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Introduction

These lectures deal with the functional analytical approach to linear and nonlinear parabolic
problems.
The simplest significant example is the heat equation, either linear

ur(t, @) = ugz(t,x) + f(t,z), 0<t<T,0<z<1,
u(0,2) = up(z), 0 <z <1, (1)
u(t,0) =u(t,1) =0, 0<t<T,

or nonlinear,
ur(t, @) = uga(t, ) + f(u(t,z)), t>0,0<xz <1,
u(0,z) =up(z), 0 <z <1, (2)
u(t,0) = u(t,1) =0, t>0.

In both cases, u is the unknown, and f, ug are given. We will write problems (1), (2) as
evolution equations in suitable Banach spaces. To be definite, let us consider problem (1),
and let us set

u(t,) =U(t), f(t,")=F(t), 0<t<T,

so that for every t € [0,T], U(t) and F(t) are functions, belonging to a suitable Banach
space X. The choice of X depends on the type of the results expected, or else on the
regularity properties of the data. For instance, if f and ug are continuous functions the
most natural choice is X = C([0,1]); if f € LP((0,T) x (0,1)) and up € LP(0,1), p > 1,
the natural choice is X = LP(0,1), and so on.

Next, we write (1) as an evolution equation in X,

U'(t) = Au(t) + F(t), 0<t<T,

(3)
U(0) = uy,

where A is the realization of the second order derivative with Dirichlet boundary condition
in X (that is, we consider functions that vanish at = 0 and at = 1). For instance, if
X = C(]0,1]) then

D(A) = {p € C*([0,1]) : (0) = (1) =0}, (Ap)(z) = ¢"(x).

Problem (3) is a Cauchy problem for a linear differential equation in the space X =
C([0,1]). However, the theory of ordinary differential equations is not easily extendable
to this type of problems, because the linear operator A is defined on a proper subspace of
X, and it is not continuous.
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What we use is an important spectral property of A, i.e. the resolvent set of A contains
asector S ={Ae€ C: \#0, |arg)| < 0}, with 6 > 7/2 (precisely, it consists of a sequence
of negative eigenvalues), and moreover

_ M
I = A)Hlpx) < o AeS. (4)

This property will allow us to define the solution of the homogeneous problem (i.e., when
F = 0), that will be called e!4ug. We shall see that for each ¢t > 0 the linear operator
ug +— eug is bounded. The family of operators {e!4 : ¢ > 0} is said to be an analytic
semigroup: semigroup, because it satisfies
(A = otAgsA gy o >0, 04 =1,
analytic, because the function (0, +00) — L(X), t — e will be shown to be analytic.
Then we shall see that the solution of (3) is given by the variation of constants formula

t
U(t) = eug + / =4 (s)ds, 0<t<T,
0

that will let us study several properties of the solution to (3) and of w, recalling that
U(t) = u(t,-).

We shall be able to study the asymptotic behavior of U as ¢ — 400, in the case that
F is defined in [0, 400). As in the case of ordinary differential equations, the asymptotic
behavior depends heavily on the spectral properties of A.

Also the nonlinear problem (2) will be written as an abstract equation,

U'(t) = AU(t) + F(U(t)), t >0,

(5)
U(O) = Uuo,

where F' : X — X is the composition operator, or Nemitzky operator, F(v) = f(v(-)).
After stating local existence and uniqueness results, we shall see some criteria for existence
in the large. As in the case of ordinary differential equations, in general the solution is
defined only in a small time interval [0,6]. The problem of existence in the large is of
particular interest in equations coming from mathematical models in physics, biology,
chemistry, etc., where existence in the large is expected. Some sufficient conditions for
existence in the large will be given.

Then we shall study the stability of the (possible) stationary solutions, that is all
the w € D(A) such that Au + F(u) = 0. We shall see that under suitable assumptions
the Principle of Linearizad Stability holds. Roughly speaking, @ has the same stability
properties of the solution of the linearized problem

VI(t) = AV(t) + F'(a)V (t)

If possible we shall construct the stable manifold, consisting of all the initial data such
that the solution U(t) exists in the large and tends to u as t — 400, and the unstable
manifold, consisting of all the initial data such that problem (5) has a backward solution
going to w as t — —oo.
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Analytic semigroups

1.1 Introduction

Our concern in this chapter is the Cauchy problem in general Banach space X,

u'(t) = Au(t), t > 0,
(1.1)
u(0) = =z,

where A : D(A) — X is a linear operator and z € X. A solution of (1.1) is a function
u € C([0,+00); X) NC((0,4+00); X), verifying (1.1). Of course, the construction and the
properties of the solution will depend upon the class of operators that will be considered.
The most elementary case is that of a finite-dimensional X and a matrix A, which we
assume to be known to the reader. The case of a bounded operator A in general Banach
space X can be treated essentially in the same way, and we are going to discuss it briefly in
this introduction. We shall present two formulae for the solution, a power series expansion
and an integral formula based on a complex contour integral. While the first one cannot
be generalized to the case of unbounded A, the contour integral admits a generalization
to an integral along an unbounded curve for suitable unbounded operators, those called
sectorial. This class of operators is discussed in section 1.2. If A is sectorial, then the
solution map x — wu(t) of (1.1) is given by an analytic semigroup. Analytic semigroups
are the main subject of this chapter.

Let A: X — X be a bounded linear operator. First, we give a solution of (1.1) as the
sum of a power series of exponential type.

Proposition 1.1.1 Let A € £L(X). Then, the series

m_ A R 1.2
e _ZT’ teR, (1.2)
k=0

converges in L(X) uniformly on bounded subsets of R. Setting u(t) = ez, the Cauchy
problem (1.1) admits the restriction of u to [0,400) as its unique solution.

Proof. FEuzistence. Using Theorem A.1.2 as in the finite-dimensional case, it is easily
checked that solving (1.1) is equivalent to finding a continuous function u : [0,00) — X
which solves the integral equation

t
u(t) =z + / Au(s)ds, t>0. (1.3)
0
In order to show that u solves (1.3), let us fix an interval [0, 7] and define
t
zo(t) =, xpy1(t) =2 +/ Az, (s)ds, n € N. (1.4)
0

p—
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‘We have .
"tk A
Tn(t) = Z TR eN.
k=0
Since
AR TR AR
<y ———< R

n tkAk
DT

k=0

the series Y~ % converges in L(X), uniformly with respect to t in [0,7T]. Moreover,

the sequence {x,(t)}nen converges to z(t) = > oo A% o uniformly for ¢ in [0,T]. Letting
n — oo in (1.4), we conclude that u is a solution of ( 3).
Uniqueness. If x,y are two solutions of (1.3) in [0,7], we have by Proposition A.1.1(d)

[2(t) =yl < HAH/ l2(s) = y(s)llds

and from Gronwall’s lemma (see exercise 1.1.4.2 below), the equality x = y follows at
once. [

As in the finite dimensional setting, we define

thtA
tA
et = T teR. (1.5)
k=0

It is clear that for every bounded operator A the above series converges in £(X) for each
t € R. If A is unbounded, the domain of A¥ may get smaller and smaller as k increases,
and even for x € NgenyD(A¥) it is not obvious that Y32 t*A¥z/k! converges. So, we have

to look for another representation of the solution to (1.1) if we want to extend it to the
unbounded case. As a matter of fact, it is given in the following proposition.

Proposition 1.1.2 Let v C C be any circle with centre 0 and radius r > ||Al|. Then

1
et = _— / PR\, A)dN,  t>0. (1.6)
27 J,
Proof. From (1.5) and the series expansion (see (B.11))
R(A A) = N Al > [l A]
k=0
we have
= / PR\, A)d\ = iiﬁ / APR(N, A) dA
2mi )., ’ o 2mi ! ’
n=0 v
I Rt [ AF
= Q—MZ—!/A PIEv=T
n=0 v k=0
— i = ﬁ — Ak/)\nkl d)\—etA,
27 n!
k=0 v

as the integrals in the last series equal 27 if n = k, 0 otherwise. [J

Let us see how it is possible to generalize to the infinite-dimensional setting the vari-
ation of parameters formula, that gives the solution of the non-homogeneous Cauchy
problem

u'(t) = Au(t) + f(t), 0<t<T,
(1.7)
u(0) = =z,

where A € L(X),z € X, fe C([0,T]; X) and T > 0.
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Proposition 1.1.3 Problem (1.7) has a unique solution in [0,T], given by

u(t) = ez + /t =41 (s)ds. (1.8)
0

Proof. It can be directly checked that u is a solution. Concernibg uniqueness, let uy, uso
be two solutions; then, v = uy; — ug satisfies v/'(t) = Av(t) for 0 <t < T, v(0) = 0. By
proposition 1.1.1, v = 0. O

Exercises 1.1.4 1. Prove that if the operators A and B commute, AB = BA, then
edeB = eATB and deduce that in this case etdetB = t(A+5),

2. Prove the following form of Gronwall’s lemma:

Let u,v : [0,400) — [0,400) be continuous, and assume that
t
u(t) < —i—/ u(s)v(s)ds
0

for some v > 0. Then, u(t) < aexp{fgv(s)ds}.

3. Check that the function u defined in (1.8) is a solution of problem (1.7).

1.2 Sectorial operators

In this section we introduce the class of sectorial operators which will be proved to be
suitable to extend the integral formula (1.6) in order to get a solution of (1.1).

Definition 1.2.1 A linear operator A : D(A) C X — X is said to be sectorial if there
are constants w € R, 8 € (w/2,7), M > 0 such that

() p(A) D Spu = {A € T: A # w, Jarg(A — w)| < 6},

(1.9)

(1) [[RA A)lleex) < VA € Sp-

M
A=l
For every t > 0, conditions (1.9) allow us to define a bounded linear operator 4 on
X, through an integral formula that generalizes (1.6). For r > 0, n € (7/2,0), let ~,.,, be

the curve
{AeCilargh =, [\ 2 1} U{A € C:largh| <, Al = 1),

oriented counterclockwise.
For each t > 0 set

1
e = —/ e R(N\, A)d\, t>0. (1.10)
270 )y,

Lemma 1.2.2 [fA: D(A) C X — X satisfies (1.9), the integral in (1.10) is well defined,
and it is independent of r and n.

Proof. First of all, notice that A — e"*R()\, A) is a £(X)-valued holomorphic function in
the sector Spy,,. Moreover, the estimate

M
e R(\, A) l2(x) < exp(t|A\| cos 0)

)
r

(1.11)
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with 6 > 7, holds for each A in the two half-lines, and this easily implies that the improper
integral is convergent. Take now different ' > 0,7/ € (7/2,60) and consider the integral
on 7 +w. Let {1 be the region lying between the curves v, , +w and 7, ,, +w and for
every n € N set D,, = DN {|z| < n}. By Cauchy integral theorem A.1.7 we have

/ e R(\, A)d\ = 0.
0Dy,

By estimate (1.11) the integrals on the two circle arcs and on the halflines {|XA > n} Ny,
{IA > n} N~u, tend to 0 as n tends to +oo, so that

/ PR\, A)d)\ = / e R(N, A) dX
Yr,ntw Vit ! +w

and the proof is complete. [J
Notice that using the obvious parametrization of v,., we get

ewt

+o0o o ' .
etA _ _(_/ €(£C°Sn_lgsmn)tR(w—i—fe_m,A)e_mdg
271 .

n /77 e(rcosa—l—irsina)tR(w + Teia,A)Z’?”eiadOé
-
+oo
+ / e(f cos n+1§ sinn)tR(w + 5672777 A)emd§> )
r

for every t > 0 and for every r > 0, n € (7/2,6).
Let us also set
e =z VrelX. (1.12)

In the following theorem the main properties of et for t > 0 are summarized.

Theorem 1.2.3 Let A be a sectorial operator and let et be given by (1.10). Then, the
following statements hold.

(i) ez € D(AF) for allt >0, x € X, k € N. If x € D(AF), then
AFetdy = A ARy Vi > 0.
(ii) ethesA = e+ v s> 0.
(iii) There are constants My, My, Ma, ..., such that
(a) e zx) < Moe®t, t >0,
(1.13)
(1) 54 — WD)kt ) < Mee, ¢ >0,

where w is the constant in (1.9). In particular, from (1.13)(b) it follows that for
every € > 0 and k € N there is Ci . > 0 such that

[tF AR £(x) < O e ¢ > 0. (1.14)
(iv) The function t — e belongs to C*°((0,400); L(X)), and the equality

dk
We“‘ = AFetd >0, (1.15)
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zA

holds for every k € N. Moreover, it has an analytic continuation e** in the sector

S0,0—n/2, and, for z = pei® So,0-r/2, 0 € (7/2,0 — ), the equality

1
et = _— M R(\, A)dA

2m ’yr,9/+w

holds.

Proof. Possibly replacing A by A —wl, we may suppose w = 0.

Proof of (i). First, let k = 1. Using lemma B.1.2 with f(¢) = eR(), A) and the resolvent
identity AR(\, A) = AR(\, A) — I, which holds for every A € p(A), we deduce that e*4
belongs to D(A) for every x € X. Moreover, if z € D(A), the equality Aet4z = ¢4 Ax
follows from (1.10), since AR(X, A)z = R(\, A)Ax. Note that for each z € X we have

1
27i

Aett = / AeAR(N, A)d,
Yr,n

because f% ) e\ = 0.

Iterating this argument, we obtain that e’z belongs to D(AF) for every k € N; more-
over

Akt — i, / M AR(N, A)dA,
271—1 Yryn

and (i) can be easily proved by recurrence.

Proof of (ii). From

2
etesd = (L> / e)‘tR()\,A)d)\/ M R(p, A)dp,
Yrin

27
727',7]/

with o' € (%,7), using the resolvent identity it follows that

2
etAesA — <L> / / )\H‘MS ) R( ) d)\d
211 e I —A

2r,n!

1\? du
- <_) / eMR(\, A)d\ / eHs
271-1 Yrm PY27‘,7;/ M o )\
1\2
<2m'> /72

e“sR(u,A)du/ e)\t& _ e(t—&-s)A’
where we have used the equalities

mw—A
d d\
/ ens omie’r, \ e Yr.ns / M —_ =0, pe Yor
5. w—= A Yr,n w—= A

rn’ Yrm

2r,n!
that can be easily checked using the same domains D,, as in the proof of Lemma 1.2.2.

Proof of (iii). As a preliminary remark, let us point out that if we estimate ||e*4| inte-
grating ||eMR(\, A)| we get a singularity near ¢t = 0, because the integrand behaves like
M/|A| for |A| small. We have to be more careful. Setting A\t = £, we rewrite (1.10) as

oA — L €§R§A gzi/ efRﬁAﬁ
2mi Jsy,, )t 2mi ), t)t
+00 +o0 n fzr]
_ L(/ 656171 <£e_ >—d£ / m <§€ 7 ) g

27

n ) 0 )
+/ erezeR<r€ ,A)irezed—0>.

—n t t
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+o00 n
HetAH < l {/ Me{cosn%_‘_/ Mercosada}_
™ Uy & Joy

In an analogous way one can prove that there exists N > 0 such that ||Ae*4|| < N/t, for
all ¢ > 0.

From the equality Ae*4z = e!4 Az, which is true for each z € D(A), it follows that
Aketh = (Ae%A)k for all k € N, so that

It follows that

1A xy < (NRETHP = Myt ™",

Proof of (iv). From the definition it is clear that ¢ — 4 belongs to C°°(0, +o0, £(X));
moreover, using the result of exercise A.5 we get

d 1
—et = = / AeMR(N, A)dA
dt 271 e
1 1
= — eMd\ + — AeMR(\, A)dA
211 e 211 e

= AetA, t>0

because the first integral vanishes by the analyticity of the function A — e*. The equality

dk tA k_tA

—et = A", t>0

dtk

can be proved by the same argument, or by recurrence. Let now 0 < oo < 6 —7/2 be given,
and set n = 0 — . The function

1
et = — / e R(N, A)dA
’YT,’V]

2mi
is well defined and holomorphic in the sector
Se={2€C:2#0, |argz| <0 —7/2 — a}.
Since the union of the sectors Sg, for 0 < o <6 — /2, is Sp gz, (iv) is proved. U

Statement (ii) in theorem 1.2.3 tells us that the family of operators e/ satisfies the
semigroup law, an algebraic property which is coherent with the exponential notation. Let
us give the definitions of analytic and strongly continuous semigroups.

Definition 1.2.4 Let A be a sectorial operator. The function from [0,+00) to L(X),
ts et (see (1.10)-(1.12)) is called the analytic semigroup generated by A (in X ).

Definition 1.2.5 Let (T(t))t>0 be a family of bounded operators on X. If T(0) = I,
T(t+s) =T(t)T(s) for allt,s > 0 and the map t — T(t)x is continuous from [0, +o00) — X
then (T'(t))i>0 is called a strongly continuous semigroup.

tA

Given x € X, the function ¢ — e"“z is analytic for ¢ > 0. Let us consider the behavior

of etz for t close to 0.

Proposition 1.2.6 The following statements hold.

(i) If x € D(A), then lim,_ o+ etz = x. Conversely, if y = lim,_,y+ et4

x € D(A) and y = x.

T exists, then
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(ii) For every x € X and t > 0, the integral f(f e*Axds belongs to D(A), and
t
A/ eAads = ez — 1. (1.16)
0
If, in addition, the function s — Ae*Ax is integrable in (0,¢€) for some € > 0, then

t
ety —x = / Ae*Axds, t>0.
0

(i) If © € D(A) and Ax € D(A), then lim,_o+ (e z — )/t = Azx. Conversely, if
2= limy_o(etx — 2)/t exists, then x € D(A) and Az = z € D(A).

(iv) If x € D(A) and Az € D(A), then lim,_ g+ Aetdx = Ax.

Proof. Proof of (i). Notice that we cannot let ¢ — 0 in the definition (1.10) of e*4u,
because the estimate | R(\, A)|| < M/|A—w] is not enough to guarantee that the improper
integral is well defined for ¢t = 0.

But if 2 € D(A) things are easier: fix &, r such that w < £ € p(A) and 0 <7 < £ — w.
For all x € D(A), set y = £&x — Az, so that z = R({, A)y. We have

1
ez = MR(E Ay = — e R(N, A)R(E, A)y dA
21 Sy, v
—_ i et)\ R()\7 A) d\ — i et)\ R(§7 A) y d\
27TZ ’Y’V‘,U"’_w g - A 27TZ ’Y’V‘,U"’_w € - )\
_ L et)\ R()\a A) d)\,

- Y
210 Sy, ot §—A

because the other integral vanishes (why?). Here we may let ¢ — 0 because |R(\, A)y/ (& —
M| < CIA|72 for A € 4, + w. We get

. 1 R(\, A)
1 L — / ’ dA\R(E, A)y = z.
ti%}ﬁ-e x 9 S 350\ Yy (f, )y €T

Since D(A) is dense in D(A) and ||e*4] is bounded by a constant independent of ¢ for
0 <t < 1, then lim,_,o+ ez = x for all x € D(A), see lemma B.1.1.

Conversely, if y = lim, g+ ez, then y € D(A) because ¢4z € D(A) for t > 0, and
we have R(€, A)y = lim, o+ R(€, A)etdz = lim,_ g+ et R(E, A)x = R(¢, A)x as R(&, A)x €
D(A). Therefore, y = x.

Proof of (ii) To prove the first statement, take £ € p(A) and x € X. For every ¢ € (0,t)
we have

t t
/ eArds = / (€ — AR(E, A)e*ads
= f/: R(¢, A)e*Axds — /Et %(R(f, A)e*Ax)ds
= (R(A) /t eAxds — eAR(E, A)x + EAR(E, A) .

Since R(&, A)x belongs to D(A), letting ¢ — 0 we get

/t e*Axds = ER(E, A) /t e*Axds — R(E, A)(ez — ). (1.17)
0 0
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Then, fg e*Axds € D(A), and

¢ ¢
(&I —A) / eArds = f/ e Ards — (M — 1),
0 0

whence the first statement in (ii) follows. If in addition s — ||Ae*42| belongs to L'(0,T),
we may commute A with the integral and the second statement in (ii) is proved.

Proof of (iii). If x € D(A) and Az € D(A), we have

tA t t
— 1 1
crTT_ —A/ Sy ds = —/ S Ax ds.
t t ), tJy

Since the function s — e*4 Az is continuous on [0, ] by (i), then lim,_+ (e!4z —2)/t = Ax.
Conversely, if the limit z := lim,_,g+ (e?4z — )/t exists, then lim, o+ e!4z = z, so that
both x and z belong to D(A). Moreover, for every £ € p(A) we have

etAx — T

R(E A)z = lim R(E, )27,
and from (ii) it follows

R(&,A)z = hm Rf A) A/ eAxds = 11m(§R(§ A) — )1 /t e ds.
0

sA

Since x € D(A), the function s — e**z is continuous at s = 0, and then

In particular, x € D(A) and z = €x — (£ — A)z = Aux.
Proof of (iv). Statement (iv) is an easy consequence of (i). O

Coming back to the Cauchy problem (1.1), let us notice that theorem 1.2.3 and propo-
sition 1.2.6 imply that the function

u(t) = ez, t>0

is analytic with values in D(A) for ¢ > 0, and it is a solution of the differential equation
n (1.1) for t > 0. If, moreover, z € D(A), then u is continuous also at t = 0 (with values
in X') and then it is a solution of the Cauchy problem (1.1). If z € D(A) and Az € D(A),
then wu is continuously differentiable up to ¢ = 0, and it solves the differential equation also
at t = 0, i.e., u/(0) = Ax. Uniqueness of the solution to (1.1) will be proved in proposition
4.2.3, in a more general context.

If = does not belong to D(A), proposition 1.2.6 implies that u is not continuous at 0,
hence (even though, by definition, e®4z = x) the initial datum is not assumed in the usual
sense. However, some weak continuity property holds; for instance we have

hm R(\, A)etz = RO\, A)zx (1.18)

for every A € p(A). Indeed, R(\, A)etdz = e R(\, A)z for every t > 0, and R(\, A)z €
D(A).

A standard way to obtain a strongly continuous semigroup from a sectorial operator
A is to consider the part of A in D(A).

Definition 1.2.7 Let L : D(L) C X — X be a linear operator, and let Y be a subspace
of X. The part of L in Y is the operator Ly defined by

D(Ly) ={x e D(L)NY : Lz €Y}, Lox= Lux.
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It is easy to see that the part Ag of A in D(A) is still sectorial. Since D(Ap) is
dense in D(A) (because for each 2 € D(Ag) we have z = lim;_g e'“z), then the semigroup
generated by Ay is strongly continuous in D(A). The semigroup generated by A coincides
of course with the restriction of e*4 to D(A).

Let us remark that all the properties of e have been deduced from those of the
resolvent operator, through the representation formula (1.10). Conversely, the follow-
ing proposition says that the resolvent is the Laplace transform of the semigroup; as a

consequence, several properties of R(\, A) can be deduced from properties of e4.

Proposition 1.2.8 Let A : D(A) C X — X be a sectorial operator. For every A € C
with Re A > w we have

+o0o
R\ A) = / e MetAdt. (1.19)
0
Proof. Fix0<r <ReA—w andn € (7/2,0). Then

+00 1 +oo
/ e MetAgqt = R(z,A)/ e M2t dy
0 27TZ WY n 0

_ 1 R(z, A)(A — 2)"ldz = R(\, A).

21 Wty

g

Corollary 1.2.9 For all t > 0 the operator etd is one to one.

Proof. ¢’ =1is obviously one to one. If there are ty > 0, x € X such that ety =0,

then for t > tg, et4x = elt=t0)ActoA, — (. Since the function t — ef4z is analytic, etz = 0
in (0, 400). From Proposition 1.2.8 we get R(\, A)z =0 for A > w, so that x = 0. O

Remark 1.2.10 (1.19) is the formula used to define the Laplace transform of the scalar
function ¢ — €', if A € C. On the other hand, the classical inversion formula given by
a complex integral on a suitable vertical line must be modified, and in fact to get the
semigroup from the resolvent operator a complex integral on a different curve has been
used, see (1.10), in such a way that the improper integral converges because of assumption
(1.9).

Theorem 1.2.11 Let {T'(t) : t > 0} be a family of bounded operators such that the
function t — T(t) is differentiable, and assume that

(1) T(t)T(s) =T(t+s), for allt, s> 0;

(i) there are w € R, My, My > 0 such that || T ()| z(x) < Moe®*, |tT'(t)| z(x) < Mie*!
fort > 0;

(iii) one of the following conditions holds:

(a) there ist > 0 such that T(t) is one to one
(b) for every x € X we have limy_,o T'(t)x = z.

Then the function t — T(t) from (0,4+00) to L(X) is analytic, and there is a unique
sectorial operator A : D(A) C X — X such that T(t) = et4, t > 0.

Proof. The function oo
F(\) = / e MT(t)dt
0

is well defined and holomorphic in the halfplane IT = {A € C : Re A > w}. To prove the
statement, it suffices to show that
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(a) F(X) can be analytically continued in a sector Sg,, with angle 3 > 7/2, and the
norm [|(A — w)F'(N)| z(x) is bounded in Sg

(b) there is a linear operator A : D(A) C X — X such that F(X\) = R(\, A) for A € Sg,.

To prove (a), let us show by recurrence that ¢t — T'(¢) is infinitely many times differentiable,
and
TM(t) = (T'(t/n))"*, t>0, neN. (1.20)

Equality (1.20) is true for n = 1 by assumption. Moreover, if (1.20) is true for n = ny,
from T(t + s) = T(t)T(s) we deduce T (t + 5) = T)()T(s) = T™0)(s)T(t) for all
t, s > 0, and also

1
im + (7(n0) _ (o)
lim > (T (t+h)—T (t))

— lim L) (0 ) (p () o (!
h—0 h n0+1 ’I’L0+1 7’L(]—|—1
_ T, t no T, t _ T/ t no+1
ng+ 1 ng+ 1 ng+ 1 ’

so that T("0+1)(¢) exists and (1.20) holds for n = ng+ 1. Therefore, (1.20) is true for every
n, and it implies that

ITO Ollerx < (M0 < (Mre)"t"nle’, ¢ >0, ne N,

Hence, the series
o0

> el e

n=0

converges for every z € C such that |z — ¢| < t(Mje)™!. As a consequence, t — T'(t) can
be analytically continued in the sector Sg, o, with By = arctan(Mie)~!, and, denoting by
T(z) its extension, we have

1Tl zxy < (1 - (eMp) ' tan @) lev 7 2 € S5 0, 0 = arg 2.

