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nonlinearity in the gradient and with Hölder continuous, not necessarily differentiable, initial datum. We
get the same smoothing properties of linear parabolic equations, and we use them to improve the results

now available in the literature on a class of stochastic forward-backward systems.

AMS Subject Classification: 35K55, 60H10.

1

1. Introduction

In this paper we study a quasilinear parabolic equation in [0, T ]× Rn,

(P )


∂u

∂t
(t, x) +

n∑
i,j

ai,j(x, u(t, x))
∂2

∂xi∂xj
u(t, x) = f(x, u(t, x),∇xu(t, x)) t ∈ [0, T ], x ∈ Rn,

u(T, x) = ψ(x), x ∈ Rn.
Under suitable regularity and growth assumptions on the nonlinear functions ai,j and f , we prove that for
every ψ ∈ Cθ(Rn), θ ∈ (0, 1), there exists a global classical solution u, which is unique in an appropriate
(standard) class, and which satisfies

(S) sup
0≤t<T

(T − t)‖u(t, ·)‖C2+θ(Rn) <∞,

so that we have the same smoothing effect of the linear case.
We are motivated to this investigation by an application to stochastic forward-backward systems. Indeed

problems such as (P ) arise in the study of stochastic systems of the type

(FB)


dXs = g(Xs, Ys, Zs) ds+ σ(Xs, Ys) dWs, s ∈ [0, T ],
dYs = h(Xs, Ys, Zs) ds+ Zs dWs,
X0 = x,
YT = ψ(XT ),

where the unknown (Xs, Ys, Zs)s∈[0,T ] is a triplet of processes with values respectively in Rn, in R and in Rn.
In these systems a forward Itô differential equation is coupled with a backward Itô differential equation; the
nonlinearities g, σ, h are regular functions. Such systems have several applications to mathematical finance
and to stochastic optimal control – see e.g. [11, Chapter 8] for a systematic review – and recently they have
been widely studied see for instance [14], [10], [13], [15], [12] and the bibliography therein.

The nonlinearities ai,j , f in (P ) are defined by

ai,j(x, u) = (σσ∗)i,j(x, u), f(x, u, p) = −〈g(x, u, p∗σ(x, u)), p〉+ h(x, u, p∗σ(x, u)),

and they are Lipschitz continuous with respect to x, locally Lipschitz continuous with respect to u and p,
with at most quadratic growth in the gradient and linear growth in u. Relying on analytic results for system

1Partially supported by the RTN “Evolution Equations for Deterministic and Stochastic Systems” HPRN-CT-2002-00281.
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(P ), in [10] it was introduced the so-called four step scheme – see also [11, Chapter 4] – to solve the stochastic
system. Whenever σ does not depend on Z, this scheme reduce to three steps. More precisely it consists in
solving (P ) as a first step, then in solving{

dXs = σ(Xs, u(s,Xs)) dWs + g(Xs, u(s,Xs),∇u(s,Xs)∗σ(Xs, u(s,Xs)) ds, s ∈ [r, T ],
Xr = ξ,

for each r ∈ [0, T [ and for each Fr-measurable and square integrable random variable ξ (where Ft is the
filtration associated to the Brownian motion {Wt}t≥0), and then in showing that

(Xr,ξ
s , Y r,ξs , Zr,ξs ) := (Xr,ξ

s , u(s,Xr,ξ
s ),∇u(s,Xr,ξ

s )∗σ(Xr,ξ
s , u(s,Xr,ξ

s )))

is a solution to 
dXr,ξ

s = g(Xr,ξ
s , Y r,ξs , Zr,ξs ) ds+ σ(Xr,ξ

s , Y r,ξs ) dWs, s ∈ [r, T ],
dY r,ξs = h(Xr,ξ

s , Y r,ξs , Zr,ξs ) ds+ Zr,ξs dWs,
Xr = ξ,
YT = ψ(XT ).

The deterministic results of [8, Chapter 5, Thm. 6.1] were used to prove existence and uniqueness of a
regular solution to problem (FB). Strong regularity conditions on the nonlinearities ai,j , f and on the final
data were required. In particular, ψ must belong to C2+θ(Rn). This approach has been followed and widely
improved in [4], where existence and uniqueness results for the systems (FB) are proved requiring much less
regular coefficients and the final datum to be just Lipschitz continuous. In the present paper, still needing
the coefficients ai,j and f to be regular enough, we relax the hypothesis on the final datum assuming ψ to be
merely Hölder continuous, and we prove existence of a solution to (FB) also in the case where the function
h has quadratic growth with respect to Z.

Setting as usual u(t) = u(t, ·), we study problem (P ) as an evolution equation in the space Cα(Rn) for
some α ∈ (0, θ):

(PT )
{
u′(t) +A(u(t))u(t) = F (u(t)), t < T,
u(T ) = ψ,

where A(u(t)) is the operator
∑n
i,j ai,j(·, u(t)) ∂2

∂xi∂xj
and F (u(t)) := f(·, u(t),∇xu(t)). As a first step, we

look for a local solution in a small time interval [r, T ], as a fixed point of the operator u 7→ v, where v is the
solution to the linear problem {

v′(t) +A(u(t))v(t) = F (u(t)), t ∈ [r, T ],
v(T ) = ψ.

