Smooth solutions to a class of free boundary parabolic
problems

Olivier Baconneau
Division of Mathematics and Computer Science, Free University Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

E-mail: 0livier.Baconneau@math.u-bordeaux.fr

Alessandra Lunardi
Dipartimento di Matematica, Universita di Parma
Via D’Azeglio 85/A, 43100 Parma, Italy
E-mail: lunardi@unipr.it, www: http://math.unipr.it/~lunardi

Abstract

We establish existence, uniqueness, and regularity results for solutions to a class of
free boundary parabolic problems, including the free boundary heat equation which
arises in the so called “focussing problem” in the mathematical theory of combustion.
Such solutions are proved to be smooth with respect to time for positive t, if the data
are smooth.

Key Words and Phrases: Heat equation, free boundary problems, fully non linear
parabolic equations.

AMS Subject Classification: 35K05, 35R35.

1 Introduction

In this paper we consider the initial value problem for a class of free boundary parabolic
equations,

(wi(t,x) = Lu(t,x) + f(t,z,u(t,x), Du(t,x)), t >0, z € Q,
U(t,éﬂ) = gO(tax)a t>0, z€ aQt7

ou
%(t,.T) = gl(tam)a 120, z¢ aQt7

\ ’LL(O,:B) = Uo(Il?), VS QOa

where the family of open sets {0, : + > 0} C RY and the function u: {(t,z) : t >0, z €
Q;} — R are the unknowns. By n = n(t,z) we denote the exterior unit normal vector to
8Qt at ¢ € 8Qt

The data are: the second order elliptic operator £ = Zf}’jzl a;j(t,)D;;, the functions
F[0,T] xRY xR xRN = R, go, g1 : [0,T] x RY = R, the (possibly unbounded) initial
set Qg C RY, and the initial function ug : Q¢ — R. All of them are assumed to be regular
enough. Moreover, ug satisfies the compatibility conditions

O (1) = gi(a), = € O, (1.2)

uo(#) = go(a), ()



and gg, g1 satisfy the transversality condition

0
%(0,$) 7é 91(07:17)7 T € 890 (13)

In space dimension N = 1 this problem has been well understood for a long time, see
e.g. the review paper [16]. Here we are interested in the multidimensional case N > 2,
where only a few results are available at present.

The simplest and most popular example of (1.1) is the free boundary heat equation,

up = Au in€y, uwu=0 and g—u:C on 0§,
" (1.4)

U(O, ) = Uo in QOv

with C # 0, motivated by models in combustion theory ([6, 18]) for equidiffusional pre-
mixed flames. It can be seen as the high activation energy limit of the regularizing problems
uy = Au — Be(u) in [0,T] x RN, where B.(s) = p1(s/€)/e has support in a small interval
[—€,0]. In [7], Caffarelli and Vazquez used this regularization to prove existence of global
weak solutions to (1.4) for C? initial data (2o, ug), under suitable geometric assumptions
on ug. Such solutions may not be unique, and enjoy some regularity properties: the free
boundary is locally Lipschitz continuous, and w is 1/2-Ho6lder continuous with respect to
time, Lipschitz continuous with respect to the space variables. The same approach was
used in [12] to prove uniqueness of the classical solution to (1.4) in a cylinder for initial
data which are monotonic in the direction of the cylinder axis.

In this paper we follow a completely different approach, which leads to existence,
uniqueness, and time smoothness for ¢ > 0 of local regular solutions (with u bounded,
in the case of unbounded domains) to problem (1.1). Concerning uniqueness, we prove
uniqueness of the solution belonging to a suitable parabolic Holder space and such that the
transversality condition %(t, x) # g1(t, z), © € 0, is preserved throughout the interval
of existence.

Our approach consists in transforming problem (1.1) into a fully nonlinear parabolic
problem in the fixed domain €2 for an auxiliary unknown w, for which the usual techniques
of fully nonlinear parabolic problems in Holder spaces (see e.g. [14, Ch. 8]) give a local
existence and uniqueness result. Coming back to (1.1), for Qg with C3+*+* boundary and
ug € C3T21E () we obtain a local solution with 99, € C*To+* and u(t,-) in C*Hotk(Qy),
kE = 0,1. So, we share with [7] the unpleasant fact that we lose one degree of space
regularity for ¢ > 0. Although this is natural for global weak solutions, as simple examples
described in [7] show, it not wholly satisfactory for local classical solutions. One could
expect that in a small time interval the solution remains at least as regular as the initial
datum: this is what happens in other free boundary problems of parabolic type (see e.g.
[8, 9] for boundary conditions of Stefan type), and in problem (1.1) for special initial data.
Thus, our main results are uniqueness and time smoothness, and we consider our existence
theorem just as a tool to prove the other results.

An noteworthy situation in which there is no loss of regularity, at least in small time
intervals, is the case of initial data near special smooth solutions, such as stationary
solutions, self-similar solutions, travelling waves. In particular, C**® initial data near
any regular stationary solution (2,U) with bounded € were considered in the paper [3],
where we studied stability of regular stationary solutions, establishing a linearized stability
principle for (1.1) in the time independent case. Since self-similar solutions to (1.4) become
stationary solutions to a problem of the type (1.1) after a suitable change of coordinates,
we could also consider initial data for (1.4) near self-similar solutions. In the unbounded
domain case, C>*® initial data near a planar travelling wave solution of (1.4) have been
considered in [5]. The wave turns out to be orbitally stable, but the discussion is not
trivial, because in dimension N > 2 this is a very critical case of stability.



Another example without loss of regularity was considered in [1], where it was studied
a two-phase version of (1.1) in a cylinder for C?*@ initial data far from special solutions
but satisfying suitable monotonicity conditions: ug is assumed to be strictly monotonic in
the direction orthogonal to the cylinder axis. This allows to take u as new independent
variable for small ¢, an old trick already used by Meirmanov in the Stefan problem and
also in a two-dimensional version of problem (1.1), see [15].