Shifting the half-line {Re A > 0} onto the halfline {arg z = 8}, with |3| < o, we conclude
that (a) holds for every g € (7/2, Bo).

Let us prove (b). It is easily seen that F' verifies the resolvent identity in the half-plane
IT: indeed, for A # p, A, u € 11, we have

+o0 +oo
F\NF(p) = /0 e)‘tT(t)dt/O e *T(s)ds

“+00 o
= / e M T(o)do / ety
0 0

+00 —(A—=p)o _ 1
- / e HT (o) dg
0 A—p

1
= ——(F(\) — F(n)).
S (PO = F ()
Let us prove that F(\) is one to one for A € II. Suppose that there are z # 0, Ay € II
such that F'(A\g)z = 0. From the resolvent identity it follows that F'(A\)x = 0 for all A € II.
Hence, for all 2/ € X’

(F(\)z,2') = /0+<><> e T (), 2')dt =0, Y\ €Il
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Since (F(M\)x,2’) is the Laplace transform of the scalar function t — (T'(t)x,z’), we get
(T(t)z,2') = 0 in (0,+00), and then T'(t)z = 0 in (0,+00), by the arbitrariness of z’.
This is impossible if either (iii)(a) or (iii)(b) hold, and therefore F'()\) is one to one for all
A € II. Thus, by proposition B.1.4 there is a linear operator A : D(A) C X — X such
that p(A) D II and R(X, A) = F()) for A € II. Since F' is holomorphic in the sector Sg, .,
then p(A) D Sg,w, R(A, A) = F(A) for A € Sg, ., and statement (b) is proved. O

Remark 1.2.12 Notice that in theorem 1.2.11 hypotheses (i) and (ii) are sufficient to
prove that T'(t) is a semigroup and that t — T(t) is analytic with values in L(X), whereas
hypothesis (iii) is used to prove the existence of a sectorial operator which is its generator.

Let us give a sufficient condition, seemingly weaker than (1.9), in order that a linear
operator be sectorial. It will be useful to prove that realizations of some elliptic partial
differential operators are sectorial in the usual function spaces.

Proposition 1.2.13 Let A: D(A) C X — X be a linear operator such that p(A) contains
a halfplane {\ € C: Re X > w}, and

[ARN, A)llz(x) £ M, Rel > w, (1.21)
with w € R, M > 0. Then A is sectorial.

Proof. By the general properties of resolvent operators, for every > 0 the open ball with
centre w + ¢r and radius |w + i¢r|/M is contained in p(A). The union of such balls contains
the sector S = {\ # w: |arg(A —w)| < m — arctan M }, and for A such that Re A < w and
larg(A — w)| < 7 — arctan2M }, say A = w + ir — Or/M with 0 < 6 < 1/2, the resolvent

series expansion
[e.e]

RN A) =Y (1) (A = w)" (R(w, A)"*!
n=0
gives
Mn+1 - 2M
(w? +r2)(n+1)/2 = p

IR A <D A= (w +ir)

n=0

On the other hand, for A = w + ir — Or/M we have
r 2 (1/(aM?) + 1) - ul,

so that ||R(\, A)|| < 2M(1/(4M?) +1)"'/2|\ —w|~1, and the claim follows. [J

Next, we give a useful perturbation theorem.

Theorem 1.2.14 Let A : D(A) — X be sectorial operator, and let B : D(B) — X be a
linear operator such that D(A) C D(B) and

| Bz|| < al|Az| + b||z|] xz € D(A). (1.22)
There is § > 0 such that if a € [0,0] then A+ B : D(A) — X is sectorial.

Proof. As a first step, we assume that the constant w in (1.9) is zero, i.e.

M
p(4) Sog = (e C: farg)] < 0}, RO A)| < 7, A€S,
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for some 6 € (w/2,7), M > 0. From (1.22) we deduce that BR(\, A) is bounded, and for
each A € S we have

IBR(A, A)x||

IN

all AR(\, A)z|| + b RO\, Az (1.23)

bM
a(M + 1) |[x[| + Wlle-

A

For A € S, the equation
M—(A+Bu=uz

is equivalent, setting Au — Au = z, to
z=BR(\ A)z + .

Ifa < 3(M+1)"!and |A| > 2bM we have | BR(A, A)|| < 1, hence the operator I—BR(\, A)
is invertible, z = (I — BR()\, A)) "'z, and the equality

(M —(A+B))™' =R\ A)(I - BR()\ A)!

holds. Thus, for |A| > 2bM and arg \| < 6, using (1.23) we get |R(A\, A+ B)|| < M'/|)|,
which shows that A 4+ B is sectorial.
In the general case w # 0, set A9 = A —wl. Assumption (1.22) implies

|Bz|| < al Aoz + (alw| + D)z = € D(A).

Then, for a small enough the operator Ay + B = A+ B —wl/ is sectorial, and so is A+ B.
O

Corollary 1.2.15 If A is sectorial and B : D(B) D D(A) — X is a linear operator such
that for some § € (0,1), C > 0 we have

1Bz|| < Cllz]pallzlx?, vz € D(A),
then A+ B : D(A+ B) := D(A) — X is sectorial.

The next theorem is sometimes useful, because it lets us work in smaller subspaces of
D(A). A subspace D as in the following statement is called a core for the operator A.

Theorem 1.2.16 Let A be a sectorial operator with dense domain. If a subspace D C
D(A) is dense in X and et*-invariant for each t > 0, then D is dense in D(A) with respect
to the graph norm.

Proof. Fix x € D(A) and a sequence (z,) C D which converges to x in X. Since D(A)
is dense, then
tA,. _ t
A =1im “ 2% —im 2 [ oAy ds,
t—0 t t—0 ¢ 0

and the same formula holds with z,, instead of x. Therefore it is convenient to set

I I I
Ynit = —/ eSAgjn ds = —/ €SA(ZEn — ZE) ds + —/ €SACL') dS — .
’ t 0 t 0 3 0

For each n, the map s — e%a, is continuous with values in D(A); it follows that

fg T'(s)xnds, being the limit of the Riemann sums, belongs to the closure of D in D(A),
and then each y,; does. Moreover |y, — x| goes to 0 as t — 0, n — oo, and
tA(

eNay —x) — (2 — )

1 t
Aypt — Az = + n / A Axds — Ax.
0
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Given ¢ > 0, fix 7 small enough, in such a way that ||2 N esA Az ds — Az|| < ¢, and then
choose n large, in such a way that (M + 1)||x,, — z||/7 < e. For such choices of 7 and n
we have ||Ayy, » — Az|| < 2¢, and the statement follows. O

Theorem 1.2.16 implies that the operator A is the closure of the restriction of A to D,
i.e. D(A) is the set of all x € X such that there is a sequence (z,,) C D such that x,, — x
and Az, converges as n — o0; in this case we have Ax = lim,, oo ATy,.

Remark 1.2.17 Up to now we have considered complex Banach spaces, and the operators
¢4 have been defined through integrals over paths in C. But in many applications we
have to work in real Banach spaces.

If X is a real Banach space, and A : D(A) C X — X is a closed linear operator, it
is however convenient to consider complex spectrum and resolvent. So we introduce the
complexifications of X and of A, defined by

X={a+iy: o,y X}; |z +iylg = sup |zcosd+ysind|

—m<6<m

(note that the “euclidean norm” /|x||?2 + ||y||? is not a norm, in general), and

D(A) ={z+iy: =, y€ D(A)}, Az +iy) = Az +iAy.
If the complexification A of A is sectorial, so that the semigroup et is analytic in X, then
the restriction of €4 to X maps X into itself for each ¢ > 0. To prove this statement it is
convenient to replace the path ., by the pathy ={A e C: A =w'+ pet® p >0}, with
w' > w. For each x € X we get
~ 1 +0o0

ety = — edt<€w+pwwfup€w,AJ——6_w+pm_w}“p6_w,fn>irdp, £>0.
™ Jo

The real part of the function under the integral vanishes (why?), and then etAr belongs
to X. So, we have a semigroup of linear operators in X which enjoys all the properties
that we have seen up to now.

Exercises 1.2.18 1. Let A : D(A) C X — X be sectorial, let « € C, and set B :
D(B) := D(A) — X, Bx = Az — ax. For which values of « the operator B is
sectorial? In this case, show that e!f = e~ ¢t4. Use this result to complete the
proof of theorem 1.2.3 in the case w # 0.

2. Let A: D(A) C X — X be sectorial, and let B : D(B) D D(A) — X be a linear
operator such that limyeg, | |x—oo [BR(A, A)|| = 0. Show that A+ B : D(A+B) :=
D(A) — X is sectorial.

3. Let Xx, £k = 1,...,n be Banach spaces, and let Ay : D(Ag) — X be sectorial
operators. Set

X =[] Xw. D(4) =[] D(Aw),
k=1 k=1

and A(x1,...,z,) = (A121,..., Apxy,), and show that A is a sectorial operator in
X.
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Chapter 2

Generation of analytic semigroups
by differential operators

In this chapter we show several examples of sectorial operators A, and we study the
associated evolution equations v’ = Au.

The leading example is the heat equation in one or more variables, i.e., the equation
u; = Au, where A is the Laplacian in RV, Au = «” if N = 1 and Au = Zf\;l Dj;u if
N > 1. We shall see some realizations of the Laplacian in different Banach spaces, with
different domains, that turn out to be sectorial operators.

2.1 The operator Au = v

2.1.1 The second order derivative in the real line

Let us define the realizations of the second order derivative in LP(R) (1 < p < 00), and in
Cy(R), endowed with the maximal domains

D(4,) = W*(R)C LP(R), Aju=4u", 1<p<oo
D(Ay) = C?*(R), Asou=u".
We recall that for p < oo the Sobolev space W2P(R) is the subspace of LP(R) consisting

of the (classes of equivalence of) functions f : R +— C that admit first and second order
weak derivatives belonging to LP(RR); the norm is

lullwzsmy = llullze + [1v'llze + [lu”]l Le-

In the definition of A, the second order derivative is meant in the weak sense.

Cp(R) is the space of the bounded continuous functions from R to C ; CZ(R) is the sub-
space of Cy(R) consisting of the twice continuously differentiable functions, with bounded
first and second order derivatives; the norm is

lullez) = llulloo + 1t lloe + 10" loo-

Let us determine the spectrum of A, and let us estimate its resolvent.

Proposition 2.1.1 For all 1 < p < oo the spectrum of A, is the halfline (—o0,0]. If
A = |\ with |0] < 7 then

1

A < Nleos(@/a)"
RN Al (zry < I\ cos(6/2)
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Proof. a) First we show that (—o00,0] C 0(A,). Fix A < 0 and consider the function
u(z) = exp(iv/—Ax) which satisfies v/ = Au. For p = oo, u is an eigenfunction of
Ao with eigenvalue X\. For p < oo, u does not belong to LP(R). Consider a cut-off
function ¢ : R — R, supported in [—2,2] and identically equal to 1 in [—1,1] and set
Un(z) = V(a/n).

If u,, = Ppu, then u, € D(A,) and ||uy|l, = n'/P as n — oo. Moreover, || Ay, —uy ||, <

Cn!/P=1_ from which it follows that, setting v, = ”J‘ﬁ, |(A—=A)vy|[p — 0 as n — oo, and
then A € o(A).
b) Let now A & (—00,0], A = |M|e?, |8] < 7. If p = oo, the equation Au — v” = 0 has no
nonzero bounded solution, hence A\ — A, is one to one. If p < 0o, it is easy to see that
all the nonzero solutions u € VVif(]R) to the equation Au — u” = 0 belong to C*°(R) and
they are classical solutions, but they do not belong to LP(RR), and the operator A\I — A,, is
injective.

Let us show that A\I — A, is onto. We write VA = p, so that Rep > 0. If f € Cy(R)
the variation of constants methods gives the (unique) bounded solution to Au — v’ = f,
written as

1

u(x) = Z

([ eevswas [ e smm) = genge, @

—00 T

where h,(z) = ie‘”w. Since [|hyllz1r) = Iulﬁ’ we get

[1f[loo-

1
o < ||k o < T 7aa
lelloe = Wl @ liFlloo = T3

If [arg A| < 0y < ™ we get ||ul|oo < (|A| cos(00/2)) 7 || f|loo, and therefore Ay, is sectorial,
with w =0 and any 0 € (7/2, ).

If p < oo and f € LP(R), the natural candidate to be R(X, A,)f is still the function u
defined by (2.1). We have to check that u € D(A,) and and that (A — A,)u = f. By the

Young’s inequality (see e.g. [3, Th. IV.15]), u € LP(R) and again

1

< h S 7
lelly < I lplbull < s

[1f[lp-
That v € D(A,) may be seen in several ways; all of them need some knowledge of ele-
mentary properties of Sobolev spaces. The following proof relies on the fact that smooth
functions are dense in WP (R)(1).

Approach f € LP(R) by a sequence (f,) C C§°(R). The corresponding solutions u,,

to Au, — )l = f, are smooth and they are given by formula (2.1) with f,, instead of f,
therefore they converge to u by the Young’s inequality. Moreover,

(" 1 [Fee
wle) =3 [ eI a5 [ ey

T +o0o
sa) ==y [ eI gy [ e )y

—00

again by the Young’s inequality, hence g = v’ € LP(R), and u) = Au,, — f,, converge to
Au — f, hence A\u — f = u” € LP(R). Therefore u € W2P(R) and the statement follows. [J

'Precisely, a function v € LP(R) belongs to W7 (R) iff there is a sequence (v,) C C°°(R) with v,
vy, € LP(R), such that v, — v and v;, — g in L?(R) as n — oco. In this case, g is the weak derivative of v.
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Note that D(As) is not dense in Cy(RY), and its closure is BUC(R). Therefore, the
associated semigroup e*4> is not strongly continuous. But the part of A, in BU C(R),

i.e. the operator
BUC*(R) — BUC(R), u s u”

has dense domain in BUC(R) and it is sectorial, so that the restriction of e!4>~ to BUC(R)
is strongly continuous. If p < co, D(A4,) is dense in LP(R), and e!“? is strongly continuous
in LP(R).

This is one of the few situations in which we have a nice representation formula for
et for 1 < p < oo, and precisely

(@ )@) = s [ Sy 10z eR (2:2)

This formula will be discussed in subsection 2.2. In principle, since we have an explicit
representation formula for the resolvent, replacing in (1.10) we should get (2.5). But the
contour integral obtained in this way is not very easy. To obtain the above representation
formula it is easier to argue as follows: we recall that the function u(t, z) := (et f)(z) is
a candidate to be a solution to the Cauchy problem for the heat equation

up(t,x) = uge(t,z), t> 0,2 € R,
(2.3)
u(0,z) = f(z), ze€R.

Let us apply (just formally) the Fourier transform, denoting by u(t, ) the Fourier trans-
form of u with respect to the space variable x. We get

{ U = —|§]2§L in (0,+00) x R,
a(0,§) = f(§) =z€ER,

whose solution is 4(t,€) = f (§)e*|‘5|2t. Taking the inverse Fourier transform, we obtain
(2.5). Once we have a candidate for e!4» f we may check directly that the formula is
correct. See section 2.2 for the general N-dimensional case.

2.1.2 The operator Au = «” in a bounded interval, with Dirichlet bound-
ary conditions

Without loss of generality, we fix I = (0, 1), and we consider the realizations of the second
order derivative in LP(I), 1 < p < oo,

D(A,) = {u € W*P(I): u(0) =u(l) =0} C LP(I), Ayu=1",
as well as its realization in C([0, 1]),
D(As) = {u € C%([0,1]) : u(0) = u(1) =0}, Agou=1u".

We could follow the same approach of subsection 2.1.1, by computing explicitly the resol-
vent operator R(\, Ax) for A ¢ (—o0,0] and then showing that the same formula gives
R()\, Ap). The formula comes out to be more complicated than before, but it leads to the
same final estimate, see exercise 2.5.3.1. Here we prefer to follow a slightly different ap-
proach that leads to a less precise estimate for the norm of the resolvent, but computations
are simpler.

Proposition 2.1.2 The operators A, : D(Ap) — LP(0,1), 1 < p < oo and Ax :
D(Ax) — C([0,1]) are sectorial, with w =0 and any 0 € (7/2,7).
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Proof. For A ¢ (—o0,0] set u = v/, so that Rep > 0. For every f € X, X = LP(0,1)
or X = C([0,1]), extend f to a function f € LP(R) or f € Cy(R), in such a way that
£ = | fI|. For instance we may define f(z) =0forz ¢ (0,1)if X = LP(0,1), f( )= f(1)
forz > 1, f(z) = f(0) forz < 0if X = C(]0,1]). Let w be defined by (2.1) with f instead of
f. We already know from example 2.1.1 that w0 1] is a solution of the equation A\u—u" = f

A1

satisfying ||ul|, < W. However, it does not necessarily satisfy boundary condition,

and we set )
— —pls| £
0=, / f(s)d
and )
e HI1=s] £
7= 2# f(s) ds
Then all the solutions to Au — u” = f belonging to W2?(0,1) or to C%([0,1]) are
given by u(z) = u(x) + crui(x) + coua(z), where ui(z) = e " and ugz(z) = e** are

two independent solutions of the homogeneous equation Au — u” = 0. We can determine
uniquely ¢; and ¢z imposing u(0) = u(1) = 0 because the determinant

D(u) =" e

is nonzero since Re > 0. A straightforward computation yields

e = % [% - e“'yo},
co = ﬁ [—’h + ef“fyo]

Explicit computations give for 1 < p < oo

1 elen

R R
il < o el S poa

while ||u1]jeo = €R¢#, |luzlo = 1 and for 1 < p < oo by the Holder inequality we also

obtain
1 1

<
‘ry[)| — 2| |( 'Re )1/]? ||f||p ‘71‘ — 2|M|(p/ReH)l/p/ ||f||p

and also ol, [1] < g Il if £ € LY ol bl < pokesll flle 36 £ € C(0,1).
Moreover |D(p)| = eRe# for |u| — oo. If A = |Ae? with |8] < |fy| < 7 then Rep >
|| cos(0p/2) and we easily get

lerually < Hpr and [[cauallp < ||f||p

Al [A]

for a suitable C' > 0 and A as above, |A| big enough, and finally

C
[oll, < W\Ifllp

for |A| large, say |A| > R, and |arg A\| < 6.

For |\| small we may argue as follows: one checks easily that 0 is in the resolvent set of
Ap; since the resolvent set is open there is a circle centered at 0 contained in the resolvent
set (in fact it can be shown that the spectrum of A, consists only of the eigenvalues
—n?/m% n € N); since A — R(\, A,) is holomorphic in the resolvent set it is continuous,
hence it is bounded on the compact set {|A\| < R, |arg A\| < 6p} U{0}. O
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2.2 The Laplacian in RV

Let us consider the heat equation

u(t,x) = Au(t,z), t>0,2 € RV,
(2.4)
U(O,IL’) = f(fl?), T € RNv

where f is a given function in X, X = LP(RV), 1 < p < oo, or X = BUC(RY).

A representation formula for the solution may be deduced formally by Fourier trans-
form, as in dimension N = 1, getting u(t,z) = (T(t)f)(x), where the heat semigroup
(T'(t)¢>0) is defined by the Gauss-Weierstrass formula

T(t)f(x) = m / e f)dy, >0, z € RV, (2.5)

(as usual, we define T'(0) f(xz) = f(z)). The verification that (T'(¢);>0) is a semigroup is
left as an exercise, see 2.5.3.3 below.

Now, we check that formula (2.5) gives in fact a solution to (2.4).
Let us first notice that T'(t) f = G * f, where

1 =2

Gt(x) = (47Tt)N/2 4, RN

Gi(x)dr =1 Vt >0,

and * denotes the convolution. The function (¢,z) — G¢(x) is smooth for ¢ > 0, and its
derivative with respect to ¢ equals its Laplacian with respect to the space variables x. By
the Young inequality,

1T llze < 1l ¢>0,1<p < 0. (2.6)
Since G; and all its derivatives belong to C°°(R™) N LY (RY), it readily follows that the
function u(t, z) := (T(t)f)(x) belongs to C*®((0, +00) x RY), because we can differentiate
under the integral sign. Since 9G;/0t = AGy, then u solves the heat equation in (0, +00) x
RY.

Let us show that T'(¢)f — f in X as t — 0. If X = LP(RY) we have

sy = [ | [ Gnse—ndy - s @
=[] el - - s
=[] @i~ Vi) - fa)is] i
RN RN
< [ ] 6ele Vi) - f@pd i
= [ G [ 1fla = Vi) - f@)Pdod
RN RN

Here we used twice the property that the integral of Gy is 1; the first one to put f(z) under
the integral and the second one to get ‘ fRN G1(2)[f(z—Vtz)— f(z)] dz‘ < Jon G1(2)|f(2—

Vtz) — f()|Pdz. Now, the function ¢(t,2) := [pn |f(z — Vtz) — f(z)[Pdz goes to zero for
each z as t — 0, by a well known property of the LP functions, and it does not exceed
27| f|I5. By dominated convergence, ||T(t)f — f||b goes to 0 as t — 0.
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If X = BUC(RY) and f € X, we have

sup [(T'()f = f)(@)] < sup [ Gu(y)|f(z—y)— f(z)ldy

zeRN zeRN JRN
= sup G1(2)|f(x — Viz) — f(x)|dz
zeRN JRN
< / G1(2) swp |f(e — Viz) — f(z)|dz.
RN z€RN

Again, the function ¢(t,2) := sup,egpn |f(x —Vt2) — f(x)| goes to zero as t — 0 for each z
by the uniform continuity of f, and it does not exceed 2|| f||~. By dominated convergence,
T(t)f — f goes to 0 as t — 0 in the sup norm.

The proof that T'(¢) satisfies all the assumptions of theorem 1.2.11 is left as an exercise,
see exercises 2.5.3.4 and 2.5.3.5. Then, there is a sectorial operator A such that T(t) = ‘4.

Let us now show that the generator A of T'(¢) is a suitable realization of the Laplacian.
To begin with, we consider the case p < oo. In this case the Schwartz space S(RY) is
invariant under the semigroup and it is dense in LP(RY) because it contains C§°(RY).
Then, by theorem 1.2.16, it is dense in the domain of the generator. For f € S(RY),
it can be easily checked that u(t,z) = T(t)f(z) belongs to C?([0,00) x R™) (in fact, it
belongs to C°°([0,00) x RY)). Recalling that u satisfies the heat equation for ¢ > 0, we
get

u(t,z) —u(0,2) 1

t t
- = Z/o ut(s, x)ds = %/0 Au(s,z)ds — Af(z) as t — 0 (2.7)

pointwise and also in LP(R™), because
1 t
o [ 18u(s,) = Aflds < sup [T()AS = Afl)
0 0<s<t

For p = oo, we argue in the same way, using BUC?(R") instead of S(R"), and observing
that it is dense in BUC(RY), that it is invariant under the semigroup, and that in this
case the convergence in (2.7) is uniform in RY.

From theorem 1.2.16 it follows that the generator A of T'(t) is the closure of the
Laplacian with domain D = S(RY), if X = LP(RY), with domain D = BUC?*(RY), if
X = BUC(RY). So, D(A) is the set of the functions u in X such that there is a sequence
uy € D that converge to u in X and such that Aw, converge in X as n — oo; in other
words D(A) is the completion of D with respect to the graph norm u — ||u||x + ||Aul|x.
If N = 1 we conclude rather easily that D(A) = W2P(R) if X = LP(R), and D(A) =
BUC?RN), if X = BUC(R). The problem of giving an explicit characterization of D(A)
in terms of known functional spaces is more difficult if N > 1. The answer is nice, i.e.
D(A) = W*P(RY) if X = LP(RY) and 1 < p < oo, but the proof is not easy in general.
There is an easy proof, that we give below, for p = 2.

The domain of A in L? is the closure of S(RY) with respect to the graph norm u
Jull 2wy + | Aul| 2 vy, Which is weaker than the H?-norm. Hence, to conclude it suffices
to show that the two norms are in fact equivalent. The main point to be proved is that
[ Dijull 2@ny < |Aullp2gyy for each w € S and 4, j = 1,..., N. Integrating by parts
twice we get

N N
| 1D%ul |22, = Z/ Dl-ju—Dijuda::—Z/ DyjuDmds  (2.8)
i=1/RY ig=1/RY
N
= Z/ DiiuDjjudx:HAuH%Q(RN). (2.9)
RN

ij=1
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The L? norm of the first order derivatives of © may be estimated in several ways; since we
already have the semigroup 7T'(t) at our disposal we may argue as follows. For ¢ > 0 and
for each f € L2(RY) we have

DIWS@) = s [ 50— we Wy = (DG Pia). 10, 2 €Y

so that o
IDT(t) fllz < [[DiGella || fll2 < m\\f\l% t>0.

From the obvious equality D;u = D;(u — T(t)u) + D;T(t)u we get, for each u € S(RY),
t t
Dju = Di/ T(s)Auds + DT (t)u = / D;T(s)Auds + D;T(t)u,
0 0

and using the above estimate we obtain
| Diulls < C1tY?||Aulla + Cot™V2|ullz, t > 0. (2.10)

Taking t = 1 we see that the L? norm of each Dj;u is estimated by the graph norm of the
Laplacian at u, which is what we needed.
In addition, taking the minimum for ¢ > 0, we get another estimate of independent
interest,
/2y 1/2
| Diullz < Csll Aully ully . (2.11)

Estimates (2.10) and (2.11) are then extended by density to the whole domain of the
Laplacian, that is to H?(R™V).

