ug)) x €, continuously differentiable with respect to
time for ¢t > 0, and it satisfies (7.15), (7.16).
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Concerning the stability of the null solution, Theorem 7.1.3 implies that if s(B) < 0,
in particular if @ < Cq ', then the null solution of (7.15) is exponentially stable: for every
w € (0, —s(B)) there exist r, C' > 0 such that if ||ug||x, < r, then

7(uo) = +o0, [[u(t)|x, < Ce™"|luo]x,

On the contrary, if s(B) > 0 then there are elements in the spectrum of B with positive
real part. Since they are isolated they satisfy condition (7.10). Theorem 7.1.6 implies that
the null solution of (7.15) is unstable: there exist ¢ > 0 and initial data up with ||uol x,
arbitrarily small, but sup,~ [|u(t)]x, > €.

Finally we remark that if f is independent of p, i.e. the nonlinearity in (7.15) does not
depend on Du, we can take a = 0 and work in the space X.

Exercises 7.2.1
1. Complete the proof of Theorem 7.1.6.

2. Prove that the stationary solution (u = 0,v = 1) to system (6.25) is asymptotically

stable in C'(Q2) x C(Q).

3. Assume that the functions ¢; in problem (6.40) are twice continuously differentiable
and that ¢;(0) = 0 for each i = 1,..., N. Prove that the null solution to problem
(6.40) is asymptotically stable in C1*(Q), for each 6 € (0,1).

4. Let Q be a bounded set in RY and let d be its diameter. Prove the Poincaré inequality
(7.14) with Cq < 4d>.
[Hint: assume that Q C B(0,d) and for ¢ € C§°(Q2) write

x1 a@
Tlyee , TN) = —(s,x2,...,xN)ds].
o1 N) » 8:61( 2 ~)ds]

5. Let X be a Banach space and © be an open set in R (or in C). Moreover let
I': X xQ — X be such that

IT(y, A) = Tz, )| < CN)ly — =]

for any A € Q, any z,y € X and some continuous function C' : Q — [0, 1). Further,
suppose that the function A — I'(\, x) is continuous in € for any = € X. Prove that
for any A € Q the equation x = I'(z, A) admits a unique solution = z(\) and that
the function A — x(A) is continuous in €.

6. Let u be the solution to the problem
U = Ugy + U2, t>0, zel0,1],
u(t,0) =wu(t,1) =0, t=>0,
u(0, ) = up(z), x € [0,1]

with up(0) = up(1) = 0. Show that if ||ug|| is sufficiently small, then u exists in
the large.

[Hint: use the exponential decay of the heat semigroup in the variation of constants
formula).






Appendix A

Linear operators and
vector-valued calculus

In this appendix we collect a few basic results on linear operators in Banach spaces and on
calculus for Banach space valued functions defined in a real interval or in an open set in
C. These results are assumed to be either known to the reader, or at least not surprising
at all, as they follow quite closely the finite-dimensional theory.

Let X be a Banach space with norm || - ||. We denote by £(X) the Banach algebra of
linear bounded operators T : X — X, endowed with the norm

Tx
1Tl = sw  |Tal| sup ZEL
zeX:|z|=1 zeX\{0} k4]

If no confusion may arise, we write || 7| for |||z x)-
Similarly, if Y is another Banach space we denote by £(X,Y") the Banach space of linear
bounded operators T': X — Y, endowed with the norm ||T']| z(x,y) = SuPgex. ||z)j=1 [| T2y
If D(A) is a vector subspace of X and A : D(A) — X is linear, we say that A is closed
if its graph
Ga={(z,y) e X x X :2x € D(A), y= Az}

is a closed set of X x X. In an equivalent way, A is closed if and only if the following
implication holds:

{zn} C D(A), zy, —x, Az, —vy = x € D(A), y= Az

We say that A is closable if there is an (obviously unique) operator A, whose graph is the
closure of G4. It is readily checked that A is closable if and only if the implication

{z,} Cc D(A), =, — 0, Az, —y = y=0.
holds. If A: D(A) C X — X is a closed operator, we endow D(A) with its graph norm
[zlpcay = llzll + || Az]|.

D(A) turns out to be a Banach space and A : D(A) — X is continuous.
Next lemma is used in Chapter 1.