Together with loss of regularity, the other big question about problem (1.1) is unique-
ness of the classical solution. Indeed, the uniqueness results available up to now concern
only particular situations, such as radially symmetric solutions of (1.4), studied in [10],
and solutions in cylinders, for initial data which are monotonic in the direction of the axis
of the cylinder (see [15] in dimension N = 2 and [12] in any dimension), or in the direction
orthogonal to the axis of the cylinder (see [1], for the two-phase case). Moreover the above
mentioned papers [3, 5] give also uniqueness results in parabolic Holder spaces, but only
for solutions close to the special solutions considered.

Therefore, the problem of wellposedness for general initial data in dimension bigger
than 1 still remains open, even in the simplest case (1.4).

Below we describe briefly our approach, which is similar to the approach of [3].

We look for 9€; as the range of the function & — & + s(¢,&)v(€), defined for & €
08, where v(£) is the exterior unit normal vector to 9Qg at &, and the unknown s(t,¢)
is the signed distance of the point z = & + s(¢,&)r(¢) from 9€Q;. Then by a natural
change of coordinates we transform ; into g, at least for small time, and denoting by
u the unknown wu expressed in the new coordinates, we get a fixed boundary system for
(s,u), in the domain [0,8] x Q¢ with small 6. The change of coordinates is defined by
£ &4 s(t,Ev(€) for € € 0, and it is extended smoothly to a C?*@ diffeomorphism
&= &4 D(t,€) in the whole of €.

The main step is now the introduction of a new unknown w defined by

ﬂ(t,f) = ’U/()(g) + (D’U/()(f), @(t7§)> + w(t,ﬁ), (15)

which allows to decouple the system using the boundary condition u = gy at 9€2;. In the
case gg = 0, g1 = C we get simply

t
du®=—w%0,t2mgeam.
In the general case the formula is a bit more complicated. It comes out
w(t, &
s0,6) = gy (¢ w(t,6)),

%(ta 5) — g (07 5)

where the remainder R(t,&,u) vanishes at (0,&,0) together with R,. It is here that we
need the transversality assumption (1.3).
In any case, we can go through and we get a final problem for the only unknown w,

wy = Aw + F(t,w), t>0, £ € Qo,
Bw = G(t,w), >0, £ € 90, (1.6)

’U)(O, ) =0, é € ﬁ07

where A, B are linear differential operators and F, G are nonlinear functions. Problem
(1.6) is fully nonlinear because F depends on w and on its space derivatives up to the
second order, and G depends on w and on its first order space derivatives. Moreover,
F' is nonlocal in the second order derivatives of w. However, both F' and G are smooth
enough, and F,,, Gy, vanish at ¢t = 0, w = 0. The boundary operator B is obtained from



the Neumann boundary condition g—z = ¢, after the change of coordinates and unknowns;

in the case gg =0, g1 = C we get

v 1 0%ug

Bv=o — a2

The second order linear operator A is the sum of £ plus a nonlocal operator, acting
only on w and on the first order space derivatives of w at £ = 0. This is crucial for our
analysis: since the principal part of A coincides with the principal part of £ at ¢ = 0,
the linearized problem near ¢ = 0, wg = 0 is a good linear parabolic problem, for which
optimal Holder regularity results and estimates are available; we need such estimates to
solve the nonlinear problem in a standard way, using the Contraction Theorem in a ball
of the parabolic Holder space C'1®/2:2+2([0, §] x €q), with § > 0 suitably small, or else in
a ball of C3/2+a/2:3+([0, §] x Q) if the data are more regular.

It is clear now why we lose regularity: not only because of the change of coordinates,
but also because w has the same space regularity of Dug, due to the splitting (1.5). This
problem may be avoided for initial data near smooth (at least C3T%) stationary solutions,
where it is possible to linearize around the stationary solution itself; see [3].

However, it is easy to see that uniqueness of w implies uniqueness of (s, %), and hence
uniqueness of the regular solution to the original problem (1.1). Moreover, using standard
techniques of fully nonlinear problems, it is possible to prove that ¢ — w(¢,-) is analytic
with values in C2(Qg) in the interval (0,6) if the data are analytic. It follows that both
the free boundary and u are analytic with respect to time for ¢ in (0, J).

By a covering argument we get eventually that the free boundary of any sufficiently
smooth solution defined in an interval [0, a] is time analytic in (0, a], provided %%(t, x) #
g1(t,z) for 0 <t < a, x € 0.

2 Transformation to a fully nonlinear fixed boundary prob-
lem

We write below the precise regularity assumption on the data. We fix once and for all a
number « € (0,1).

(a) The initial data. The initial data are couples (€g,ug) where 2y C RY is a nonempty
open set with C3+® boundary 9. If Q is unbounded we need that the boundary is uni-
formly C39, in the sense that the diffeomorphisms which locally straighten the boundary
and their inverses have C3+® norms bounded by a constant. Moreover, ug € C3T%(Q).
In particular, ug and all its partial derivatives up to the third order are bounded.

(b) The other data. We have
Lv = a;j(t,z)D;jv

where the coefficients a;; and their first order space derivatives belong to C/%¢([0,T]
xRN), and satisfy a uniform ellipticity condition: there is v > 0 such that a;j(t, z)&& >
v|€|? for all t, z, &.

The function f = f(t, z,u, p) is once differentiable with respect to z, twice differentiable
with respect to (u,p). f and its derivatives are continuous in (¢,z,u,p), and C*/%® in
(t, ), locally uniformly with respect to (u,p).

Moreover, gg and g; are differentiable with respect to the space variables, and g,
Digy € C1ta/224e([0 T x RN), g1, Dijgy € CV/2ta/214e([o T x RN) fori =1,...,N.

(¢) Compatibility and transversality conditions. Since we deal with regular solutions up to
t = 0 we have to assume that (1.2) holds. We assume furthermore that (1.3) holds. This
is a condition on the structure of the problem, it says that ours is not an obstacle-like
problem. However, it is necessary for our approach to work.