2.3 Some abstract examples

The realization of the Laplacian in L?(R") is a particular case of the following general
situation. Recall that, if H is a Hilbert space, an operator A : D(A) C H — H with dense
domain is said to be self-adjoint if D(A) = D(A*) and A = A*, and that A is dissipative
if

IO = A)z] > A, (2.12)

for all z € D(A) and A > 0, or equivalently (see exercise 2.5.3.6) if Re (Az,z) < 0 for
every x € D(A).
The following proposition holds.

Proposition 2.3.1 Let H be a Hilbert space, and let A : D(A) C H — H be a self-adjoint
dissipative operator. Then A is sectorial, with arbitrary 0 < m and w = 0.

Proof. Let us first show that o0(A) C R. For, let A = a + ib € C. Since (Az,x) € R, for
every © € D(A) we have

1A — A)z||? = (a® + b%)||z]|* - 2alz, Az) + || Az|* > b?||«|?, (2.13)

so that if b # 0 then Al — A is one to one. Let us check that the range is both closed and
dense in H, so that A is onto. Take x,, € D(A) such that \z,, — Az,, converges as n — oc.
From the inequality

[(AL = A)(zn — $m)||2 > b2||$n - $m||2a n, m €N,

it follows that (z,) is a Cauchy sequence, and by difference (Az,,) is a Cauchy sequence
too. Hence there are x,y € H such that z,, — x, Az, — y. Since A is self-adjoint, it is
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closed, and then z € D(A), Ax = y, and Az, — Ax,, converges to Az —Ax € Range (\[—A).
Therefore, the range of A\ — A is closed.

If y is orthogonal to the range of (Al — A), then for every z € D(A) we have (y, Az —
Az) =0, hence y € D(A*) = D(A) and Ay — A*y = \y — Ay = 0. Since A — A is one to
one, then y = 0, and the range of (A — A) is dense.

Let us check that o(A) C (—o0,0]. Indeed, if A > 0 and x € D(A), we have

1A = A)z|® = Nl|? - 2X(z, Az) + || Az|* = N[|||?, (2.14)

and arguing as above we get A € p(A).

Let us now verify condition (1.9)(ii) for A = pe?, with p > 0, —7 < @ < 7. Take x € H
and u = R(\, A)z. From the equality Au — Au = z, multiplying by e~*/2 and taking the
inner product with u, we deduce

pe2||ul|? — e~/ Au, u) = =2z, u),
from which, taking the real part,
pcos(6/2) ]2 — cos(8/2){ Au, u) = Re(e=/2(z, ) < [lz] |[u]
and therefore, taking into account that cos(6/2) > 0 and (Az,z) <0, we get

full <
|A| cos(6/2)
with 0 = arg \. [J
Let us see two further examples.
Proposition 2.3.2 Let A be a linear operator such that the resolvent set p(A) contains

C\ iR, and there exists M > 0 such that |R(\, A)|| < M/|Re\| for ReA # 0. Then A? is
sectorial, with w =0 and any 0 < .

Proof. Forevery A € C\(—o0,0] and for every y € X, the resolvent equation Az — A%z = y
is equivalent to

(VAL = A)(VAI + A)z = y.
Since Rev/A > 0, then v\ € p(A) N (p(—A)), so that

= —R(—VX\, ARV, —A)y

and, since [Re \| = /|| cosn/2 if arg A = 1, we get
2

< =

for A € Sp o, and the statement follows. [

Proposition 2.3.2 gives us an alternative way to show that the realization of the second
order derivative in LP(R), or in Cy(R), is sectorial. But there are also other interesting
applications.

Proposition 2.3.3 Let A be a sectorial operator. Then —A? is sectorial.

Proof. As a first step we prove the statement assuming that the constant w in (1.9)
vanishes. In this case, for every A € Spo and for every y € X, the resolvent equation
Az + A%z = y is equivalent to (ivVAI — A)(—iv/AI — A)z = y. We can solve it and
estimate the norm of the solution because both iv/ A and —iv/\ belong to Sgo. We get
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= R(—ivV\, A)R(ivV\, A)y and ||z|| < M?||y||/|\|. Therefore, —A? is sectorial, with the
same sector of A.

If w # 0, we consider as usual the operator B = A—wl : D(B) = D(A) — X. B and B?
are sectorial, with sector Spo. Since R(\, B%) = R(—ivV\, BYR(iv/\, B) for \ € So,0, then
|BR()\, B?)|| < M(M +1)//|)\]; hence B2 + 2wB is sectorial, and B2+ 2wB + w?[ = A?
is sectorial. See exercises 1.2.18. [J

Using proposition 2.3.3 and the examples that we have seen up to now, we obtain other
examples of sectorial operators. For instance, the realizations of u — —u(™®) in LP(R), in
BUC(R), in Cy(R), with respective domains W4P(R), BUC*(R), Ci}(R) are sectorial, and
SO On.

2.4 The Dirichlet Laplacian in a bounded open set

We now consider the Laplacian in an open bounded set Q@ ¢ RY with C? boundary 02
and Dirichlet boundary condition, in LP(2), 1 < p < co. Even for p = 2 the theory is
much more difficult that in the case Q = RY. In fact, the Fourier transform is useless, and
estimates such as (2.8) are not available integrating by parts because boundary integrals
appear.

In order to prove that the operator A, defined by

D(A,) = W2P(Q)NWyP(Q),  Apu=Au, ueD(A)
is sectorial, one shows that the resolvent set p(A,) contains a sector
Sp={AeC: X#0,|arg(N\)| < 6}
for some 6 € (7/2,7), and that the resolvent estimate

M

RN, Ap)ll 2zr) < o

holds for some M > 0 and for all A € Sp,,. The hard part is the proof of existence of a
solution u € D(A,) to Au — Au = f, i.e. the following theorem that we give without any
proof.

Theorem 2.4.1 Let Q C RY be open and bounded with C? boundary, and let f € LP(S),
A & (—00,0]. Then, there is u € D(Ap) such that \u — Au = f, and the estimate

[ullwzr < Cillfllzr + CollullLr (2.15)

holds, with Cy, Co depending only upon  and A. For Re\ > 0 inequality (2.15) holds
with 02 =0.

The resolvent estimate is much easier. Its proof is quite simple for p > 2, and in fact
we shall consider only this case. For 1 < p < 2 the method still works, but some technical
problems occur.

Proposition 2.4.2 Let 2 < p < oo, and let u € W*P(Q) ﬂWOLP(Q), A € C with ReA > 0,
be such that \u — Au = f € LP(QQ). Then

£l
Al

[ullr < Cp

with Cp = (1 + p?/4)1/2.
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Proof. If u = 0 the statement is obvious. If u # 0, we multiply the equation Au—Au = f
by |u[P~2%, which belongs to W' () (see exercise 2.5.3.7), and we integrate over Q. We

have
" Ou O
AMw p—i—/ ——(up2ﬁ>dx:/ ulP~2udz.
ot + |3 7 g (1 [t

Notice that

0 ou 1 ou ou
P2 = P2 L S — DalulP A m— -
Setting
252 gy 4 ib
with ai, b, € R, we have
/Z:ﬂ 0 ]u\p72u dzx
0 el 8$k axk
- pdg _Ou Ou p—2, pago Odu(_Ou ou
= —+ — — | u=— — | )d
/Q;<(|u ’ )uu&vk oxy. + 2 (juf 2 )uﬁxk u@xk +u8xk I
= > <a§ + 02 + (p— 2)ag(ax + z'bk))d:r,
Qp=1
whence
Alull? + / S ((p— 1)af + b)dz +i(p — 2) / > apby da = / FlulP~?u de.
2 k=1 Q=1 Q

Taking the real part we get

Re/\IIUH’“r/QZ((P— Da + bi)dz = Re/ﬂf!ﬂ\p%dw < I £llp llullp~,
k=1

and then
(a) ReAlul < [If]l-

(v) / S (0= 1)ad +8)dw < || £1] ul]? .

Q=1
Taking the imaginary part we get

Im A |ul/? + (p—2)/ Zn:akbk dx = Im/ flulP~?a dx
Q5 Q
and then .
M fulP < 252 [ 3 (6 + 820+ 171l
k=1
so that, using (b),
o fal? < (252 1)1l

ie.,

p
i Al < 1171,
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From this inequality and from (a), squaring and summing up, we obtain

2
p
ARl < (145 )1r1P

and the statement follows. OJ

2.5 DMore general operators

Let us consider general second order elliptic operators, both in RY and in a bounded open
set  with C? boundary 9. Let us denote by v(x) the outer unit vector normal to 99
at x.

Let A be the differential operator

N N
(Au)(z) = Y aij(x)Diju(z) + Y bi(x)Diu(z) + c(z)u(z) (2.16)
i,j=1 i=1

with real, uniformly continuous coefficients and bounded a;;, b;, c on Q. We assume that
for every « € Q the matrix [a;;(x)]; j=1,.. n is symmetric and strictly positive definite, i.e.,

N

D (@) > vlEf, 2 €Q, R, (2.17)

ij=1
for some v > 0. The following results hold.
Theorem 2.5.1 (S. Agmon, [1]) Let p € (1,00).

(i) Let Ay : W2P(RN) — LP(RN) be defined by (Apu)(z) = (Au)(z). The operator A,
is sectorial in LP(RY).

(i1) Let Q and A be as above, and let A, be defined by
D(4,) = W2P(2) N WP (Q), (Apu)(z) = (Au)(z).
Then, the operator A, is sectorial in LP(QY), and D(A,) is dense in LP(2).
(111) Let Q and A be as above, and let A, be defined by

D(A,) = {u e W*P(Q): Bujgq = 0}, Apu = Au, u € Dy(A),

where
N
Bu = bo(x)u(r) + Y _ bi(x) Dyu(z),
i=1
the coefficients b;, i = 1,..., N are in C1 () and the transversality condition

ibz(l‘)l/z(l‘) #0, xedQ
i=1

holds. Then, the operator A, is sectorial in LP(Y), and D(Ap) is dense in LP ().
We have also the following result.

Theorem 2.5.2 (H. B. Stewart, [15, 16]) Let A be the differential operator in (2.16).
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(i) Consider the operator A: D(A) — X = Cy(RY) defined by

D(A) = {ue Cp(RY) Nzt WEP(RY) : Au € Cy(RV)}, (2.18)

oc

(Au)(z) = (Au)(z), ue D(A).
Then, A is sectorial in X, and D(A) = BUC(RYN).
(ii) Let Q C RN be an open bounded set with C? boundary OS2, and consider the operator

D(A) = {u€M=1W?P(Q): ypg =0, Au € C(Q)}, (2.19)
(Au)(z) = (Au)(z), ue D(A).

Then, the operator A is sectorial in X, and D(A) = Cyp(Q) = {u € C(Q) : u =
0 at 00Q2}.

(iii) Let 2 be as in (ii), and let X = C(2),

D(A) = {ue ﬂp21W2’p(Q) : BU|3Q =0, Au € C(ﬁ)}, (2.20)
(Au)(z) = (Au)(z), ue D(A),
where
N
Bu = bo(z)u(z) + Y _ bi(x)Dyu(z),
i=1
the coefficients b;, i = 1,..., N are in C1(Q) and the transversality condition

ibz(x)yz(a:) #0, v €
i=1

holds. Then, the operator A is sectorial in X, and D(A) is dense in X.

Moreover, in all the cases above there is M > 0 such that A € Sp, implies

M
|>\‘1/2
Exercises 2.5.3

1. Consider again the operator u — u” in I as in subsection 2.1.2, with the domains
D(A)) defined there, 1 < p < co. Solving explicitly the differential equation Au —
u” = f in D(A,), show that the eigenvalues are —n?nm2, n € N, and express the

resolvent as an integral operator. Then, estimate the kernel of this operator to get

1

- @@ — g p g T
Ncos(0/2)" 0 =arg\, X =LP(I)or X =C(I).

IR, Ap)ll ey <

2. Consider the operator Au = v” in LP(I), with the domain
D(Ap) ={u e W2P(I): u/(0) =u'(1) =0} C LP(I),  1<p<oo,

or

D(Ax) = {ue C2(1)nCd) : ¢/ (0) =u'(1) =0} c c(T),

corresponding to the Neumann boundary condition. Use the same perturbation
argument as in subsection 2.1.2 to show that it is sectorial.
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3.

10.

Use the properties of the Fourier transform and formula (2.5) that defines the heat
semigroup T'(t) to check that T'(t + s)f(z) = T(t)T(s)f(x) for all f € S(RY) and
t,s > 0, x € RN, By approximation, show that this is true for each f € LP(R")
and for each f € C,(RY).

Use the Fourier transform to prove the resolvent estimate for the Laplacian in
L2RN), lull p2@yy < £l 2@y /IAl, where Au — Au = f, m/2 < arg A < .

. Prove that the heat semigroup is analytic in X = LP(RY), 1 < p < oo, and in

X = Cy(RY), showing that ||d/dt T (t)|zx) < ¢/t. If X = Co(RY), show that T'(t)
is one to one for each ¢t > 0.

. Show that the dissipativity condition (2.12) is equivalent to Re (Az,z) < 0 for all

x € D(A).

Show that if p > 2 and u € W'P(Q) then the function |u[?~2u belongs to W' ().
Is this true for 1 < p < 27

. (a) Using the representation formula (2.5), prove the following estimates for the heat

semigroup 7T(¢) in LP(RV), 1 < p < oo:

a Ca
[ DT () fll o vy < WHJC”LP(RN)

for every multiindex «, 1 < p < 0o and suitable constants c,.

(b) Use the fact that D;G; is odd with respect to x; to prove that for each f €
Co(RN),0<6#<1,and foreachi =1,...,N

C
DT () flloo < m[f]cf?(RN), t>0.

(c) Use the estimates in (a) for |a| = 1 to prove that

IDiullx < Cit"?||Aullx + Cot™||ul|x, >0,

1/2 1/2
IDsullx < Cal|Au| ¥ (ull¥?,

for X = LP(RY), 1 < p < 00, X = Cp(RY), and u in the domain of the Laplacian in
X.

. Prove the following generalization of proposition 2.3.2: Let A be a linear operator

such that the resolvent set p(A) contains two halfplanes Re A > w and Re A\, —w, with
w >0, and there exists M > 0 such that ||R(\, A)|| < M/(Re A—w) for ReA > w and
RO\, A)|| < M/(w— Re) for ReA < —w. Then A2 is sectorial, with any 0 < .

Show that the operator A : D(A) = {f € Co(R)NCYR\ {0}) : = — af'(x) €
Cp(R), limypxf'(x) = 0}, Af(x) = zf'(z) for x # 0, Af(0) = 0, satisfies the
assumptions of proposition 2.3.2, so that A? is sectorial in Cy(R). Using the results
of the exercises 1.2.18 to prove that for each a, b € R a suitable realization of the
operator A defined by (Af)(z) = 22 f"(x) + axf'(x) + bf () is sectorial.
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Intermediate spaces

3.1 The interpolation spaces D 4(6, o)

Let A: D(A) C X — X be a sectorial operator, and set

My = sup HetA”7 My, = sup ||tAetAH.
0<t<1 0<t<1

We have seen in proposition 1.2.6 that for all 2 € D(A) the function t — u(t) = ez
belongs to C([0,7]; X), and for all z € D(A) such that Az € D(A), it belongs to
C([0,T]; X). We also know that for z € X the function t — v(t) = ||Ae!tz| has in
general a singularity of order 1 as ¢t — 0, whereas for z € D(A) it is bounded near 0. It is
then natural to raise the following related questions:

1. Is there a class of initial data such that the function u(t) = ¢4z has an intermediate
regularity, e.g., it is a-Holder continuous for some 0 < a < 17

2. Ts there a class of initial data x such that the function ¢ +— || Ae!42|| has a singularity
of order «, with 0 < ao < 17

To answer such questions, we introduce some intermediate Banach spaces between X
and D(A).

Definition 3.1.1 Let A: D(A) C X — X be a sectorial operator, and fix 0 < o < 1. Let

us set
Da(a,00) = {z € X ¢ [2]a = supyy<; [T Aez|| < oo},

121l Da(as0) = 2l + [#]a-

Note that what characterizes D(a, o0) is the behavior of ||[t!=®Ae!4z|| near t = 0.
Indeed, for 0 < a < b < oo and for each x € X estimate (1.14) with £ = 1 implies that
SUp,<i<p |t~ Aetz|| < C||z||, with C = C(a,b, ). Therefore, the interval (0,1] in the
definition of D 4(a, 00) could be replaced by any (0,7 with T' > 0, and for each T' > 0 the
norm x + ||x|| +supg.i<p [t AetA2|| is equivalent to the D4(c, 00) norm in Da(a, 00).

Once we have an estimate for the norm ||A€tAHL(DA(a,oo);X) we get estimates for the
norms ||AketAH£(DA(a,OO);X) with any k& € N just using the semigroup law and (1.14). For
instance for k£ = 2 and for each x € D 4(«, 00) we obtain

sup [t A%zl < sup [[tAe"?A| oo It A" x| < Cllalp, (a,00)-
0<t<T 0<t<T

It is clear that if € D (o, 00) and T > 0, then the function s — || Ae*4z| belongs to
LY(0,T), so that, by proposition 1.2.6(ii),

t
ety — = / Ae*Azds YVt >0, z = 1%in% et
0 —

P
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In particular, all the spaces D4(«,o0) are contained in the closure of D(A). It follows
that
Da(a,00) = D a,(ar,0),

where Ag is the part of A in D(A) (see definition 1.2.7).

Proposition 3.1.2 For 0 < a < 1 the equality

Da(a,00) = {2 € X & [lellpy(uoe) = sup £7ca —a] < oc}

0<t<L1

holds, and the norm
z = [|zf| 4 [[2] Dy (a,00)

is equivalent to the norm of D a(«a, o0).

Proof. Let x € Dy(a, 00) be given. For 0 < ¢ <1 we have

t
1
t= (e —z) = t_o‘/ s'TAes Ay ds, (3.1)
0 —

sl

so that

[[x]]DA(a,oo) = ”t_a(etAJ: - $)||L°°(0,1) < a_1[$]DA(a,w)a (32)

Conversely, let [[z]]p, (a,00) < 00, and write

1 [t I
Aety = AetAg / (z — e*z)ds + etAgA/ e*Aads.
0 0

It follows

M t _ 8A
e / Sa”xsiixuds + Mot~z — ], (3-3)
0

and the function s — ||z — e54xz||/s® is bounded, so that ¢ — t'~*Aet42 is bounded, too,
and
[#'7 Ae" ]| Lo (0.1) = [#] D a(ar00) < (Mi(a + 1)1+ Mo)[[2]] D1 (o) (3.4)

We can conclude that the seminorms [ - |p, (a,00) a0d [[ - ]| (a,00) are equivalent. [J

a,00

From the semigroup law the next corollary follows, and it gives an answer to the first
question at the beginning of this section.

Corollary 3.1.3 Given = € X, the function t — !4z belongs to C*([0,1]; X) if and only
if © belongs to Da(c, 00). In this case, t — etAx belongs to C([0,T); X) for every T > 0.

Proof. The proof follows from the equality

tA A(e(t—s)A

Ay — 54

x=e’ r—x), 0<s<t,

recalling that ||ef4|| £(x) is bounded by a constant independent of £ if { runs in any bounded
interval. [J

It is easily seen that the spaces Da(«a,o0) are Banach spaces. Moreover, it can be
proved that they do not depend explicitly on the operator A, but only on its domain D(A)
and on the graph norm of A. More precisely, for every sectorial operator B : D(B) — X
such that D(B) = D(A), with equivalent graph norms, the equality D 4(a, 00) = Dp(a, 00)
holds, with equivalent norms.

An important feature of spaces D4(a, 00) is that the part of A in D («, 00), defined
by

D(Ay) = Da(a+1,00) :={x € D(A): Az € Dy(a,00)},

Ay i Dy(a+1,00) = Da(a,0), Agx = Az,

is a sectorial operator.
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Proposition 3.1.4 For 0 < a < 1 the resolvent set of A contains p(A), R(\, Ay) is the
restriction of R(\, A) to Da(a, 00), and the inequality

RN, Al £(Da(a00)) < IR Al £x)

holds for every A € p(A). In particular, A, is a sectorial operator in D z(c, 00).

Proof. Fix A € p(A) and z € D(a,00). The resolvent equation \y — Ay = =z has
a unique solution x € D(A), and since D(A) C Da(a,00) then Ay € Da(a,00) and
therefore y = R(\, A)x € Da(a+ 1, 00).

Moreover for 0 < t < 1 the equality

[t~ A R(A, A)z|| = [ R(A, A)t' = Aeha|| < [[R(A, A) || gx) 11!~ Aet x|
holds. Therefore,

[R()‘v A)x]DA(a,oo) < HR()‘7 A) ||£(X) [x]DA(a,oo)u

and the claim is proved. [

From corollary 3.1.3 it follows that the function ¢ +— U(t) := e!4z belongs to C*([0, 1];
D(A)) (and then to C*([0,T]; D(A)) for all T > 0) if and only if « belongs to D 4(a+1, 00).
Similarly, since 4edz = e Az for x € D(A), U belongs to C1+([0,1]; X) (and then to
C1*e([0,T; X) for all T > 0) if and only if = belongs to Da(a + 1,00).

Let us see an interpolation property of the spaces D4 (a, 00).
Proposition 3.1.5 For every x € D(A) we have
[2]Ds(a00) < MMy~ Az |||~
Proof. For all t € (0,1) we have

R T PL
72 etz <
Mit=||x]|.

It follows
[~ Aeta|| < (Mot' || Az|))* (Myt~*||2|)'~* = Mg M{ || A||*||| '~

g

Definition 3.1.6 Given three Banach spaces Z C'Y C X (with continuous embeddings),
and given « € (0,1), we say that Y is of class J, between X and Z if there is C > 0 such
that

lylly < CliylZllyly®, vy e 2.

From proposition 3.1.5 it follows that for all a € (0,1) the space D4(a, o) is of class
Jo between X and the domain of A. Another example is already in chapter 2; estimate
(2.11) implies that H'(RY) is in the class J; 5 between L?(RY) and the domain of the
Laplacian, i.e. H?(RY). Arguing similarly (see exercises 2.5.3) we obtain that WP(RM)
is in the class Jj /o between LP(RY) and W2P(RY) for each p € [1,00), and that C}(RY)
is in the class Jj /5 between Cy(R™) and the domain of the Laplacian in Cy(RY).

Let us discuss in detail a fundamental example.
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Example 3.1.7 Let us consider X = Cy(RY), and let A : D(A) — X be the realization
of the Laplacian in X. For 0 < a <1, a # 1/2, we have

DA(av OO) = CQG(RN)v (35)

Da(a+1,00) = C?T2(RY), (3.6)

with equivalence of the respective norms.

Proof. We prove the statement for o < 1/2.
Recall that the heat semigroup is given by (2.5), which we rewrite for convenience:

1 _le—yl?
(T@)f)(z) = (Am)N2 /RN e~ T fy)dy, t>0, xRV,
Differentiating we obtain
B 1 x—y _le—y?
(DTON@) =~ [, e Sy
and hence c
HDT(@) f] oo < %Hf”oo

for some ¢ > 0 (see exercise 2.5.3(8)).
Let us first prove the inclusion D4 (a, 00) D C?¥(RY).
For f € C?*(RY) we denote by

the Holder seminorm of f, and we write

7)) = @) = o [ e U@ = Vi) = Sy,

hence

70 =l < rsllaat® [ e lylody

1
(47T)N/2

and therefore [[f]]DA(a,oo) < [f]2a-
Conversely, let f € D(«a,00). Then, for every ¢ > 0 we have

[f(@) = f)l < [TOf(@) = f@)] +|T@)f(x) =T f (W) + T f(y) = FW)IB3.7)
< 2[fpaca,c0)t” + DT (@) f] ool — yl. (3.8)

The estimate || [DT(t)f]|loo < ct~?||f||o0, that we already know, is not sufficient for our
purpose. To get a better estimate we use the equality

T(n)f—T(t)f:/ AT(s)fds, 0<t<n,
t
that implies, for each i =1,..., N,
DZT(n)f - DZT(t)f = / DZAT(S)f ds, 0 <t<n.
t

Using the estimate

1Di AT (5) flloo DT (s/2) AT (s/2) flloc < DT (s/2)]| (0@ AT (5/2) flloo

IN

m”f”DA(a,oo)
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we see that we may let n — oo to get
(o.9]
DlT(t)f = —/ D,LAT(S)f ds, t>0,
t

and ~ o
IDTO e < [ i a5l Iatom) = 75— s Ipatar

This estimate is what we need for (3.7) to yield 2a-Hélder continuity of f. For |z —y| <1
choose t = |z — y|? to get

[f (@) = f(y)] 2D a(aco) |z = yP** + el flloolz — y[**

ClLF D a(aoo) T = 917

IA A

If |z —y| > 1 then [ f(z) — f(y)] < 2[[flloc < 21 flDx(a0)lz — y*.

Let us prove (3.6). The embedding C?*+2(R™) € D4(a + 1,00) is an obvious con-
sequence of (3.5). To prove the other embedding we have to show that the functions in
Da(a + 1, 00) have second order derivatives belonging to C2*(RY).

Fix any A > 0 and any f € Da(a+ 1,00). Then f = R(\, A)g where g := \f — Af €
Da(a,00) = C?**(RY), and

o) = / T e T()g)(@)dt, @ € RY.