Al
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Lemma A.1 Let X, Y be two Banach spaces, let D be a subspace of X, and let {Ap}n>0
be a sequence of linear bounded operators from X toY such that

|An < M, neN, lim Apz = Aoz, z€D.

n—-4o00

Then
lim A,z = Agx x € D,

n—oo

where D is the closure of D in X.

Proof. Let € D and ¢ > 0 be given. For y € D with ||z — y|| < ¢ and for every n € N
we have

[Anz — Aoz|| < [[An(z — )| + [[Any — Aoyl + [[Ao(y — 2)]-
If ng is such that |4,y — Apy|| < e for every n > ng, we have

|Apz — Aoz|| < Me+ e+ ||Aolle
for all n > ng. O

Let I C R be an interval. We denote by C(I; X) the vector space of the continuous
functions u : I — X, by B(I; X) the space of the bounded functions, endowed with the
supremum norm

[ulloo = sup [[u(t)]].
tel

We also set Cy(I; X) = C(I; X) N B(I; X). The definition of the derivative is readily
extended to the present situation: a function f € C(I;X) is differentiable at an interior
point tg € I if the following limit exists,

- f(t)—f(to)'

t—to t —to

As usual, the limit is denoted by f’(to) and is it called derivative of f at t. In an analogous
way we define right and left derivatives.

For every k € N (resp., k = 4+00), C¥(I; X) denotes the space of X-valued functions
with continuous derivatives in I up to the order k (resp., of any order). We write CF(I; X)
to denote the space of all the functions f € C¥(I; X) which are bounded in I together
with their derivatives up to the k-th order.

Note that if A: D(A) — X is a linear closed operator, then a function u : I — D(A)
belongs to B(I; D(A)) (resp., to C(I; D(A)), C*(I; D(A))) if and only if both u and Au
belong to B(I; X) (resp., to C(I; X), C*(I; X)).

Let us define the Riemann integral of an X-valued function on a real interval.

Let f: [a,b] — X be a bounded function. We say that f is integrable on |[a,b] if there
is x € X with the following property: for every € > 0 there is a § > 0 such that for every
partition P = {a =ty < t; < ... < t, = b} of [a,b] with t; —t;_1 < ¢ for all ¢, and for any
choice of the points &; € [t;—1,t;] we have

Hﬂ? - Zn:f(&)(tz‘ - tz‘—l)H <e.
=1

/abf(t)dt .

From the above definition we obtain immediately the following

In this case we set
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Proposition A.2 Let «, 5 € C, and let f, g be integrable on [a,b] with values in X. Then
() [;(@f(t) +Bg())dt = a [} f(t)dt + 5 [, g(t)dt;
(6) 11 J; £(t)t]] < supreiay LF O = a);

() || 2 Fe)dt]] < [211f(t)]|dt;

(d) if Ae L(X,Y), where Y is another Banach space, then Af is integrable with values
inY and A [° f(t)dt = [P Af(t)dt;

(e) if (fn) is a sequence of continuous functions and there is f such that

lim max ||f.(t) — f(¢)]| =0,

n—+00 t€(a,b)

then limy, oo [* fo(t)dt = [7 f(t)dt.

It is also easy to generalize to the present situation the Fundamental Theorem of Calculus.
The proof is the same as for the real-valued case.

Theorem A.3 (Fundamental Theorem of Calculus) Let f : [a,b] — X be continu-
ous. Then the integral function

t
F(t) :/ f(s)ds
is differentiable, and F'(t) = f(t) for everyt € [a,b].

Improper integrals of unbounded functions, or on unbounded intervals are defined as
in the real-valued case. Precisely, If I = (a,b) is a (possibly unbounded) interval and
f 1 — X is integrable on each compact interval contained in I, we set

/a b f(t)dt == Malf,r?ﬁbf / ) f(t)dt,

provided that the limit exists in X. Note that statements (a), (d) of Proposition A.2 still
hold for improper integrals. Statement (d) may be extended to closed operators too, as
follows.

Lemma A.4 Let A: D(A) C X — X be a closed operator, let I be a real interval with
infl=a,supl =b (—oo<a<b<+o0)and let f: 1 — D(A) be such that the functions
t— f(t), t — Af(t) are integrable on I. Then

/bf(t)dteD(A), A/bf(t)dt:/bAf(t)dt.

