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THE SPEED LAW FOR HIGHLY RADIATIVE FLAMES
IN A GASEOUS MIXTURE WITH LARGE ACTIVATION ENERGY∗
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Abstract. We study a thermodiffusive combustion model for premixed flames propagating in
reactive gaseous mixtures which contain inert dust. As observed by Joulin, radiative transfer of heat
may significantly enhance the flame temperature and its propagation speed. The Joulin effect is at
its most pronounced in the parameter regime where the medium is very transparent while radiative
flux dominates convection. In this asymptotic regime, where in the limit the flame temperature
achieves its upper bound, we determine the law that describes the relation between the propagation
speed of the flame and the control parameters. Finally, we present strong numerical evidence for the
validity of the asymptotic analysis.
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1. Introduction. Combustion is one of the important phenomena in our world.
It occurs in controlled applications such as rocket engines, energy plants, and cooking
on natural gas, as well as in forest fires and mine and tunnel accidents. Experiments
in combustion research are both difficult and expensive, which underlines the need for
good mathematical models and their analysis.

Combustion models are based on the incorporation of different physical and chem-
ical principles, expressed in the language of mathematics. Simplifying, sometimes
heuristic, assumptions are unavoidable to make mathematical treatment possible, be
it by numerical, formal asymptotic, or analytical methods. In the latter the modern
theory of infinite-dimensional dynamical systems and its application to free boundary
problems (FBPs) plays an important role. Such FBPs occur as various flame front
models. Asymptotic arguments are strongly intertwined with the derivation of such
FBPs from physical and chemical principles.

In this paper we study a thermodiffusive combustion model for premixed flames
propagating in reactive gaseous mixtures which contain inert dust that radiates ther-
mal energy. Radiative transfer of heat involves both emission and absorption of ra-
diation and may significantly influence the flame temperature, its propagation speed,
and the flammability of the medium itself. This is the so-called Joulin effect [13, 5]:
the propagation speed increases compared to a similar flame without radiation, and
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there is a temperature overshoot at the flame front. A radiative flame can be ignited
at a lower external temperature than a nonradiative flame.

The Joulin effect is at its most pronounced in the parameter regime where the
medium is very transparent while radiative flux dominates convection. In this asymp-
totic regime our goal is to determine the law that describes the relation between the
propagation speed of the flame and the control parameters.

In section 2 we will discuss the model in more detail. For now, we just highlight
the most important features. Following Buckmaster and Ludford [6, p. 218], we
formulate the thermodiffusive model with the thin reactive flame zone replaced by
a free boundary. At the free boundary the normal derivative of the (normalized)
temperature T is related to the reaction rate ω, which is given by an Arrhenius-type
law:

ω = A exp

(
− N

T ∗

)
.(1)

Here N is a (dimensionless) activation energy, T ∗ is the (dimensionless) temperature
at the free boundary, and A is a so-called preexponential constant, which will be
specified and discussed in detail later.

As a model for the radiative field, we take the Eddington equation, which contains
two important radiative parameters: the (dimensionless) opacity α and the Boltzmann
number β, a measure of the radiative energy flux compared to the convective flux.

Flames will be modelled as travelling waves propagating into the fresh region
where the fuel mass fraction and the temperature are constant, Y− for the fuel mass
fraction and T− for the temperature. A conservation law implies that the temperature
T+ far behind the flame front is given by

T+ = T− + Y−.

Depending on the opacity of the medium, radiation may significantly influence
the flame profile; see [12, 3, 5]. Radiative flames are characterized by an overshoot of
the flame temperature T ∗ as well as an enhancement in the burning rate and flame
speed μ, which is given by

μ =
ω

Y−
.(2)

In [4] it was proved that the flame temperature T ∗ is bounded by

T− + Y− < T ∗ < T− + 2Y−.

These bounds, which were already conjectured in [5], are achieved in certain limits.
The lower bound is in fact the flame temperature in the absence of radiation (the
“adiabatic” case), and it is approached as α → ∞ or β → 0 (see [4]). In the present
paper, however, we focus on the combined asymptotic regime

α → 0,(3a)

β →∞,(3b)

αβ → 0,(3c)

because in this regime the flame temperature approaches the upper bound, i.e.,

in the limit (3): T ∗ → T− + 2Y−,(4)



410 VAN DEN BERG, BRAUNER, HULSHOF, AND LUNARDI

and the radiative effects are most pronounced.
We are going to combine this asymptotic regime of the radiative parameters with

the high activation limit; i.e., we take

ε =
1

N

as the main small parameter. This is very much in the same spirit as the near-
equidiffusional flame (NEF) approximation that is frequently used in the absence of
radiative effects; see [15]. There the reciprocal ε of the activation energy is coupled
with the Lewis number. Here we couple ε with the radiative parameters.

Of primary physical interest are flames that, in this asymptotic regime, propagate
with a finite velocity μ. In view of (2), μ is proportional to the reaction rate ω given
in (1). Hence, in the high activation limit N = ε−1 → ∞, finite speeds of propagation
can be obtained, provided A is of the order exp(N/Tc), where Tc is a characteristic
temperature, to be fixed shortly. Indeed, since in this notation

μ =
1

Y−
exp

(
1

ε

(
1

Tc
− 1

T ∗

))
,(5)

the characteristic temperature Tc should equal the asymptotic value of the flame
temperature T ∗, and hence in view of (4) the only possibility is

Tc = T− + 2Y−.

This is the upper extreme of T ∗, and it stands in sharp contrast with the NEF
approach, where the suitable choice for Tc is the lower extreme, namely T− + Y−.

Since we want to look at the asymptotic regime where simultaneously the recip-
rocal ε of the activation energy tends to zero and the radiative parameters α and
β behave as given in (3), we have to couple α and β with ε. Limit condition (3c)
suggests it is convenient to introduce the combined parameter

χ
def
= αβ.

Our results show that an asymptotically finite propagation speed requires

χ = O(ε) and β−1 = O(ε1/2).(6)

Since α has a more direct physical meaning than χ, let us give an alternative formu-
lation of these conditions. For simplicity we assume that both α and β are (asymp-
totically) powers of ε:

α ∼ α0ε
a and β ∼ β0ε

−b.

The connection with (6) is made through

χ = αβ = α0β0ε
a−b ∼ χ0ε

a−b.