2.1 The change of coordinates

For every & € 99 let v(§) = n(0,£) be the unit exterior normal vector to 9€0. There
is a neighborhood N of Q¢ such that each z € N’ may be written in a unique way as
x =&+ sv(€) with £ € 9Qy and s € R. The number s is called the signed distance of z
from 0€ and it is a regular function of z. As we consider local regular solutions, for ¢
small enough 9Q; C N; we shall represent 9, as

O = {€ +5(t, v (£); € € I} (2.1)

where s(t,€) is an unknown regular function. The function & — £ + s(t, {)v(€) is a diffeo-
morphism from 9y to 9€2;, and it may be extended in a standard way to a diffeomorphism
from Qg to €, as follows. First we extend the normal field: for every £ € N we denote by
¢’ the point of 9Qq closest to &, then for every ¢ € RY we set

0 v(¢) fEEN,
b(€) = (2.2)

0 otherwise,

where 6 is a C* function with support contained in A, such that § = 1 in a neighborhood
of 99y, 6 = 0 outside a bigger neighborhood of 9€).

Then we set
0(&)s(t, (') ifEeN,
D(t, &) = (2.3)

0 otherwise.

To simplify formulas, with a slight abuse of notation we shall write

o(t,¢) = s(t,£")v (&)

More generally, if a is a function defined in [0,7] x N’ N Qg and b is a function defined
in €, with support contained in N N €, we shall write a - b to denote the function
(t, &) = a(t, &)b(E) for £ € NNy, (£,€) = 0if £ € Dy \ N

For ¢ small, the mapping

£ a(t,€) =+ 0(t,€), E€RY, (2.4)

is then a C%t® diffeomorphism from RY to itself, which maps g onto ;.
Let @ denote the unknown u in the variables (¢,¢), i.e

a(t, &) = u(t,& + D(t,€)), t>0,¢€ Q. (2.5)

Similarly, we set @;;(t,&) = a;;(t,& + ®(¢,£)).
With the change of variables (¢,z) — (¢,&), the equation u; = Lu + f is transformed
to

—(Du, (I +'D®)'®,)) = Lu+ f(t,E+B(t,E), a0, (I+'DD)"'Du), t>0, £ € Qp, (2.6)

where [D®];; = 85 9%i (1, ¢), the superscript ¢ denotes the transposed matrix, and L is the
new expression of the operator L, i.e.

N 2

~ 08 O&p 0°¢;

f= 3 @iy, S g, PG g,
i jihk=1 Oz; Oy ij k=1 IOy,

Here for each ¢ the function £(¢, ) is the i 1nverse of (2.4), so that the matrix with compo-
nents 8@ is nothing but (I + D®(t,£))~!



2.2 The splitting

To decouple problem (2.6) we introduce a new unknown w defined by
Uu(t, ) = uo (&) + (Duo(§), ®(t,€)) +w(t, &), t>0, &€ Q. (2.7)
Accordingly, we rewrite (2.6) as
(Dug, ®;) + w; — (D(ug + (Dug, ®) + w), (I +'DD)~1®;) = L(ug + (Dug, ®) + w)

+f(t, &+ ®,uq + (Dug, @) + w, (I +'D®) ' D(ug + (Dug, ®) + w)), t >0, &£ € Q,
(2.8)
The decomposition (2.7) may look a bit strange; it is similar to the decompositions
used in the papers [3, 4, 5] and in others to study stability problems. It is crucial in our
analysis because it lets us decouple system (2.8), expressing s in terms of w. Indeed, the
boundary condition u — gg = 0 on 9€); is rewritten as

90(0,8) + 5(£,£)91(0, &) + w(t,€) — go(t, & + s(t,Ev(€)) =0, & € I, (2.9)

that is F(t,&,s,w) = 0, with Fy(t,,5,w) = g1(0,&) — 22(¢,€) # 0 for ¢ small, due to the
transversality assumption (1.3). By the Implicit Function Theorem we get s as a function
of (t,&, w) for small w; more precisely

s(t,€) = Fo(t,§, w(t,€)), t 20, &€ 9y, (2.10)
so that
O(t,) = Fo(t, &, w(t, §)D(E), 20, € Q. (2.11)
Note that in the free boundary heat equation (1.4) formula (2.10) reduces to
S(t,f) = _w(g€)7 t> 07 6 € ﬁ0-

It is clear now why we need the transversality assumption (c); it is used to get the unknown
s in terms of w, decoupling the system.
For future use we remark here that for each £ € 9y we have

w(t7 6) - 90(t7€) + 90(07 f)
G0 (t,6) — 91(0,€)

where Q(£,¢,0) = Qu(%,£,0) = 0.
Replacing (2.11) in (2.8) we get

TO(ta £, w(ta f)) =

+ Q(t7€7w(t7€) - gO(tag) +90(07€))a (2'12)

w; = Fy(t, €, w, Dw, D*w) + Fa(t, &, w, Dw)s;, t>0, & € Q, (2.13)
where F1, Fo are obtained respectively from
L(ug+(Dug, ®)+w)+f (t, E4+®, ug+(Dug, ®)+w, (I+'D®) " D(ug+(Dug, ®)+w)) (2.14)
and from
—(Dug — (I + D®)"'D(ug + (Dug, ®) + w), D) (2.15)

replacing ® = Fo(t, &', w(t, &) v(€).
Equation (2.13) still contains s;; to eliminate it we use again the identity (2.9) which
gives, after differentiation with respect to time,
_ 990

wy = W(t’f + sv) + ((Dgo(t, & + sv),v)y — g1(0,€))s, t >0, &€ INy.