Proof. Assume first that I is compact. Set z = fab f(t)dt and choose a sequence Py, =
{fa=th<... < t’ka = b} of partitions of [a,b] such that max;—y__,, (t¥ — ¥ |) < 1/k. Let

¢k e[tk th ] for i =0,...,ny, and consider

Sk =Y F(&)(t: —ti).
=1
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All Sy, are in D(A), and
AS), —ZAf (&)t —ti1).

Since both f and Af are integrable, Si tends to z and ASj tends to y := f: Af(t)dt
Since A is closed, x belongs to D(A) and Az = y.
Now let I be unbounded, say I = [a, +00); then, for every b > a the equality

A/abf(t)dt - /: Af(t)dt

holds. By hypothesis,

b +o00
/Af t)dt — Af(t)dt and /f t)ydt — f()dt as b — +o0,

hence

A/f nat— [ A

and the thesis follows since A is closed. O

Now we review some basic facts concerning vector-valued functions of a complex vari-
able.

Let €2 be an open subset of C, f : Q@ — X be a continuous function and v : [a,b] — Q
be a piecewise C'-curve. The integral of f along v is defined by

b
2)dz = "(t)d
[y £(2) / FOv) (Bt

Let ©2 be an open subset of C and let f: 2 — X be a continuous function.
As usual, we denote by X’ the dual space of X consisting of all linear bounded operators
from X to C. For each z € X, 2/ € X' we set 2/(z) = (z,2).

Definition A.5 f is holomorphic in Q if for each zg € Q the limit

i £2) = £0)

2—20 z— 2

= f'(20)

exists in X. f is weakly holomorphic in § if it is continuous in Q and the complez-valued
function z — (f(z),2') is holomorphic in Q for every 2’ € X'.

Clearly, any holomorphic function is weakly holomorphic; actually, the converse is also
true, as the following theorem shows.

Theorem A.6 Let f: Q — X be a weakly holomorphic function. Then f is holomorphic.

Proof. Let B(zg,r) be a closed ball contained in £2; we prove that for all z € B(z, r)
the following Cauchy integral formula holds:

1 7€)

2mi 0B(zo,r) §—z

f(z) =

d. (A1)
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First of all, we observe that the right hand side of (A.1) is well defined because f is con-
tinuous. Since f is weakly holomorphic in €2, the complex-valued function z — (f(2),z')

is holomorphic in Q for all 2 € X’, and hence the ordinary Cauchy integral formula in
B(zp,r) holds, i.e.,

no_ 1 (f&,a") .. /1 f€) /
<f(z>7w > B % /83(20,1") 5 -z d§ B <27TZ /(93(z0,r) 6 -z dg, ! >

Since 2’ € X' is arbitrary, we obtain (A.1). We can differente with respect to z under the
integral sign, so that f is holomorphic and

f(n)(z) — n!/aB &dﬁ

2mi (z0,7) (6 - Z)n+1

for all z € B(zp,r) and n € N. J

Definition A.7 Let f : Q — X be a vector-valued function. We say that f admits a
power series expansion around a point zg € ) if there exist a X -valued sequence (a,) and
r > 0 such that B(zg,r) C  and

400
f(z) = Zan(z —20)" in B(zo,7).
n=0

Theorem A.8 Let f : Q2 — X be a continuous function; then f is holomorphic if and
only if f has a power series expansion around every point of ).

Proof. Assume that f is holomorphic in 2. Then, if zp € Q and B(zp,r) C 2, the Cauchy
integral formula (A.1) holds for every z € B(z,r).
Fix z € B(zp,r) and observe that the series

+o0
(z—20)" 1
Z(f—zo)”+1_§—z

n=0

converges uniformly for £ in dB(zo, ), since |(z—20)/(§ —20)| = r~ |z —20|. Consequently,
by (A.1) and Proposition A.2(e), we obtain

+o00

o 1 (Z _ Z())n
f(Z) - 277” OB(z0,r) f(g) ; W dg
i nz::o [% /5?B(zO,r) (€= zo)" df} (2 = 20)",

the series being convergent in X.
Conversely, suppose that

+o0
flz) = Zan(z —20)", z€ B(zo,r1),
n=0

where (ay,) is a sequence with values in X. Then f is continuous, and for each 2’ € X',

“+o00

(f(2),2) = {an,2')(z — 20)", 2 € B(z,7).

n=0
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This implies that the complex-valued function z — (f(z),2’) is holomorphic in B(zg, )
for all 2/ € X’ and hence f is holomorphic by Theorem A.6. [

Now we extend some classical theorems of complex analysis to the case of vector-valued
holomorphic functions.