To obtain a finite flame velocity, one of the following four possibilities must hold
(see also Figure 1):

I: a = 3
2 and b = 1

2 ;

II: a > 3
2 and b = 1

2 ;

III: a = b + 1 and b > 1
2 ;

IV: a > b + 1 and b > 1
2 .
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Fig. 1. The asymptotic regime under consideration in terms of the exponents a and b. The
area below the dotted line corresponds to radiation-dominated flames (3). Finite wave speeds are
found in the shaded region and, more significantly, on its boundary.
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Fig. 2. In the combined asymptotic limit of high activation energy ε → 0 coupled with the
radiative parameters α = α0εa and β = β0ε−b with b ≥ 1

2
and a ≥ b + 1, the solution profile

separates into three spatial scales. The numerical solution shown is for ε = 0.001, α = 0.3ε3/2,
β = 0.3ε−1/2, and T− = Y− = 0.5. Notice that the scales are very different in the three regions
since on the left the variable is x̃ = αβ−1x, in the middle it is x, and on the right it is x̂ = αβx.

We remark that the special scaling α ∼ α0ε
3/2 and β ∼ β0ε

1/2 in case I was first
observed by Joulin and Eudier [13].

In the limit (3) the flame profile naturally separates into three spatial scales (see
also Figure 2):

x, x̂ = αβ x, x̃ =
α

β
x,(7)

where x is the spatial variable in a comoving frame (with speed μ). In section 3 we
will perform a matching analysis of these three scales. This enables us to derive a law
for the asymptotic speed μ of the front. In the four cases identified above, the speed
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law reads (with T+ = T− + Y−)

I: ln(μY−) = −
α0β0T

2
+

μ2
E1

(
Y−
T+

)
− μ2

β2
0T

7
+

E2

(
Y−
T+

)
;(8a)

II: ln(μY−) = − μ2

β2
0T

7
+

E2

(
Y−
T+

)
;(8b)

III: ln(μY−) = −
α0β0T

2
+

μ2
E1

(
Y−
T+

)
;(8c)

IV: ln(μY−) = 0.(8d)

Here

E1(s) =
8s + 9s2 + 16

3 s3 + 5
4s

4

(1 + s)2
,

E2(s) =
3s

16(1 + s)2
+

3

4(1 + s)2

∫ s

0

t dt

(1 + t)4 − 1
.

It is clear that case I is central to the whole analysis and the other cases are fairly
straightforward reductions. On the other hand, in the asymptotic analysis presented
in section 3 we will in some sense compute cases II and III and then combine them to
obtain case I. The last case, IV, is rather boring, since there is just one finite velocity,
namely μ = 1/Y−. Notice that this corresponds with the maximal flame speed for
any of the asymptotic regimes, i.e., μ ≤ 1/Y−.

When we compare the four cases we conclude that case I is by far the most
interesting, and we will explore it in section 4. Case II leads to a unique flame
speed for any set of parameter values, as does case IV (trivially). Case III represents
the classical bell-shaped curve of the flame speed versus a heat-loss parameter in
nonadiabatic flames (cf. [6, p. 44]).

We remark that in the whole asymptotic regime (3) the profile of any travelling
wave with finite speed of propagation (in the asymptotic limit ε → 0) decomposes
into the three different spatial scales (7). The asymptotic analysis in section 3 is thus
valid for the whole parameter regime of radiation-dominated flames. In Figure 1 this
corresponds to the area below the dotted line. The fact that finite wave speeds occur
in only part of this parameter regime is merely a consequence of the way the wave
speed is related to T ∗ and ε (i.e., via (5)).

The organization of the paper is as follows. In section 2 we introduce the math-
ematical model and make the reduction to a travelling wave problem. In section 3.1
we explain how the matched asymptotic analysis works, while in sections 3.2–3.4 the
calculations are performed; i.e., we analyze the profile in three different spatial scales
and match these to obtain the full asymptotic picture. This also leads us to the for-
mula for the speed law presented above. Finally, in section 4 we look in more detail
at the speed law, we compare with numerical computations, and we draw conclusions
about the bifurcation diagrams.

2. Models and equations.

2.1. Premixed flame propagation with constant opacity. We introduce
the thermodiffusive combustion model with constant density, simple chemistry, and
large activation energy for a premixed flame propagating in a reactive gaseous mixture.
We incorporate the flux of the thermal radiative field generated by the radiation of
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Y → Yf

T → Tf

Y ≡ 0Y > 0

T → Tb

z =
s(y

, t)
y

z

Fig. 3. The geometric setting of the propagating flame.

dust particles. The geometric setting is the following (see also Figure 3): the flame
propagates into the fresh region, where, far ahead of the flame front (z → −∞), the
fuel mass fraction Y and the temperature T are constant:

lim
z→−∞

Y (z) = Yf and lim
z→−∞

T (z) = Tf .

The region of the flame where the reaction occurs is infinitesimally thin and is located
at z = s(y, t), the free boundary of the problem, y being the lateral two-dimensional
variable. To the right of the free boundary all fuel has been burnt (Y (z) = 0 for
z ≥ s(y, t)), and far behind the flame front the temperature approaches the burnt
temperature Tb = limz→∞ T (z). The time-dependent system of equations for mass
fraction Y and temperature T reads

∂

∂t
(ρY ) −∇(ρD∇Y ) = 0, z < s(y, t); Y = 0, z ≥ s(y, t);(9a)

∂

∂t
(ρCpT ) − λΔT + ∇ · FR = 0, z 	= s(y, t).(9b)

The physical parameters are the diffusion constant D, the heat conduction coefficient
λ, the specific heat Cp, and the density ρ of the gas (part of which is fuel). The
divergence of the radiative energy flux FR appears as a loss term in the temperature
equation (9b). At the flame front, the jump conditions for the normal derivatives

ρD

[
∂Y

∂n

]
= ω(T ); λ

[
∂T

∂n

]
= −Qω(T ) at z = s(y, t),(9c)

are imposed to balance the heat flux coming out of the flame with the mass flux going
into the flame, the reaction heat Q being the proportionality constant between the
two. These fluxes are also coupled with the chemical reaction rate ω, for which we
take a simple Arrhenius law. In the free boundary approximation it reads

ω = A exp

(
− E

2RT ∗

)
.(9d)

Here T ∗ denotes the temperature at the flame front, and the other constants are the
gas constant R, the activation energy E, and the “preexponential” factor A. Note that
the factor 2 in the reaction rate is a consequence of the derivation of the free boundary
jump conditions from the reaction-diffusion formulation; see [8]. The appearance of
this factor follows from a detailed analysis of the flame in the thin reaction zone,
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which leads to (9c), where ω is the square root of the Arrhenius factor in the reaction
rate (cf. [8]).

As a law for the radiative flux FR we take the Eddington equation

−L2∇(∇ · FR) + 3FR + 4σsbL∇T 4 = 0,(9e)

where σsb is the Stefan–Boltzmann constant and L is the mean free path length of
the photons. In astrophysics the Eddington equation is a well-known approximation
to the radiative field [11, 17, 16]. It is a good approximation when scattering is nearly
isotropic, particularly in a one-dimensional setting. The travelling waves that we use
as a model for the propagating flames have indeed a one-dimensional structure. Since
the radiative transfer plays a central role in our model, we give some insight in the
derivation of the Eddington equation in Appendix A.