If T −r is small enough, the fixed point argument works in a suitably weighted space of functions v : [r, T ] 7→
Cα(Rn), thanks to optimal smoothing estimates in Hölder spaces for linear equations; such estimates are
also used to prove further regularity of the solution and to arrive at (S).

So, the (unique) fixed point u satisfies (S) with [r, T ) replacing [0, T ); moreover from the proof of the
local existence theorem we see that u may be extended to the whole [0, T ] (still satisfying (S)) provided we
can bound ‖u(t)‖Cθ(Rn) by a constant independent of t. This is done using classical arguments for a priori
bounds in nonlinear parabolic problems.

The rest of the paper is organized as follows. In section 2 notation and assumptions are given. The main
results will be proved in section 3, while in section 4 the application to the stochastic forward-backward
system is discussed.

2. Notation and assumptions

Let θ ∈ (0, 1). We denote by Cθ(Rn) the usual space of bounded and uniformly θ-Hölder continuous
functions from R

n to R, and by Ck+θ(Rn), k = 1, 2, the space of the bounded and differentiable (resp.,
twice differentiable) functions with first order (resp., first and second order) derivatives in Cθ(Rn). They
are endowed with the norms

‖φ‖Ck+θ(Rn) =
∑
|α|≤k

(
‖Dαφ‖∞ + sup

x,y∈Rn, x 6=y

|φ(x)− φ(y)|
|x− y|θ

)
.

If X is any Banach space and y0 ∈ X, R > 0, B(y0, R) is the closed ball in X centered at y0 with radius
R. If a, b ∈ R, B((a, b);X) is the space of the bounded functions from (a, b) to X endowed with the sup
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norm; Cθ([a, b];X) is the space of all θ-Hölder continuous functions from [a, b] to X, endowed with the norm

‖f‖Cθ([a,b];X) = ‖f‖∞ + sup
t,s∈[a,b],t6=s

‖f(t)− f(s)‖X
|t− s|θ

;

Cθ(]a, b];X) is the space of the continuous functions from ]a, b] to X, such that t 7→ (t − a)θ‖f(t)‖X is
bounded, endowed with the norm ‖f‖Cθ(]a,b];X) = supt∈]a,b](t − a)θ‖f(t)‖X . This is meaningful for θ = 0
too.

According to the assumptions of section 4, the differential operators A(u) :=
∑n
i,j ai,j(·, u(t)) ∂2

∂xi∂xj
and

the function F (u(t)) := f(·, u(t),∇xu(t)) satisfy next assumptions, for each α ∈ [0, 1].
Hypothesis 2.1. The maps A : Cα(Rn)→ L(C2+α(Rn), Cα(Rn)) and F : C1+α(Rn)→ Cα(Rn) satisfy the
following hypotheses:

H1 For every y ∈ Cα(Rn) the operator A(y) is sectorial in Cα(Rn), and if 0 < α < 1, D(A(y)) '
C2+α(Rn).

H2 For every y0 ∈ Cα(Rn) there exist K = K(y0) > 0 and R = R(y0) > 0 such that

‖A(x)−A(y)‖L(C2+α(Rn),Cα(Rn)) ≤ K‖x− y‖Cα(Rn)

for every x, y ∈ B(y0, R) ⊂ Cα(Rn).
H3 There exists K1 > 0 such that

‖F (x)− F (y)‖Cα(Rn) ≤ K1(1 + ‖x‖C1+α(Rn) + ‖y‖C1+α(Rn))‖x− y‖C1+α(Rn)

for every x, y ∈ C1+α(Rn).
Note that H3 implies that there is K2 > 0 such that
H4 ‖F (x)‖Cα(Rn) ≤ K2(1 + ‖x‖2C1+α(Rn)), ∀x ∈ C

1+α(Rn).

For every T > 0 and for every r ∈ [0, T ) we shall study the problem{
u′(t) +A(u(t))u(t) = F (u(t)), t ∈ [r, T ],
u(T ) = ψ.

(2.1)

The main result of this section is the following local existence and uniqueness theorem.
Theorem 2.2. Let assumptions 2.1 hold, for each α ∈ [0, 1]. Then for each ψ ∈ Cθ(Rn), with θ ∈
(0, 1), there exists δ = δ(ψ) > 0 such that for every r ∈ [T − δ, T ] problem (2.1) has a unique solution
u ∈ Cθ/2([r, T ];Cb(Rn)) ∩ B([r, T ];Cθ(Rn))(2), such that u has values in C2+θ(Rn) and it is differentiable
with values in Cθ(Rn) for t < T , and (T − t)‖u(t)‖C2+θ(Rn), (T − t)‖u′(t)‖Cθ(Rn) are bounded in [r, T [.
Consequently, (T − t)(1−θ)/2‖Du(t)‖∞ is bounded in [r, T [.

3. proof of the main results

In this section we will reverse time in problem (2.1). Therefore we shall study{
u′(t) = A(u(t))u(t) + F (u(t)), t ∈ (0, r],
u(0) = ψ

(3.1)

for r ∈ [0, T ]. Theorem 2.2 is rephrased as follows.
Theorem 3.1. Let H1−H2−H3 hold, for each α ∈ [0, 1]. Then for each ψ ∈ Cθ(Rn), with θ ∈ (0, 1), there
exists δ = δ(ψ) > 0 such that for every r ∈ (0, δ] problem (2.1) has a unique solution u ∈ Cθ/2([0, r];Cb(Rn))∩
B([0, r];Cθ(Rn)), such that u has values in C2+θ(Rn) and it is differentiable with values in Cθ(Rn) for t > 0,
and t‖u(t)‖C2+θ(Rn), t‖u′(t)‖Cθ(Rn) are bounded in ]0, r].