Theorem A.9 (Cauchy) Let f : Q — X be holomorphic in Q and let D be a regular
domain contained in 2. Then
/ f(z)dz = 0.
oD

Proof. For each 2’ € X’ the complex-valued function z — (f(z),2’) is holomorphic in

and hence
O:/ (f(z),:v')dz< (z)dz,a;’>.
oD oD
O

Remark A.10 [improper complex integrals| As in the case of vector-valued functions
defined on a real interval, it is possible to define improper complex integrals in an obvious
way. Let f: Q — X be holomorphic, with Q@ C C possibly unbounded. If I = (a,b) is a
(possibly unbounded) interval and v : I — C is a piecewise C'! curve in €2, then we set

s—at,t—b—

t
[fedzi= v [ femp .
¥ s
provided that the limit exists in X.

Theorem A.11 (Laurent expansion) Let f: D :={2€C:r <|z— 2| < R} — X be
holomorphic. Then, for every z € D

where

1
=5 / _f(z)n+1 P
T JaB(20,0) (Z ZO)

andr < o < R.

Proof. Since for each 2’ € X' the function z — (f(z),2’) is holomorphic in D the usual
Laurent expansion holds, that is

—+00

(f)a) = ) an(@)(z = 20)"

n=—0oo

where the coefficients a,(z’) are given by

)1 f@
an(z") /BB(Z()?Q) ( d €.

T omi z—zo)n L
By Proposition A.2(d), it follows that
an(2') = {an,2'), ne€Z,

where the a,, are those indicated in the statement. [
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Exercises

Al

A3
A4
A5

A6

Given a function w : [a,b] x [0,1] — R, set U(t)(z) = u(t,x). Show that U €
C([a,b]; C(]0,1])) if and only if u is continuous, and that U € C*([a,b]; C([0,1])) if
and only if u is continuous, differentiable with respect to ¢t and the derivative wu; is
continuous.

If [0,1] is replaced by R, show that if U € C([a, b]; C4(R)) then w is continuous and
bounded, but the converse is not true.

Let f: [a,b] — X be a continuous function. Show that f is integrable.
Prove Proposition A.2.

Show that if f : (a,b] — X is continuous and ||f(t)|| < ¢(¢) for all ¢t € (a,b], with
g € L'(a,b), then the improper integral of f on [a, b] is well defined.

Let I; and I be, respectively, an open set in R (or in C) and a real interval. Moreover,
let g : I1 x Iy — X be a continuous function and set

G()\):/ g\ tdt,  Ael.
Ip)

(a) Show that if the inequality ||g(\,t)|| < ¢(t) holds for every (A,t) € I1 x Iy and
some function ¢ € L(I3), then G is continuous in I;.

(b) Show that if ¢ is differentiable with respect to A, gy is continuous and ||ga(A, )| <
() for every (t,\) € I x Iy and some function ¢ € L!(I5), then G is differentiable
in I; and

G,()\) _/I g)\(/\,t)dt, Ae .






Appendix B

Basic Spectral Theory

In this appendix we collect a few basic results on elementary spectral theory. To begin
with, we introduce the notions of resolvent and spectrum of a linear operator.

Definition B.1 Let A : D(A) C X — X be a linear operator. The resolvent set p(A)
and the spectrum o(A) of A are defined by

p(A)={AeC:TI - A te LX)}, o(A) =C\p(A). (B.1)
If A € p(A), the resolvent operator (or briefly resolvent) R(X, A) is defined by
R\ A) = (M — AL (B.2)

The complexr numbers N € o(A) such that NI — A is not injective are the eigenvalues
of A, and the elements x € D(A) such that x # 0, Ax = v are the eigenvectors (or
eigenfunctions, when X is a function space) of A relative to the eigenvalue A. The set
op(A) whose elements are the eigenvalues of A is the point spectrum of A.