We emphasize that the Eddington equation models radiative transfer rather than
radiative heat losses. There is, however, an asymptotic limit, discussed in [4, 1], where
the radiative flux is given by ∇ · FR = 4σsb

L (T 4 − T 4
b ). This asymptotic limit thus

looks like heat loss to a reservoir held at T = Tb. It can be compared to the usual
radiative heat loss models (see [18, sect. 8.2], [6, p. 43]) that are based on the law
∇ · FR = 4σsb

L (T 4 − T 4
f ), which differs only in the temperature of the reservoir (Tf

instead of Tb).

2.2. Dimensionless variables. We now make the system of equations (9) di-
mensionless and scale out many of the parameters. We define nondimensional tem-
perature T̂ , radiative flux F̂R, time t̂, and spatial coordinate r̂ by comparison with
suitable chosen reference quantities indexed by s:

t̂ =
t

ts
, r̂ =

r

rs
, T̂ =

T

Ts
, F̂R =

FR

Fs
.

We choose the reference quantities such that they satisfy the following set of equations:

λts
ρCpr2

s

= 1,
4σsbT

4
s

Fs
= 1,

ρD

Brs
= 1,

λTs

QBrs
= 1,

that is,

Fs =
4σsbQ

4D4ρ4

λ4
, Ts =

QDρ

λ
, ts =

ρ3CpD
2

λB2
, rs =

Dρ

B
.

Here B is defined by

A = B exp

(
E

2RTC

)
,

where TC is the characteristic temperature. The necessity of this splitting of the
preexponential factor A has already been discussed in the introduction. In the high
activation energy asymptotics that we are going to employ it is widely used; see, for
example, [6, p. 17]. Note that the factor 2 in the reaction rate accounts for B2, rather
than B appearing in ts.

We have chosen not to rescale the mass fraction Y (which was already dimension-
less) because the above choices already simplify the equations as much as we want.
Although the additional scaling of Y that we have at our disposal is welcome from a
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mathematical point of view, using it obscures the physical role of the control parame-
ters Yf and/or Tf . Our motivation for the above choices is that we have at hand two
important radiative parameters, namely

α =
rs
L

=
Dρ

BL
,

which is a dimensionless opacity, and

β =
Fsts

ρCpTsrs
=

4σsbQ
3D4ρ4

λ4B
,

which is a measure of the radiative flux compared to the convective flux. Furthermore,
there is the Lewis number

Le =
r2
s

Dts
=

λ

ρCpD
,

a diffusion parameter. In the new variables the system becomes (where we drop the
hats from the notation)

Yt −
1

Le
ΔY = 0, z < s(y, t); Y ≡ 0, z ≥ s(y, t);

Tt − ΔT + β∇ · FR = 0, z 	= s(y, t);

−∇(∇ · FR) + 3α2FR + α∇T 4 = 0.

The jump conditions at the free boundary z = s(y, t) are[
∂Y

∂n

]
= Leω(T ) and

[
∂T

∂n

]
= −ω(T ) at z = s(y, t),

with nondimensional chemical reaction rate (still denoted by ω)

ω(T ) = exp

(
N

(
1

Tc
− 1

T

))
,

where

N =
E

2RTs

is the dimensionless activation energy, and Tc = TC/Ts is the dimensionless character-
istic temperature, the significance of which was already discussed in the introduction.

2.3. Planar travelling waves. We consider flames modelled by planar (one-
dimensional) travelling wave solutions, and we thus introduce the travelling wave
coordinate x = z+μt, describing waves travelling at speed μ to the left (into the fresh
region). In such a travelling wave the radiative flux has only one component, which
we rescale by β for convenience:

FR = (q/β, 0, 0).

Also, we introduce the new combined parameter

χ = αβ.
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Finally, we may reposition the free boundary at the origin. This leads to the system

μY ′ − 1

Le
Y ′′ = 0, x < 0; Y ≡ 0, x ≥ 0;(10a)

μT ′ − T ′′ + q′ = 0, x 	= 0;(10b)

−q′′ + 3α2q + χ(T 4)′ = 0, x ∈ R.(10c)

The jump conditions at x = 0 are

[Y ]= [T ] = [q] = [q′] = 0,(10d)

[T ′]= −ω(T ), [Y ′] = Le ω(T ),(10e)

and ω(T ) is still given by

ω(T ) = exp

(
N

(
1

Tc
− 1

T

))
.(10f)

Note that the equation (10c) for q implies the continuity of q and q′. The conditions
at infinity are

T (−∞) = T−, Y (−∞) = Y−, T (+∞) = T+, q(±∞) = 0,(10g)

in which Y− = Yf is the (dimensionless) “fresh” mass fraction, T− is the dimensionless
fresh temperature, and T+ is the dimensionless burnt temperature. In fact, direct
integration of the equations (see section 3) shows that

T+ = T− + Y−.(11)

This conservation law (cf. [3, p.221]) reflects the fact that physically only the con-
ditions in the fresh region can be controlled, whereas the temperature in the burnt
region is determined by the reaction. The conservation law relating the asymptotic
temperatures and fuel mass fraction is independent of the radiation parameters, so
that the temperature far behind the flame front is nothing but the adiabatic flame
temperature. (In absence of radiation effects, the temperature behind the flame is
uniform: T ≡ Tad = T− + Y−.) The limiting behavior for q at infinity means that
radiative equilibrium is achieved at infinity. This follows naturally from (10c); in fact,
q may be expressed in terms of T 4 by a convolution formula with a Green’s function.

From [4] we know the existence of a travelling wave solution

(Y (x), T (x), q(x), μ)

of the system (10) for all (positive) values of the parameters, provided the conservation
law (11) is satisfied. Every solution satisfies

T− ≤ T (x) ≤ T− + 2Y−.

It is remarkable that this bound is independent of the other parameters.
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3. Matched asymptotic analysis.

3.1. Setting the stage. In this section we evaluate the simultaneous asymptotic
regime of high activation energy and highly radiative flames. We thus introduce three
small parameters:

ε = N−1,(12a)

δ1 = χ = αβ,(12b)

δ2 = 3β−2.(12c)

We will couple δ1 and δ2 with ε in a moment.
First, we remark that the equation for Y decouples and can be solved explicitly:

Y (x) = Y−(1 − eLeμx), x < 0; Y (x) = 0, x ≥ 0.(13)

The jump condition for Y ′ leads to an expression for the flame velocity:

μ =
1

Y−
exp

(
N

(
1

Tc
− 1

T ∗

))
.(14)

Since the remaining problem for T , q, and μ is independent of the Lewis number Le,
it does not appear in the subsequent asymptotic analysis. However, it plays an im-
portant role in the stability analysis, which we discuss in a forthcoming paper [2].