Replacing in (2.13) for £ € 99 we get

990

5t(<D90(t7£ +.7-"0(t,§,w)1/),1/) - 91(076) - f?(tagavaw)) + ot

(t7§ + fo(t,f,’w)l/)

= F1(t, &, w, Dw, D*>w), t>0, & € 09,
so that, at least for ¢ small, it is possible to get s; as a function of w,

F1 = %‘?(tf + Fov)

= Bt Gw D D) = i e R — 0.~ F O
which, replaced in (2.13), gives the final equation for w,
wy = F(t,w) (), t>0, & €y, (2.17)
where
F(t,w)(€) = Fi(t, &, w, Dw, D*w) + Fo(t, &, w, Dw) F3(t, &, w, Dw, D*w). (2.18)

Although the explicit expression of F is rather complicated, we may note immediately
that for & in Qg \ NV, that is far from the boundary, we have

f(t,’w)(f) = Lw + EUO + f(tvaw +U07Dw +Du0)

This is due to the fact that our change of coordinates reduces to the identity far from the
boundary. Moreover, even near the boundary we have

N

F(0,0)(6) = Y aij(0,€)Dijug(€) + £(0,&,uo(€), Dug(£)). (2.19)

2,j=1

For ¢ near the boundary, the function F(¢,v) is defined for ¢ small and for v € C?(£)
with small C' norm. More precisely, let dy € (0,T] be such that

990

ov
The function F(¢,v) is defined for ¢ € [0, ], and for v € C?(Q) with ||v||c1 < 7, in such a
way that both Fo(t,&,v(€)) and Fs(t, &, v(€), Dv(€), D?v(€)) are well defined for ¢ € 99
and for ¢ € Qq, respectively.

From formulas (2.10), (2.14), (2.15), (2.16) we see that F(¢,v)(£) depends on v, Duv,
D2y and their traces at the boundary through functions which are at least C®/%® with
respect to (t,&) and at least C?*® with respect to v and to its space derivatives of the
first and of the second order. Therefore, for 0 < ¢t < dy, the function v — F(t,v) is
continuously differentiable from {v € C?(Q) : |jv|lcx < r} to C(Qo), and from {v €
C**(Qo) : lvller <7} to C*().

In the next lemma we describe the linear part of F with respect to v near v = 0. We
recall that for every & € N, & denotes the point of 9§ closest to &.

(tag) _91(076) 7é 07 0 <t< 607 66 aQ0

Lemma 2.1 For every t € [0,dy] we have F,(t,0) = A(t, ), where

n

(A, 0)0)(€) = D (aij(t,€) Dijo(€) + o (t,€) Diju(€'))

i,j=1

n

+Y (Bi(t,€)Dyv(€) + Bi(t, ) Div(€)) + y(t, E)v(€) + 7' (,Ov(¢), 0<t < T, £ € Q.
=1
(2.20)



The coefficients aij, Bi, v, o4, Bi, 7' are in C/%2([0, dg) x Qo). i, B, o vanish in
Q(] \N, and
aij(()?é) = a'ij(oag)a a;j(oag) =0, £ € Q.

Proof — It is clear from the expression of F that the linear part of v — F(¢,v) near
v = 0 is a nonlocal second order linear differential operator A(t, d) of the type (2.20). To
identify its principal part at ¢ = 0, it is sufficient to consider F;. Indeed, the product
F2(0,&,v, Dv)F3(0,€, v, Dv, D?v) does not contribute to the principal part, because Fy
does not depend on the second order derivatives of v, and it vanishes at ¢t =0, v = 0.

Using (2.14) we see that only the term £(ug + (Dug, ®) + w) in F; contributes to the
principal part of A(0, ). Its explicit expression is

(€ + ) 3—2(5 @) Dypuo + (Duo, ®) + )

N
> ai(0,E+ ‘b)gij

ik,h,j=1 i

N 2
. 9°E; |

= Lo(v, @) + L1(v, D),

where the matrix M with entries mp, = 0¢,/0z) is equal to (I + D®)~!. We recall
that ® depends on v through (2.10) and (2.3), i.e. ®(t,&,v) = Fo(t, &, v(€'))r(§) and
®(0,£,0) = 0.

At t =0, v =0, ® =0, the linear part of Ly with respect to (v, ®) is

N
aix(0,&)(Digv + Dip(Dug, ®)) + lower order terms.
k=1

From the developement
(I+D®)'=1-D®+ (D®)*(I+ D)} (2.21)

we get that the linear part of £; with respect to (v, ®) is

N 2
0°P;
- Z aik(o’f)ﬁxﬁa]c Djug + lower order terms
ik, j=1 10%

Therefore the second order derivatives of ® cancel in the sum; what remains is

N
A(0,0) = a;(0,8)D;i + lower order terms,
i,k=1

and the statement follows. W

Lemma 2.1 implies that equation (2.17) is parabolic near ¢ = 0.

Equation (2.17) has to be supported with an initial and a boundary condition. The
initial condition comes from the splitting (2.7), it is simply

’U)(O,g) = 07 6 € ﬁ0~
The boundary condition arises from du/dn = g;. Since

(I +'D®)~ 1w (¢)

MBS ) = [ De) ()

8



and
Du(t,& + @) = (I +'D®)"tDu(t,§),

from du/on = g1 we get
(I +'D®) " v, (I +'D®) "' D(ug + (Dug, @) +w)) — g1(t,& + @) |(I +'D®)"'v| = 0, (2.22)
which gives a new boundary condition for w,
G(t, & w(t, &), Dw(t,€)) =0, t>0, &€ 0y, (2.23)

as soon as we replace ® = Fy(t, &, w(t,&'))v(€) in (2.22). The function G(t,&,u, p) and its
first and second order derivatives with respect to u and p;, i = 1,..., N, are continuous
in (¢,&,u,p) and CV/2e/21+e iy (¢ €). Moreover G(0,¢,0,0) = 0.

In the next lemma we identify the linear part of G with respect to (u,p) at (0,¢,0,0).

Lemma 2.2 We have
g(t7£7w7D'w) = Bw — G(t,f,w,Dw)(f)
where B is the linear differential operator defined by

v %Zu (5) - 881(0 €)> t < () ) "
(22 v —(Dtang , D'n9g0(0,¢)), (2.24
Z <f’g° 0.9-00.6) " \Bog-gog) " 0O B

and for every & € 9Q,

By =

G(O7€7070) = Gu(07§7070) = Gpi(07€7070)7 I = 17"'7N7

Dtgo (07 é.)
%%(07 é.) — g1 (07 é.)