0

We can differentiate twice with respect to x, because for each i, j = 1,..., N the functions
t e MD;T(t)glloo and t +— |le=*D;;T(t)g|oo are integrable in (0,00). Indeed, arguing
as above we get | D;T(t)g]loe < c2a]glaa/t}/?~® for every i (see again exercise 2.5.3(8)), so
that

Con C

ID5T () glloo = 1D T (¢/2)DiT(t/2)gll00 < U%W[Q]Za = a2 (3.9)

Therefore, the integral [;~ e MT(t)gdt is well defined as a CZ(RY)- valued integral, and
f € CZ(RY). We may go on estimating [D;;T(t)g]aq, but we get [D;;T(t)gloa < Clul2a/t,
and therefore it is not obvious that the integral is well defined as a C?*-valued integral.
So, we have to follow another way. Since we already know that D(a,o00) = C2*(RY), it
is sufficient to prove that D;;f € Dy(a,00), i.e. that

sup [[E17CAT(€)Dyjflloo < 00, iyj=1,...,n.
0<€<1

For 0 < £ <1 it holds

“+o0o
e AT Al = | [ €t (e + 20T g ]

oo | M,C Al e
< [ e et = | s ol

o0

(3.10)

where My = sup;q [LAT () (¢, mvy), and C is the constant in formula (3.9). Therefore,
all the second order derivatives of f are in Da(a,00) = C2*(RY), their C2* norm is
bounded by C[glaa < C(A[f]2a + [Af)2a) < max{AC, C}|f||p,(a+1,00), and the statement
follows. [J
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Remark 3.1.8 The case a = 1/2 is more delicate. In fact, the inclusion Lip(RY) C
D(1/2,00) follows as in the first part of the proof, but it is strict. Indeed, it is possible
to prove that

Da1/2.) = {u € CLRY) - s ML EHO) 20492 )
TFy ’33 y’

and this space is strictly larger than Lip(R™) (see [18]).

Example 3.1.7 and corollary 3.1.3 imply that the solution u(t,z) = (T'(t)uo)(x) of the
Cauchy problem for the heat equation in RY,

wi(t, x) = Augy(t,x), t>0, z € RV,
u(0,2) = ug(z), =€ RV,

is a-Hélder continuous with respect to ¢ on [0, 7] x RY (with Hélder constant independent
of z) if and only if the initial datum ug belongs to C?*(R™). In this case, proposition
3.1.4 implies that [|u(t,)||p,(a,00) < CllUuollpy(a,00) for 0 <t < T, so that u is 2a-Holder
continuous with respect to x as well, with Holder constant independent of t. We say that
u belongs to the parabolic Holder space C*2%([0,T] x RY), for all T > 0.

Moreover, example 3.1.7 gives us an alternative proof of the classical Schauder Theorem
for the Laplacian (see e.g. [7, ch. 6]): if u € CZ(RY) and Au € C%(RY) for some 6 € (0, 1),
then u € C2H9(RY).

Proposition 3.1.4 implies that for every 6 € (0, 1) the operator
B:D(B) = Da(0/2+1,00) = C**Y(RY) = Da(6/2,00) = C*(RY), Bu= Au

is sectorial in C?(RY).

A characterization of the spaces D 4(«, 00) for general second order elliptic operators
is similar to the above one, but the proof is less elementary since it relies on the deep
results of theorem 2.5.2 and on general interpolation techniques.

Theorem 3.1.9 Let o € (0,1), a # 1/2. The following statements hold.

(i) Let X = Cy(RYN), and let A be defined by (2.18). Then, D4(a,00) = C2*(R™), with

equivalence of the norms.

(ii) Let Q be an open bounded set of RN with C? boundary, let X = C(Q), and let A be
defined by (2.19). Then,

Da(a,00) = C3*(Q) = {f € C**(Q) : flon = 0},
with equivalence of the norms.

(iii) Let 2 be an open bounded set of RN with C? boundary, let X = C(Q), and let A be
defined by (2.20). Then Da(a,00) = C?*(Q) if 0 < a < 1/2,

Da(a,00) = {f € C**(Q) : Bfjpo = 0}
if 1/2 < a < 1, with equivalence of the norms.

Exercises 3.1.10
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1. Show that if w < 0 in definition (1.2.1) then Dj(a,00) = {z € X : |z|o =
SUpssq |[t' T AetAz| < oo}, and that = +— |z|, is an equivalent norm in D4(c, o0)
for each o € (0,1). What about w = 07

2. Show that D4(a, 00) is a Banach space.

3. Show that the closure of D(A) in D4(a, 00) is the subspace of all x € X such that
lim;_ot'"“Ae*2z = 0. This implies that, even if D(A) is dense in X, it is not
necessarily dense in D 4(a, 00).

[Hint: to prove that eldz — x goes to zero in D 4(a, 00) provided t'= Aetz goes to

zero as t — 0, use formula (1.16) and split the sup over (0, 1] in the definition of |- ],
into the sup over (0,¢] and over [e, 1], € small. |

4. Prove that for every 6 € (0,1) there is C' = C(0) > 0 such that

| Dielloo < C(H(PHCQJr9(Rn))(1_6)/2(H(P||CH(Rn))(1+9)/2,

1-0/2( 0/2

1Dijelloo < Cllellc2vo@n)) lellco @)™,

for every ¢ € C**9(RN), i, j=1,...,N.
[Hint: write o = ¢ — T(t)p + T(t)p = — fot T(s)Apds + T(t)p, T(t) = heat semi-

group, and use the estimates ||D;T(t)f|lc < Ct=V2H072||fllco, |DiiT()flloo <
Ct= 07| f| o ]
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Non homogeneous problems

Let A: D(A) C X — X be a sectorial operator. In this chapter we study the nonhomo-
geneous Cauchy problem

u'(t) = Au(t) + f(t), 0<t<T,
(4.1)
u(0) = z,

where f:[0,7] — X or f:[0,00) — X.

4.2 Strict, classical, and mild solutions
Definition 4.2.1 Let f:[0,7] — X be a continuous function, and let x € X. Then:

(i) uw € CY([0,T]; X) N C([0,T]; D(A)) is a strict solution of (4.1) in [0,T] if u'(t) =
Au(t) + f(t) for every t € [0,T], and u(0) = x.

(i) u € CL((0,T); X) N C((0,T); D(A)) N C([0,T); X) is a classical solution of (4.1) in
[0,T] if v/ (t) = Au(t) + f(t) for every t € (0,T], and u(0) = z.

If f:[0,00) — X, then u is a strict or classical solution of (4.1) if for every T > 0 it is a
strict or classical solution of (4.1) in [0,T].

Let us see that if (4.1) has a classical (or a strict) solution, then it is given, as in the
case of a bounded A, by the variation of constants formula

t
u(t) = ez + / I (s)ds, 0<t<T. (4.2)
0

Whenever the integral in (4.2) does make sense, the function u defined by (4.2) is said to
be a mild solution of (4.1).
The mild solution satisfies a familiar equality, as the next lemma shows.

Proposition 4.2.2 Let f € Cy((0,T); X), and let x € X. If u is defined by (4.2), then
for every t € [0,T] the integral fg u(s)ds belongs to D(A), and

u(t) =z + A/Ot u(s)ds + /Ot f(s)ds, 0<t<T. (4.3)
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Proof. For every t € [0,T] we have

t ¢ t s
/u(s)ds = /eSAxds—i—/ ds/ e~ f(0)do
0 0 0 0
¢ t t
= /eSAxds—l—/ da/ e(s_")Af(a)ds.
0 0 o

By proposition 1.2.6(ii), the integral fot u(s)ds belongs to D(A), and

t ¢
A/ u(s)ds = ez — —I—/ (e =DA _1)f(o)do, 0<t<T,
0 0

so that (4.3) holds. O

From definition 4.2.1 it is easily seen that if (4.1) has a strict solution, then

z € D(A), Az + f(0) =/(0) € D(A), (4.4)

and if (4.1) has a classical solution, then

v € D(A). (4.5)

Proposition 4.2.3 Let f € C((0,7T],X) be such that t — ||f(t)|| € L' (0,T), and let
x € D(A) be given. If u is a classical solution of (4.1), then it is given by formula (4.2).

Proof. Let u be a classical solution, and fix ¢+ € (0,7]. Since u € CY((0,T]; X) N
C((0,T]; D(A)) N C([0,T]; X), the function

v(s) = eDy(s), 0<s<t,
belongs to C([0,t]; X) N C((0,t), X), and

v(0) = ez, v(t) =u(t),

V'(s) = —Ae(s) + DY Au(s) + f(s) = et f(s), 0< s <t
As a consequence, for 0 < 2¢ < t we have
t—e
ot — &) — v(e) = / (=4 7(5) s,
€

so that letting ¢ — 0 we get

o(t) — v(0) = /0 194 £(5)ds,

and the statement follows. OJ

Under the assumptions of proposition 4.2.3, the classical solution of (4.1) is unique. In
particular, for f =0 and z € D(A), the function

t—u(t) = ez, t>0,

is the unique solution of the homogeneous problem (1.1). Of course, proposition 4.2.3
implies also uniqueness of the strict solution.

Therefore, existence of a classical or strict solution of (1.1) is reduced to the problem
of regularity of the mild solution. In general, even for x = 0 the continuity of f is not
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sufficient to guarantee that the mild solution is classical. Trying to show that u(t) € D(A)
by estimating || Ae(*=%)4 f(s)|| is useless, because we have ||Ae=9)4f(s)|| < C|| flloo(t—5) "
and this is not sufficient to make the integral convergent. More sophisticated arguments,
such as in the proof of proposition 1.2.6(ii), do not work. We refer to exercise 4.2.12.1 for
a rigorous counterexample.

The continuity of f allows however to show that the mild solution is, at least, Holder
continuous in all intervals [e,T] with € > 0. For the proof we define

M, = sup |[tFAFM, k=0,1,2.
0<t<T+1

Proposition 4.2.4 Let f € Cy((0,7); X). Then, for every a € (0,1), The function

t
o(t) = (e« f)(t) == / et f(s)ds, 0<t<T,
0
belongs to C*([0,T); X), and there is C = C(«) such that
[0l[ceo,r,x) < € sup [If(s)]]. (4.6)
0<s<T
Proof. For 0 <t < T we have
lo(®)]l < Mot sup [If(s)ll, (4.7)
0<s<t
whereas for 0 < s <t < 7T we have
s t
v(t) —v(s) = / <e(t*")A — e(S*U)A) f(o)do +/ =41 (0)do
0 s
s t—o t
= / da/ Ae™ f(o)dT + / =4 f(0)do,
0 s—o s

which implies

s t—Ul
[o(® =)l < M, /Osda /1 e =
) MMT——")/ e drl o+ Mot =)l (4
(AT S+ Mot =) ) 1 e

so that v is a-Holder continuous. Estimate (4.6) immediately follows from (4.7) and (4.8).
g

The result of proposition 4.2.2 is used in the next lemma, where we give sufficient
conditions in order that a mild solution be classical or strict.

Lemma 4.2.5 Let f € C3,((0,T]; X), let x € D(A), and let u be the mild solution of (4.1).
The following conditions are equivalent.

(a) ue C((0,T]; D(A)),
(b) ue C((0,T]; X),
(¢) w is a classical solution of (4.1).

If in addition f € C([0,T); X), then the following conditions are equivalent.
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(@) we C([0,T]; D(A)),
(') ue CH0,T]; X),

(') w is a strict solution of (4.1).

Proof — Of course, (c¢) is stronger than (a) and (b). Let us show that if either (a) or (b)
holds, then u is a classical solution. We already know that u belongs to C([0,T]; X) (see
also proposition 4.2.4), and that it satisfies (4.3). Therefore, for every ¢, h such that ¢,
t+he(0,T],

w = EA/t u(s)ds + n ) f(s)ds. (4.9)
Since f is continuous at ¢, then
1 t+h
lim — = . 4.1
im ) f(s)ds = [f(t) (4.10)
Let (a) hold. Then Aw is continuous at t, so that
1 t+h 1 [tk
lim —A u(s)ds = lim — Au(s)ds = Au(t).

By (4.9) and (4.10) we get now that u is differentiable at the point ¢, with «/(¢t) = Au(t) +
f(t). Since both Au and f are continuous in (0,77, then u’ too is continuous, and u is a
classical solution.

Let now (b) hold. Since u is continuous at ¢, then

1 t+h
}lli_)né E/t u(s)ds = u(t).

On the other hand, by (4.9) and (4.10), there exists the limit

1 t+h
}lliL%A <E/t u(s)ds> =/(t) — f(t).
Since A is a closed operator, then u(t) belongs to D(A), and Au(t) = u/(t) — f(¢). Since
both v’ and f are continuous in (0,77, then also Au is continuous in (0,77, so that u is a
classical solution.

The equivalence of (a’), (V'), (¢) may be proved in the same way. [J

In the following two theorems we prove that, under some regularity conditions on f
the mild solution is strict or classical. In the theorem below we assume time regularity
whereas in the next one we assume “space” regularity on f.

Theorem 4.2.6 Let0 < a <1, f € C*0,T],X), x € X, an let u be the function defined
in (4.1). Then u belongs to C%([e,T], D(A)) N C**([e,T], X) for every e € (0,T), and
the following statements hold:

(i) if x € D(A), then u is a classical solution of (4.1);

(ii) if x € D(A) and Az + f(0) € D(A), then u is a strict solution of (4.1), and there is
C > 0 such that

lulleto,r,x) + Iwlleqo,m,nay < CUfllceqom,x) + 1zllpay)- (4.11)
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(i1i) if v € D(A) and Ax + f(0) € Da(a, 00), then v’ and Au belong to C*([0,T],X), v’
belongs to B([0,T]; Da(a, >0)), and there is C' such that

[ull g1+ x) + AUl oo (x) + Wl B(DAa,0)) (4.12)
< CIfllcexy + 1zl peay + 1Az + F(O) D a(as00))-
Proof. We are going to show that if x € D(A) then u € C((0,7]; D(A)), and that if
z € D(A) and Az + f(0) € D(A) then u € C([0,T]; D(A)). In both cases statements (i)
and (ii) will follow from lemma 4.2.5.
Set

ui(t) = /te(t_s)A(f(S) — f(t))ds, 0<t<T,
" (4.13)

t
ug(t) = etdx + / =)Ar(t)ds, 0<t<T.
0

so that u = w1 +wug. Notice that both u;(¢) and ua(t) belong to D(A) for t > 0. Concerning
u1(t), the estimate

—S8 M «
[A4eA(f () = DI < 7= (t = ) [l
implies that the function e=*)4(f(s) — f(t)) is integrable with values in D(A), whence
ui(t) € D(A) for every t € (0,7 (the same holds, of course, for t = 0 as well). Concerning
us(t), we know that e*4z belongs to D(A) for t > 0, and that fot e(=9)A £ (t)ds belongs to
D(A) by Proposition 1.2.6(ii). Moreover, we have

@ An= | "AIA(f(s) — f(t)ds, 0<t<T. »

(i1)  Aus(t) = Aettz + (et —1)f(t), 0<t<T.

If x € D(A), then equality (4.14)(ii) holds for ¢ = 0, too. Let us show that Au; is Holder
continuous in [0,7]. For 0 < s <t < T we have

Auy(t) — Auy(s) = t
/ (Ae(t‘”)“‘(f(a) () — AdA(f(0) —f<s>>>da+ [ Ac=(50) = f(0)do

S
S

= [ (At 4o (7(0)  fo)do + [ AIA(1(s) - f0))dor

Os t—o 0
:A e dr(f(o) — f(s)do
+(e = eI (fs) — (1) + / A=A (f(o) = f(t))do,
’ (4.15)
so that
s t—o
| Aug (t) — Aui(s)| < M2/0 (s —o)” /_ 772d7 do [f]ce
+2Mo(t — 5)*[flce + M) /t(t —0)* do [f]oe
< My /OS do /3:0 727 [floe + (2Mo + Mia ™) (t — 5)*[flce (4.16)

< (Q(L oMy + %> (t— 9)°[flow.

1—a) a
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Then, Au; is a-Hélder continuous in [0,7]. Moreover, it is easily checked that Ausg is a-
Holder continuous in [e, T for every € € (0,7T'), and therefore Au € C*([e,T]; X). Since u €
C*([e, T]; X) (because t +— etz € C((0,T); X) and t — [7 e~ f(s)ds € C*([0,T]; X)
by Proposition 4.2.4), it follows that uw € C%([e, T]; D(A)), and u € C((0,T]; D(A)) follows
from the arbitrariness of ¢.

Concerning the behaviour as t — 0, if € D(A), then t — et4z € C([0,T],X) and
then u € C([0,T], X), see proposition 4.2.4.

If x € D(A), we may write Aua(t) in the form

Aug(t) = e (Az + f(0)) + e (f(t) — f(0)) — f(t), 0<t<T. (4.17)

If Az + f(0) € D(A), then lim;_,g Aua(t) = Az, hence Aug is continuous at t = 0, and
u = uj + ug belongs to C([0,T]; D(A)).

If Az + f(0) € Da(a,o0), we already know that t — e!4(Ax + £(0)) € C([0,T], X),
with C* norm estimated by const. [[Az + f(0)|p,(a,00). Moreover f € C([0,T], X) by
assumption, so we have to show only that ¢t — e*A(f(t) — £(0)) is a-Holder continuous.

For 0 < s <t <T we have

4 (0) = FO) = A1) = FODI < 1 = eN(F(s) = FO)] + 47 0) = £
< 57 / Ao o0 flon + Ma(t — 5)*[flce
< (%) (¢ 97U flen,

(4.18)
so that Aus is Holder continuous as well, and the estimate

[ullcrao,r),x) + [[Aullcaor:x) < el fllcaqo,m,x) + 1zllpay + [[Az + £(0) D4 (a00))

easily follows.
Let us now estimate [u'(£)]p,,(a,00)- For 0 <t < T we have

u/(t) = /0 Ael=DA(f(s) — f(1))ds + YAz + £(0)) + " (f(t) — £(0)),

so that for 0 < £ <1 we deduce

gt Aet M/ (1)]| - < \ ghe /0 DRI (f(5) - f(1))ds
H|e T AUTOA Az + F(0))]] + [|€" T AT f() — F(0))]]
Mg [t )70+ - ) s [flen (1.19)
+Mo[Az + (0)]p s (a00) + MaE O (t + &) 7™ [flom

< M, /O b o (o + 1) 2do[f]ce + Mo[Az + f(0)]p s (a00) + Mi[flce

IN

Then, [v'(t)]p,(a,00) is bounded in [0, 7], and the proof is complete. [J

Remark 4.2.7 From the proof of theorem 4.2.6 it follows that the condition Az + f(0) €
Da(a, ) is necessary for Au € C([0,T]; X). Once this condition is satisfied, it is
preserved through the whole interval [0,T], in the sense that Au(t) + f(t) = u/(t) belongs
to Da(a, 00) for each t € [0,T].

In the proof of the next theorem we use the constants

Mio = sup [[t" A " (D, (ame)x) <00, k=1,2. (4.20)
0<t<T+1
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Theorem 4.2.8 Let 0 < aw < 1, and let f € C([0,T]; X) N B([0,T]; Da(cv,0)). Then,
the function

o(t) = (e * f)(t) = / t =941 (s)ds, 0<t<T,
0
belongs to C([0,T); D(A)) N CY([0,T]; X), and it is the strict solution of
V'(t) = Av(t) + f(t), 0<t<T, v(0)=0. (4.21)

Moreover, v' and Av belong to B([0,T]; Da(c, 00)), Av belongs to C*([0,T]; X), and there
is C' such that

1V (| B(DA(as00)) + 1AV B(D 4 (a,00) T 1AV ca(x) < CIFIIB(DA(a00))- (4.22)

Proof. Let us prove that v is a strict solution of (4.21), and that (4.22) holds. For
0<t<T,v(t) belongs to D(A), and

! a1 TMi o
[Av(t)[| < Mhq ; (t =) ds||fllB(Da(ao0)) = 11l B(DA(a00))- (4.23)
Moreover, for 0 < £ < 1 we have
t
€= AccAdu(e)| = 61 | [ AZeH9A payas
0
(4.24)

Moy o

1—a

t
< My 6o / (646 — ) 2ds] FllmDatecon < 22 flm(Drmcn:

so that Av is bounded with values in D 4(«, 00). Let us prove that Av is Hélder continuous
with values in X: for 0 < s <t < T we have

| Av(t) — Av(s)| < HA / (A = =) f(o)do | + HA / DA £ () dor
< Moo [Cdo [T laostacor (4.29)
+Mi /St(t — 0)* Yo || f1| B(D s (a00))
<a(]¥[iaa) + M;a) (t = ) £ B(Da(ay00))5
hence Av is a-Holder continuous in [0,7]. Estimate (4.22) follows from (4.23), (4.24),

(4.25).
The differentiability of v and the equality v'(t) = Av(t) + f(t) follow from Lemma
4.2.5. O

Corollary 4.2.9 Let 0 < o < 1, z € X, f € C([0,T];X) N B([0,T]; Da(cx,0)) be
given, and let u be given by (4.2). Then, u € C*((0,T]; X) N C((0,T); D(A)), and u €
B([e,T]; Da(a + 1,00)) for every e € (0,T). Moreover, the following statements hold:

(i) If x € D(A), then u is the classical solution of (4.1);

(i1) If x € D(A), Az € D(A), then u is the strict solution of (4.1);

(i1i) If v € Da(a+ 1,00), then v’ and Au belong to B([0,T]; Da(a, 00)) N C([0,T]; X),
Au belongs to C*([0,T]; X), and there is C' such that

14| B(D a(a,00)) + 1A% B(D 4 (a,00)) T AUl capo,77:x) (4.26)
S CUfIB(DA(a0)) T 121D 4 (as00))-
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Proof. Let us write u(t) = ez 4 (! x f)(t). If z € D(A), the function t — ez is the
classical solution of w' = Aw, t >0, w(0) =z. If x € D(A) and Az € D(A) it is in
fact a strict solution; if z € Dg(a+ 1, 00) then it is a strict solution and it belongs also to

C1([0,T); X) N B([0,T); Da(a + 1,00)). The claim then follows from theorem 4.2.8. [J
We recall that for 0 < < 1 the parabolic Hélder space C%/29([0, T] x R) is the space

of the continuous functions f such that

1 llcorzoqo,rixrny = I flloo + suplf (-, @)ooy + sup [f(E-)]com) < oo,
zeR te[0,T7]

and C19/2.240((0, T] x RY) is the space of the functions u such that u;, and Djju exist
for all i, j = 1,... N and belong to C%29([0,T] x R). The norm is

N
HUHCHWQ’?"'@([O,T}XIRN) 1= [lullos + Z [ Diufloo
N =1
+HUtHce/2ﬂ([o,T]xRN) + Z HDz‘juHcﬂ/w([O,T]xRN)-
i,j=1

Note that f € C%29([0, T|xRYN) if and only if t — f(t, -) belongs to C?/2([0, T]; Cy(RY))
N B([0, T]; C*(RY)).

Corollary 4.2.10 (Ladyzhenskaja — Solonnikov — Ural’ceva) Let 0 < 8 < 1, T > 0 and
let ug € C2HO(RN), f e C929(]0,T) x RN). Then the initial value problem

up(t, ) = uge(t,2) + f(t,2), 0<t <T, xRV,
(4.27)
u(0,2) = ug(z), = €RVN,

has a unique solution u € C1H/2249(0, T x RN), and there is C' > 0, independent of ug
and f, such that

[ull grvorzavo o rpxryy < Cllluollczromny + 1 flcorzo o, xryy)-

Proof. Set X = C,(RY), A: D(A) — X, Ap = Ay, T(t) = heat semigroup. The
function ¢ — f(t,-) belongs to C?2([0,T];X) N B([0,T];D(0/2,0)), thanks to the
characterization of example 3.1.7. The initial datum ug is in D(A), and both Aug, f(0, )
are in D4(0/2,00). Then we may apply both theorems 4.2.6 and 4.2.8 with o = 6/2. They
imply that the function u given by the variation of constants formula (4.2) is the unique
strict solution to problem (4.1), with initial datum ug and with f(t) = f(¢,-). Therefore,
the function

ult, 2) = u(t)(x) = (T(tuo)(x) + / (T(t - 5)/(s,)(x)ds,

is the unique bounded solution to (4.27) with bounded w;. Moreover, theorem 4.2.6 implies
that u' € C?2([0,T); Co(RN)) N B([0,T]; C?(RN)), so that u; € C%2¢(]0, T] x RY), with
norm bounded by C(||luollc2+o®n) + || fllcor26(j0 17xra)) for some C' > 0. Theorem 4.2.8
implies that u is bounded with values in D4(6/2 + 1,00), so that u(t,-) € C**(RY) for
?Ch t, and supocs<r u(t, )l c2romny < Cllluollczro@ny + 1fllcorzo(omxrr)) for some
> 0.

To finish the proof it remains to show that each second order space derivative D;;u is

6/2-Holder continuous with respect to ¢. To this aim we use the interpolatory inequality

9/2

1_9/2(H<P||00(Rn)) ;

1Dijelloe < Clllellcz+o@n))
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that holds for every ¢ € C**9(RN), 4, j = 1,...,N. See exercises 3.1.10. Applying it to
the function ¢ = u(t, ) — u(s,-) we get

IDijult, ) — Diju(s, oo < C(l[ult, ) — uls,)lczromrn)) =2 (|[ult, ) — uls,)llcogn))??
< C(2supg<i<r l|ult, ')HC2+9(Rn))179/2(‘t — 8| supg<i<r lue(t, ')||C‘9(R”))9/2
<C'ft - 5\9/2(||U0Hc2+9(Rn) + Hf”CG/?»G([O,T}XRN))a

and the statement follows. [J

Remark 4.2.11 If we have a Cauchy problem in an interval [a, b] # [0, 7],

V' (t) = Au(t) + g(t), a<t<b,
(4.28)
v(a) =y,

we obtain results similar to the case [a,b] = [0,T], by the changement of time variable
7 =T(t—a)/(b—a). The details are left as (easy) exercises. We just write down the
variation of constants formula for v,

t
o(t) = et~y —l—/ =94 (s)ds, a <t <b.