Since Y is given by (13), the system (10a)–(10c) reduces to a set of two equations

T ′′ = μT ′ + q′,

q′′ = 3α2q + χ(T 4)′.

The first equation can be integrated once, but since T ′ is discontinuous at x = 0, the
integration cannot be across the origin. We therefore integrate starting from x = ∞
for positive x, while starting from x = −∞ for negative x. This leads to

T ′ = μ(T − T±) + q for x 	= 0.

Here and throughout the paper T± stands for T+ on the right (x > 0) and T− on the
left (x < 0). We note that we will frequently have to treat the equations separately
on the right and on the left.

Using the notation (12) the system reads

T ′ = μ(T − T±) + q,(15a)

q′′ = δ2
1δ2q + δ1(T

4)′,(15b)

with “boundary conditions” at infinity

T (−∞) = T−, T (+∞) = T+, q(±∞) = 0,

and at the origin T , q and q′ are continuous, while T ′ satisfies the jump condition

μ(T− − T+) = [T ′] = −μY−.(16)

The first equality stems from (15a), while the second equality is a consequence of the
jump conditions (10e) and the explicit expression (13) for Y . The two equalities in
(16) reflect the conservation law

T+ = T− + Y−.(17)
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Here and in what follows we assume that μ is order 1, so that we are dealing with
asymptotically finite speeds of propagation. The system (15) now naturally leads to
the expansion

T ∼ T0 + δ1T1 + δ2T2 + δ2
1T3 + δ1δ2T4 + δ2

2T5,

q ∼ q0 + δ1q1 + δ2q2 + δ2
1q3 + δ1δ2q4 + δ2

2q5.

It turns out to be unnecessary to compute the terms of order δ2
2 to completely deter-

mine the leading-order speed law. We will therefore not include those terms in the
asymptotic expressions.

In view of (14) our overriding interest is in the temperature at the free boundary.
Therefore we introduce the notation T ∗

i = Ti(0) for i = 0, 1, 2, and hence

T (0) = T ∗ ∼ T ∗
0 + δ1T

∗
1 + δ2T

∗
2 .

In this new notation the relation (14) between the flame velocity μ and the flame
temperature T ∗ reads

ln(μY−) ∼ 1

ε

(
1

Tc
− 1

T ∗
0 + δ1T ∗

1 + δ2T ∗
2

)
.(18)

There are now several straightforward remarks to make. For the terms on the right
and left to balance (i.e., for a finite propagation speed), one needs

Tc = T ∗
0 .

This reduces (18) to

ln(μY−) ∼ −δ1
ε

T ∗
1

(T ∗
0 )2

− δ2
ε

T ∗
2

(T ∗
0 )2

.(19)

We anticipate (see below) that T ∗
1 < 0 and T ∗

2 < 0, so the right-hand side of (19) is
always nonzero. It is now immediate that we need

δ1 = O(ε) and δ2 = O(ε).

If both δ1 � ε and δ2 � ε, then we just have μ = 1/Y−. If δ1 and/or δ2 are of
order ε, then the left- and right-hand sides balance and the results announced in the
introduction follow. Of course, they follow only after we have found the expressions
for T ∗

0 , T ∗
1 and T ∗

2 , which are (we will spend the rest of this section establishing this;
see (39), (44) and (45))

T ∗
0 = T+ + Y−;

T ∗
1 = −μ−2

(
8T 3

+Y− + 9T 2
+Y

2
− +

16

3
T+Y

3
− +

5

4
Y 4
−

)
;

T ∗
2 = − μ2

4T 5
+

∫ Y−/T+

0

t

(t + 1)4 − 1
dt− μ2Y−

16T 6
+

.

To calculate T ∗
0 , T ∗

1 , and T ∗
2 we have to match the profile that we obtain on the

scale x = O(1) to two larger scales. The scale at order x = O(1) we call the inner
region, x = O(δ−1

1 ) is the intermediate region, and x = O(δ−1
1 δ−1

2 ) is the outer region
(see also Figure 4). One may wonder why we do not have a scale x = O(δ−1

2 ). The



THE SPEED LAW FOR HIGHLY RADIATIVE FLAMES 419

T ∗

T−

T+

O(x) O(δ−1
1 x)O(δ−1

1 x)O(δ−1
1 δ−1

2 x)

Fig. 4. The three different scales of the asymptotic problem. The shape of the profiles shown of
course uses some a posteriori knowledge which will be collected in the matched asymptotic analysis
in sections 3.2–3.4.

reason is that the profile turns out to be flat at this scale, and therefore no useful
information can be extracted. Throughout we calculate with δ1 and δ2 as independent
quantities. That they are possibly of the same order in ε does not matter whatsoever
for the calculations.

In the intermediate and remote regions introduced above, the variables are

intermediate: x̂ = δ1x, T̂ (x̂) = T (x) and q̂(x̂) = q(x);

outer: x̃ = δ1δ2x, T̃ (x̃) = T (x) and q̃(x̃) = q(x).

(This means x̃ is a factor 3 larger than announced in the introduction, alas.) Although
we are eventually interested in the value of T at the origin in the inner region, we
start our analysis in the outer region, since there we know the boundary conditions:

lim
x̂→±∞

T̂ (x̂) = T± and lim
x̂→±∞

q̂(x̂) = 0.

We are thus going to work from the outside inward.

3.2. The outer region. The problem in the outer region is

δ1δ2T̃
′ = μ(T̃ − T±) + q̃,

δ2q̃
′′ = q̃ + (T̃ 4)′,

with boundary conditions

T̃ (±∞) = T± and q̃(±∞) = 0.

Of course these equations must be solved on the right and on the left separately,
because there are an intermediate as well as an inner region in between. At this outer
scale the expansion for T̃ is

T̃ = T̃0 + δ1T̃1 + δ2T̃2,

with an analogous expansion for q̃.
The problem for T̃0 and q̃0 is⎧⎪⎨

⎪⎩
0 = μ(T̃0 − T±) + q̃0,

0 = q̃0 + (T̃ 4
0 )′,

T̃0(±∞) = T±, q̃0(±∞) = 0.
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Combining the equations we get

T̃ ′
0 =

μ(T̃0 − T±)

4T̃ 3
0

, with T̃0(±∞) = T±.(20)

On the right, the solution is constant:

T̃0(x̃) = T+ and q̃0(x̃) = 0 for x̃ > 0.(21)

This follows from the fact that no exponentially growing terms can be present, since it
is impossible to match those to the next scale. This argument is silently used several
times in what follows.