Accordingly to the time change we introduce a family of linear nonautonomous Cauchy problems with
0 ≤ s ≤ r ≤ T , {

v′(t)− Λ(t)v(t) = f(t), t ∈ [s, r],
v(s) = ψ,

(3.2)

where for each t ∈ [s, r], Λ(t) : D(Λ(t)) ⊂ Cα(Rn) → Cα(Rn) is a sectorial operator in Cα(Rn), with
D(Λ(t)) ' C2+α(Rn), and t 7→ Λ(t) is Hölder continuous with values in belongs to L(C2+α(Rn);Cα(Rn)).

A continuous function v : [s, r] → Cα(Rn) is said to be a classical solution to (3.2) in [s, r] if v ∈
C(]s, r];C2+α(Rn)) ∩ C1(]s, r];Cα(Rn)) and v′(t)− Λ(t)v(t) = f(t) for s < t ≤ r, v(s) = ψ.

We shall use the following results.

2This means that the function (t, x) 7→ u(t)(x) belongs to the parabolic Hölder space Cθ/2,θ([r, T ]× Rn).
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Proposition 3.2. Let [s, r] ⊂ [0, T ]. For each t ∈ [s, r], let Λ(t) : D(Λ(t)) ⊂ Cα(Rn) → Cα(Rn) be a
sectorial operator in Cα(Rn), with D(Λ(t)) ' C2+α(Rn). If the mapping Λ belongs to Cν([s, r];L(C2+α(Rn);
Cα(Rn))), there exists an evolution operator G(t, s) in Cα(Rn) associated to Λ.

If ψ ∈ Cθ(Rn) and f ∈ Cγ(]s, r], Cθ1(Rn)), with 0 ≤ γ < 1 and θ1, θ > α, problem (3.2) has a unique
classical solution v, given by the variation of constants formula

v(t) = G(t, s)ψ +
∫ t

s

G(t, σ)f(σ) dσ, s ≤ t ≤ r. (3.3)

For all 0 ≤ τ ≤ σ ≤ r and α ≤ θ1 ≤ θ2 ≤ 2 + α there exists C1 > 0 such that

‖G(σ, τ)‖L(Cθ1 (Rn),Cθ2 (Rn)) ≤
C1

(σ − τ)(θ2−θ1)/2
, s ≤ τ < σ ≤ r. (3.4)

Moreover for α ≤ θ1 ≤ 2 + θ2 ≤ 2 + α+ 2ν there exists C2 > 0 such that

‖Λ(σ)G(σ, τ)‖L(Cθ1 (Rn),Cθ2 (Rn)) ≤
C2

(σ − τ)1+(θ2−θ1)/2
, s ≤ τ < σ ≤ r. (3.5)

As a consequence of (3.4), for 0 ≤ γ < 1, α ≤ θ1 ≤ θ2 ≤ 2 + α and 0 ≤ γ < 1, θ2 − θ1 < 1 there exists
C3 > 0 such that if f ∈ Cγ(]s, r], Cθ1(Rn)) we have∥∥∥∥∫ t

s

G(t, σ)f(σ) dσ
∥∥∥∥
Cθ2 (Rn)

≤ C3(t− s)1−γ−(θ2−θ1)/2‖f‖Cγ(]s,r],Cθ1 (Rn)), s < t ≤ r. (3.6)

Proof. We do not give the complete proof since it is very similar to the proofs of [2, Prop. 3.3] and [1,
Chapter 6] and of the bibliography quoted therein.

We just stress the fact that our hypotheses imply that for all t ∈ [s, r] – see e.g. [3, Appendix A]:
(i) there are two positive constants ν1 and ν2 such that

ν1(‖Λ(t)y‖Cα(Rn) + ‖y‖Cα(Rn)) ≤ ‖y‖C2+α(Rn) ≤ ν2(‖Λ(t)y‖Cα(Rn) + ‖y‖Cα(Rn)); (3.7)

(ii) there exist θ ∈]π2 , π], ω ∈ R and M > 0 such that, for all t ∈ [s, r],

‖R(λ,Λ(t))‖L(Cα(Rn)) ≤
M

|λ− ω|
, ∀λ ∈ ω + Sθ, (3.8)

where Sβ = {z ∈ C : arg |z| ≤ β}, for any β ∈ [0, 2π[.
Moreover estimates (ii) on the resolvent operator imply that there exists a positive constant M1 independent
of t and depending on α, θ, ρ, T and on the constants introduced in (i)− (ii), such that

(iii) ‖(Λ(t))keσΛ(t)‖L(Cα(Rn)) ≤
M1e

ωσ

σk
, σ, t ∈ [s, r], k = 0, 1, 2. (3.9)

Then estimates (3.4) and (3.5) for the evolution operator G(t, s) are a direct consequence of its construction
(see e.g. [1, Chapter 6]), of estimate (3.9) and of the characterization of Cθ(Rn) as the real interpolation
space (Cα(Rn), C2+α(Rn))(θ−α)/2,∞ for α < θ < 2+α (see e.g. [1, Cor. 1.2.18]). In particular, the constants
C1 and C2 that appear in (3.4) and in (3.5) depend on α, θ1, θ2, T and on the constants introduced in
(i)− (ii)− (iii). Inequality (3.6) is an obvious consequence of (3.4).