Exercises 4.2.12

1. Let ¢:(0,7) x RN = R, ug : RV — R be continuous and bounded, and let T(t) be
the heat semigroup. Show that the function

u(t, x) = (T(t)uo)(a:)+/0 (T'(t = s)ip(s, ) (x)ds

belongs to C([0,T] x RY;R).

2. Use estimates (4.20) and the technique of proposition 4.2.4 to prove that for each
f € Cy((0,T); X), the function v = (et x f) belongs to C1=([0,T]; Da(a, 00)) for
every « € (0,1), with norm bounded by C(«) supgeier || f(1)]]-

3. Let A: D(A) — X be a sectorial operator, and let 0 < o < 1, a < b € R. Prove
that if a function u belongs to C1*%([a, b]; X) N C%([a, b]; D(A)) then v’ is bounded
in [a, b] with values in D («, c0).

[Hint: set ug = u(a), f(t) = u'(t) — Au(t), and use theorem Th:4.2.3(iii)].
4. Consider the sectorial operators A, in the sequence spaces /, 1 <p < oo given by
D(Ap) = {(zy) € £F : (nxy,) € P}, Ap(xyn) = —(nxzy,) for (z,) € D(Ap)

and assume that for every f € C([0,T];¢P) the mild solution v of 1.1 corresponding
to the initial value z = 0 is a strict solution.

(i) Use the closed graph theorem to show that the linear operator

f e S(t)f = /0 T(t - s)f(s)ds - C([0.,1]; %) — C((0, 1]; D(4,))

is bounded.
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(ii) Let (ey) be the canonical basis of ¢ and consider a nonzero continuous function
g : [0,00) — [0,1] with support contained in [1/2,1]. Let f,(t) = g(2"(1 —
t))ean; then f, € C([0,1];¢P), || fnllco < 1. Moreover, setting hy = f1 +--- +
fn, we have also hy € C([0,1];4,), ||hn|looc < 1, since the functions f,, have
disjoint supports. Show that S(1)f, = 2 "egn where ¢ = [~ e *g(s)ds, hence
[S(Whnlpea,) = eN'/P. This implies that S(1) is unbounded, contradicting
(i).

(iii) What happens for p = co?



Chapter 5

Asymptotic behavior in linear
problems

5.1 Behavior of !4

One of the most useful properties of the analytic semigroups is the so called spectrum
determining condition: roughly speaking, the asymptotic behavior (as t — 400) of e*4,
and, more generally, of A%e!4, is determined by the spectral properties of A.

Define the spectral bound of any sectorial operator A by

s(A) =sup{ReX: A€ o(A)} (5.1)

Clearly s(A) < w, where w is the number in definition 1.2.1.

Proposition 5.1.1 For every n € NU {0} and € > 0 there exist My, . > 0 such that

[t Am e[ Lo x) < M@t ¢ > 0. (5.2)

Proof. For 0 < t < 1, estimates (5.2) are an easy consequence of (1.14). If ¢t > 1
and wa + ¢ > w, (5.2) is still a consequence of (1.14). Let us consider the case in which
t > 1 and s(A) +¢ < w. Since p(4) D SS9, U{A € C: ReX > s(A)}, setting a =
(w—5(A) —¢)|cosO|7L, b= (w— s(A) — ¢)|tan f]|, the path

I. = {MeC: A A=¢ @ tw ¢>alu{reC : X=¢" +w, £>a}
U {AeC : Re A=wa+e, [ImA <b}
is contained in p(A), and ||[R(X, A)||1x) < M| —s(A)|7! on I, for some M. > 0. Since

for every ¢ the function A\ — e*R(\, A) is holomorphic in p(A), the path w + 4., may be
replaced by I'., obtaining for each ¢t > 1,

1
et = H_/ e”R(A,A)dAHﬁ dé
211

€

M. /-‘,—00 e(w+§ cos 0)t
o 18 +w—s(A)

™

M. [P e M, ( 1 b) (s(A)+o)t
—]€ .

e - dy< == ——
21 J_y iy + €| V=" b|cos€\+5

-
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Estimate (5.2) follows from n = 0. Arguing in the same way, for t > 1 we get
1
At = == [ e?AR(\, A)dX
44 = | 5 [ earona)

M. 400 b
< e sup ‘)\()\ _ S(A))‘_l (2/ e(w+£cos€)td§ +/ e(wA-i-a)tdy)
27 Aer. a b

=

< € (| COS@|_1 + b)e(wA—i-s)t < Mge(wA—i-%)tt—l'
S =

Since ¢ is arbitrary, (5.2) follows also for n = 1.
From the equality A"e'4 = (Ae%A)" we get, for n > 2,

|A™ | Lx) < (Mient~Len G < (M _e)nl ¢ e+t

and (5.2) is proved. O

We remark that in the case s(A) = w = 0, estimates (1.14) are better than (5.2) for ¢
large.

We consider now the problem of the boundedness of the function ¢ — ez for ¢ in
[0, 4+00). From proposition 5.1.1 it follows that if s(A) < 0, then such a function is bounded
for every x € X. In the case in which s(A) > 0, we investigate whether it is possible to
characterize the elements x such that ¢4z is bounded in [0, +00). We shall see that this
is possible in the case where the spectrum of A does not intersect the imaginary axis.

5.2 Behavior of e/ for a hyperbolic A

Let us assume that
a(A)NiR = (. (5.3)

In this case A is said to be hyperbolic. Set 0(A) = o_ U o, where
o_=0(A)N{AeC: ReA <0}, or=0(A)N{AeC: ReA>0}. (5.4)

Since o_, oy are closed we have

—w_=sup{ReA: A€o_} <0, wy=inf{ReA: A€oy} >0. (5.5)
o_ and o4 may be also void: in this case we set w_ = 400, wy = 400. Let P be the
operator defined by
1
P=— A, A)dA :
— [ ROLA)D (56)

Y+
where vy is a closed regular curve contained in p(A), surrounding o, oriented counter-
clockwise, with index 1 with respect to each point of o, and with index 0 with respect
to each point of o_. P is called spectral projection relevant to o.

Proposition 5.2.1 The following statements hold.
(i) P is a projection, that is P?> = P. Moreover P € L(X, D(A™)) for every n € N.

(ii) For each t > 0 we have

1
AP = pelt = —/ eMR(\, A)dA.
2 )y,

Consequently, e (P(X)) C P(X), (I — P)(X)) c (I — P)(X).
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(iii) Setting

1
ety = —/ MR\, A)xzd), x € P(X), t <0,
271 vy

we have
etesAy = M9z Vo e P(X), t,s € R,

etdx € D(A") Vr € P(X), n €N,

dn
%emx = A"z, teR, z e P(X).

(iv) For every w € [0,w4) there exists N, > 0 such that for every x € P(X) we have

let e + || Ae ]| + || A% ]| < Ne'[|z]|, ¢ <.

(v) For each w € [0,w_) there exists M, > 0 such that for every x € (I — P)(X) we
have
let el + [[tAez ] + (|t A% el < M|z, ¢ > 0.

Proof. (i) Let 74, ¥/, be regular curves contained in p(A) surrounding o, with index 1
with respect to each point of oy, and such that v, is contained in the bounded connected
component of C\ +/.. Then we have

P2 = <2ﬂ> /RgAdg R(\, A)dA

- <i.)2 f, RO — RE A 0 e

271

1)\?2 .
= <%> R)\Ad/\/7§ A)~ldge

<2m>2/7 R(¢ /(g A)tda

= P

The proof of (ii) is similar and it is left as an exercise.

(iii) Since the path 74 is bounded and the function under integral is continuous with
values in D(A), the integral defining e*4z, for t < 0 and x € P(X), has values in D(A).
Moreover we have

1

—/ AR, Az — x)d)\ = !
T+

Aty = —/ MAR(N, A)zd),
T+

™ ™

d 1

—ey = — / AeMR(N, A)zdh = Aelta.
2mi )y,

One shows by recurrence that ez € D(A™) for every n, and that

" 1
—elr=_— [ A"eMR(\, A)zd).
dtn 211 -
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(iv) Since w € [0,w4 ), we choose 4 such that infye,, ReA =w. Then we have

1
A" tA <
dretia] < o

[ i RO, Al allon
Y+

< cnsupre,, [N 2]l = cne||2].

(v) We have

etA([—P):%<[Y

with = = {A\ € C: A = —w +reT™® r > 0}, oriented as usual, § > 7/2 suitable. The
estimates may be obtained as in the proof of theorem 1.2.3(iii) and of proposition 5.1.1,
and they are left as an exercise. [J

—/ )e“R(A,A)d)\:/ eMR(\, A)d),
Y+

n V-

Corollary 5.2.2 For x € X we have

sup |le!z|| < oo <= Pz = 0.
>0

Proof — Write every x € X as ¢ = Pz + (I — P)z, so that e!t2 = ¢! Px + !4 (I — P)a.
The norm of the second addendum decays exponentially to 0 as ¢ — +oo. The norm
of the first one is unbounded if Pz # 0. Indeed, Pz = e *e!4Px, so that || Pz||
||€_tAHL(p(X))||€tAP£U|| < Nye et Px| with w > 0, which implies that [|e!4Pzx||
e“t|| Pz||/N,,. Therefore t — e*4z is bounded in R if and only if Pz = 0. O

<
>

Example 5.2.3 Let us consider again examples 2.1.1 and 2.1.2, choosing as X a space of
continuous functions.

In the case of example 2.1.1, we have X = C}(R), A: D(A) = CZ(R) — X, Au =",
p(A) = C\ (—00,0], [AR(A, A)|| < (cos#/2)7L, with § = arg \. In this case w = s(A) =0,
and estimates (5.2) are worse than (1.14) for large ¢. It is convenient to use (1.14), which
give

e < My, [[tFARe )| < My, keN, t>o0.

Therefore for every initial datum ug, e*ug is bounded, and the k-th derivative with respect

to time, the 2k-th derivative with respect to  decay as t — oo at least like t 7%, in the sup
norm.

Let us consider now the problem

ut(t,x) = uga(t,x) + au(t,z), t>0,0<z<m,
u(0,2) = up(z), 0 <z <m, (5.7)

u(t,0) =u(t,m) =0, t>0,

with @ € R. Choose X = C([0,7]), A: D(A) = {f € C*([0,n]) : f(0) = f(7) =0} — X,
Au = u” + au. Then the spectrum of A consists of the sequence of eigenvalues

Ay =-n?4a, neN.

In particular, if a < 1 the spectrum is contained in the halfplane {\ € C: Re A < 0},
and by proposition 5.1.1 the solution u(t, ) = e*4ug of (5.7) and all its derivatives decay
exponentially as ¢ — 400, for any initial datum wuy.
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If o =1, assumption (1.9) holds with w = 0. This is not immediate; one has to study
the explicit expression of R(A, A) (which coincides with R(A — 1, B) where B : D(A) — x,
Bf = f") near A = 0, see example 2.1.2). We use then theorem 1.2.3(iii), which implies
that for every initial datum wg the solution is bounded.

If o > 1, there are elements of the spectrum of A with positive real part. In the case
where o # n? for every n € N (say n? < a < (n + 1)?) assumption (5.3) is satisfied.
By corollary 5.2.2, the initial data ug such that the solution is bounded are those which
satisfy Pug = 0. The projection P may be written as

pP= zn: Py,
k=1

where P, = % IC()\k o R(\, A)d), and the numbers \;, = —k% + o, k = 1,...,n, are the
eigenvalues of A with positive real part.
It is possible to show that

(Ppf)(z) = %/OW sinky f(y)dysinkz, z € [0,n]. (5.8)

Consequently, the solution if (5.7) is bounded in [0, +00) if and only if

/ sinkyug(y)dy =0, k=1,...,n.
0

Exercises 5.2.4

1. Let a, B € R, and let A be the realization of the second order derivative in C([0, 1)),
with domain {f € C?([0,1]) : af(i) + Bf'(i) =0, i = 0,1}. Find s(4).

2. Let A satisty (5.3), and let "> 0, f : [-T,0] — P(X) be a continuous function, let
x € P(X). Prove that the backward problem

W(t) = Au(t) + f(t), ~T<t<0

u(0) =z,

has a unique strict solution in the interval [0, 7] with values in P(X), given by the
variation of constants formula

t
u(t) = e +/ =94 f(s)ds, —T <t <0.
0

3. Let A be a sectorial operator such that o(A) = o1 U og, where o7 is compact, o9 is
closed, and o1 N oy = (). Define P by

1
P=

T 2mi

/ R(\, A)dA,
vy

where 7y is any regular closed curve in p(A), around o1, with index 1 with respect to
each point in o1 and with index 0 with respect to each point in os.

Prove that the part A; of A in P(X) is a bounded operator, and that the group
generated by A; may be expressed as

1
e = — / eMR(\, A)d.
211 oy
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5.3 Bounded solutions in unbounded intervals

5.3.1 Bounded solutions in [0, +00)

In this section we consider the problem

u'(t) = Au(t) + f(t), t >0,
(5.9)
u(0) = uo,

where f : [0,+00) — X is a continuous function and z € D(A). We assume throughout
that A is hyperbolic, i.e. (5.3) holds, and we define 0_(A), 04 (A) and —w_, w; as in
section 5.2.

Let P be the projection defined by (5.6). Fix once and for all a positive number w
such that

—w_ < —w < w < wy,
and let M,,, N, the constants given by proposition 5.2.1(iv)(v).
Given f € Cp([0,+00); X), ug € X, we set

w1 (t) = (I — P)ug + / t AT — P)f(s)ds, t >0,
0

+o0o
ug(t) = —/ eU=DAPf(s)ds, t>0.
t

Lemma 5.3.1 The following statements hold.

(i) For every f € Cy([0,+00); X) and ug € D(A) the function uy is in Cy([0, +00); X),
and

[ualloo < Crllluoll + 11 Flloo)- (5.10)

If in addition f € C*([0,400); X), up € D(A), Aug + f(0) € D(A), then u}, Aus
belong to Cy([0, +00); X), and

lurlloe + lutlloe + l[Auslloo < Cra(lluoll + [l Auoll + [ fllce)- (5.11)

(i1) For each f € Cyp([0,400); X), uz € Cp([0,400); D(A)), moreover ug is differentiable,
uhy € Cy([0,+00); X), and

[uz]loo + [[Ua]loc + [[Auz]loo < Callflce- (5.12)

Proof — (i) For every ¢ > 0 we have

t
lur (D) < Mwe“’tll(f—P)UOHJr/Mwew(tS)ds sup || f(s)]l
0 0<s<t

< M =PI (ol + S0l )
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If up € D(A) then (I — P)ug € D(A); if f € C*(]0,+00); X) then for every t > 0 we
have

lAw ()] < Mufmmf—PVMﬂ+HAAeWﬂ%I—PMﬂ@—fawm

- HA/OteSA(I — P)f(t)ds

—w(t—s)

IN

t
MMFPWM+%/6
o (1

ﬁdﬂ(f— P)flce

+H|(e" = I)(I = P)f(1)]

SIW—PW@LW%ﬂ+H®Mm>+w@+mmw)

wOé

(ii) For every ¢t > 0 we have
> w(t—s NUJ
Jua(®)l < N, [ e dssup [P F(s)| = 2P 1)

t 5>0 w
Similarly, ||Aug(t)| < w N, ||P| || f]lco- Moreover

+oo

dy(t) = PF(t) — / AP F(s)ds = Aug(t) + PF(t), ¢ >0,
t

so that I
sup ([ ()] + sup | Aus ()] < (——iﬂ—+1) VP11 e
£>0 t>0 w

]

From lemma 5.3.1 we get easily a necessary and sufficient condition on the data ug, f
for problem (5.9) have a X-bounded solution in [0, +00).

Proposition 5.3.2 Let f € Cy([0,4+00); X), up € D(A). Then the mild solution u of
(5.9) belongs to Cy([0,+00); X) if and only if

+o0o
Puy = —/ e *APf(s)ds. (5.13)
0
If (5.13) holds we have
t +o00
u(t) = etA(I — P)ug +/ e(t_s)A(I — P)f(s)ds — / e(t_S)APf(s)ds, t>0. (5.14)
0

t

If in addition f € C([0,400); X), up € D(A), Aug + f(0) € D(A), then u belongs to
Cb([0, +00); D(A)).

Proof — For every t > 0 we have

u(t) = (I — P)u(t) + Pu(t)

t t
= etA(] — P)ug + / AT — P)f(s)ds + €' Pug + / eI f(s)ds
0 0

+oo +00
= up(t) + et Pug + (/ —/ > et=)APf(s)ds
0 t

= u(t) + ua(t) + et (Puo + /0+OOeSAPf(s)ds> :
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The functions u; and us are bounded thanks to lemma 5.3.1, hence u is bounded if
and only if ¢ — et4 (Puo + f0+°° e_SAPf(s)ds> is bounded. On the other hand y =
Pug + f0+°o e *APf(s)ds is an element of P(X). Therefore 'y is bounded if and only if
y = 0, namely (5.13) holds.

In the case where (5.13) holds, then u = u; + ug, that is (5.14) holds. The remaining
part of the proposition follows from lemma 5.3.1. [J

5.3.2 Bounded solutions in (—oo, 0]

In this section we study backward solutions of

V'(t) = Av(t) + g(t), t <0,
(5.15)
U(O) = 9,
where g : (—o0,0] — X is a continuous and bounded function, vy € D(A). We assume
again that A is hyperbolic.

Problem (5.15) is in general ill-posed. We shall see in fact that to find a solution we
will have to assume rather restrictive conditions on the data. On the other hand, such
conditions will ensure nice regularity properties of the solutions.

Given g € Cp((—00,0]; X), v9 € X, we set

t
vi(t) = / et =)A(T — P)g(s)ds, t <0,

—00

t
va(t) = e Puy +/ e=4pg(s)ds, t<0.
0

Lemma 5.3.3 The following statements hold.

(i) For every g € Cy((—o0,0]; X) the function v1 belongs to Cp((—00,0]; X), and more-
over

[01]lo0 < Cllglloo- (5.16)

If in addition g € C*((—00,0]; X) for some o € (0, 1), then vy € C*((—00,0]; D(A)),
moreover vy is differentiable, vi € C%((—0o0,0]; X), and we have

[illoe + [ Avi[loe < Clligllce. (5.17)

(ii) For every g € Cy((—00,0]; X) and for every vo € X, the function vy belongs to
Cp((—00,0]; D(A)); moreover vy is differentiable, vl = Avy + Pg, and

lv2llo + l05]lo0 + [[Av2lec < Cllvoll + lIglloo)- (5.18)

Proof — (i) For each ¢ < 0 we have

0
(b M,
lor(8)] < Mw/ e~ “=*)ds sup || (I = P)g(s)|| < —=|IT = P|[|goo-

—00 s<0 w
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If g € C%((—00,0]; X) then vy (t) € D(A), and we have

lAu ()] < H/ AT~ P)(g(s) - g())ds

0
- H / Ae=)A(T — P)g(t)ds

IN

w(t—s) +oo
M/ e I—P)g]ca—kHA/ e"Ada(I—P)g(t)H
— ) ;

IN

D) Py lglen + ) - (1 - P)gto)]

< =PI (02 4 gl )

The proof of Av; € C*((—o0,0]; X) is similar to this one and to the one of theorem 4.2.6,
and it is left as an exercise.
¢
/ ew(t—s)ds
0

Let us prove (ii). For every ¢ < 0 we have
1
No { [1Pvoll + ~ 1Pl lglloo | -

Similarly we get ||Ava(t)|| < Ny (|[Pvo| +w Pl [|g9llec)- Since vh = Avg + Pg, estimate
(5.18) follows. O

IN

[o2(2)] Noe*'|| Puol| + No

sups<o | Pg(s)]|

IN

Lemma 5.3.3 allows us to give a necessary and sufficient condition on the data g, ug
for problem (5.15) have a X-bounded solution in (—oo, 0].

A function v € C((—o00,0]; X) is said to be a mild solution of (5.15) in (—o0,0] if
v(0) = vg and for each a < 0 we have

t
o(t) = e~ (a) +/ et~ 4g(s)ds, a <t<0. (5.19)
In other words, v is a mild solution of (5.15) if and only if for every a < 0, setting y = v(a),

v is a mild solution of the problem
V'(t) = Av(t) + g(t), a<t <0,
(5.20)
v(a) =y,
and moreover v(0) = vy.

Proposition 5.3.4 Let g € Cp((—00,0]; X), vo € X. Then problem (5.15) has a mild
solution v € Cy((—00,0]; X) if and only if

0
(I —P)yy = / e ST — P)g(s)ds. (5.21)
If (5.21) holds, the bounded solution is unique and it is given by
t ¢
v(t) = e Puy +/ =94 py(s)ds +/ =9 — P)g(s)ds, t <0. (5.22)
0 —00

If in addition g € C*((—00,0]; X) for some a € (0,1), then v is a strict solution and it
belongs to C*((—o0,0]; D(A)), v" belongs to C*((—o0,0]; X).
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Proof — Assume that (5.15) has a bounded mild solution v. Then for every a < 0 and
for every t € [a, 0] we have

v(t) = (I —P)u(t)+ Pu(t)

— A= Phofa) + | AL~ PYg(s)ds + Pult)

a

— DA — Ply(a) + ( / too _ / OO) et=9A(] — P)g(s)ds + Po(t)

= elt-a)A (([ — P)u(a) + /a e(a—S)A(I — P)g(s)ds) + v1(t) + Po(t)

—00

= (=9I = P)v(a) + vi(a)) + vi(t) + Po(t).

Thanks to lemma 5.3.3, sup,<q|/vi(a)|| < oo, moreover by assumption sup,<q||({ —
P)v(a)|| < oo. Letting a — —oo we get

v(t) = vi(t) + Po(t), t <0.
On the other hand, Pv is a mild (indeed, strict) solution of problem

w'(t) = Aw(t) + Pg(t), a<t <0,

w(a) = Pv(a),

and since Pv(0) = Puvg, we have for ¢t <0,

t
Pu(t) = e Pug + / e=D4Pg(s)ds = va(t),
0

so that v(t) = v1(f) +va(t), and (5.22) holds. Therefore, (I — P)v(t) = v1(t), and for t =0
we get (5.21).
Conversely, by lemma 5.3.3 the function v defined by (5.22) belongs to Cy((oc0, 0]; X).

One checks easily that for every a < 0 it is a mild solution of (5.20), and if (5.21) holds
we have v(0) = Pvy + ff’oo e AT — P)g(s)ds = Pvg + (I — P)vg = vp.

The last statement follows again from lemma 5.3.3. O

5.3.3 Bounded solutions in R

Here we study existence and properties of bounded solutions in R of the equation
Z(t) = Az(t) + h(t), t € R, (5.23)

where h : R — X is continuous and bounded. We shall assume again that A is hyperbolic.
A function z € Cp(R; X) is said to be a mild solution of (5.23) in R if for every a € R

we have .
2(t) = D4 2(a) +/ e=94n(s)ds, t > a, (5.24)

that is if for every a € R, setting z(a) = Z, z is a mild solution of

Z/(t) = Av(t) + h(t), t> a,
(5.25)

z(a) =Z.
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Proposition 5.3.5 For every h € Cy(R; X) problem (5.23) has a unique mild solution
z € Cp(R; X), given by

t o]
2(t) = / eI — P)h(s)ds — / e =DAPh(s)ds, teR. (5.26)
—00 t

If in addition h € C*(R; X) for some a € (0,1), then z is a strict solution and it belongs
to C*(R; D(A)).

Proof — Let z be a mild solution belonging to Cy,(R; X), and let 2(0) = 2z9. By proposition
5.3.2,

400
Pzy = —/ e *APh(s)ds,
0

and by proposition 5.3.4,

0
(I - P)z = / ¢~ A(I — P)h(s)ds.

—00

Due again to proposition 5.3.2 for ¢ > 0 we have

z(t) = etA/O e *A(I — P)h(s)ds

+oo
/ (t— s)A(I P / t sAPh )d
0 t

t +o0
= / =941 — P)h / =4 Ph(s)ds.
0 t

Moreover due to proposition 5.3.4 for ¢t < 0 we have

2(t) = et (- /0 h eSAPh(s)ds)

t t
+ / e=APp(s)ds + / =4I — P)h(s)ds
0

—0o0

+00 t
= —/ e(ts)APh(s)dS—i—/ e=9A(1 — P)h(s)ds,
t —00

so that (5.26) holds. On the other hand, by lemmas 5.3.1 and 5.3.3, the function z given
by (5.26) belongs to Cy(R; X), and one can easily check that it is a mild solution. If in
addition h € C*(R; X), then z € C*(R; X), due again to lemmas 5.3.1 and 5.3.3. [
Remark 5.3.6 It is not hard to verify that

(i) if h is constant, then z is constant;

(ii) if limy— 400 h(t) = hoo (respectively, lim;_ o h(t) = h_) then

+o00 0
lim z(t) = / eI — P)hgods — / e A Phyods
0

t——+o0 s

(respectively, the same but +oo replaced by —o0);

(iii) if h is T-periodic, then z is T-periodic.
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5.4 Solutions with exponential growth and exponential de-
cay

Assumption (5.3) is replaced now by
o(A)N{AeC: ReA=w} =10, (5.27)

for some w € R. Note that (5.27) is satisfied by every w > s(A). If I is any of the sets
(—00,0], [0, +00), R, we set

Cull; X) = {f - T X contimuous| | fllc,, = sup e~ £(1)] < oo},
tel
and for o € (0,1)

CO(I;X) = {f : T X|t = e ' f(t) € C°(I; X)},

—wt £(4) — pmws
1flos = sup e “tf @)l + sup NSO =IO
tel t,s€l, ts [t — s|@

Let f € C,([0,400); X), g € Cu((—00,0]; X), h € C,(R; X). One checks easily that
problems (5.9), (5.15), (5.23) have mild solutions u € C,, ([0, +00); X), v € C,((—0o0,0]; X),
z € C,y(R; X) if and only if the problems

' (t) = (A—wla(t) + e “f(t), t>0,

(5.28)
u(0) = uo,
() = (A —wDo(t) + e “yg(t), t<0,
(5.29)
v(0) = o,
F(t) = (A —wl)Z(t) + e “'h(t), t€R, (5.30)

have mild solutions @ € Cy([0, +00); X), v € Cp((—00,0]; X), Z € C(R; X), and in this case
we have u(t) = e“tu(t), v(t) = e“'o(t), z(t) = e**Z(t). On the other hand the operator
A=A—wl: D(A) — X is sectorial and hyperbolic, hence all the results of the previous
section may be applied to problems (5.28), (5.29), (5.30). Note that the projection P is
associated to the operator A, so that

L [ royvA—wDdy = — / R(z, A)dz, (5.31)
V4+Fw

P = - T .
211

271 vy

where the path v, + w surrounds 0¥ = {A € 0(A) : Re A > w} and is contained in the
halfplane {Re A > w}. Set moreover 0¥ = {X € 0(A4) : Re A < w}. Note that if w > s(A)
then P = 0.