On the left, we have a choice of the constant solution, an increasing solution and
a decreasing solution. As it turns out, the increasing solution will be the one we need.
It starts from T− at x̃ = −∞, and since equation (20) is autonomous, the solution
can be translated, and hence the value at the origin is a priori unknown. It has to
be determined by matching with the intermediate region. For now, we just introduce
the undetermined constant

T̃ ∗
0

def
= lim

x̃↑0
T̃0(x̃).

In order to match with the intermediate region we will need the asymptotic behavior
near the origin, which in terms of T̃ ∗

0 is given by

T̃0(x̃) ∼ T̃ ∗
0 +

μ(T̃ ∗
0 − T−)

4T̃ ∗3
0

x̃ as x̃ ↑ 0,(22)

and q̃0(x̃) = μ(T̃0(x̃) − T−) for x̃ < 0.
Next, the problem for T̃1 and q̃1 (at order δ1) is⎧⎪⎨

⎪⎩
0 = μT̃1 + q̃1,

0 = q̃1 + (4T̃ 3
0 T̃1)

′,

T̃1(±∞) = 0, q̃1(±∞) = 0.

The limit behavior as x̃ → ±∞ is trivial since T± are independent of δ1 (and δ2).
As it turns out, we need only the solution on the right. There T̃0 = T+, so the two
equations can be reduced to

T̃ ′
1 =

μT̃1

4T 3
+

, with T̃1(+∞) = 0,

and hence the solution is simply

T̃1 = q̃1 = 0 for x̃ > 0.(23)

Similarly, the problem for T̃2 and q̃2 is⎧⎪⎨
⎪⎩

0 = μT̃2 + q̃2,

q̃0 = q̃2 + (4T̃ 3
0 T̃2)

′,

T̃2(±∞) = 0, q̃2(±∞) = 0.

Again, we need only the solution on the right, which is simply

T̃2 = q̃2 = 0 for x̃ > 0.(24)
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3.3. The intermediate problem. At the intermediate scale the problem reads

δ1T̂
′ = μ(T̂ − T±) + q̂,

q̂′′ = δ2q̂ + (T̂ 4)′,

with boundary conditions for x̂ → −∞

T̂ (x̂) = T̃ ∗
0 + δ1O(x̂0) + δ2

[
μ(T̃∗

0 −T−)

4T̃∗3
0

x̂ + O(x̂0)
]

+ o(δ1, δ2);(25)

q̂(x̂) = −μ(T̃ ∗
0 − T−) + δ1O(x̂0) + δ2

[
−μ2(T̃∗

0 −T−)

4T̃∗3
0

x̂ + O(x̂0)
]

+ o(δ1, δ2);

and for x̂ → ∞

T̂ (x̂) = T+ + o(δ1, δ2);(26)

q̂(x̂) = o(δ1, δ2).

These boundary conditions are determined by the outer solution; namely, (22) leads
to (25), while (21), (23), and (24) imply (26). At the intermediate scale the expansion
for T̂ is

T̂ = T̂0 + δ1T̂1 + δ2T̂2,

with an analogous expansion for q̂.
The problem for T̂0 and q̂0 is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 = μ(T̂0 − T±) + q̂0,

q̂′′0 = (T̂ 4
0 )′,

T̂0(−∞) = T̃ ∗
0 , q̂0(−∞) = −μ(T̃ ∗

0 − T−),

T̂0(+∞) = T+, q̂0(+∞) = 0.

The two equations can be combined into

μT̂ ′′
0 + (T̂ 4

0 )′ = 0.(27)

On the left, we integrate from x̂ = −∞ and obtain μT̂ ′
0 + T̂ 4

0 − T̃ ∗4
0 = 0. Since

T̂0(−∞) = T̃ ∗
0 the solution on the left is

T̂0(x̂) = T̃ ∗
0 and q̂0(x̂) = −μ(T̃ ∗

0 − T−) for x̂ < 0.(28)

On the right, integration of (27) from x̂ = ∞ gives

μT̂ ′
0 = −T̂ 4

0 + T 4
+, with T̂0(+∞) = T+.(29)

This situation is very similar to that in the left outer region. We have a choice of
the constant solution, an increasing solution and a decreasing solution, and it is the
latter that we need. Since the equation is autonomous, the solution can be translated,
and hence the value at the origin is a priori unknown. It has to be determined by
matching with the inner region. Again, we introduce an undetermined constant

T̂ ∗
0

def
= lim

x̂↓0
T̂0(x̂).
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For the asymptotic behavior near x̂ = 0 we get, using (27) and (29),

T̂0(x̂) ∼ T̂ ∗
0 − μ−1(T̂ ∗4

0 − T 4
+) x̂ + 2μ−2T̂ ∗3

0 (T̂ ∗4
0 − T 4

+) x̂2 as x̂ ↓ 0,(30)

and of course q̂0(x̂) = −μ(T̂0(x̂) − T+) for x̂ > 0.

The problem for T̂1 and q̂1 is⎧⎪⎨
⎪⎩

T̂ ′
0 = μT̂1 + q̂1,

q̂′′1 = (4T̂ 3
0 T̂1)

′,

T̂1(±∞) = 0, q̂1(±∞) = 0.

On the left, the equation reduces to μT̂ ′′
1 + 4T̃ ∗3

0 T̂ ′
1 = 0, and hence the solution is

constant. The value of the constant is unknown at this point. Since we shortly have
to match with the inner region, we use the undetermined limit value at the origin
T̂−

1
def
= T̂1(0

−) to denote the constant:

T̂1(x̂) = T̂−
1 and q̂1(x̂) = −μT̂−

1 for x̂ < 0.(31)

On the right, one obtains μT̂ ′′
1 = −4(T̂ 3

0 T̂1)
′ + T̂ ′′′

0 . Integrating from 0 to ∞ we
get, using (30) and setting T̂+

1
def
= T̂1(0

+),

T̂ ′
1(0

+) = −4μ−1T̂ ∗3
0 T̂+

1 + 4μ−3T̂ ∗3
0 (T̂ ∗4

0 − T 4
+).(32)

This equation expresses T̂ ′
1(0

+) in the unknown constant T̂+
1 . The behavior of q̂1 near

the origin is given by

q̂1(x̂) ∼ T̂ ′
0(0

+) − μT̂+
1 + (T̂ ′′

0 (0+) − μT̂ ′
1(0

+)) x̂

∼ −μ−1(T̂ ∗4
0 − T 4

+) − μT̂+
1 + 4T̂ ∗3

0 T̂+
1 x̂ as x̂ ↓ 0.

The problem for T̂2 and q̂2 is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = μT̂2 + q̂2,

q̂′′2 = q̂0 + (4T̂ 3
0 T̂2)

′,

T̂2(+∞) = 0, q̂2(+∞) = 0,

T̂ ′
2(−∞) =

μ(T̃∗
0 −T−)

4T̃∗3
0

, q̂′2(−∞) = −μ2(T̃∗
0 −T−)

4T̃∗3
0

.