Gt(O,&O,O):(Dt“"g< ) D""9g0(0,8))

(2.25)
T — B 0.9)
_Dt90(07€) ( Ov® b ) +Dtgl(07€)
%%(076) - 91(07 6)
Proof — Taking (2.21) into account, we rewrite the first addendum of (2.22) as
(I +'D®)~ v, (I +'D®)~' D(ug + (Dug, ®) + w))
= 20 4 9 Dup, ) + 92— (D), Dug) — (v, (‘DB)Dug) + R(E, Dw, @, DY)
dv  Ov ov
where R(¢,p,q,7) and its derivatives with respect to p;, ¢;, 7i5, ¢,5 = 1,..., N, vanish at
(€,0,0,0).
In the above sum we have
0 82“0 t tang t
5, (D0, @) = -5 s, (D@)v = D™s, (v,(D®)Dug) =0,

where the last equality follows from (D®)v = 0. Replacing s = Fy(t,&, w) and taking
(2.12) into account, we get

(I +'D®)~ v, (I +'D®)~' D(ug + {Dug, ®) + w))

aug ow  dug ( w ) ; < w > ;
+ o+ — (D'ng , D'y,
T ov | v ov? 39%(5,5) — 1(0,6) { 39%( 91(0,8) )

+82UO <90(t7§) — 90(07§)> _ (Dtang (go(t’g) _ gO(O’§)> ,DtangU/0> + Rl(t7§7w7Dw)
91(076) 91(0’6)

Ov? \ 9908 dgo(t,€)
ov ov




where Ry (t, &, u,p) vanishes at (0,£,0,0) as well as its derivatives with respect to ¢, u, p;,
i=1,....N.
On the other hand, since {(!D®)v,v) = 0, we have

gl(tvf =+ (I))|(I +th))_1V| = gl(taé) + (Dgl(taf)aSV(§)> =+ R3(t7£7(1)7Dq>)

where R3(t,&,p,q) and its derivatives with respect to ¢, p;, ¢;j, 4,5 = 1,..., N, vanish at
(t,£,0,0). Replacing s and ® and taking again (2.12) into account, we get

891 (ta 6) w + gO(tag) — 90(076)
o\ P —i(0,6)

where Ry(t,&,u,p) and its derivatives with respect to (¢, u,p;) vanish at (0,£,0,0). Sum-
ming up, the statement follows. W

g1(t,€+@)|(I +'D®)"'v| = g1 (t,€) +

) + R4(ta§7w7 D’U))

2.3 The problem for w

The final system for w is therefore

wy = A(ta 8)’11) + F(taw(ta ))a t>0, € ﬁ07
Bw = G(t,w(t,-), >0, &€ 0, (2.26)

w(0,§) =0, {€ ﬁ07
where we have set
F(t,v)(§) = F(t,v)(€) — Alt, 0)v(¢),
G(t,v)(ﬁ) = G(t7€7v(€)7DU(§))a £ € 08.

Problem (2.26) will be solved by a fixed point theorem in a ball of the parabolic Hélder
space C1ta/2:2+a ([0, §]xQq), with 6 small. The main tool is the next theorem about Holder
regularity and estimates for solutions of linear problems.

Theorem 2.3 Let o € (0,1) and & > 0. Let Q be an open set in RN with uniformly
C?t® boundary, and let c;j, Bi, v, i, B, Y € C/2a([0,6y] x Q) be such that

N

S qij(t,Eming > vlnl?, €€Q, 0<t < b,
=1

for some v >0, and
@;;(0,§) =0, £ €.
Moreover, let ¢, 1 € CV/2e/21+e([0 501 x dQ) be such that

N

> it Eri(€) #£0, £€09,0<t< .

i=1

For every v € C%(QQ) set

N
(A(t,0)0)(€) = D (ai;(t,€)Dijo(€) + ai;(t,€) Diju(€"))
i,j=1
N
+Z(5l(ta§)Dzv(§) + ﬂ;(t,f)Dzv(f')) + 7(t7£)v(£) + 7I(ta§)v(§l)a 0<t< 607 f € ﬁa
i=1
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and
N
(B(t, 0)v)(€) = 9(t,€)v(€) + Y ¢i(t,€)Div(€), 0<t < b, & € 0.
i=1
Then there is 6, € (0,00] such that for every fi € C%([0,8]xQ), g1 € CV/2Ha/21+e([g 4]
x0Q) with 0 < § < 01, satisfying the compatibility condition
91(0,-) =0 in 012, (2.27)

the problem B
vy =A(t, v+ f1, 0<t <4, £€Q,

B(t,0)v =¢g1, t>0, £ €09, (2.28)

v(0,7) =0, £€Q,

has a unique solution v € C' /22t ([0, 6] x Q). Moreover there exists C > 0 independent
of 0 such that

||'U||Cl+a/2,2+a([0’6]><§) S C(”fl”oa/?,a([o’(;]xﬁ) + ”gl”Cl/2+°‘/2’1+°‘([0,6]><8Q))' (229)

If in addition Q0 has uniformly C3T* boundary, and oij, Bi, v, @i, Bi, ¥ belong to

Cl/2te/21+e ([0, 6] x Q), ¢s, 1 € C1T/22T2 ([0, 60] x IN), then there is §; < &y such that
if fi € CY2Hel214a([0,6] x Q), g1 € CHH/22He([0,6] x 9Q) with 0 < § < &, satisfy the
compatibility condition (2.27) and the further compatibility condition

BO,0)10,) = 22(0,-) in 90, (2.30)

the solution v of problem (2.28) is in C3/2+/2:3+([0, 8] x Q). Moreover there exists C' > 0
independent of § such that

||v||c3/2+a/2,3+a([075]Xﬁ) < C(Hfl||Cl/2+a/2,l+a([075]><ﬁ) + ”gl||Cl+a/2,2+a([075]><89)). (2.31)

Proof — If the coefficients «j;, 8;, 7' vanish, the result is well known and we can take
01 = dp: see e.g. [11] for bounded €, [17] for unbounded €. In the general case the result
follows by a (rather standard) perturbation argument, which we sketch below.