Applying the results of the previous section we get the following theorems.

Theorem 5.4.1 Under assumption (5.27) let P be defined by (5.31). The following state-
ments hold:

(i) If f € C,([0,4+00); X) and ug € D(A), the mild solution u of problem (5.9) belongs
to Cy,([0, +00); X) if and only if

+oo
Puy = —/ e sA—whemws pr(g)ds,
0
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that is (1)
+oo
Puy = —/ e AP f(s)ds.
0

In this case u is given by (5.14), and there exists C1 = C1(w) such that

[l e (j0,400);x) < Crllluoll + Nl fllcw ([0,4-00):x))-

If in addition f € C%([0,+00); X) for some a € (0,1), ug € D(A), Aug + f(0) €
D(A), then u € C,([0,400); D(A)), and there exists C; = C{(w, ) such that

[wllcy((0,400):D(4)) < Crllluollpeay + 1 fllca((0,400):x))-
(ii) If g € Cy((—00,0]; X) and vy € X, problem (5.15) has a mild solution v € Cy,((—o0, 0]
; X) if and only if (5.21) holds. In this case the solution is unique in C,((—o0,0]; X)
and it is given by (5.22). There is Cy = Ca(w) such that

vl e ((=o0,00:x) < Cllvoll + gl ((—o0,01:x))-

If in addition g € C%((—o0,0]; X) for some o € (0,1), then v € CZ((—o0,0]; D(A))
and there ezists C' = C(w, o) such that

V]l ca((—s0,01:D(A)) < Calllvoll + [lgllca((=o0,00:x))-

(i1i) If h € C,(R; X), problem (5.23) has a unique mild solution z € C,(R; X), given by
(5.26), and there is C3 = C3(w) such that

lzllc,®x) < Csllhllo, ®;x)-

If in addition h € CS(R; X) for some a € (0,1), then z € CS(R; D(A)) and there is
Cy = Cy(w, a) such that

2]l ca®;pea)) < Callbllco@x)-

Remark 5.4.2 The definition (5.3) of a hyperbolic operator needs that X be a complex
Banach space, and the proofs of the properties of P, Pe!4 etc., rely on properties of
Banach space valued holomorphic functions.

If X is a real Banach space, we have to use the complexification of X as in remark
1.2.17. If A: D(A) — X is a linear operator such that the complexification A is sectorial
in X , the projecion P maps X into itself. It is convenient to choose as v; a circumference
C = {w +re": nel0,2r]} with center w’ on the real axis. For each x € X we have

1 2m ) )
Pr=— / re""R(re", A)x dn
2 0

™

(e"R(re™ A) — e "R(re”", A)z ) dn,

r
_27T0

and the imaginary part of the function under the integral is zero. Therefore, P(X) C
X,and consequently (I — P)(X) C X. Consequently, the results of the last two sections
remain true even if X is a real Banach space.

Note that since oY is bounded, et P is well defined also for ¢ < 0, and the results of Proposition 5.2.1
hold, with obvious modifications.
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Example 5.4.3 Consider the nonhomogeneous heat equation

up(t, @) = ug(t,z) + f(t,z), t>0,0<z<m,
u(0,2) = up(z), 0 <z <m, (5.32)
u(t,0) = u(t,m) =0, ¢t >0,

where f : [0,+00) x [0,7] — R is continuous, ug is continuous and vanishes at 0, 7. We
choose as usual X = C([0,7]), A : D(A) = {f € C?([0,7]) : f(0) = f(xr) = 0} — X,
Au = u”. Since s(A) = —1, A is hyperbolic, and in this case P = 0. Proposition 5.3.2
implies that for every continuous and bounded f and for every ug € C([0,7]) such that
up(0) = up(m) = 0, the solution of (5.32) is bounded.

As far as exponentially decaying solutions are concerned, we use theorem 5.4.1(i).
Fixed w # n? for each n € N, f continuous and such that

sup  |e*tf(t,x)| < 0o
t>0,0<z<m

the solution u of (5.32) satisfies

sup  |e“u(t, )| < oo
t>0,0<a<r

if and only if (5.13) holds. This is equivalent to (see example 5.2.3)

™ +oo ™
/ uo(z) sin kx dox = —/ ekQS/ f(s,z)sinkx dx ds,
0 0 0

for every natural number k such that k? < w. (We remark that since Asin kz = —k? sin kx
we have e sin kz = e ¥ for every t € R).

Let us consider now the backward problem

v(t,x) = vge(t, ) + g(t,x), t <0, 0<z<m,
v(0,z) =vo(x), 0 <z <m, (5.33)
v(t,0) =v(t,m) =0, t <0,

to which we apply proposition 5.3.4. Since P =0, if g : (—00, 0] x [0, 7] — R is continuous
and bounded, there is only a final datum vy such that the solution is bounded, and it is
given by (see formula (5.21))

0
vo(x) = / e *g(s,)ds(z), 0<ax <.

—00
Thanks to theorem 5.4.1(i), a similar conclusion holds if g is continuous and it decays
exponentially,

sup ™ “g(t, )| < o0

t<0,0<z<m

with w > 0.

Let us consider the problem on R
Zt(t,fl:) = me(ta'f) + h(t,ﬂ?), t € Ra 0 S €T S 7T,

(5.34)
z(t,0) = z(t,m) =0, teR.
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Thanks to proposition 5.3.5, for every continuous and bounded A : R x [0, 7] — R problem
(5.34) has a unique bounded solution given by

¢
z(t,z) = / eU=)An(s, Vds(x), teR, 0 <z <m.
The considerations of remark 5.3.6 hold: in particular, if A is T-periodic with respect to
time, then z is T-periodic too; if h is independent of time also z is independent of time,
and we have
t
2(t,x) = / =D (Vds(z) = (—A7h) ().

The explicit expression of A~1h may be easily computed by solving the ordinary differential
equation f” = h, f(0) = f(x) = 0.
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Nonlinear problems

6.1 Local existence, uniqueness, regularity
Consider the initial value problem

u'(t) = Au(t) + F(t,u(t)), t >0,
(6.1)
u(0) = uo,

where A : D(A) C X — X is a sectorial operator and F : [0,7] x X — X is a regular
function (at least, continuous with respect to (¢,u) and locally Lipschitz continuous with
respect to u).

As in the case of linear problems, a function w defined in an interval I = [0,7) or
I =10, 7], with 7 < T, is said to be a strict solution of problem (6.1) in [ if it is continuous
with values in D(A) and differentiable with values in X in the interval I, and it satisfies
(6.1). It is said to be a classical solution if it is continuous with values in D(A) and
differentiable with values in X in the interval I \ {0}, it is continuous in I with values in
X, and it satisfies (6.1). It is said to be a mild solution if it is continuous with values in
X in I\ {0} and it satisfies

¢
u(t) = eug +/ e=9AF (s, u(s))ds, tel. (6.2)
0

Thanks to proposition 4.2.3 every strict solution satisfies (6.2), and every classical solution
u such that t — || F(t,u(t))|| € L'(0,¢) for some € > 0 satisfies (6.2). It is natural to solve
(6.2) using a fixed point theorem to find a mild solution, and then to show that under
appropriate assumptions the mild solution is classical or strict.

We assume that F': [0,7] x X — X is continuous, and for every R > 0 there is L > 0
such that

HF(t,.’L’) - F(tvy)H S L”:U - y||7 Vit € [OaT]v Vx,y € B(OvR) (63)

Theorem 6.1.1 Let F : [0,7] x X — X be a continuous function satisfying (6.3). Then
for every u € X there exist r, § > 0, K > 0 such that for ||ug — @l < r problem (6.1) has
a unique mild solution u = u(-;up) € Cp((0,9]; X). u belongs to C([0,6]; X) if and only if
ug € D(A)

Moreover for ug, u; € B(u,r) we have

lu(t;uo) — u(t;ur)|| < Kllugp —ur]], 0<t<5é. (6.4)
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Proof. Let Mj such that HetAHL(X) < My for 0 <t < T. Fix R > 0 such that
R > 8My|[ul|, so that if ||ug — u|| < r = R/8Mj we have

sup [|e*u|| < R/4.
0<t<T

Let moreover L > 0 be such that
|F(t,v) — F(t,w)|| < Lljv — w|| for0<t<T, v,w € B(0,R).
We look for a mild solution belonging to the metric space Y defined by
Y = {ue Gy((0,8; X) : [[u(t)| < RV € (0,6]},

where 6 € (0,7] has to be chosen properly. Y is the closed ball B(0,R) in the space
Cy((0,6]; X), and for every v € Y the function ¢ — F(-,v(+)) belongs to Cy((0,d]; X). We
define a nonlinear operator I' on Y/,

L(v)(t) = eug + /Ot et =)AE(s,0(s))ds, 0<t<6. (6.5)

Clearly, a function v € Y is a mild solution of (6.1) in [0, 0] if and only if it is a fixed point
of I.

We shall show that T" is a contraction and maps Y into itself provided § is sufficiently
small.

Let v1, v2 € Y. We have

[0 (v1) = T(v2)llcy(o.61:x) < 0Mol[F (- v1(-)) = F (- v2()ll ey (0,6:)
(6.6)
< My Lljvr — vall ey ((0,5:x) -

Therefore, if
0 < 9= (2M0L)71,

I' is a contraction with constant 1/2 in Y. Moreover for every v € Y and t € [0, d], with
6 < &g, we have

IN

IT )y (0.61:) IT(0) = LO)llcy(0,01:x) + IITO)l[e(o0,60:%)

< R/2+ |le"uol|cy0.6:x) + Mol F (-, 0) |y ((0,5:3) (6.7)

< R/2+ R/4+ MoS|IF(-,0)c,0.:x)-
Therefore if § < dq is such that
Mod|[F (-, 0)|lcy(0.01,x) < /4,

then I' maps Y into itself, so that it has a unique fixed point in Y.

Concerning the continuity of u up to t = 0, we remark that the function ¢ — u(t)—e*4ug
belongs to C([0,6]; X ), whereas t — e*4ug belongs to C([0,6]; X) if and only if ug € D(A).
Therefore, u € C([0,0]; X) if and only if up € D(A).

Let us prove the statement about the dependence on the initial data. Let ug, u; belong
to B(w,r). Since I is a contraction with constant 1/2 in Y and both u(-; ug), u(-; u;) belong
to Y, we have

a3 u0) — ulsun) ey o.5:3) < 2l (w0 — u1)lleyo.0:x) < 2Molluo — uall,

so that (6.4) holds, with K = 2M,.
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Let us prove uniqueness: if uy, ug € Cp((0,d]; X) are solutions of (6.1), we define
to = sup{t € [0,0] : ui(s) = ua(s) for 0 <s <t}, (6.8)
and we set y = uy(tg) = ua(to). If to < 6, the problem
V() = Av(t) + F(t,o(t)), t>to, v(to) =y, (6.9)
has a unique solution in the set
Y' = {u € Cp((to,to +; X) : |Ju(t)|| < RVt € (to,to + ¢},

provided R’ is sufficiently large and ¢ is sufficiently small. Since u; and us are bounded,
there exists R’ such that ||u;(t)|| < R for tg < ¢t < J, 4 = 1,2. On the other hand, uy
and ugy are different mild solutions of (6.9) in [to, ¢ + €] for every € € (0,5 — tp]. This is a
contradiction, hence tp = ¢ and the mild solution of (6.1) is unique in Cy((0,0]; X). O

Remark 6.1.2 In the proof of theorem 6.1.1 we have shown uniqueness of the mild solu-
tion in [0,0], but the same argument works in any interval contained in [0,T).

6.2 The maximally defined solution

Now we can construct a maximally defined solution as follows. Set
T(up) = sup{a > 0 : problem (6.1) has a mild solution u, in [0, a]}
u(t;ug) = ug(t), ift < a.

u(t; ug) is well defined thanks to remark 6.1.2 in the interval
I(up) = U{[0, a] : problem (6.1) has a mild solution u, in [0, al},

and we have 7(ug) = sup I(up). Moreover, if 7(ug) < T', then 7(up) does not belong to
I(up) because otherwise the solution could be extended to a bigger interval, contradicting
the definition of 7(ug). See exercise 6.2.4.2.

Let us prove now regularity and existence in the large results.

Proposition 6.2.1 Let F satisfy (6.3). Then for every ug € X, the mild solution u of
problem (6.1) is bounded with values in D4(0,00) in the interval [e, T(ug) — €|, for each
0 € (0,1) and € € (0,7(up)/2).

Assume in addition that there is o € (0,1) such that for every R > 0 we have

IF(t,z) — F(s,2)|| < C(R)(t—8)*, 0<s<t<T, ||z <R (6.10)

Then, for every up € X, u € C%([e,7(uo) — €]; D(A)) N CY([e, m(ug) — €]; X) for every
e € (0,7(ug)/2). Moreover the following statements hold.

(i) If ug € D(A) then u(-;ug) is a classical solution of (6.1).

(ii) If ugp € D(A) and Aug + F(0,ug) € D(A) then u(-;ug) is a strict solution of (6.1).

Proof. The function t — e*uy belongs to C((0, +00); D(A)) so that its restriction to
[e,7(ugp) — €] is bounded with values in each D 4(6, c0). The function

t—o(t) = /0 eU=DAF (5, u(s))ds
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is bounded with values in D4 (6, 00) because He(t_S)A||L(X’DA(,9’OO) < Ot —5)%71, so that
[V D4 (0,00) < cONSE. SUPGs<r(ug)—e [ F(5, u(s))]]-

Assume now that (6.10) holds; let a < 7(up) and 0 < ¢ < a. Since t — F(t, u(t))
belongs to Cy((0, al; X), proposition 4.2.4 implies that the function v defined above belongs
to C%([0,a]; X). Moreover, t — e4ug belongs to C*®([e,a]; X). Summing up, we find
that u belongs to C%([e,al; X). Assumptions (6.3) and (6.10) imply that the function
t — F(t,u(t)) belongs to C“([e,al; X). Recalling that u satisfies

t
u(t) = e Ay(e) +/ et =) (s, u(s))ds, € <t<a, (6.11)

we may apply theorem 4.2.6 in the interval [, a] (see remark 4.2.11), to obtain that u
belongs to C%([2¢, a];D(A)) N C1T([2¢, a]; X) for each ¢ €(0,a/2), and

u'(t) = Au(t) + F(t,u(t)), e <t <a.

Since a and € are arbitrary, then u € C%([e, 7(uo) — &]; D(A)) N C* ([, 7(up) — &]; X) for
each € € (0,7(ug)/2). If ug € D(A), then ¢ — e*ug is continuous up to 0, and statement
(i) follows.

Let us prove (ii). We know already that the function ¢ — u(t) — e"“ug is a-Holder
continuous up to t = 0 with values in X. Since ug € D(A) C D4(w, 00), the same is true
for ¢t — e4ug. Therefore u is a-Holder continuous up to ¢t = 0 with values in X, so that
t — F(t,u(t)) is a-Hélder continuous in [0, a] with values in X. Statement (ii) follows
now from 4.2.6(ii). O

tA

Proposition 6.2.2 Assume that F' satisfies (6.3). Let ug be such that I(ug) C [0,T7],
I(up) # [0, T]. Then t— |Ju(t)| is unbounded in I(up).

Proof. Assume by contradiction that u is bounded and set 7 = 7(up). Then ¢t —
F(t,u(t;up)) is continuous and bounded with values in X in the interval (0,7). Since
u satisfies the variation of constants formula (6.2), it may be continuously extended at
t = 7, in such a way that the extension is Holder continuous in every interval [e, 7], with
0 < e < 7. Indeed, t — e*ug is well defined and analytic in the whole (0,400), and
the function v = e x F(-,u(-)) belongs to C*([0,7]; X) for each a € (0,1) because of
proposition 4.2.4.
Moreover, u(1) € D(A). By theorem 6.1.1, the problem

V() = Av(t) + F(t,o(t), t>7, o(r)=u(r),

has a unique mild solution v € C([r,7 + ¢]; X) for some § > 0. The function w defined
by w(t) = u(t) for 0 <t < 7, w(t) = v(t) for 7 <t < 746, is a mild solution of (6.1) in
[0,7 + d]. This is in contradiction with the definition of 7. Therefore, u(-;ug) cannot be
bounded. O

The result of proposition 6.2.2 is used to prove existence in the large when we have an
a priori estimate on the norm of u(t). Such a priori estimate is easily available for each
ug if f grows not more than linearly as ||z| — oc.

Proposition 6.2.3 Assume that there is C > 0 such that
|F(t,x)|]| < C(1+|jz||) Yz e X, te]0,T]. (6.12)

Let w : I(up) — X be the mild solution to (6.1). Then u is bounded in I(ug) with values
mn X.
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Proof. For each ¢t € I we have
t t
[u(®)]] < Molluol| +MoC/ (1 + [lu(s))ds = Mo ||uol| + MoC <t+/ IIU(8)|d8> :
0 0

Applying the Gronwall lemma to the real valued function ¢ — ||u(t)|| we get
lu(®)]| < " (Mo|uo|| + MoCT), t € I(uo),

and the statement follows. [J

We remark that (6.12) is satisfied if F' is globally Lipschitz continuous with respect to
x, with Lipschitz constant independent of ¢.

Exercises 6.2.4

1. Prove that

(a) if F' satisfies (6.3) and u € Cp((0,]; X) with 0 < 6 < T then the composition
©(t) = f(t,u(t)) belongs to Cy((0,0]; X),

(b) if F satisfies (6.10) and v € C%([a,b]; X) with 0 < a < b < T then the
composition ¢(t) = f(t,u(t)) belongs to C*([a, b]; X).

These properties have been used in the proofs of theorem 6.1.1 and of proposition
6.2.1.

2. Prove that if u is a mild solution to (6.1) in an interval [0, o] and v is a mild solution

v V() = Av(t) + F(t,v(t)), to <t <t

v(to) = u(to),

then the function z defined by z(t) = u(t) for 0 <t < ty, 2(t) = v(t) for txp <t <y,
is a mild solution to (6.1) in the interval [0, ¢1].

3. Under the assumptions of theorem 6.1.1, for ¢y € [0,T") let u(t; to, x) : [to, T(to,z)) —
X the maximally defined solution to problem v = Au + f(t,u), t > to, u(ty) = x.
Prove that for each a € (0,7(0,up)) we have 7(u(a;ug)) = 7(0,up) — a, and for
t € [a,7(0,up)) we have u(t; u(a,up)) = u(a + t;0,up).

4. Under the assumptions of theorem 6.1.1, prove that the maximally defined solution
to (6.1) depends locally Lipschitz continuously on the initial datum, i.e. for each wug
and for each b € (0,7(up)) there are r > 0, K > 0 such that if ||ug — u1|| < r then
T(u1) > b and ||u(t;ug) — u(t;ur)|| < K||lug — uq|| for each ¢ € [0, b).

(Hint: cover the orbit {u(t;up) : 0 < ¢t < b} by a finite number of balls such as in
the statement of theorem 6.1.1).
6.3 Reaction — diffusion equations and systems

Let us consider a differential system in [0,7] x R™. Let d,...,d; > 0 and let D be the
diagonal matrix D = diag(dy, ... ,dy,). Consider the problem

u = DAu+ o(t,z,u), t>0, z€R"; u(0,z)=uy(z), €R", (6.13)

where u = (u1,...,uy) is unknown, and the regular function ¢ : [0,00) x R” x R™ — R™,
the bounded and continuous ug : R™ +— R™ are data.
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This type of problems are often encountered as mathematical models in chemistry
and biology. The part DAwu in the system is called diffusion part, the numbers d; are
called diffusion coefficients, ¢(t,z,u) is called reaction part. Detailed treatments of these

problems may be found in the books of Rothe [13], Smoller [11], Pao [11], and in other
ones.
Set
X = Cy(R™; R™).

The linear operator A defined by
D(A) = {u e W2'(R";R™) Vp>1: u, Aue X},

loc
A:D(A)— X, Au= DAu,
is sectorial in X, see exercise 1.2.18.3, and
D(A) = BUC(R™;R™).

Assume that ¢ is continuous, and there exists 6 € (0, 1) such that for every r > 0

(b2, 4) — 95,3, 0) s < K((t = ) + | — v]gm), (6.14)
for0<s<t<T,zeR" u,veR™ |[vgm + |ulgm < r, with K = K(r). Then, setting

F(t,u)(z) = o(t,z,u(z)), 0<t<T, ze€R" uelX,

the function F': [0,7] x X — X is continuous, and it satisfies (6.3). The local existence
and uniqueness theorem 6.1.1 implies that there exists a unique mild solution t — u(t) €
Cy((0,6]; X) di (6.1). Moreover, since F satisfies (6.10) too, by proposition 6.2.1 u, u’, Au
are continuous in (0, 0] with values in X. Then the function (¢, z) — u(t, z) := u(t)(z) is
continuous and bounded in [0,0] x R™ (why is it continuous up to ¢ = 07 Compare with
exercise 4.2.12.1), it is differentiable in (0, ] x R™, it has second order space derivatives
Djju(t,-) € L} (R™R™), Au is continuous in (0,d] x R™, and u satisfies (6.13).

If in addition ug € BUC(R™;R™), then u(t,z) — wup(x) as t — 0, uniformly for x
in R™. Moreover u is the unique solution to (6.13) in the class of functions v such that
t — v(t,-) belongs to C1((0,]; C,(R™;R™)) N C([0, §]; Cp(R™; R™)).

For each initial datum wug the solution may be extended to a maximal time interval
I(up). proposition 6.2.2 implies that if u is bounded in I(ug) x R™ then I(ug) = [0, 7.

A sufficient condition for u to be bounded is given by proposition 6.2.3:

lo(t, z,u)|gm < C(1+ |ulgm) Vt € [0,T], z € R", u e R™. (6.15)
Indeed, in this case the nonlinear function
F[0,T) x X = X, F(t,u)(x) = o(t,2,u(x))

satisfies (6.12).

Similar results hold for reaction — diffusion systems in [0, 7] x Q, where € is a bounded
open set in R” with C? boundary.

The simplest case is a single equation,

ur = Au+ o(t,x,u), t>0, €,
(6.16)

u(0,2) = up(z), = €9,
with Dirichlet boundary condition,

u(t,z) =0, t >0, x € 09, (6.17)
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or Neumann boundary condition,

Oult, 2) =0, t>0, x €0 (6.18)
v
©:[0,T] x Q x R — R is a regular function satisfying (6.14); ug : Q — R is continuous
and satisfies the compatibility condition ug(xz) = 0 for z € 99 in the case of the Dirichlet
boundary condition.
Again, we set our problem in the space X = C(Q), getting a unique classical solution
in a maximal time interval. Arguing as before, we see that if there is C' > 0 such that

lo(t,z,u)| < C(1+|ul) Vt€[0,T], 7€Q, ueR

then for each initial datum ug the solution exists globally. But this assumption is rather
restrictive, and it is not satisfied in many mathematical models. In the next subsection
we shall see a more general assumption that yields existence in the large.

In this section, up to now we have chosen to work with real valued functions just
because in most mathematical models the unknown w is real valued. But we could replace
Cp(R™,R™) and C(Q;R) by Cyp(R™;C™) and C(Q;C) as well without any modification in
the proofs, getting the same results in the case of complex valued data. On the contrary,
the results of the next subsection hold only for real valued functions.

6.3.1 The maximum principle

Using the well known properties of the first and second order derivatives of real valued
functions at relative maximum or minimum points it is possible to find estimates on the
solutions to several first or second order partial differential equations. Such techniques are
called mazimum principles.

To begin with, we give a sufficient condition for the solution of (6.16) — (6.17) or of
(6.16) — (6.18) to be bounded (and hence, to exist in the large).

Proposition 6.3.1 Let Q be a bounded open set in R™ with C? boundary, and let ¢ :
[0,7] x Q x R +— R be a continuous function satisfying |p(t, z,u) — p(s,z,v)| < K((t —
)0 tlu—v|), for0<s<t<T,z€Q, u,veR, [v|+|ul <r, with K =K(r). Assume
moreover that

wp(t,z,u) < C(1+u?), 0<t<T, 2€Q, ucR. (6.19)

Then for each initial datum g the solution to (6.16) — (6.17) or to (6.16) — (6.18) satisfies

sup  |u(t, )| < +oo.

tel(up), z€N

Proof. Fix A > C, a < 7(ug) and set
u(t,z) = u(t,x)e_’\t, 0<t<a, z€
The function v satisfies
vi(t, z) = Av(t, x) + o(t, z, eMo(t,z))e ™ — Xv(t,z), 0<t<a, z €,

it satisfies the same boundary condition of u, and v(0, -) = ug. Since v is continuous, there
exists (fo, o) such that v(to,20) = %[|vl[c(jo4xq)- (fo,20) is either a point of positive
maximum of of negative minimum for v. Assume for instance that (¢g,z¢) is a maximum
point. If tg = 0 we have obviously [|v||cc < |Juolleo. If to > 0 and zp € Q we rewrite
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the differential equation at (¢, z¢) and we multiply both sides by v(tg, z¢) = ||v]|co: since
’Ut(tO:xO) > 07 AU(to,aj‘()) <0 we get

MollZ, < CL+[eX0u(to, o) )20 = C(1+ 2 v]|3,)e M0

so that

C
2
< —.