On the left, the equation reduces to μT̂ ′′
2 = −4T̃ ∗3

0 T̂ ′
2 + μ(T̃ ∗

0 − T−), with solution,
setting as usual T̂−

2
def
= T̂2(0

−),

T̂2(x̂) = T̂−
2 +

μ(T̃∗
0 −T−)

4T̃∗3
0

x̂ and q̂2(x̂) = −μT̂−
2 − μ2(T̃∗

0 −T−)

4T̃∗3
0

x̂ for x̂ < 0.(33)

On the right, the equation becomes μT̂ ′′
2 = −(4T̂ 3

0 T̂2)
′ + μ(T̂0 − T+). Integrating

from 0 to ∞ we get, setting T̂+
2

def
= T̂2(0

+),

T̂ ′
2(0

+) = −4μ−1T̂ ∗3
0 T̂+

2 −
∫ ∞

0

[
T̂0(x̂) − T+

]
dx̂.(34a)
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The last integral involves the function T̂0(x̂), which we have not computed explicitly.
The integral can be simplified using equation (29) for T̂0:

I2
def
=

∫ ∞

0

[
T̂0(x̂) − T+

]
dx̂ = −

∫ T̂∗
0 −T+

0

T̂0 − T+

(T̂0 − T+)
′ d(T̂0 − T+)

=
μ

T 2
+

∫ T̂∗
0 /T+−1

0

t

(t + 1)4 − 1
dt.(34b)

We could compute the primitive, but that does not lead to more insight. Finally, the
behavior of q̂2 near the origin is given by

q̂2(x̂) ∼ −μT̂+
2 + [4T̂ ∗3

0 T̂+
2 + μI2] x̂ as x̂ ↓ 0.

3.4. The inner problem. We are getting to the core of the problem. In the
inner scale we want to solve

T ′ = μ(T − T±) + q,

q′′ = δ2
1δ2q + δ1(T

4)′.

The boundary conditions are for x → −∞:

T (x) = T̃ ∗
0 + δ1T̂

−
1 + δ2T̂

−
2 + δ2

1O(x0)

+ δ1δ2

[
μ(T̃∗

0 −T−)

4T̃∗3
0

x + O(x0)
]

+ o(δ2
1 , δ1δ2, δ2);(35)

q(x) = −μ(T̃ ∗
0 − T−) − δ1μT̂

−
1 − δ2μT̂

−
2 + δ2

1O(x0)

− δ1δ2

[
μ2(T̃∗

0 −T−)

4T̃∗3
0

x + O(x0)
]

+ o(δ2
1 , δ1δ2, δ2).

For x → ∞ the boundary conditions look complicated:

T (x) = T̂ ∗
0 + δ1[−μ−1(T̂ ∗4

0 − T 4
+)x + T̂+

1 ] + δ2T̂
+
2

+ δ2
1 T̂

∗3
0

[
2μ−2(T̂ ∗4

0 − T 4
+)x2 + 4{−μ−1T̂+

1 + μ−3(T̂ ∗4
0 − T 4

+)}x + O(x0)
]

+ δ1δ2[(−4μ−1T̂ ∗3
0 T̂+

2 − I2)x + O(x0)] + o(δ2
1 , δ1δ2, δ2);(36)

q(x) = −μ(T̂ ∗
0 − T+) + δ1[(T̂

∗4
0 − T 4

+)x− μ−1(T̂ ∗4
0 − T 4

+) − μT̂+
1 ] − δ2μT̂

+
2

+ δ2
1 [−2μ−1T̂ ∗3

0 (T̂ ∗4
0 − T 4

+)x2 + 4T̂ ∗3
0 T̂+

1 x + O(x0)]

+ δ1δ2[(4T̂
∗3
0 T̂+

2 + μI2)x + O(x0)] + o(δ2
1 , δ1δ2, δ2).

These conditions follow from the analysis of the intermediate region; e.g., (35) follows
from (28), (31), and (33), whereas (36) follows from (30), (32), and (34). Of course the
boundary conditions for T (x) and q(x) as x → ±∞ are related through the equation
q = T ′ − μ(T − T±). Furthermore, at the origin q, q′ and T are continuous.

We expand T as

T ∼ T0 + δ1T1 + δ2T2 + δ2
1T3 + δ1δ2T4,

and analogously for q. As mentioned before, terms of order δ2
2 do not need to be

computed. We now solve subsequently the equations at zeroth, first, and second
order in the small parameters δ1 and δ2.
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3.4.1. Zeroth order. The equations for T0 and q0 are⎧⎪⎪⎨
⎪⎪⎩

T ′
0 = μ(T0 − T±) + q0,

q′′0 = 0,

T0(−∞) = T̃ ∗
0 , q0(−∞) = −μ(T̃ ∗

0 − T−),

T0(+∞) = T̂ ∗
0 , q0(+∞) = −μ(T̂ ∗

0 − T+).

The functions T0, q0, and q′0 are continuous across the origin. This means that q0(x)
is constant, and on the right T0(x) is constant as well. This implies

T ∗
0

def
= T0(0) = T0(+∞) and q0(−∞) = q0(+∞),

and hence a comparison with the boundary conditions (and (17)) leads to

T ∗
0 = T̂ ∗

0 = T̃ ∗
0 + T+ − T− = T̃ ∗

0 + Y−,

that is,

T̂ ∗
0 = T ∗

0 ,(37a)

T̃ ∗
0 = T ∗

0 − Y−.(37b)

On the left, the solution T (x) decays exponentially to T̃ ∗
0 = T ∗

0 − Y−, so

T0(x) =

{
Y−(eμx − 1) + T ∗

0 for x < 0,
T ∗

0 for x ≥ 0,
and q0(x) = −μ(T ∗

0 − T+).

3.4.2. First order. The equations for T1 and q1 are (using (37a))⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T ′
1 = μT1 + q1,

q′′1 = (T 4
0 )′,

T1(−∞) = T̂−
1 , q1(−∞) = −μT̂−

1 ,

T1(x) ∼ −μ−1(T ∗4
0 − T 4

+)x + T̂+
1 as x → ∞,

q1(x) ∼ (T ∗4
0 − T 4

+)x− μ−1(T ∗4
0 − T 4

+) − μT̂+
1 as x → ∞.