We fix now α, β, θ, ρ, ν such that
0 < α < ρ < θ < 1, ρ < (α+ θ)/2,
0 < ν < θ−α

2 ,
1
2 −

θ−ρ
2 < β < 1

2 −
θ−α

4

(3.10)

and we define the set Y as the intersection of the balls B(ψ,R) ⊂ Cν([0, r];Cα(Rn)) and B(0, R) ⊂
Cβ(]0, r];C1+ρ(Rn)), i.e.,

Y = {u ∈ Cν([0, r];Cα(Rn)) ∩ Cβ(]0, r];C1+ρ(Rn)) :
‖u(·)− ψ‖Cν([0,r];Cα(Rn)) ≤ R, sup0<t≤r t

β‖u(t)‖C1+ρ(Rn) ≤ R}
(3.11)

where R, r will be chosen later. For any u ∈ Y we consider the linear nonautonomous problem{
v′(t)− Λu(t)v(t) = fu(t), s < t ≤ r,
v(s) = x,

(3.12)

where Λu(t) = A(u(t)) and fu(t) = F (u(t)). We collect the results about this problem in the next lemma.
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Lemma 3.3. Let H1−H2−H3 hold. Fix the parameters α, β, θ, ρ, ν satisfying (3.10), and fix ψ ∈ Cθ(Rn).
Then there is R > 0 such that for each r ∈]0, T ], defining Y by (3.11), for every u ∈ Y the operators Λu(t)
satisfy the assumptions of proposition 3.2. Denoting by Gu(t, s) the associated evolution operator, there exists
a unique classical solution to problem (3.12), given by

v(t) = Gu(t, s)ψ +
∫ t

s

Gu(t, σ)fu(σ) dσ, s ≤ t ≤ r.

Estimates (3.4), (3.5), (3.6) hold with constants C1, C2, C3 > 0 independent of u, s, r.
Proof. Thanks to assumptions H1 and H2, for all x0 ∈ Cα(Rn) there exists R′ = R′(x0) > 0 such that for
every x ∈ B(x0, R

′)
(i) there exist two positive constants ν1 = ν1(x0) and ν2 = ν2(x0) such that

ν1(‖A(x)y‖Cα(Rn) + ‖y‖Cα(Rn)) ≤ ‖y‖C2+α(Rn) ≤ ν2(‖A(x)y‖Cα(Rn) + ‖y‖Cα(Rn));

(ii) there exist θ = θ(x0) ∈]π2 , π], ω = ω(x0) ∈ R and M = M(x0) > 0 such that, for all t ∈ [s, r],

‖R(λ,A(x))‖L(Cα(Rn)) ≤
M

|λ− ω|
∀λ ∈ ω + Sθ,

(iii) there exists M1 = M1(x0) > 0, such that

‖A(x)keσA(x)‖L(Cα(Rn)) ≤
M1e

ωσ

σk
, σ ∈ [0, r], k = 0, 1, 2.

This was proved in [2]. Taking x0 = ψ and R = R′(ψ) in the definition of Y , it follows that for each u ∈ Y :
(i) there exist two positive constants ν1 = ν1(ψ) and ν2 = ν2(ψ) such that

ν1(‖Λu(t)y‖Cα(Rn) + ‖y‖Cα(Rn)) ≤ ‖y‖C2+α(Rn) ≤ ν2(‖Λu(t)y‖Cα(Rn) + ‖y‖Cα(Rn));

(ii) there exist α = α(ψ) ∈]0, π2 ], θ = θ(ψ) ∈]π2 , π], ω = ω(ψ) ∈ R and M = M(ψ) > 0 such that, for all
t ∈ [s, r]

‖R(λ,Λu(t))‖L(Cα(Rn)) ≤
M

|λ− ω|
, ∀λ ∈ ω + Sθ;

(iii) there exists M1 = M1(ψ) > 0, such that for all t ∈ [0, r]

‖(Λu(t))keσΛu(t)‖L(Cα(Rn)) ≤
M1e

ωσ

σk
, σ ∈ [0, r], k = 0, 1, 2.

Therefore proposition 3.2 may be applied, and it yields all the estimates for Gu(t, s). Moreover, thanks to
H4 we have

sup
0<s≤r

s2β‖fu(s)‖Cρ(Rn) ≤ K1(r2β + sup
0<s≤r

s2β‖u(s)‖2C1+ρ(Rn)) ≤ K1(r2β +R2) < +∞, (3.13)

so that fu ∈ C2β(]0, r];Cρ(Rn)).
Proof of Theorem 3.1 We define a map Γ : Y → C([0, r];Cα(Rn)) as Γ(u) = v, where v is the solution

to (3.12). Thus,

Γ(u)(t) = v(t) = Gu(t, 0)ψ +
∫ t

0

Gu(t, σ)fu(σ) dσ, 0 ≤ t ≤ r.