It is easily seen (see Exercise B.1 below) that if p(A) # @ then A is closed.

Let us recall some simple properties of resolvent and spectrum. First of all, it is clear
that if A : D(A) C X — X and B : D(B) C X — X are linear operators such that
R(Xo, A) = R(Xo, B) for some \g € C, then D(A) = D(B) and A = B. Indeed,

D(A) = Range R(\g, A) = Range R(\o, B) = D(B),

and for every x € D(A) = D(B), setting y = Az — Az, one has x = R(\,A)y =
R(Xo, B)y. Applying Aol — B, we get Aoz — Bx = y, so that A\gx — Az = \gz — Bz and
therefore Ax = Bux.

The following formula, called the resolvent identity, can be easily verified:

RO\, A) = R(i, A) = (11— VRO A)R(s, 4), A, p € p(A). (B.3)
In fact, write
R(A, A) = [uR(p, A) — AR(u, A)|R(A, A),
R(p, A) = [AR(A, A) — AR(X, A)|R(p, A),

and subtract the above equalities; taking into account that R(\, A) and R(u, A) commute,
we get (B.3).

The resolvent identity characterizes the resolvent operators, as specified in the following
proposition.

B1
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Proposition B.2 Let Q C C be an open set, and let {F(\) : A € Q} C L(X) be linear
operators verifying the resolvent identity

FQ) = F(p) = (p=XNFXN)F(n), Apel

If for some Ao € Q, the operator F(\g) is invertible, then there is a linear operator A :
D(A) C X — X such that p(A) contains 0, and R(\, A) = F(X) for all X € Q.

Proof. Fix )y € Q, and set

D(A) = Range F()\), Az = Xz — F(\o) 'z, 2 € D(A).
For A € Q and y € X the resolvent equation \z — Az = y is equivalent to (A — A\g)z +
F(Xo)txy. Applying F(\) we obtain (A —Xo)F(\)z + F(A\)F (X)) tz = F()\)y, and using
the resolvent identity it is easily seen that

F(N)F(Xo) ™ = F(Xo) 'F(A) = (Ao = N)F(A) + I

Hence, if = is a solution of the resolvent equation, then z = F(A)y. Let us check that
x = F()\)y is actually a solution. In fact, (A—Xo)F(N)y+F (X)) 'F()\)y = y, and therefore
A belongs to p(A) and the equality R(\, A) = F'(\) holds. O

Next, let us show that p(A) is an open set.

Proposition B.3 Let Ay be in p(A). Then, |A\—Xo| < 1/||R(Xo, A)|| implies that X belongs
to p(A) and the equality

R(A\A) = RO, A)(I + (A= Ao)R(Ao, 4)) ! (B4)
holds. As a consequence, p(A) is open and o(A) is closed.

Proof. In fact,
(A=A4) =T+ (A= A)R(Xo, 4)) (Ao — A)

on D(A). Since [[(A — Ao)R(Xo, A)|| < 1, the operator I + (A — Ag)R(Xo, A) is invertible

and it has a continuous inverse (see Exercise B.2). Hence,

R(\, A) = R(Xo, A)(I + (A — Xo)R(Xo, 4)) "

Further properties of the resolvent operator are listed in the following proposition.

Proposition B.4 The function R(-, A) is holomorphic in p(A) and the equalities

+oo
ROLA) = 3 (=1 (A= M) R (Ao, A), (B.5)
n=0
W - (—1)"nlR"™ (Ao, A), (B.6)

hold.
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Proof. (i) If |A — N\g| < from (B.4) we deduce

Il £( /\ AN
+00 +oo

R(X, A) = R(Xo, 4) Y (=1)"(A = X0)"R(Ao, A)" Y (=1)™(A = Xo)" R(Ao, 4)"F!
n=0 n=0

and the statement follows. OJ

Proposition B.3 implies also that the resolvent set is the domain of analyticity of the
function A — R(\, A).