We write A = Ay + A1, where

(Ao(t, 0)v)(§) = 24 j=1 i (t,§) Dijv(§) + 3iey Bi(t, §) Div(§) + (¢, §)v(€),
(A1 (t,0)v) (&) = X071 o (£, §) Diju (&) + X0 Bi(t, §) Div(€') + 4/ (¢, v ('),

and we consider the operator A as a perturbation of Ay. So, we look for a solution of (2.28)
as a fixed point of the operator A : X = {u € C11t2/22+2([0,§] x Q) : u(0,-) = 0} — X,
defined by Au = v, v being the solution of

v = Ao(t,0)v + A1 (t,0)u+ f1, 0<t<6, 2€Q,
B(t,0)v=g1, t>0, x € 09,

v(0,) =0, z€Q.

We shall show that if § is small enough, then A is a 1/2-contraction in X. If uy, us € X,
Auq — Aus is the solution v of

vy = Ao(t,0)v + A1(t,0)(ur —ug), 0<t<4, z€,
B(t,0)v =0, t>0, « € 09,
v(0,2) =0, z€Q,
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so that ||Au; — Augl|x < C|lA1(¢,0)(ur — u2)||ca/2,a([0 5]xq)- 1t is easy to see that there is
C > 0 such that

> BiDi(ur = ug) + 7' (u1 — ug)

i=1

< C"S(Jé/2||(“1 - UQ)||cl+a/2,2+a([0’5]><§)~
Moreover, since a;;(0,-) = 0 and D;j(u1 —u2)(0,-) = 0, we have [|a;[oo < 6a/2[a;j]ca/2,a7
1D (w1 — u2)|loo < 0%%[uy — uz)citas2,24a. Therefore,

e Dij (w1 — up)lloo < CO2 || (g — ug)l|r4a/224e,
and

[ Dij(ur — u2)]gasza < ||edilloo[Dij(ur — u2)]casza + [l carzallDij(ur — u2)lloo

S 0506/2”(”1 - U’2)”Cl+a/2,2+a([075]xﬁ)-

Therefore for § small enough A is a 1/2-contraction, and the first part of the statement
follows. The proof of the second part is similar. W

Now we are ready to solve problem (2.26).

Theorem 2.4 There is Ry > 0 such that for every R > Ry and for every sufficiently small
8 > 0 problem (2.26) has a unique solution in the ball B(0, R) C C1ta/2:2+e([0, 8] x Q).

Proof — Let &y, r > 0 be such that F(¢,v) is defined for ¢ € [0, 6] and for v € C?(y)
with ||v||c1 <r. Fix R > 0 and define Y to be the space

Y = {’U € Cl+a/2,2+a([0’ (5] X ﬁo), ’U(O, ) =0, ||’U||01+a/2,2+a < R}

where 6 € (0,d¢] is so small that |[v||g1ta/224e < R implies [jv(t,-)||cr < r for every
t € [0,6]. Therefore F(t,v(t,-)) is well defined for all ¢ € [0,d] and v € Y.
Fixed any v € Y, we introduce the linear problem

Wy = A(ta a)w + F(tav(ta ))7 0<t<d, ze ﬁﬂa
Bw = G(t,v(t,-)), 0<t <4, ze€ Iy, (2.32)

w(0,7) =0, z € Qq,

to which we apply theorem 2.3. Since the compatibility condition G(0,v(0)) = 0 is satis-
fied, if § < §; (2.32) has a unique solution w € C't2/22+([0, §] x Q).

We define I'(v) = w, w being the solution of (2.32). Our aim is to find a local solution
to (2.26) as a fixed point of T.

We shall prove that for suitable § and R (roughly: R large and ¢ small) I" maps Y into
itself and it is a contraction.

For u, v € Y the function w = I'(v) — I'(u) is the solution of

wy = Aw + F(t,v(t,)) = F(t,u(t,"), 0<t<4, € Q,
Bw = G(t,U(t, )) - G(tau(ta ))7 0<t< (57 € € 98,

w(07€) = 07 6 € ﬁ0-
We have therefore the estimate

[wllgr+arzora < CIF(Ev) = F(tu)llgasza + 1G(E,0) = Gt u)llgr/z+arzisa)
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with C independent of §. We claim now that

IF(t,0) = F(t, )| carze + G (t:0) = Gt )| cr/2tarzara < K(R)Y?|Ju— vl crrarzara,
(2.33)
where K is an increasing function. The proof of (2.33) is straightforward although lenghty,
it may be found in [14, Ch. 8] in the case of a local F.
Once (2.33) is established, we get immediately that I' is a 1/2-contraction provided

C K(R)§*? < %

In this case, for each u € Y we have

R
IP(@)llcr+arzzta < IFO)crtarzora + 5,

where I'(0) is the solution of
wy = A(t,0)w + F(t,0), 0<t<46, x € Qy,
Bw = G(t,0), 0<t<4d, z€ Iy,

w(0,z) =0, x € Q,

so that
IT(0) | gi+ar22+a < C([[F(2,0)][carza + |Gt 0)||g1/2+a/2140).

If R is so large that

R
CUIFE 0l garza((o,60)x5) T 1GE Ol cr/24ar2140 (0,50 x000)) < 3
then for every u € Y we have ||I'(u)||q14a/2.24a < R, and I" maps Y into itself. Therefore
I" has a unique fixed point in Y. N

Since the problem for w is parabolic, it is natural to have further regularity results,
depending on the regularity of the data. Here we prove two further regularity theorems:
a time-space regularity theorem up to t = 0, which will be used later, and a smoothness
theorem for ¢ > 0.

The Holder time-space regularity theorem needs the following regularity and compat-
ibility assumptions:

(d) Further regularity assumptions. Qg C RN is a nonempty open set with uniformly
C**t® boundary 99, and uy € C*T%(Qq). The coefficients a;; and their first order space
derivatives belong to C1/2+e/21+a([0 T] x RN). The function f = f(t,z,u,p) is differen-
tiable with respect to z, twice differentiable with respect to (u,p); f and its derivatives
are continuous in (¢,z,u,p), and C1/2te/21+e in (¢ 2), locally uniformly with respect to
(u,p). Moreover, go and g; are differentiable with respect to the space variables, and g,
D;go € C3/2+a/234a([0, T x RN), g1, Digy € C' /224 ([0,T] x RN) for i = 1,...,N.