As a first step, we shall show that if r is small enough then Γ(Y ) ⊂ Y , then we shall show that Γ is a 1
2 -

contraction, so that it has a unique fixed point in Y , which is a solution to (3.1). As a third step we shall
prove further regularity properties and estimates for the fixed point, and eventually we shall see that the
solution is unique.
First step. Γ(Y ) ⊂ Y. We shall prove that:
1) t→ Gu(t, 0)ψ ∈ Cν([0, r];Cα(Rn)) and ‖Gu(·, 0)ψ−ψ‖Cν([0,r];Cα(Rn)) ≤ R/2 for sufficiently small r > 0.

For 0 < s ≤ t ≤ r we have

‖Gu(t, 0)ψ −Gu(s, 0)ψ‖Cα(Rn) =
∥∥∥∥∫ t

s

Λu(σ)Gu(σ, 0) dσψ
∥∥∥∥
Cα(Rn)

≤ C2

∫ t

s

σ(θ−α)/2−1 dσ‖ψ‖Cθ(Rn)

= c(α, θ)C2(t− s)νr(θ−α)/2−ν‖ψ‖Cθ(Rn).
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In particular, for s = 0 we have ‖Gu(·, 0)ψ − ψ‖Cα(Rn) ≤ c(α, θ)C2r
(θ−α)/2‖ψ‖Cθ(Rn).

Thus Gu(t, 0)ψ ∈ Cν([0, r];Cα(Rn)) and there exists δ1 > 0 such that for 0 < r ≤ δ1,

‖Gu(·, 0)ψ − ψ‖Cν([0,r];Cα(Rn)) ≤ c(α, θ)C2(δ(θ−α)/2−ν
1 + δ

(θ−α)/2
1 )‖ψ‖Cθ(Rn) ≤

R

2
.

2) t→
∫ t

0
Gu(t, σ)fu(σ) dσ ∈ Cν([0, r];Cα(Rn)) and ‖

∫ ·
0
Gu(·, σ)fu(σ) dσ‖Cν([0,r];Cα(Rn)) ≤ R/2.

Now fix 0 ≤ s ≤ t ≤ r. Then∥∥∥∥∫ t

0

Gu(t, σ)fu(σ) dσ −
∫ s

0

Gu(s, σ)fu(σ) dσ
∥∥∥∥
Cα(Rn)

≤∥∥∥∥∫ s

0

[Gu(t, σ)−Gu(s, σ)]fu(σ) dσ
∥∥∥∥
Cα(Rn)

+
∥∥∥∥∫ t

s

Gu(t, σ)fu(σ) dσ
∥∥∥∥
Cα(Rn)

= I1 + I2.

I1 is estimated as follows, taking into account (3.5) and (3.13):

I1 =
∥∥∥∥∫ s

0

∫ t

s

Λu(τ)Gu(τ, σ) dτfu(σ) dσ
∥∥∥∥
Cα(Rn)

≤
∫ s

0

∫ t

s

‖Λu(τ)Gu(τ, σ)‖L(Cρ(Rn),Cα(Rn)) dτ‖fu(σ)‖Cρ(Rn) dσ

≤ C2 sup
0<σ≤r

‖σ2βfu(σ)‖Cρ(Rn)

∫ s

0

σ−2β

(∫ t

s

(τ − σ)−1+(ρ−α)/2 dτ

)
dσ

≤ c(α, ρ, β, ν)C2K1(r2β +R2)(t− s)νr1−ν−2β+(ρ−α)/2

In a similar way, taking also (3.6) into account, I2 is estimated as follows:

I2 ≤ C3(t− σ)1−2β‖fu‖C2β(]s,r];Cα(Rn)) ≤ C3c(α, ρ)K1(r2β +R2)(t− s)νr1−2β−ν .

In particular, taking s = 0 the latter estimate gives∥∥∥∥∫ t

0

Gu(t, σ)fu(σ) dσ
∥∥∥∥
Cα(Rn)

≤ C3c(α, ρ)K1(r2β +R2)r1−2β .

This implies that there exists δ2 > 0 such that for 0 < r ≤ δ2 we have∥∥∥∥∫ t

0

Gu(t, σ)fu(σ) dσ
∥∥∥∥
Cν([0,r];Cα(Rn))

≤ C(δ1−2β−ν
2 + δ1−2β

2 ) ≤ R

2
,

where C does not depend on u and r.
3) t→ Gu(t, 0)ψ ∈ Cβ(]0, r];C1+ρ(Rn)) and ‖Gu(·, 0)ψ‖Cβ(]0,r];C1+ρ(Rn)) ≤ R/2.
Thanks to (3.4) we have

tβ‖Gu(t, 0)ψ‖C1+ρ(Rn) ≤ C1t
β− 1

2 +
(θ−ρ)

2 ‖ψ‖Cθ(Rn).

Thus there exists δ3 > 0 such that for 0 < r ≤ δ3

‖Gu(·, 0)ψ‖Cβ(]0,r];C1+ρ(Rn)) ≤ C1δ
β− 1

2 +
(θ−ρ)

2
3 ‖ψ‖Cθ(Rn) ≤

R

2
.

4) t→
∫ t

0
Gu(t, σ)fu(σ) dσ ∈ Cβ(]0, r];C1+ρ(Rn)) and ‖

∫ ·
0
Gu(·, σ)fu(σ) dσ‖Cβ(]0,r];C1+ρ(Rn)) ≤ R/2.