We start by integrating the second equation from x = −∞:

q′1(x) = T0(x)4 − T0(−∞)4 =

{
[Y−(eμx − 1) + T ∗

0 ]4 − [T ∗
0 − Y−]4, x < 0,

T ∗4
0 − [T ∗

0 − Y−]4, x ≥ 0.
(38)

We thus have, by comparing with the boundary conditions for q1 as x → ∞,

T ∗4
0 − T 4

+ = q′1(+∞) = T ∗4
0 − [T ∗

0 − Y−]4,

and hence

T ∗
0 = T+ + Y−.(39)

Although we now have an expression for T ∗
0 , we keep using the notation T ∗

0 in the
proceeding for notational convenience.

Another integration of (38) from x = 0 in both directions gives

q1(x) → q1(0) − I1 as x → −∞,

q1(x) = q1(0) + (T ∗4
0 − T 4

+)x for x ≥ 0,
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where

I1
def
=

∫ 0

−∞
(Y−e

μx + T+)4 − T 4
+ dx = μ−1

(
4T 3

+Y− + 3T 2
+Y

2
− + 4

3T+Y
3
− + 1

4Y
4
−
)
.(40)

To obtain T1(x) on the right we solve T ′
1 −μT1 = q1(0)+ (T ∗4

0 −T 4
+)x, and we obtain

T1(x) = T ∗
1 − μ−1(T ∗4

0 − T 4
+)x for x ≥ 0,(41)

where

T ∗
1

def
= T1(0) = −μ−1q1(0) − μ−2(T ∗4

0 − T 4
+).(42)

On the left, the limit behavior of T1 is (using (42))

lim
x→−∞

T1(x) = −μ−1q1(0) + μ−1I1 = T ∗
1 + μ−2(T ∗4

0 − T 4
+) + μ−1I1.(43)

Comparing (41) and (43) with the boundary conditions gives the values for T̂±
1 :

T̂−
1 = T ∗

1 + μ−2(T ∗4
0 − T 4

+) + μ−1I1,

T̂+
1 = T ∗

1 .

Next, the equation at order δ2 is⎧⎪⎪⎨
⎪⎪⎩

T ′
2 = μT2 + q2,

q′′2 = 0,

T2(−∞) = T̂−
2 , q2(−∞) = −μT̂−

2 ,

T2(+∞) = T̂+
2 , q2(+∞) = −μT̂+

2 .

Since the equations are satisfied on R the solution is constant, so T̂−
2 = T̂+

2 = T2(0)
and

T2(x) = T ∗
2

def
= T2(0) for all x ∈ R.

3.4.3. Second order. The equation at order δ2
1 reads⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T ′
3 = μT3 + q3,

q′′3 = 4(T 3
0 T1)

′,

T ′
3(−∞) = 0, q′3(−∞) = 0,

T ′
3(x) ∼ 4μ−2T ∗3

0 (T ∗4
0 − T 4

+)x + 4μ−3T ∗3
0 (−μ2T ∗

1 + T ∗4
0 − T 4

+) as x → ∞,
q′3(x) ∼ −4μ−1T ∗3

0 (T ∗4
0 − T 4

+)x + 4T ∗3
0 T ∗

1 as x → ∞.

Integrating the second equation from x = −∞ gives

q′3(x) = 4T0(x)3T1(x) − 4T 3
+T1(−∞),

and by using (41) and (43) we obtain for x ≥ 0

q′3(x) = −4μ−1T ∗3
0 (T ∗4

0 − T 4
+)x + 4T ∗3

0 T ∗
1 − 4T 3

+[T ∗
1 + μ−2(T ∗4

0 − T 4
+) + μ−1I1].

Comparing this with the boundary conditions for q′3(x) as x → ∞ gives

T ∗
1 = −μ−1I1 − μ−2

(
(T+ + Y−)4 − T 4

+

)
,(44)
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with I1 given in (40).
The equation at order δ1δ2 reads (using (37b))⎧⎪⎪⎪⎨

⎪⎪⎪⎩

T ′
4 = μT4 + q4,

q′′4 = 4(T 3
0 T2)

′,

T ′
4(−∞) = μY−

4T 3
+
, q′4(−∞) = −μ2Y−

4T 3
+
,

T ′
4(+∞) = −4μ−1T ∗3

0 T ∗
2 − I2, q

′
4(+∞) = 4T ∗3

0 T ∗
2 + μI2.

Integrating the second equation from x = −∞ to x = ∞ gives

q′4(+∞) − q′4(−∞) = 4[T ∗3
0 − T 3

+]T ∗
2 .

On the other hand, the boundary conditions say that

q′4(+∞) − q′4(−∞) = 4T ∗3
0 T ∗

2 + μI2 +
μ2Y−
4T 3

+

.

Comparing these expressions for q′4(+∞) − q′4(−∞) gives

T ∗
2 = − μ

4T 3
+

I2 −
μ2Y−
16T 6

+

,(45)

with I2 given in (34b).

4. The asymptotic law for the velocity. In this section we take a look at
what the speed law tells us. We compare the asymptotic formula with numerical com-
putations for small finite values of ε. In particular, we calculate bifurcation diagrams
where the radiative parameters α and β are the continuation parameters. For this,
the most delicate case where both terms in the right-hand side of (8) are present is
the most interesting, i.e., (8a). In this limit the activation energy ε−1 is coupled with
the radiative parameters via

α = α0ε
3/2 and β = β0ε

−1/2.

The relation between the wave speed μ and α0 and β0 is thus

ln(μY−) +
α0β0T

2
+

μ2
E1

(
Y−
T+

)
+

μ2

β2
0T

7
+

E2

(
Y−
T+

)
= 0.(46)

We note that due to our choice not to scale Y− (see section 2.2) this expression should
be invariant under the scaling

Y− → sY−, T+ → sT+, μ → s−1μ, α0 → s1/2α0, β0 → s−9/2β0,

and it is indeed. Furthermore, if one would replace the nonlinear term T 4 in (10c) by
a linear approximation, then the solution can be (almost) explicitly calculated for any
α and β. In the limit under consideration, an expression for the speed law analogous
to (46) is found; see [2]. It is in that context that the stability investigation is being
pursued.

The functions E1 and E2 depend only on the quotient Y−/T+, and since T+ =
Y−+T−, they thus depend on the ratio of the fuel mass fraction and the dimensionless
temperature far ahead of the front. These two functions are plotted in Figure 5.
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Fig. 5. The functions E1
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)
. Notice that T+ = T− + Y− and thus 0 <
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< 1.
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Fig. 6. The surface in (μ, α0, β0)-space describing the speed law.