(e) Further compatibility conditions. Let B be the operator defined in (2.24). We assume
that for every £ € 99

at(’)_ay

B(L(O, a)u0+f(o,-,u0,Du0)> _ %0 _ 29 <3;0 (0,-)> 991

+ By (0,-).

This condition comes out from g—z — g1 = 0 on 0, differentiating with respect to time

and taking the trace on 0y at t = 0. It is necessary for %g—z be continuous up to ¢t = 0.
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Theorem 2.5 Let assumptions (a), (b), (c), (d), (e) hold, and let w : [0,0] x Qo — R
be the solution to problem (2.26) given by theorem 2.4. Then there exists §' € (0,9) such
that w belongs to C'/2+e/2:3+a ([0, 6] x Q).

Sketch of the proof — Let us come back to the proof of theorem 2.4. Now we look for
a fixed point of I" in the space

YI = {U € C3/2+a/2,3+a([0’ 6] X ﬁo), ’U(O, ) = 07 “’U(t, ')||C3/2+0f/2,3+06 < RI}

which is closed in C1t2/22+([0,§] x €Q). If we prove that T maps Y’ into itself for R’
large and § small we are done, because from the proof of theorem 2.4 we already know that
T is a 1/2-contraction with respect to the C1t®/22+ distance. To this aim we use the
last part of theorem 2.3. It yields that Tv € C3/2T®/23+2 ([0, §] x Q) provided p(t,¢) =
F(t,u(t,)(€) € CY2Fe/21+e((0,6] x Qo), ¥(t, &) = G(t,v(t,-))(€) € CHHe/22ra([0, 4] x
0€)p), and that the compatibility condition

BF(0,0) = 4 G(1,(1)) s (234)

holds. In this case, it gives also the estimate
||FU||03/2+a/2,3+a([0,5]Xﬁo) < C(”(p”01/2+a/2,1+a([0’5]Xﬁo) F [Pl crvarazva o5 x000) ) -

The compatibility condition (2.34) holds thanks to assumption (e). From the regular-
ity assumptions (d) we get easily that ¢ € C/2+te/21+e(]0 §] x Qp), and that ¢ €
Clte/224a([0, 5] x 90p). A lenghty but elementary estimation shows that

1(£,€) = o(t, &) — 90(1570)||cl/2+a/2,1+a([o,5]xﬁo) < Cl5a/2||U||C3/2+a/2,3+a([o,a]xﬁo)a

1(£:€) = (2, €) = (£, 0) | 102,240 (0 g1x000) < Co8™ 0]l /2107254 [0.6]870):

for every v € Y'. Tt follows that

||]-—1'U||03/2+a/2,3+a([0’5]Xﬁo) <

< CUIF (0l gr/2+ar2040 (0, x50) + 1G5 0)lcrvara24a(po 5)x000) + (C1 + C2)R)
so that T" maps Y into itself if R’ is large enough and § is small enough. W

Now we prove local time smoothness of w. Of course we need some smoothness as-
sumptions on the data. Together with assumptions (a), (b), (c), we shall consider

(f) Smoothness assumptions. The coeflicients a;;, b;, ¢, and the functions f, go, g1 are C*
for ¢t > 0.

Theorem 2.6 Let (a), (b), (c), (f) hold, and let w : [0,8] x Qo — R be the solution to
problem (2.26) given by theorem 2.4. Then there exists &' € (0,9) such that the function
t e w(t,-) is in C((0,8"); C?*(Q)).

Proof — Let ¢’ € (0,0). For every 7 sufficiently close to 1 the function wy(t, ) = w(tn, )
is well defined for ¢ € [0,0], and it is a solution of

\P(nvv)(t) = ('Ut - nA(ta 8)'0 - nF(t7v(t7 )) ; By — G(tvv(ta ))) = (OaO)

U may be seen as a function from [1 —r,1 + 7] x {v € C'HA/22+8((0, 8] x Q) : ©v(0,-) =
0, |lv]l < p} to CP/2P([0,8"] x Q) x CH/2HB/21+B([0,8'] x 8Qy), for every 8 € (0,a], and
for every small p > 0.
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At (n,v) = (1,w) we have of course ¥(1,w) = (0,0). ¥ is smooth, and at (1,w) the
derivative of ¥ with respect to v is given by

(o (1, w)v)(t) = (ve — A(t,0)v — Fy(t,w(t,-))v; Bv — Gy(t, w(t,-))v).

By theorem 2.3, it is an isomorphism between the space {v € C'T8/22+8([0, "] x Q) :
v(0,-) = 0} and the space CP/28([0,8"] x Qo) x CY/2+8/2148([0, 6"] x 99y), provided ¢’ is
small enough.

Therefore by the Implicit Function theorem there are 1, 79 > 0 and a smooth function

Y:(1=r1,1+7m) = Blw,r) C {ve CHF228([0,6] x Q) : v(0,-) =0}

such that for n € (1 —r1,14+71) and v € B(w,re) with ¥(n,v) = (0,0) we have v = (7).
Fix 5 € (0,c). Then we have

lim w, = w in CHHBI2246 ([0, 8] x Qy),

n—1
so that w, belongs to B(w,ry) C C8/22+5(]0, '] x Qo) if n is sufficiently close to 1.
Since ¥(n,wy,) = (0,0), then w, = (n). It follows that for 1 close to 1, the function
n — w(tn,€) is analytic with values in C%2([0, 6] x Q). This implies easily that w and
its first and second order space derivatives are smooth with respect to time for 0 < ¢ < §'.

The idea of introducing the parameter n to prove time regularity of the solution is not
new; see the paper [2].