Thanks to (3.6), for 0 < t ≤ r we have

tβ
∥∥∥∥∫ t

0

Gu(t, σ)fu(σ) dσ
∥∥∥∥
C1+ρ(Rn)

≤ tβC3t
1/2−2β‖fu‖C2β(]s,r];Cρ(Rn)) ≤ C3K1(r2β +R2)r1/2−β .

Thus there exists δ4 > 0 such that, for 0 < r ≤ δ4,∥∥∥∥∫ ·
0

Gu(·, σ)fu(σ) dσ
∥∥∥∥
Cβ(]0,r];C1+ρ(Rn))

≤ Cδ1/2−β
4 ≤ R

2
.

1), 2), 3), 4) prove that taking δ̄ = min{δ1, δ2, δ3, δ4}, then for every 0 < r ≤ δ̄, Γ(Y ) ⊂ Y .
Second step. Γ is a 1/2- contraction.
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Let u1, u2 ∈ Y and set v1 = Γ(u1), v2 = Γ(u1). For all t ∈ [0, r] we have

v1(t)− v2(t) = [Gu1(t, 0)−Gu2(t, 0)]ψ +
∫ t

0

[Gu1(t, s)−Gu2(t, s)]fu1(s) ds+∫ t

0

Gu2(t, s)[fu1(s)− fu2(s)] ds.

To estimate v1 − v2 we use the identity

Gu1(τ, σ)−Gu2(τ, σ) =
∫ τ

σ

Gu1(τ, ρ)[Λu1(ρ)− Λu2(ρ)]Gu2(ρ, σ) dρ, (3.14)

that holds for 0 ≤ σ ≤ τ ≤ r, and arguments similar to the ones in the first step .
1) Let us estimate ‖v1 − v2‖Cν([0,r];Cα(Rn)). For 0 ≤ s ≤ t ≤ r we have

‖v1(t)− v2(t)− v1(s) + v2(s)‖Cα(Rn) ≤ ‖(Gu1(t, 0)−Gu2(t, 0)−Gu1(s, 0) +Gu2(s, 0))ψ‖Cα(Rn)+∥∥∥∥∫ t

0

[Gu1(t, σ)−Gu2(t, σ)]fu1(σ) dσ −
∫ s

0

[Gu1(s, σ)−Gu2(s, σ)]fu1(σ) dσ
∥∥∥∥
Cα(Rn)

+∥∥∥∥∫ t

0

Gu2(t, σ)[fu1(σ)− fu2(σ)] dσ −
∫ s

0

Gu2(s, σ)[fu1(σ)− fu2(σ)] dσ
∥∥∥∥
Cα(Rn)

:= I1 + I2 + I3.

Recalling (3.14) and (3.4), I1 is estimated as follows.

I1 = ‖(Gu1(t, 0)−Gu2(t, 0)−Gu1(s, 0) +Gu2(s, 0))ψ‖Cα(Rn) ≤

≤
∥∥∥∥∫ t

s

Gu1(t, σ)[Λu1(σ)− Λu2(σ)]Gu2(σ, 0)ψ dσ
∥∥∥∥
Cα(Rn)

+
∥∥∥∥∫ s

0

[Gu1(t, σ)−Gu1(s, σ)][Λu1(σ)− Λu2(σ)]Gu2(σ, 0)ψ dσ
∥∥∥∥
Cα(Rn)

≤ C2
1K‖u1 − u2‖Cν([0,r];Cα(Rn))‖ψ‖Cθ(Rn)

[ ∫ t

s

σ−1+(θ−α)/2 dσ +
∫ s

0

σ−1+(θ−α)/2

(∫ t

s

(r − σ)−1 dr

)
dσ

]
≤ c(α, θ)C2

1K‖u1 − u2‖Cν([0,r];Cα(Rn))‖ψ‖Cθ(Rn)(t− s)νr(θ−α)/2−ν

Thus there exists δ5 > 0 such that for 0 < r ≤ δ5 we have

‖(Gu1(·, 0)−Gu2(·, 0))φ‖Cν([0,r];Cα(Rn)) ≤
1
9
‖u1 − u2‖Cν([0,r];Cα(Rn)).

I2 is estimated in a similar way, taking also (3.13) into account:

I2 ≤ C‖u1 − u2‖Cν([0,r];Cα(Rn))(t− s)νr1−2β−ν

where C > 0 is independent of u1, u2, and r. Thus there exists δ6 > 0, such that for 0 < r ≤ δ6 we have∥∥∥∥∫ ·
0

[Gu1(·, ρ)−Gu2(·, ρ)]fu1(ρ) dρ
∥∥∥∥
Cν([0,r];Cα(Rn))

≤ 1
9
‖u1 − u2‖Cν([0,r];Cα(Rn)).

The third addendum I3, thanks also to hypothesis H3, is estimated in a similar way as follows:

I3 ≤ C‖u1 − u2‖Cβ(]0,r];C1+ρ(Rn))(t− s)νr1−2β−ν

where C > 0 is independent of u1, u2, and r.
Therefore there exists δ7 > 0, such that for 0 < r ≤ δ7 we have∥∥∥∥∫ ·

0

Gu2(·, σ)[fu1(σ)− fu2(σ)] dσ
∥∥∥∥
Cν([0,r];Cα(Rn))

≤ 1
9
‖u1 − u2‖Cν([0,r];Cα(Rn)).