For the subsequent numerical calculations we need to pick some values for the
parameters, and we choose Y− = T− = 0.5 and hence T+ = 1, throughout. The
remaining variables in (46) are thus α0, β0, and μ. We can plot the surface most
easily by writing α0 as a function of μ and β0, and the result is shown in Figure 6.
When we fix β0, then for small α0 there are two solutions which merge in a saddle-
node bifurcation as α0 increases. On the other hand, when we fix α0 and use β0

as the bifurcation parameter we see that the set of solutions forms an isola in the
(β0, μ)-plane. This means that β0 has to be carefully selected, not too large and not
too small, for a flame with finite propagation speed to exist. If α0 is too large, then
there are no travelling waves. The maximum value of α0 for which solutions exist can
be calculated to be

αmax =

√
T 3

+

2e3Y 2
−E

2
1E2

.

To compare the asymptotic analysis with numerical computations, we imple-
mented the travelling wave problem in the AUTO software package [7] for the con-
tinuation of solutions to ODEs. We treated the three different spatial regions with
some care to reflect their respective scaling with ε (or with δ1 and δ2 to be more
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Fig. 7. The solution curves in the (α0, μ)-plane for fixed β0 = 0.3 and ε = 1, 0.5, 0.2, 0.11, 0.1,
0.09, 0.08, 0.07, 0.05, 0.02, 0.01, 0.005, 0.001. As ε decreases, the solution curves shift inwards, i.e.,
the curve at the top corresponds to ε = 1.
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Fig. 8. The solution curves in the (β0, μ)-plane for fixed α0 = 0.3 and the same values of ε as
in Figure 7. As ε decreases, the solution curves shift inward.

precise). We calculated the bifurcation diagram using both α0 and β0 as parameters
for a set of small values of ε. The resulting pictures are shown in Figures 7 and 8,
and one can see how the asymptotic regime is approached. For the (α0, μ)-diagram
the solution curves become S-shaped as ε decreases and then approach a bell-shaped
curve as ε → 0. In the (β0, μ)-diagram the solution branch curves back more and
more and finally closes on itself as ε approaches 0.

To be able to compare with the analytic expression in the limit ε → 0, we fixed
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Fig. 9. On the left is the (β0, μ) bifurcation diagram for ε = 0.001 and α0 = 0.01, 0.02, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.375. As α0 increases, the curves are moving inward. On the right are, for
the same set of α0 values, the contour lines of the surface (see Figure 6) describing the asymptotic
speed law as ε → 0.

ε = 0.001 and computed the (β0, μ)-diagram for various values of α0. The resulting
curves can thus be compared with the contour lines of the surface in Figure 6. The
numerical computations and the contour lines of the analytic expression are depicted
in Figure 9 side by side. The agreement is excellent.

5. Conclusion. In a thermodiffusive combustion model we have studied the
influence of radiation effects on propagating flames. In particular, radiative heat
transfer enhances the flame temperature and its propagation speed. This so-called
Joulin effect is at its most prominent when the medium is fairly transparent while the
radiative flux dominates convection. In this asymptotic regime the flame temperature
approaches its upper bound. We have determined the law that describes the relation
between the propagation speed of the flame and the control parameters.

We have arrived at distinguished limits in four cases. Case I exhibits a rich gamut
of bifurcation diagrams, such as S-curves in the (α0, μ)-plane and S-curves and isolas
in the (β, μ)-plane. Case III is nothing but the classical bell-shaped curve in nona-
diabatic flame models with heat loss. Cases II and IV correspond to straightforward
travelling wave dynamics, and we have derived the corresponding laws for the sake of
completeness.

Although the matched asymptotic analysis in this paper is fairly cumbersome, we
think it would be fruitful to continue the work in the future in two directions. First,
a less simplified Arrhenius reaction term will contain the mass fraction Y , leading to
a more involved system of three equations instead of two. Second, a more detailed
description of the radiative transfer than the Eddington equation can be taken into
account. We hope this paper will serve as a guideline for these extensions.

Appendix A. The Eddington equation.

We consider radiative transfer in a medium of opacity κ at temperature T . A
photon travelling at the light speed c covers a distance L = 1/κ (the mean free path
length of the photon) before being absorbed. Loosely speaking, L = ∞ (κ = 0)
corresponds to a transparent medium (optically thin limit) and L = 0 (κ = ∞) to an
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opaque medium (optically thick limit).
We start from the equation of radiative transfer for the radiative intensity I =

I(r, ν,Ω, t),

1

c

∂I

∂t
+ Ω · ∇I = κ(B(T, ν) − I).(47)

Here r is the position, t the time, ν the frequency, and Ω the unit vector in the
direction of propagation. The Planck distribution B governs the emission of light by
the medium and is given by

B(T, ν) =
2h

c2
ν3

ehν/(kT ) − 1
,

where k and h are the Boltzmann and Planck constants.
Since we would like to consider the total amount of radiation, we denote by 〈φ〉

the integral of a function φ over all frequencies and directions, rescaled with c:

〈φ〉 =
1

c

∫ ∞

0

∫
S2

φ(ν,Ω) dΩ dν.

Observing that

〈B(T )〉 = aT 4 with a =
8π5k4

15h3c3
,

one obtains from (47) the system [14, 9, 10]

∂ER

∂t
+ ∇ · FR = cκ(aT 4 − ER);(48a)

1

c

∂FR

∂t
+ c∇PR = −κFR,(48b)

for the radiative energy density ER, the radiative flux FR, and the radiative pressure
PR, defined by

ER = 〈I〉,
FR = c 〈Ω I〉,
PR = 〈Ω ⊗ Ω I〉.

The factor c is, as usual, included in the definition of FR so that it represents an
energy flux. Notice that equations (48) do not form a closed system. They are the
first members of a hierarchy, and the system still needs to be closed. If the emission
and absorption would be isotropic, then we would have

FR = 0,

and also

PR =
1

3
ERId.(49)

In the so-called P1-model, which leads to the Eddington equation, (49) is taken as a
closure assumption, so that (48) is replaced by

∂ER

∂t
+ ∇ · FR = cκ(aT 4 − ER);(50a)

1

c

∂FR

∂t
+

1

3
c∇ER = −κFR.(50b)
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Since photons travel at light speed we may assume that the radiation is approximately
at steady state at the typical time scale of a moving flame; i.e., the system (50) reduces
to

∇ · FR = cκ(aT 4 − ER);
1

3
c∇ER = −κFR.

It is not difficult to eliminate one of the unknowns, say ER, by differentiating the
first equation, whence

cκ∇ER = cκa∇(T 4) −∇(∇ · FR),

so that

∇(∇ · FR) = 4κσsb∇T 4 + 3κ2FR.(51)

Here σsb = 1
4ac is the Stefan–Boltzmann constant.

Equation (51) is the Eddington equation for the radiative flux FR, which is often
written as

−L2∇(∇ · FR) + 3FR + 4σsbL∇T 4 = 0.
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