Remark 2.7 Throughout the section we have considered only problems with initial time
to = 0, but it is clear that the results of theorems 2.4, 2.5 and 2.6 still hold for problem

Wy = A(t,a)w + FO(t’w(t’ ))a t > to, 6 € ﬁ07
BOw = Go(t,’lU(t, ))7 t > to, 5 € 890, (235)

U)(to,f) = 07 € € ﬁ07

with initial time ¢y € (0,7T"), provided the due compatibility and transversality conditions
are satisfied at t = tg. Here By, Fy and G are defined as B, F' and G replacing go(0, &)

and g1 (0, &) by go(to,&) and g1(to,§)-

Once we have locally solved (2.26) we come back to the original problem (1.1) using
(2.11) and (2.1) to define 9€;. Note that s has the same regularity of w, i.e. it is in
Clte/224a([0, §] x 9€p) under assumptions (a), (b), (c); it is in C3/2+e/23+e ([0, §] x IQy)
under assumptions (a), (b), (c), (d), (e); it is smooth with respect to time for ¢ > 0 under
assumptions (a), (b), (¢), (f). Then we define & through (2.7), where @ is given by (2.3).
Again, u has the same regularity of w. As a last step we define u through the change
of coordinates, u(t,z) = u(t,&) where z = & + ®(¢,&). We have so proved the following
existence and regularity result.

Theorem 2.8 Let (a), (b), (¢) hold. Then there is § > 0 such that problem (1.1) has a
solution (Q,u) such that the N + 1-dimensional hypersurface S = {(t,z): 0 <t <4, x €
OV} and each 9y are of class C'H/22+  and the function u : {(t,z); 0 <t < J, = €
i} — R is of class C1Ho/22te

If also (d), (e) hold, then S and each O are of class C3/2+/23% and the function
u is of class C3/2Ha/23+a,

If (a), (b), (c), (f) hold, then the free boundary is C*° with respect to time for t > 0,

as well as u and its first and second order space derivatives.
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3 Uniqueness and time smoothness

We say that a family of open sets {€; : a <t < b} C RN is of class C'T®/22ta in the
interval [a, b] if each boundary 0€; and the (N + 1)-dimensional hypersurface {(¢,z) : a <
t < b,z € 9} are of class C1ta/2.2+a,

As a consequence of the uniqueness part of theorem 2.4 we get uniqueness of regular
solutions to problems of the type (1.1).

Corollary 3.1 Let assumptions (a), (b), (c) hold, and let (le),u(l)(t,x)), (Q?),u(z) (t,x))
be two solutions to (1.1) of class C'+*/22+2 in an interval [0, a), with space derivatives of
class C11a/224e(1) - Agsume in addition that dgo/On(t,x) # g1(t,x) for every t € [0,al,
T € ﬁle), where n(t, ) is the exterior unit normal vector to 89%1) at the point . Then
(le),u(l)(t, ) = (Q?),u@) (t,-)) for every t € [0,a].

Let in addition assumption (f) hold, and let (Q,u(t,z)) be any solution to (1.1) of
class C1T/2242 i an interval [0, a), with space derivatives of class C'+/22+  and such
that 0go/on(t,x) # g1(t,z) for every t € [0,a]. Then 0Q; and u are C* with respect to t
in (0,a).

Proof — Let us prove uniqueness. Let ¢ty be the supremum of the numbers ¢ € [0, a] such
that le) = ng) for 0 < s <tand u(l)(s,:v) = u(2)(s,a:) for0<s<t ze€ le) = le).
Then we have also Qg;) = ng) and u (ty, z) = u® (tg, z).

Assume by contradiction that ¢y < a. Consider the initial value problem

( Ut(tvx) = ﬁu(t,x) + f(tvx)v t>tg, T € €y,
U(t,fE) = gO(tvx)7 t 2 to, HAS 8Qt7

du

8n(t,ac) =q1(t,x), t>tg, © € Oy,

L u(to, z) = u(tg,z), =€ Q)

to

which can be obviously written as a problem with initial time 0, with data satisfy-
ing all the assumptions (a), (b), (c) at the beginning of section 2. Following the con-
struction of section 2, we arrive at two solutions w(!), w(®) of (2.35) in the interval

[to,a], belonging to C1te/22+e ([t a] x ﬁg)) and with the property that for each § €

(0,a — to] the restrictions of w() and w® to [ty,te + d] x ﬁﬁj) do not coincide. Let
_ 1 2

R = max{Ry, [ju' )”Cl+a/2’2+a([to,a]xﬁﬁé))’ e )”Cl+a/2’2+“([to,alxﬁ§é)

by theorem 2.4. From theorem 2.4 we know that if § is sufficiently small, then (2.26)

has a unique solution in the ball B(0, R) C C'+/2:2te ([t 15 + 8] x ﬁgcl))), and this is a
contradiction.

)}, where Ry is given

Let us prove time smoothness. By theorem 2.6, for every ¢ € [0, a] there are r = r() > 0
and § = §() > 0 such the solution to problem (2.35) is in C*((tg, tg + 0); C?(Q)) for any
to € [0,a]N[t—r,t+7]. Fix now any ¢ € (0,a). The union of the intervals (¢,£+4(¢)) N[0, a]
contains [e,a], and there are ti,...,t, such that the union U (¢;,%; + 6(¢;)) N [0, a] still
contains [g,a]. In each of these intervals, time smoothness of w implies time smoothness
of s (hence, time smoothness of 9€2;) and time smoothness of u and of its first and second

order space derivatives. The statement follows. N

!Thanks to theorem 2.8, at least one solution with such regularity properties exists in a small interval
if also assumptions (d), (e) are satisfied.
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Remark 3.2 Things may be considerably simplified if 92y is the graph of a regular
function, say Qo = {£ € RN : &y < ¢(€1,...,&u1)} with ¢ € C3T*(RN~1). In this case
we may look for € of the form Q; = {¢ € RN : éx < ¢(&1,. .., 6 1) +5(t, &0, ., 60 1)}
where the unknown s is not in general the signed distance from 02, but it works as well.
The change of coordinates which transforms £2; into Qg is now trivial,

6 = (xlw -3 Tp—1, TN — S(taxla"' 7:1771—1))7 T € Qt-

In addition to some simplifications in notation and formulas, the main advantage of this
change of coordinates is that the procedure of theorem 2.6 gives also time analyticity (in
the case of analytic data, of course) for ¢ > 0. See e.g. [13], who used this method to get
time analyticity in a system arising as a model in combustion theory, for initial data close
to a travelling wave solution. Note that the map ¥ used in theorem 2.6 is smooth but not
analytic in general, because of the change of coordinates (2.4) which contains the cutoff
function @ introduced in §2.1.
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