Summing up, we have proved that for 0 ≤ r ≤ min {δ̄, δ5, δ6, δ7} we have

‖v1 − v2‖Cν([0,r];Cα(Rn)) ≤
1
3
(
‖u1 − u2‖Cβ(]0,r];C1+ρ(Rn)) + ‖u1 − u2‖Cν([0,r];Cα(Rn))

)
. (3.15)
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2) Now we estimate ‖v1 − v2‖Cβ(]0,r];C1+ρ(Rn)). We have

‖v1 − v2‖Cβ(]0,r];C1+ρ(Rn)) = sup
0<t≤r

‖tβ [v1(t)− v2(t)]‖C1+ρ(Rn) ≤

sup
0<t≤r

‖tβ [Gu1(t, 0)−Gu2(t, 0)]ψ‖C1+ρ(Rn) + sup
0<t≤r

∥∥∥∥tβ ∫ t

0

[Gu1(t, σ)−Gu2(t, σ)]fu1(σ) dσ
∥∥∥∥
C1+ρ(Rn)

+ sup
0<t≤r

∥∥∥∥tβ ∫ t

0

Gu2(t, σ)[fu1(σ)− fu2(σ)] dσ
∥∥∥∥
C1+ρ(Rn)

≤ I1 + I2 + I3.

I1 is estimated as follows:

I1 = sup
0<t≤r

∥∥∥∥tβ ∫ t

0

Gu1(t, σ)[Λu1(σ)− Λu2(σ)]Gu2(σ, 0)ψ
∥∥∥∥
C1+ρ(Rn)

≤ c(ρ, θ)KC2
1‖u1 − u2‖Cν([0,r];Cα(Rn))r

β−1/2+(θ−ρ)/2.

Similarly to I1, and thanks also to (3.13), I2 is estimated as follows.

I2 = sup
0<t≤r

∥∥∥∥tβ ∫ t

0

∫ t

σ

Gu1(t, τ)[Λu1(τ)− Λu2(τ)]Gu2(τ, σ) dτfu1(σ) dσ
∥∥∥∥
C1+ρ(Rn)

≤ C‖u1 − u2‖Cν([0,r];Cα(Rn))r
−β+1/2,

where C > 0 is independent of u1, u2, r. Finally, using also to hypothesis H3, we get

I3 ≤ C‖u1 − u2‖Cβ(]0,r];C1+ρ(Rn))r
1−β−1/2,

where C > 0 is independent of u1, u2, r. Therefore there exists δ8 > 0, such that for 0 < r ≤ δ8,

‖v1 − v2‖Cβ(]0,r];C1+ρ(Rn)) ≤
1
6
(
‖u1 − u2‖Cν([0,r];Cα(Rn)) + ‖u1 − u2‖Cβ(]0,r];C1+ρ(Rn))

)
. (3.16)

We have thus proved that there exists δ := min{δ, δ5, δ6, δ7, δ8}, such that for 0 < r ≤ δ we have

‖v1 − v2‖Cβ(]0,r];C1+ρ(Rn)) + ‖v1 − v2‖Cν([0,r];Cα(Rn))

≤ 1
2
(
‖u1 − u2‖Cν([0,r];Cα(Rn)) + ‖u1 − u2‖Cβ(]0,r];C1+ρ(Rn))

)
(3.17)

Consequently, Γ is a 1/2-contraction that maps Y into itself, and hence there exists a unique u ∈ Y such
that Γ(u) = u, i.e., there exists a unique solution of (2.1) in Y .
Third step. Further regularity.
Let u be the unique fixed point of γ in Y . The same estimates of the first step, points 3) − 4) show that
t 7→ Gu(t, 0)ψ ∈ C(1−θ+ρ)/2(]0, r];C1+ρ(Rn)) and that z(t) :=

∫ t
0
G(t, σ)fu(σ)dσ ∈ C2β−1/2(]0, r];C1+ρ(Rn)).

Thanks to the choice (3.10), we have 2β < 1 − (θ − α)/2 and α < ρ, so that 2β − 1/2 < (1 − θ + ρ)/2,
z ∈ C(1−θ+ρ)/2(]0, r];C1+ρ(Rn)) and hence u ∈ C(1−θ+ρ)/2(]0, r];C1+ρ(Rn)) and fu ∈ C1−θ+ρ(]0, r];Cρ(Rn)).

Applying once again estimate (3.6) we get that z is bounded with values in Cσ(Rn) for each σ ≤ 2+ρ−4β;
in particular, due to the choice of ρ and β, z is bounded with values in Cθ(Rn). Since Gu(·, 0)ψ too is bounded
with values in Cθ(Rn), then

u = Gu(·, 0)ψ + z ∈ B([0, r];Cθ(Rn)). (3.18)
Let us prove that u(t) belongs to C2+θ(Rn) for t > 0 and that ‖tu(t)‖C2+θ(Rn) is bounded. Again, we

need more than one step. First we estimate ‖u(t)‖C2+α(Rn). By estimates (3.4) and (3.6) we get

‖u(t)‖C2+α(Rn) ≤
C1

t1−(θ−α)/2
‖ψ‖Cθ(Rn) +

C3

t1−θ+ρ−(ρ−α)/2
‖fu‖C1−θ+ρ(]0,r],Cρ(Rn))