Let us consider the case tg > 0, x¢ € 0. If u satisfies the Dirichlet boundary condition,
then v(to, xo) = 0. If u satisfies the Neumann boundary condition, we have D;v(to,zo) = 0
for each 7 and we go on as in the case zg € (.

If (to, zo) is @ minimum point the proof is similar. So, we have

[0ljeo < max{{[uolloc, vVC/(A = C)}

so that
”UHLoo([oﬂ}xﬁ) <eM max{||uo|loo, vVC/(A = C)}
and the statement follows. OJ

In the proof of proposition 6.3.1 we used a property of the functions in v € D(A), where
A is the realization of the Laplacian with Dirichlet or Neumann boundary condition in
C(Q): if x € Q is a relative maximum point for u, then Au < 0. This is obvious if
v € C?(€), it has to be proved if v is not twice differentiable pointwise.

Lemma 6.3.2 Let xop € R", r > 0, and let v : B(xo,7) — R be a continuous function.
Assume that v € W2P(B(zo,7)) for each p € [1,+00), that Av is continuous, and that
xo 18 a maximum (respectively, minimum) point for v. Then Av(zg) < 0 (respectively,

Av(zg) >0).

Proof. Possibly replacing v by v + ¢ we may assume v(z) > 0 for |z — x| < r. Let 0 :
R™ — R be a smooth function with support contained in B(zg,7), such that 0 < f(z) <1
for each x, and 0(xg) > 0(x) for x # xg. Define

= wv(z)0(z), =€ B(xo,r),

u(x)

= 0, z € R"\ B(zo,7).
Then v(xg) is the maximum of v, and it is attained only at x = xy. Moreover, v and
Av are uniformly continuous and bounded in the whole R", so that there is a sequence
(Un)nen C C%(R™) such that v, — @, A, — Av (for instance, we can take v, = T'(1/n)v
where T'(t) is the heat semigroup defined in (2.5)). Since zg is the unique maximum point
of v, there is a sequence x, going to xg such as x,, is a relative maximum point of v, for
each n. Since ©,, € C?, we have A, (z,) < 0. Letting n — oo we get Av(z) < 0.

If 2y is a minimum point the proof is similar. [J

Similar arguments may be used also in some systems. For instance, let us consider
w(t,z) = Au(t,z) + f(u(t,z)), t>0, z €9,
u(t,z) =0, t>0, €9,

u(0,7) = up(x), = €9,

where € is a bounded open set in R” with C? boundary, and f : R¥ — RF is a locally
Lipschitz continuous function such that

(x, f(x)) <C1+|x), xe R (6.20)
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As in the case of a single equation, it is convenient to fix a € (0, 7(ug)) and to introduce
the function v : [0,a] x Q — R, v(t,z) = u(t,z)e N with A > C, that satisfies

vi(t,x) = Av(t,x) + fleMv(t,z))e ™ — \v(t,z), t >0, z €Q,

v(t,z) =0, t >0,z €Q,

Instead of |v| it is better to work with (¢, z) = \v( ,z)? Z Uz(t x)?, which is more
regular. Let us remark that ¢, = 2(vy,v), Djp = 2(D;v,v), Ap = 22?:1 | Dv; |2 +
2(v, Av).

If (to,z0) € (0,a] x © is a positive maximum point for ¢ (i.e. for |v|) we have
oi(to,x0) > 0, Ap(to,x0) < 0 and hence (v(to,x0), Av(to, o)) < 0. Writing the dif-
ferential system at (o, zo) and taking the scalar product by v(tg, zo) we get

0 < (vi(to, z0), v(to, z0))

= (Av(to, x0), v(to, z0))+

+{f (X0 (to, 20)), v(to, w0)e ™) — Alv(to, zo) [
< C(1+|v(to, m0)[?) — Alv(to, zo) |2

so that ||v||2, < C/(A—C). Therefore, ||v||s < max{||uo|loo, /C/(A — C)}, which implies
that ||u||LOQ([O,a]X§) < eMmax{||ugl/oo, /C/(A — O)}, the same result as in the scalar
case. Consequently, u esists in the large.

The problem of existence in the large for reaction — diffusion systems is still a research
subject.

Let us remark that (6.15) is a growth condition at infinity, while (6.19) is an algebraic
condition and it is not a growth condition. For instance, it is satisfied by ¢(t,z,u) =
M — u?F*! for each k € N and A € R. The sign — is important: for instance, in the

problem _
=Au+[ul'*e t>0 2€Q,

ou

v
with € > 0 and constant initial datum w, the solution is independent of z and it coincides
with the solution to the ordinary differential equation

¢'(t) =g, t>0,

(t,z) =0, t>0, z € d9,

£(0) =1,
which blows up in finite time if @ > 0.

The maximum principle is used also to prove qualitative properties of the solutions,
for instance to prove that the solutions are nonnegative for nonnegative initial data, or
nonpositive for nonpositive initial data. Let us give an example.

ut:uxx+)\u—pu2, t>0, 0<z <,
u(t,0) =u(t,m) =0, t>0, (6.22)

u(0,2) —ug(z), 0 <z <m.
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Here A, p > 0. Let us prove that if up(x) < 0 (respectively, ug(x) > 0) for each = € [0, 7]
then u(t,xz) <0 for each ¢ € [0,7(up)), = € [0, 7].

First, we consider the case up < 0 in [0, 7]. Fixed any a € (0,7(up)), let us prove that
u(t,z) < 0in [0,a] x [0,7]. Assume by contradiction that u(t,z) > 0 for some (¢, x), then
the same is true for v(t, z) := e~ *u(t, z). Since [0,a] x [0, 7] is compact, v has a maximum
point (tg, zg) in [0, a] x [0, 7], with v(tg, xo) > 0. This is impossible if ty = 0, or xg = 0, or
xo = m; therefore (to,z¢) € (0,a] x (0,7), and

0 < v(to, 20) = vax(to, z0) — p(v(to, z0))2e < 0,

which is impossible. Then u(t, ) < 0 for each t € I(up), x € [0,7].
The case up(x) > 0 is a bit more complicated. Fix p > A. Since u is continuous, there
exists a > 0 such that ||u(t,:) — ug|loc < (& — A)/p per 0 <t < a. In particular,

—
BT g<t<a, 0<z<m

ult,x) >
Let us consider again the function v(t,z) := e #u(t,z). We want to show that v > 0
in [0,a] x [0,7]. Assume by contradiction that the minimum of v in [0,a] x [0,7] is
strictly negative. If (to,x¢) is a minimum point then ¢ty # 0, 29 # 0, ¢ # 7. Therefore
(tﬂul‘o) € (O’CL] X (077T)7 and

0 > ve(to, m0) = vaa(to, To) + (A — p)v(to, o) — p(v(to, mo))?er o0

> (A = p)v(to, m0) — p(v(to, zo))?er
so that, dividing by v(tg, o) < 0,

u(to, xo) = v(tg, x)e® < _MTj)\’
a contradiction. Consequently v, and hence u, has nonnegative values in [0, a] x [0, 7].
Set now Z = {a € (0,7(up)) : u(t,z) > 01in [0,a] x [0,7]}. We have proved above
that Z is not empty. Moreover, supZ = 7(up). Indeed, if this is not true we may repeat
the above procedure with ag := supZ instead of 0; we find another interval [ag, ag 4 d] in
which the solution is nonnegative, and this is a contradiction because of the definition of
ag.

Let us see a system from combustion theory. Here u and v are a concentration and a
temperature, respectively, both normalized and rescaled. The numbers L, €, g are positive
parameters. € is a bounded open set in R” with C? boundary.

[ w(t,z) = LAu(t,z) —euf(v), t>0, z€Q,

ve(t,x) = Au(t,z) + quf(v), t>0, x €,

(6.23)

0 _
a—Z(t,x):(), v=1, t>0, x €,

uw(0,z)(z) = uo(z), v(0,z) =wvo(z), =€ Q,

f is the Arrhenius function

flv)y=e"",

with h > 0. The initial data ug and vy are continuous nonnegative functions, with ug = 1
at 09. Replacing the unknowns (u,v) by (u,v — 1), problem (6.23) may be reduced to
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a standard problem with zero Dirichlet boundary condition, which we locally solve using
the above techniques.
The physically meaningful solutions are such that u, v > 0. Using the maximum
principle we can prove that for nonnegative initial data we get nonnegative solutions.
Let us consider u: if, by contradiction, there is a > 0 such that the restriction of u to
[0,a] x Q has negative minimum, at a minimum point (¢g, ) we have to > 0, g €  and

0> ut(t07$0) = LAu — 5U(t071’0)f(v(t07x0)) > 07

a contradiction. Therefore u cannot have negative values.

To study the sign of v it is again convenient to introduce the function z(t,z) :=
e Mu(t,x) with A > 0. If there is @ > 0 such that the restriction of z to [0,a] x Q has
negative minimum, at a minimum point (to, xg) we have ¢ty > 0, o € Q and

0 > z(to, m0) = Az(to, z0) — Az(to, o) + qu(to, o) f(2(to, zo)eM0)e 0 > 0,
again a contradiction. Therefore, v too cannot have negative values.
Exercises 6.3.3

1. Let Q be an open set in R™ with C' boundary, and let xo € O be a relative mazimum
point for a C' function v : Q +— R. Prove that if the normal derivative of v vanishes
at xo then all the partial derivatives of v vanish at xq.

If 9Q and v are C2, prove that we have also Av(zg) < 0.

These properties have been used in the proof of proposition 6.19.

2. Prove that for each continuous nonnegative initial function uy such that ug(0) =
uo(m) = 0, the solution to (6.22) exists in the large.
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Behavior near stationary solutions

Let A: D(A) C X — X be a sectorial operator, and let F' : X — X be continuously
differentiable in a neighborhood of 0, satisfying (6.3) and such that

F(0)=0, F'(0)=0. (7.1)
We shall study the stability of the null solution of

o' (t) = Au(t) + F(u(t)), t>0. (7.2)

Thanks to theorem 6.1.1, for every initial datum ug € D(A) the initial value problem for
equation (7.2) has a unique classical solution u(-,up) : [0,7(ug)) — X. The assumption
F(0) = 0 implies that equation (7.2) has the zero solution. The assumption F’'(0) = 0 is
not restrictive: if F”(0) # 0 we replace A by A+ F’(0) and F(u) by G(u) = F(u) — F'(0)u

whose Fréchet derivative vanishes at 0.

Definition 7.0.4 The null solution of (7.2) is said to be stable if for every e > 0 there
exists & > 0 such that

ug € D(A), |luo|l <0 = 7(ug) = 400, ||u(t;uo)]] <eVt>D0.

The null solution of (7.2) is said to be asymptotically stable if it is stable and moreover
there exists 6 > 0 such that if ||uo|| < & then limy_ 4o u(t; ug) = 0.
The null solution of (7.2) is said to be unstable if it is not stable.

7.1 Linearized stability

The main assumption is
s(A) =sup{ReA: A ecog(4)} <0. (7.3)

Theorem 7.1.1 Let (7.3) hold. Then for every w € [0,—s(A)) there exist M = M(w),
r=r(w) >0 such that if up € D(A), ||uo| < r, we have T(up) = oo and

|u(t; ug)|| < Me “|ugl|, t>0. (7.4)
Therefore, the null solution is asymptotically stable. Moreover, for every a > 0 we have

sup ||e*tu(t; up)|| peay < oo. (7.5)

t>a

If in addition ug € D(A), Aug + F(ug) € D(A), then

sup [|e“ u(t; uo) || p(ay < oo (7.6)
t>0
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Proof — Let p > 0 such that

K(p) = sup [[F'(2)||1x) < oo
llzll<p

Since F’ is continuous and F’(0) = 0, we have

lim K (p) = 0.
p—0

Let Y be the closed ball centered at 0 with radius p in C_,(]0, +00); X), namely

Y = {uc C_,([0,+00); X) : sup|le“ u(t)|| < p}.
>0

We look for the solution (6.1) as a fixed point of the operator I' defined on Y by

(Tu)(t) = eug + /t eU=DAF (u(s))ds, t > 0.
0

If w €Y then

1
[Eu@)l = £ (u(t)) = FO)]| = /0 F'(ou(t))u(t)do

(7.7)
< K(p)u)| < K(p)pe™, t =0,
so that F(u(-)) € C_,([0,400); X). Moreover o(A) N {\ € C : ReX > —w} = 0, so

that we may use theorem 5.4.1(i) (with w replaced now by —w): we find that I'u €
C_([0,4+00); X), and moreover there exists C; = C1(—w) such that

ITullo_o,+00):x) < C1 (luoll + I F((-))lle (o, 100))) - (7.8)
If p is so small that .
K(p) < 20,
and
luoll < = 56

then I'u € Y. Moreover, for uq, us € Y we have

[Tur — Tuallo_, (jo,400):x) < CrllF(u1(-)) — F(uza(-))llo_, (j0,400):x)>

where

1
1 (un(8)) — Flus(e))]| = H [ o) + (1= yus(O) () ~ walt))do

< K(p)|lua(t) = uz(t)]].

It follows that

1
[Tur — Tuz |l (j0,4-00):x) < §HUl — 2o, ((0,4+00):X)

so that I' is a contraction with constant 1/2. Consequently there exists a unique fixed
point of I in Y, which is the solution of (6.1). Moreover from (7.7), (7.8) we get

1
lulle—. = Tulle—., = Ci(uoll + K(p)llullc_..) < Cilluoll + Sllullc_.,



Behavior near stationary solutions 83

which implies (7.4), with M (w) = 2C1(—w). As far as (7.5) is concerned, since F'(u(-)) €
C_,([0,400); X) we find

u(t) = /Ot U= (u(s))ds € C(]0,0); X), Yo € (0,1),

moreover up(t) = etug € C ([a,00); X) for every a > 0; consequently u = u; + ug €
C?,([a,0); X) for every a > 0. Moreover by theorem 6.1.1 u(a) € D(A), and Au(a) +
F(u(a)) = u'(a) € D(A). From proposition 5.3.2 it follows that v € C_,([a, +00); D(A)),
namely (7.5) holds. The last statement, as well as (7.6), follow from these considerations

and from theorem 6.1.1. [J

7.1.1 Linearized instability

Assume now that

o4(A)=0c(A)N{AeC: ReX >0} #0,
(7.9)
inf{ReX: A€ 04 (A)} = wy > 0.

Then it is possible to prove an instability result for the null solution. We shall use the

projection P defined by

P=_ [ RO, A,

27 -

v+ being any regular path with range in Re A > 0, with index 1 with respect to each
A E U+(A).

Theorem 7.1.2 If (7.9) holds, the null solution of (7.2) is unstable. Specifically, there
exists Ty > 0 such that for every x € P(X) satisfying ||z|| < r4, the problem

V'(t) = Av(t) + F(v(t)), t <0,
(7.10)
Pv(0) = z,

has a backward solution v such that lim;,_ov(t) = 0. (Taking x, = v(—n), we have
Ty, — 0 but since u(t; z,) = v(t—n) we have supycy(y,) ||u(t; zn)|| = sup [[v(t)||, independent
of n, so that 0 is unstable).

Proof — Let w € (0,w4), and let p > 0 be such that

1
sup |[F'(2)||loix) € 55—
Izl <p+ %)= 205 (w)

where Cy(w) is given by theorem 5.4.1(ii). Let Y, be the closed ball centered at 0 with
radius p4 in C,((—00,0]; X). We look for a solution to (7.10) as a fixed point of the
operator I'; defined on Y, by

(D0)(t) = g + / 9P (u(s))ds + / " 941 pYR(o(s))ds, £ <0,

0 —00

If v € Yy, then F(v()) € Cu((—00,0]; X); moreover o(A) N{A € C: Re A\ = w} =0, so
that we may use theorem 5.4.1(ii), which implies I'yv € C,,((—o0, 0]; X), and

IT 1 0lley (—o00p:x) < Co (2] + 1F (0() e ((—o0,00:) ) -

The rest of the proof is quite similar to the proof of theorem 7.1.1 and it is left as an
exercise. [
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7.1.2 The saddle point property

If A is hyperbolic we may show a saddle point property, constructing the so called stable
and unstable manifolds. We shall consider the forward problem (6.1) and the backward
problem
V'(t) = Av(t) + F(v(t)), t<0,
(7.11)
v(0) = vp.

Theorem 7.1.3 Assume that
c(A)NIR =0, oi(A)#0.
Set
—w_ =sup{Re A: A € 6(A), Re A\ < 0},
wy =inf{Re A: A € 0(A), Re A > 0},

and fix w € [0, min{w;,w_}). Then there exist r, p > 0 and two continuous functions

hifas € PX): ayl| < r} o DOA),

ki{o_ e (- P)(X): lo_|| <r} — D(A),
such that setting

Vi =Vi(w) = {h(zy) : 24 € P(X), [loi]| <r},

Vs = Vs(w) = {k(a—) 1 a_ € (I - P)(X) N D(A), lo_|| <1},
the following statements hold.

(i) For every ug € Vs the classical solution u of (6.1) exists in the large, it belongs to
C_u([0,+00); X), and ||ullc_, < p. Conversely, if ug € D(A) is such that ||(I —
P)ug|| < r and the solution of (6.1) exists in the large, belongs to C_, ([0, +00), X),
and its norm is < p, then ug € Vg.

(ii) For every vg € Vy the problem (7.11) has a solution v € C,,((—0o0,0]; X), such that
|lvllc, < p. Conversely, if vy is such that |Puvg|| < r and the problem (7.11) has a
solution belonging to C,,((—o0,0]; X), with norm < p, then vo € Vy.

Proof — Let us prove (i). Let p_ > 0 be such that

1
sup || F'(2)l|(x) € 57—
Izl <p- B =201 (—w)
where C is given by theorem 5.4.1. Set Y = B(0,p-) C C_,(]0,+00); X). For each
ueY, F(u) € C_,([0,+0); X). Since o(A) N{\ € C: ReX = —w} = 0, all the solutions
of (6.1) belonging to Y may be represented as

t “+o0
u(t) = ety + / =941 PYF(u(s))ds — / =P P(y(s))ds, 1> 0,
0 t

with any z_ € (I —P)(X)ND(A). So, fixx_ € (I — P)(X)ND(A) with ||x_|| < r_ where
r_ > 0 has to be chosen, and look for a fixed point of the operator I'_ defined on Y_ by

t +oo
U =ty e(t=)A(1 — u(s))ds — elt—5)A u(s))ds.
(C_u)() + [ = P)F(u)as - PF(u(s))d
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Arguing as in the proof of theorem 7.1.1 one sees that I'_ is a contraction with constant
1/2, and that if

=P
B 201(—w)
then I'_ maps Y into itself, so that it has a unique fixed point u_ € Y, such that
[u—llc_y (0,100 x) < 2C1(—w)||z—]|. (7.12)

Moreover, the function
(D(AYN(I —P)(X)NB(0,r-)) XY — C_,([0,400); X); (z—,u)—T_u

is continuous, so that the fixed point of I' depends continuously on x_ thanks to the
contraction theorem depending on a parameter. Moreover the function

k: (I — P)(X)ND(A) N B(0,r_) — D(A),

k(z) = u(0),

is continuous. The solution of (6.1) with initial datum uy = u_(0) coincides with u_, so
that it belongs to C_,,(]0, +00); X) and its norm is < p_.

Let now uy € (I — P)(X) N D(A) be such that [[(I — P)ug|| < r—, and that the
solution of (6.1) belongs to C_, ([0, +00); X) and has norm < p_. Then, since F(u(-)) €
C_,([0,400); X), by theorem 5.4.1(i) we have, for ¢ > 0,

t 00
u(t) = eI — P)ug +/ eU=DA(T — PYF(u(s))ds —/ eU=DAF (u(s))ds,
0 t

so that u is a fixed point of the operator I'_ if we choose z_ = (I — P)ug. Since there exists
a unique fixed point of I'_ with norm < p_, then uy = k(( — P)up), namely up € Vs.
Statement (i) is proved.

The proof of statement (ii) is quite similar: one follows the proof of theorem 7.1.2 and
one sets

h:P(X)NnB(0,r+) — D(A),

h(z) = v(0),

where v is the fixed point of the operator Iy in Y., which exists if r1 = py /2C3(w).
We take finally » = min{r_,r;}, p = min{p_, p;+ }. O

Remark 7.1.4 The stable manifold Vg (respectively, the unstable manifold Vr) is tangent
at the origin to (I — P)(X) (respectively, to P(X)), in the sense that k (respectively, h) is
Fréchet differentiable at 0 with derivative &'(0) = I)(;_p)(x) (respectively, h'(0) = I|p(x)).
Indeed, since by (7.12), [[u—|c_, < 2Ci||z_]|, then we have

[Fu-(Nlc_., < sup [|[F'(2)llpx)2C1 x| = K (p-)[z—]|.
[lz]|<
z||<p—

Consequently
[E(z-) =2zl = [lu—(0) = (I = P)u_(0)] = [[Pu—(0)]]

Given € > 0, let p; > 0 be such that C1K(p1) < ¢; for every z_ € (I — P)(X) N D(A)

with ||z_|| < p1/2C1 we have ||k(z_) —x_||/||z—| <e.
The proof of the statement concerning the function A is similar.

+oo
/0 e APF(u_(s))ds| < CL|F(u—()llc_, < C1K (p-)]lz—].
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Remark 7.1.5 The proof of theorem 7.1.2 works also for w = 0, and this implies that if
u: [0,400) — X is a solution of (6.1) with sup,~g ||u(t)|| sufficiently small, then in fact u
decays exponentially to 0, and ug € Vs(w) with w > 0. Indeed, if sup;~q ||u(t)]| is small,
then also (I — P)ug is small, and hence u is the fixed point of the operator I' relevant to
the case w = 0, with x_ = (I — P)up. On the other hand, for the same choice of z_, I’
has also a fixed point in C_,([0,4+00); X ), and the two fixed points coincide.

Similarly, since w > 0, if v : (—o00,0] — X is a backward solution of (6.1) and
supy<q |lv(t)|| is sufficiently small, then v decays exponentially to 0 as ¢ — —oo, and
v(0) € Vr(w).

Remark 7.1.6 In the case w > 0, Vs and V; enjoy the following invariance property: if
ug € Vg (respectively, ug € Vy), then there exists ¢y such that u(t;ug) € Vg for every
t > to (respectively, for every t < tp).

Indeed, we know already that if uy € Vg then u(-;ugp) concides with the fixed point
u of the operator I'_ relevant to the initial datum z_ = (I — P)up. In particular, for
t >ty >0,

u(t) = etAT — Pu(ty) + / te(t_")A(I — P)F(u(0))do

to
+oo
- / e=DAPE(u(o))do,
t

so that, setting ¢t = tg + s, for s > 0 we obtain, by the changement of variable ¢ = 7 + g
in the integrals,

u(s+ty) = eI — P)u(ty) + /0 se(S’T)A(I — P)F(u(ty + 7))dr

+oo
—/ e(S_T)APF(u(to + 7))dT,

namely the function v(s) = u(s+1to) is a fixed point of the operator I' relevant to the initial
datum y = (I — P)u(tp). It follows that k ((I — P)u(ty)) = u(to), that is u(tg) belongs
to the range of k. Moreover, since u decays exponentially, if ¢y is sufficiently large then
|(I — P)u(to;uo)|| < r—, so that u(tp;ug) € Vg. Similar arguments hold if Vg is replaced
by Vr.

Up to now we assumed F'(0) = 0, so that the problem (7.2) has the stationary (= in-
dependent of time) solution u(t) = 0. Concerning the stability of other possible stationary
solutions, that is of the w € D(A) such that

At + F(u) = 0,
we reduce to the case of the null stationary solution by defining a new unknown
v(t) = u(t) — @,
and studying the problem
V'(t) = Av(t) + F(v(t) + u) + Aq,

which has the stationary solution v = 0.
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7.2 Examples

7.2.1 A Cauchy-Dirichlet problem

Let © be a bounded open set in R” with C? boundary 99, and let ug € C(f2) vanish on
the boundary, let f : R — R be continuously differentiable and such that f(0) = 0. We
study the stability of the null solution of

u(t,z) = Au(t,z) + f(u(t,z)), t>0,2€Q
(7.13)
u(t,x) =0, t>0,z € Q.

The local existence and uniqueness theorem 6.1.1 may be applied to the initial value
problem for equation (7.13),

u(0,2) = up(z), = €9, (7.14)

choosing as usual X = C(Q2). The function

F: X=X, (F(p)(z) = f(e(x)),

is continuously differentiable, and

F(0) =0, (f(0)p)(x) = f(0)p(z), YpeX.
Then, set

A:D(A) = {p €Ny W?P(Q) : Ap € C(Q), ppa=o} — X,

Ap = Ap+ F'(0)e.