Corollary B.5 The domain of analyticity of the function A — R(X\, A) is p(A), and the

estimate
1

— dist(\, 0 (A)) (B.7)

1B Alleeo =

holds.

Proof. It suffices to prove (B.7), because it shows that R(, A) is unbounded approaching
o(A). From Proposition B.3 for every A € p(A) we get that if [z — A| < 1/[|R(A, A)|z(x)
then z € p(A), and dist (A, 0(A)) > 1/[|R(\, A)||£(x), that implies (B.7). O

Let us recall also some spectral properties of bounded operators.
Proposition B.6 If T € L(X) the power series
+oo
= szTk, z € C, (B.8)
(called the Neumann series of (I — 2T)~!) is convergent in the disk B(0,1/r(T)), where
r(T) = limsup v/||T"|.
n—-+00
Moreover, |z| < 1/r(T) implies F(z) = (I — 2T)7Y, and |z| < 1/||T|| implies
1

(I —2T) || < W (B.9)

Proof. To prove the convergence of (B.8) in the disk B(0,1/r(T)) it suffices to use Exercise
B.2, whereas (B.9) follows from the inequality

IEE)I < E NI
— |z IHTH
O

Proposition B.7 Let T € L(X). Then the following properties hold.
(i) o(T) is contained in the disk B(0,7(T)) and if |\| > r(T) then

“+oo
=y TR (B.10)

For this reason, r(T) is called the spectral radius of T'. Moreover, || > ||T|| implies

IR T < (B.11)

o
A= 1IT)1°
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(ii) o(T) is non-empty.

Proof. (i) follows from Proposition B.6, noticing that, for A # 0, A\ =T = XA(I — (1/\)T).
(ii) Suppose by contradiction that o(7) = @. Then, R(-,T) is an entire function, and
then for every z € X, 2/ € X’ the function (R(-,T)x,z’) is entire (i.e., holomorphic on the
whole C), it tends to 0 at infinity, and then it is constant by the Liouville theorem. As a
consequence, R(\,T") = 0 for all A € C, which is a contradiction. [J

Exercises
B.1 Show that if A: D(A) C X — X has non-empty resolvent set, then A is closed.

B.2 Show that if A € £(X) and ||A|| < 1 then I + A is invertible, and

—+00

(I+A4)7" =) (-1)Fa*.

k=0

B.3 Show that for every a € C the equalities o(ad) = ao(A), o(al — A) = a — o(A)
hold. Prove also that if 0 € p(A) then o(A~1)\ {0} = 1/0(A), and that p(A+al) =
p(A) +a, RN A+al) =R\ —a,A) for all A € p(A) + a.

B.4 Let ¢: [a,b] — C be a continuous function, and consider the multiplication operator
A: C(la,b];C) — C([a,b];C), (Af)(x) = f(z)p(x). Compute the spectrum of A. In
which cases are there eigenvalues in o(A)?

B.5 Let Cy(R) be the space of bounded and continuous functions on R, endowed with
the supremum norm, and let A be the operator defined by

D(A) = Cy(R) = {f € Cy(R) : 3" € C(R)} — Cy(R), Af =["
Compute o(A) and R(X, A), for X € p(A). Which are the eigenvalues of A?

B.6 Let P € L£L(X) be a projection, i.e., P2 = P. Find o(A), find the eigenvalues and
compute R(A, P) for A € p(P).

B.8 Let X = C(]0,1]), and consider the operators A, B, C on X defined by

D(A) = CY[0,1]): Au=1/,
D(B) = {ue ([,
D(C) = {ue (o,

Show that
p(A) =2, o(4)=C,
p(B)=C, a(B)=2, (R(\,B)f)(€) =~ /O 5 A fn)dn, 0<E<1,
p(C) = C\ {2kni: k€ Z}, o(C){2kni: k€ Z}.

Show that 2kmi is an eigenvalue of C, with eigenfunction & — ce?*™%  and that for
A€ p(C),

1 3
(BOCUNE = 5 [ XDy — [ XDy

0 0
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B.9 Let A: D(A) C X — X be a linear operator and let A\ € C. Prove that, if there
exists a sequence {up }nen such that ||u,|| = 1 for any n € N and Au,, — Au,, tends
to 0 as n tends to +o0, then A € o(A4).
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