A is a sectorial operator, and the spectrum of A consists of a sequence of real eigenvalues
which tends to —oo, given by

Hn = _)\n+f/(0)v n ENa

{—=An}nen being the sequence of the eigenvalues of A with Dirichlet boundary condition.
The assumption that ug € C(2) vanishes on the boundary implies that ug € D(A).
Theorem 6.1.1 guarantees the existence of a unique local solution u : [0,7(up)) +— X of

the abstract problem (6.1). Setting as usual

u(t,z) == u(t)(z), t€[0,7(up)), € Q,

the function u is continuous in [0, 7(ug)) x €, continuously differentiable with respect to
time for ¢t > 0, and it satisfies (7.13), (7.14).
Concerning the stability of the null solution, theorem 7.1.1 implies that if supyeq(a)
Re A < 0, that is, if
f/(O) < )\1,
(=1 being the first eigenvalue of A), then the null solution of (7.13) is exponentially
stable: for every w € (0, A1 — f/(0)) there exist r, C' > 0 such that if ||ug|lec < r, then

7(up) = +oo, |u(t,r)] < Ce™uglleo ¥Vt >0, = € Q.

On the contrary, if
f/(O) > A,

then there are elements in the spectrum of A with positive real part. Since they are
isolated they satisfy condition (7.9). Theorem 7.1.2 implies that the null solution of
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(7.13) is unstable: there exist § > 0 and initial data ug with ||ug||ec arbitrarily small, but
SUD; zeq [u(t @) > 6.
If in addition
1'(0) # X\, Vn €N,

then the assumptions of theorem 7.1.3 hold, so that there exist the stable and the unstable
manifolds. The unstable manifold is finite dimensional because it is the graph of a function
defined in P(X) which is the space spanned by the finitely many eigenfunctions of A
corresponding to the eigenvalues —\,, such that f/(0) — A\, > 0.

The critical case of stability

f,(o) = )\1,

where the sup of the real parts of the elements of o(A) is zero, is more difficult and other
tools are needed to study it.

7.2.2 A Cauchy-Neumann problem

Similar considerations hold for the problem

u(t,z) = Au(t,z) + f(u(t,z)), t>0,2€Q
(7.15)
ou/ov(t,z) =0, t>0,x €Q,

where v = v(z) is the exterior normal vector to 9 at x. For every continuous initial

datum ug we write (7.15)-(7.15) in the abstract form (7.2) choosing X = C(92), F(¢)(x) =
f(p(x)), and

A:D(A)={p €N>1 W2P(Q): Ap € C(Q), 0p/0v =0} — X,

Ap = Ap + f'(0)p.

A is a sectorial operator by theorem 2.5.2. The spectrum of A consists of a sequence of
real eigenvalues which goes to —oo, given again by

Hn = _>\n+f/(0)7 n ENv

{—An}nen being the ordered sequence of the eigenvalues of A with Neumann boundary
condition. So, Ay =0 and —\,, < 0 for n > 1.

Theorem 6.1.1 guarantees the existence of a unique local solution u : [0, 7(ug)) — X
of the abstract problem (6.1). Setting

u(t,r) = u(t)(z), t€0,7(u)), = € Q,

the function u is continuous in [0, 7(ug)) x €, continuously differentiable with respect to
time for ¢ > 0, and it satisfies (7.15), (7.14).
Concerning the stability of the null solution, theorem 7.1.1 imples that if supyeq(a)
Re A < 0, that is, if
f'(0) <0,

then the null solution of (7.15) is exponentially stable: for every w € (0,—f(0)) there
exist 7, C' > 0 such that if ||ug|lecc < 7, then

7(up) = +oo, |u(t,r)] < Ce™uglleo V¥t >0, z € Q.

If
1(0) >0,
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then there are elements in the spectrum of A with positive real part. Since they are
isolated they satisfy condition (7.9). Theorem 7.1.2 implies that the null solution of (7.15)
is unstable.
If in addition
f/(O) # A Vn €N,

then the assumptions of theorem 7.1.3 hold, so that there exist the stable and unstable
manifolds. Also in this case the unstable manifold is finite dimensional because it is the
graph of a function defined in P(X) which is the space spanned by the finitely many
eigenfunctions of A corresponding to the eigenvalues —\,, > —f’(0).
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Appendix A

Vector-valued integration

In this appendix we collect a few basic results on calculus for Banach space valued functions
defined in a real interval. These results are assumed to be either known to the reader, or
at least not surprising at all, as they follow quite closely the finite-dimensional theory.

Let I C R be an interval, and let X be a Banach space, whose dual is denoted by
X', with duality bracket < z, 2’ >. We denote by C(I; X) the vector space of continuous
functions w : I — X, by B(I; X) the space of the bounded functions, endowed with the
sup-norm

[ulloo = sup [lu(t)]]-
tel

We also set Cy(I; X) = C(I;X) N B(I; X). The definition of the derivative is readily
extended to the present situation: a function f € C(I; X) is differentiable at ¢y € I if the

following limit exists
f(t)— f(t
lim M_

t—to t— 1o

As usual, the limit is denoted by f’(tg) and is called derivative of f at ty. In an analogous
way we can define right and left derivatives.

For every k € N (resp., k = oo), C¥(I; X) denotes the space of X-valued functions
with continuous derivatives in I up to the order k (resp., of any order).

Let us define the Riemann integral of an X-valued function on a real interval.

Let f : [a,b] — X be a bounded function. If there is z € X such that for every ¢ > 0
there is a § > 0 such that for every partition P = {a =ty < 1 < ... < t,, = b} of [a,}]
with ¢; —t;_1 < ¢ for all 7 and for any choice of the points & € [t;_1, ;] it follows

Hx - Zn:f(&')(tz’ - tz’—l)H <e,
=1

we say that f is integrable on [a,b] and set

/abf(t)dt .

generalized integrals of unbounded functions, or on unbounded intervals can be defined as
in the real-valued case. From the above definition we obtain immediately the following

Proposition A.1.1 Let o, 3 € C, f,g be integrable on [a,b] with values in X.
(a) [, (af(t)+Bg(t)dt = a [} f(t)dt+ B [} g(t)dt;
(6) 1| 3 Ft)dt|| < supegagy I F@)]1(b = a);
(c) < [P ft)ydt, 2’ >= [P < f(t), ' > dt for all ' € X';

o~
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(@) | f; Fodtl] < [ 1LF @t
(e) Af;7 f(t)dt = fab Af(t)dt for all A € B(X,Y), where Y is another Banach space;

(f) if (fn) is a sequence of continuous functions and there is f such that

lim max || fn(t) — f(¢)|[ =0,
n tela,b)]

then lim,, [ f,(t)dt = [ f(¢)dt.

It is also easy to generalize to the present situation the fundamental theorem of elementary
calculus. The proof is the same as for the real-valued case.

Theorem A.1.2 (Calculus Fundamental Theorem) Let f : [a,b] — X be continu-
ous. Then the integral function

t
F(t) :/ f(s)ds
is differentiable, and F'(t) = f(t) for every t € [a,].

Let us now come to review some basic facts concerning vector-valued functions of a
complex variable.

Let © be an open subset of C, f: Q — X be a continuous function and = : [a,b] —
be a Cl-curve. The integral of f along {7} is defined by

b
[ #G1a:= [ sy wae
v a
Let © be an open subset of C and f: 2 — X a continuous function.

Definition A.1.3 f is holomorphic in Q if for each zg € Q the limit

i F) = (a0)

Z—20 z — ZO

= f'(20)

exists in the norm of X.
[ is weakly holomorphic in Q if the complex-valued functions Q > z —< f(2),2' > are
holomorphic in Q for every ' € X'.

Clearly, any holomorphic function is weakly holomorphic; actually, the converse is also
true, as the following theorem shows.

Theorem A.1.4 Let f: Q — X be a weakly holomorphic function. Then f is holomor-
phic.

Proof. Let B(z,r) be a closed ball contained in Q; we prove that for all z € B(z,r) the

following Cauchy integral formula holds:

1 1)
6 =52 | o e (A1)

First of all, we observe that the right hand side is well-defined since f is continuous.
Since f is weakly holomorphic in 2, the complex-valued function Q 3 z —< f(2),2' >
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is holomorphic in Q for all ' € X', and hence the ordinary Cauchy integral formula in
B(zp,r) holds, i.e.,

ro_ 1 < f(§),z' > _ L & I <.
= f(2)7$ - % /83(20,7“) §—z2 @ =< 2mi /6‘B(z0,r) §— ngyx ~

by the arbitrariness of 2’ € X', we obtain (A.1). Differentiating under the integral sign,
we deduce that f is holomorphic and that

f(n)(z)_ n! /6 &dé

B % B(zo,r) (5 - Z)n+1

for all z € B(zp,r) and n € N. O

Definition A.1.5 Let f: Q) — X be a vector-valued function. We say that f has a power
series expansion around a point zy € ) if there exists r > 0 such that B(zp,r) C Q and

f(z) = Zan(z —2p)" in B(zo,r),
n=0

where (a,) C X and the series is norm-convergent.

Theorem A.1.6 Let f : Q — X be a vector-valued function; then f is holomorphic if
and only if f has a power series expansion around every point of §2.

Proof. Assume that f is holomorphic in 2. Then, if zy € Q and B(zp,r) C Q, Cauchy
integral formula (A.1) holds for every z € B(z,r).
Fix z € B(zp,r) and observe that the series

2 (z— )" 1
Z(f—zo)"+1_f—z

n=0

converges uniformly for £ in 0B(zp, 1), since |z:§8

and Proposition A.1.1(f), we obtain

O — O e

| <771z = z|. Consequently, by (A.1)

211 8B (z0,r) o £ — z9)nHl
R e n
B 7;0 [2—7” /‘93(20,7’) qu (z — 20)",

the series being norm-convergent.
Suppose, conversely, that

(0.)
F) = an(z—20)" in Blzor),
n=0
where (a,) C X and the series is norm-convergent. Then, for each 2’ € X',
(o]
< f(z),2 >= Z < ap, @' > (2—2)" in B(z,r).

n=0

This means that the complex-valued function Q > z —< f(z),2’ > is holomorphic in
B(zp,r) for all 2/ € X" and hence f is holomorphic by Theorem A.1.4. O

Let us now extend some classical theorems in complex analysis to the case of vector-
valued holomorphic functions.
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Theorem A.1.7 (Cauchy Theorem) Let f: Q — X be holomorphic in Q and let D be
a regular domain contained in 2. Then

f(z)dz = 0.
oD
Proof. For each 2/ € X’ the complex-valued function 2 3 z —< f(2),2’ > is holomorphic
in 2 and hence
Oz/ < f(2),2' >dz =< (2)dz,z" > .
oD oD
Il

Remark A.1.8 [generalized complex integrals| As in the case of vector-valued func-
tions defined on a real interval, it is possible to define generalized complex integrals in an
obvious way. Let f : Q — X be holomorphic, with Q C C possibly unbounded. If I = (a,b)
is a (possibly unbounded) interval and v : I — C is a (piecewise) C' curve in Q, then we
set ;
[ #dz= 1 [ o

7 it s
provided that the limit exists in X. In particular, it is easily seen, as in the elementary
case, that if 7' is bounded and for some ¢ > 0, a > 1 the estimate || f(2)|| < c|z|~ holds
on 7 for large |z|, then the integral f,y f is convergent.

To prove that Laurent expansion holds also for vector-valued holomorphic functions
we need the following lemma.

Lemma A.1.9 Let (ay,) be a sequence in X. Suppose that the power series

o0
Z < a/nvx/ > (Zl - Zo)na 21 ?é 20,
n=0

converges for all ' € X'. Then the power series > o" g an(z — 20)"

all z with |z — zo| < |21 — 20|

converges in norm for

Proof. We have, for all 2’ € X/,
lim < ay, 2’ > (21 — 20)" = 0;
n

by the uniform boundedness principle, there exists M > 0 such that ||a,(z1 — 20)"|| < M
for all natural n. Putting ¢ = |ﬂ| < 1, we have

21—20

lan(z = 20)"[| = llan(z1 — 20)"l¢" < Mq",

and the assertion follows. [J

Theorem A.1.10 (Laurent expansion) Let f: D ={z€C:r <|z—2)| <R} - X
be holomorphic. Then, for every z € D

where

_ 1 f(z)
= 57 |,

and C ={z:|z — 20| =0}, r <0 < R.



Calculus for vector-valued functions 95

Proof. Since for each 2’ € X’ the function D > z —< f(z),2’ > is holomorphic the usual
Laurent expansion holds, that is

—+00

< f(z),2' >= Z an(z)(z — 20)"

n=—oo

where the coefficients (a,(2')) are given by

/ 1 <f(Z),.’L'/>
W) = — [ SLET 2,
an(@) 27i Jo (2 — zp)n L :

By Proposition A.1.1(c), it follows that

an(z") =< ap, 2’ >

where the a,, are those indicated in the statement; the assertion then follows from Lemma
A.1.9. 0O

Exercises

Al

A2

A3
A4
A5

A6

Given a function u : [a,b] x [0,1] — R, set U(t)(x) = u(t,x). Show that U €
C([a, b]; C([0,1])) if and only if u is continuous, and that U € C*([a, b]; C(]0,1])) if
and only if u is continuous, differentiable with respect to ¢t and the derivative wu; is
continuous.

Let f : I — X be a continuous function. Prove that if f admits a continuous
right-derivative on I, then it is differentiable in I.

Let f :[a,b] — X be a continuous function. Show that f is integrable.
Prove Proposition A.1.1.

Show that if f : (a,b] — X is continuous and ||f(¢)|| < g(¢t) for all t € (a,b], with g
integrable in [a, b], then the generalized integral of f on [a,b] is convergent.

Let I1, I be two real intervals, and let g : I1 X Is — X be continuous, and such that
for every (A, t) € I1 x Iy the inequality ||g(A,t)|| < (t) holds, with ¢ integrable in
I5. Prove that the function

GO = / gBdt,  Ael
Ip)

is continuous in /7. Show that if g is differentiable with respect to A, gy is continuous
and ||ga(A, t)]| < (t) with ¢ integrable in I, then G is differentiable in I; and

G’(A):/l a(O\B)dt, A€ T,
2
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Basic Spectral Theory

In this appendix we collect a few basic results on elementary spectral theory, in order to
fix the notation used in the lectures and to give easy references.

Let us denote by £(X) the Banach algebra of linear and continuous operators 7' : X —
X, endowed with the norm

| T
IT|= sup [Tzl = :
2EX: al|=1 zex\{o} Iz

If D(L) is a vector subspace of X and L : D(L) — X is linear, we say that L is closed if
its graph
Gr={(z,y) e X x X:x2 e D(L), y= Lz}

is a closed set of X x X. In an equivalent way, L is closed if and only if the following
implication holds:

{z,} Cc D(L), z, —x, Lx, —y — x € D(L), y= L.

We say that L is closable if there is an (obviously unique) operator L, whose graph is the
closure of Gr,. It is readily checked that L is closable if and only if the implication

{zn} Cc D(L), x, =0, Lx, —y = y=0.
holds. If L : D(L) C X — X is a closed operator, we endow D(L) with its graph norm
2l ey = [lll + [ L]

D(L) turns out to be a Banach space and L : D(L) — X is continuous.
Let us prove some useful lemmas.

Lemma B.1.1 Let X, Y be two Banach spaces, let D be a subspace of X, and let { Ay }n>0
be a sequence of continuous linear operators from X to'Y such that

Al < M, VneN, lim A,z = Apx Yz € D.

Then
lim A,z = Agz Vz € D,

n—oo

where D is the closure of D in X.

Proof. Let € D and € > 0 be given. For y € D with ||z — y|| < € and for every n € N
we have

[Anz — Aoz|| < [[An(z — )| + [[Any — Aoyl + [[Ao(y — 2)]-

PR
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If ng is such that |4,y — Apy|| < e for every n > ng, we have
|Apz — Aoz|| < Me+ e+ ||Aolle
for all n > ng. O
Lemma B.1.2 Let A : D(A) C X — X be a closed operator, I a real interval with

endpoints a,b (—o00 < a < b < +00) and let f : I — D(A) be such that the functions
t— f(t), t — Af(t) are integrable on I. Then

/bf(t)dt € D(A), A/bf(t)dt: /bAf(t)dt.

Proof. Assume first that [ is compact. Set z = ff f(t)dt, let us choose a sequence
Pr={a=tf <... <tk = b} of partitions of [a, b] such that max;—y, _n, (t¥—tF ;) < 1/k.

Let &F € [tF ¢k ] for i = 0,...,ng, and consider

Sk =Y (&)t —tin).
i1

All Sy, are in D(A), and
ASk = Af(E)(ti —ti1).

i=1

Since both f and Af are integrable, S tends to x and ASj tends to y = f; Af(t)dt,
and since A is closed, x belongs to D(A) and Az = y. Let now I be unbounded, say
I = [a,+00); then, for every b > a the equality

A/abf(t)dt _ /ab Af(t)dt

holds. By hypothesis

b 0o b 00
/ Af(H)dt — / Af(t)dt and / F(t)dt — / F(t)dt as b— +oo,
hence )
A/ F(t)dt — / Af(t)dt
and, by the closedness of A, the thesis follows. [
Given an operator (not necessarily closed) A : D(A) C X — X, define its adjoint

A": D(A") ¢ X' — X’ through

DAY ={ye X'": 3z € X' such that (Az,y) = (x,2) Vo € D(A)},

A'y = z for y, z as above.

Notice that (A’, D(A")) is always a closed operator.
Let us now introduce the notions of resolvent and spectrum of a linear operator.

Definition B.1.3 Let A: D(A) C X — X be a linear operator. The resolvent set p(A)
and the spectrum o(A) of A are defined by

p(A)={AeC:3 M —A)teL(X)}, a(A) =C\p(A). (B.1)

The complex numbers N € o(A) such that \I — A is not injective are the eigenvalues
of A, and the elements x € D(A) such that x # 0, Ax = Az are the eigenvectors (or
eigenfunctions, when X is a function space) of A relative to the eigenvalue X. The set
op(A) whose elements are the eigenvalues of A is the point spectrum of A.
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If A € p(A), set
(M — A~ = R\, A) (B.2)

and R(\, A) is the resolvent operator or briefly resolvent.

It is easily seen (cf Exercise 1 below) that if p(A) # () then A is closed.

Let us recall some simple properties of resolvent and spectrum. First of all, it is clear
that if A : D(A) C X — X and B : D(B) C X — X are linear operators such that
R(Xo, A) = R(Xo, B) for some )\g € C, then D(A) = D(B) and A = B. In fact,

D(A) = Range R(\g, A) = Range R(\o, B) = D(B),

and for every x € D(A) = D(B), set y = \ox — Az, one has x = R(\g, A)y = R(\o, B)y,
and this, applying Aol — B, implies Agx — Bx = y, so that \gz — Ax = Aoz — Bx and
therefore Ar = Bux.

The following formula, called resolvent identity, can be easily verified:

R(Av A) - R(M’ A) = (:u - A)R(Aa A)R(:ua A)v v >‘v U p(A) (B.3)
In fact, write
R(), A) = [uR(1, A) — AR(1, A)|R(A, A)
R(:uv A) = [)‘R()‘a A) - AR()‘7 A)]R(:uv A)

and subtract the above equations; taking into account that R(\, A) and R(u, A) commute,
we get (B.3).

The resolvent identity characterizes the resolvent operators, as specified in the following
proposition.

Proposition B.1.4 Let Q C C be an open set, and let {F(\) : A € Q} C L(X) be linear
operators verifying the resolvent identity

F(\) = F(u) = (1= NFO)F(), VA, € Q.

If for some Ao € Q, the operator F(\g) is invertible, then there is a linear operator A :
D(A) C X — X such that p(A) contains Q, and R(\, A) = F(X) for all X € Q.

Proof. Fix Ay € Q, and set
D(A) = Range F(X), Az =Xz — F(Xo) 'z Vo € D(A).

For A € Q and y € X the resolvent equation \x — Az = y is equivalent to (A — A\g)z +
F(X\o) 'z = y. Applying F()\) we obtain (A — X\o)F(A\)x + F(A\)F(\o) 'z = F()\)y, and
using the resolvent identity it is easily seen that

F)F(Xo)™ = F(Xo)'F(A) = (o = NF(A) + 1.

Hence, if x is solution of the resolvent equation, then x = F(\)y. Let us check that
r = F(\)y is actually a solution. In fact, A\gF'(A\)y + F(\o)"LF(\) = v, and therefore A
belongs to p(A) and the equality R(A, A) = F()\) holds. O

Next, let us show that p(A) is an open set.

Proposition B.1.5 Let Ay be in p(A). Then, |A — o] < m implies that X belongs
to p(A) and the equality

R(\, A) = R(Mo, A)(I + (X — Xo)R(Ng, A)) ! (B.4)

holds. As a consequence, p(A) is open and o(A) is closed.
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Proof. In fact,
(A=A + (A= A0)R(Xo,A)) (Ao — A

Since [[(A — Ao)R(Xo, A)|| < 1, the operator I + (A — Ag)R(Ao, A) is invertible and has a
continuous inverse (see Exercise (B.2)). Hence,

R(X, A) = R(Ao, A)(I + (A= Xo)R(Xo, A)) 7"

Further properties of the resolvent operator are listed in the following proposition.

Proposition B.1.6 The function R(-, A) is holomorphic in p(A) and the equalities

[e.e]

RN A) =) (=1)™(A = X)"R" (X, A) (B.5)
n=0
d"R(), A)
-0 = (—=1)"n!R" (), A B.6
hold.
Proof. (i) If A — N\g| < m, from (B.4) we deduce
o o0
R(AA) = R(M, A) D (=)A= X)"R(Ao, A)" = (=1)"(A = Ao)"R(Xo, 4)""!
n=0 n=0

and the statement follows. [J
Proposition B.1.5 implies also that the resolvent set is the domain of analyticity of the
function A — R(A, A).

Corollary B.1.7 The domain of analyticity of the function A — R(X\, A) is p(A), and

the estimate 1

IR Dlleco 2 G oy

(B.7)
holds.

Proof. It suffices to prove (B.7), because it proves that R(-, A) is unbounded approaching
o(A). From Proposition B.1.5 for every A € p(A) we get that if [z — A < 1/[|R(A, A) | £(x)
then z € p(A), and then dist (A, 0(A)) > 1/[|R(\, A)||z(x), from which (B.7) follows. [J

Let us recall also some spectral properties of bounded operators.

Proposition B.1.8 Let us consider T € L(X); the power series
oo
F(z) = szTk, z € C. (B.8)
k=0

(called Neumann series of (I —zT)~!) is norm-convergent in the disk B(0,1/r(T)), where
r(T) = limsup ¥/||T7|.
n—o0
Moreover, |z| < 1/r(T) implies
F(z)=(I—-27)"" (B.9)

and |z| < 1/||T|| implies
1

I = =) <
L[ |T]
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Proof. The convergence of (B.8) in the disk B(0,r(T)) easily follows from the root
criterion applied to the scalar series Y ro, |T%]| |2|¥. To prove equation (B.9), it suffices
to check that if |z| < 1/r(T) then

(I—-2D)F(z)=F(z)({—-=T)=1
Finally, (B.10) follows from the inequality
IFG)I < Y 1=MIT)* =
Z 1= [Tl \ 17|
O

Proposition B.1.9 Consider T € L(X). Then the following properties hold.
(i) o(T) is contained in the disk B(0,7(T)) and if |\| > r(T) then X\ € p(T), and the

equality
= ThAR L (B.11)
k=0
holds. For this reason, r(T) is called spectral radius of T'. Moreover, |A| > ||T|
implies
1
1RO DI < 577 (B.12)
Al =Tl

(ii) o(T) is non-empty.

Proof. (i) follows from Proposition B.1.8, noticing that, for A # 0, A\—T = A(I — (1/\)T).
(ii) Suppose by contradiction that o(7T") = (. Then, R(-,T) is an entire function, and then
for every z € X, 2’ € X’ the function (R(-,T)x, ') is entire and tends to 0 at infinity and
then is constant by Liouville theorem. As a consequence, R(A,T') = 0 for all A € C, which
is absurd. O

Exercises

B.1 Show that if A: D(A) C X — X has non-empty resolvent set, then A is closed.

B.2 Show that if A € £(X) and ||A|| < 1 then I 4+ A is invertible, and

(I+A)~ i 1)k AR,
k=0

B.3 Show that for every a € C the equalities a(aA) = ao(A), o(al — A) = a—od(A)
hold. Prove also that if 0 € p(A) then o(A~1)\ {0} = 1/0(A), and that p(A+al) =
p(A) +a, RN A+al) =R\ —a, A) for all X € p(A) + .

B.4 Let ¢ : [a,b] — C be a continuous function, and consider the multiplication operator
A: C([a,b];C) — C([a,b];C), (Af)(x) = f(z)p(x). Compute the spectrum of A. In
which cases are there eigenvalues in o(A)?

Solve the same problems with LP((a,b); C), p > 1, in place of C([a,b]; C).

B.5 Let Cy(R) be the space of bounded and continuous functions on R, endowed with
the sup-norm, and let A be the operator defined by

D(A) = Cy(R) = {f € Gy(R) : 3" € Cy(R)} — Cy(R), Af =["
Compute o(A) and R(X, A), for X € p(A). Which are the eigenvalues of A?
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B.6

B.7

B.8

Appendix B
Let P € L(X) be a projection, i.e., P2 = P. Compute o(A), find the eigenvalues
and compute R(A, P) for A € p(P).

Consider the space X = C([0,7]) and the operators D(4;) = {f € C?*([0,n]) :
F(0) = f(x) = O}, Aif = f", D(As) = {f € C*((0.7]) : F(0) = f(x) = O},
Asf = f"”. Compute o(4;1), 0(Az) and R(\, A1), R(\, A2) for A € p(A;) and
A € p(As2), respectively.

Let X = C([0,1]), and consider the operators A, B, C' on X defined by

Show that
p(A) =0, o(A)=C.
pB)=C, o(B) =0, (ROBIE) =~ [ XD fipan, 0e <1
p(C)=C\{2kmi: ke€Z}, o(C)={2kmi :0 kelZ}
with 2k7i eigenvalue, with eigenfunction & +— ce? ™ and, for \ & {2kmi, k € Z},
¢

1 13
(BROONGO = 5= [ A sadn— [ XD g

0 0
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