≤ C

t1−(θ−α)/2
,

with a suitable C independent of t.
Second, we improve the regularity of u up to t = 0 with values in Cα(Rn). Indeed, the same estimates

of the first step, show that u belongs to C(θ−α)/2([0, r];Cα(Rn)). More precisely, the estimate of point 1)
shows that t 7→ Gu(t, 0)ψ ∈ C(θ−α)/2([0, r];Cα(Rn)), while using the fact that fu ∈ C1−θ+ρ(]0, r];Cρ(Rn)),
the estimates of point 2) with 1− θ + ρ replacing 2β shows that z ∈ C(θ−α)/2([0, r];Cα(Rn)). Summing up,
u ∈ C(θ−α)/2([0, r];Cα(Rn)).
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Since u is bounded with values in Cθ(Rn) and t 7→ tu(t) is continuous for t > 0 and bounded with values
in C2+α(Rn), from the interpolation inequalities

‖ϕ‖Cθ2 (Rn) ≤ const.‖ϕ‖1−(θ2−θ1)/(θ3−θ1)

Cθ1 (Rn)
‖ϕ‖(θ2−θ1)/(θ3−θ1)

Cθ3 (Rn)
(3.19)

with θ1 = θ, θ2 = 2, θ3 = 2 + α, we get u ∈ C1−θ/2(]0, r];C2(Rn)), so that by hypothesis H3 fu ∈
C2−θ(]0, r];C1

b (Rn)). Therefore there is C > 0 such that

‖u(t/2)‖C2+α(Rn) ≤
C

t1−(θ−α)/2
, ‖fu|[t/2,r]‖C([t/2,r];C1

b (Rn)) ≤
C

t2−θ
, 0 < t ≤ r. (3.20)

Using the variation of constants formula we write u(t) as

u(t) = Gu(t, t/2)u(t/2) +
∫ t

t/2

Gu(t, s)fu(s)ds, 0 < t ≤ r.

Using estimates (3.5) with θ1 = 2 +α, θ2 = θ in the first addendum, θ1 = 1, θ2 = θ in the second addendum,
gives Λu(t)u(t) ∈ Cθ(Rn) and

‖Λu(t)u(t)‖Cθ(Rn) ≤
C

(t/2)(θ−α)/2
‖u(t/2)‖C2+α(Rn) + C(t− t/2)(1−θ)/2‖fu|[t/2,r]‖C([t/2,r];C1

b (Rn))

so that (3.20) implies

‖Λu(t)u(t)‖Cθ(Rn) ≤
C

t
, 0 < t ≤ r,

where C > 0 is independent of t. Since u is bounded with values in Cθ(Rn), assumption H1 with θ instead
of α gives

u(t) ∈ C2+θ(Rn), ‖u(t)‖C2+θ(Rn) ≤
C

t
, 0 < t ≤ r. (3.21)

Let us apply again the interpolation estimate (3.19) with θ1 = θ, θ2 = 1 + θ, θ3 = 2 + θ. We get u ∈
C1/2(]0, r];C1+θ(Rn)), so that fu ∈ C1(]0, r];Cθ(Rn)). It follows that

tu′(t) = t[Λu(t)u(t) + fu(t)] ∈ B(]0, r];Cθ(Rn)). (3.22)

It remains to show that u ∈ Cθ/2([0, r];Cb(Rn)). To this aim, we recall that u ∈ C1−θ/2(]0, r];C2(Rn)),
so that Λuu ∈ C1−θ/2(]0, r];Cb(Rn)), and using once again (3.19) with θ1 = θ, θ2 = 1, θ3 = 2 + θ, we get
u ∈ C(1−θ)/2(]0, r];C1(Rn)), so that fu ∈ C1−θ(]0, r];Cb(Rn)). Therefore, u′ ∈ C1−θ/2(]0, r];Cb(Rn)), and
this implies that u ∈ Cθ/2([0, r];Cb(Rn)). Recalling (3.18), (3.21), (3.22), all the claims about the regularity
of the solution are proved.
Fourth step. Uniqueness.
Let u1, u2 be two solutions with the specified degree of smoothness, and let t0 = sup{t ∈ [0, r] : u1|[0,t] ≡
u2|[0,t]}. We have to show that t0 = r. Assume by contradiction that t0 < r and set

ψ0 := u1(t0) = u2(t0),

K = max{‖ui‖Cθ/2([0,r];Cb(Rn)) + sup
0<t≤r

t‖ui(t)‖C2+θ(Rn) + sup
0<t≤r

t‖u′i(t)‖Cθ(Rn), i = 1, 2}.

The first part of the proof implies that there exists δ0 ∈ ]0, r− t0] such that for each δ ∈ ]0, δ0] the problem{
u′(t) = A(u(t))u(t) + F (u(t)), t ∈ (t0, t0 + δ],
u(t0) = ψ0,

(3.23)

has a unique solution in the space

Y0 = { u ∈ Cν([t0, t0 + δ];Cα(Rn)) ∩ Cβ(]t0, t0 + δ];C1+ρ(Rn)) :

‖u(·)− ψ0‖Cν([t0,t0+δ];Cα(Rn)) ≤ R, supt0<t≤t0+δ(t− t0)β‖u(t)‖C1+ρ(Rn) ≤ R}.

For s < t ∈ [t0, t0 + δ] we have, thanks to (3.19),

‖ui(t)− ui(s)‖Cα(Rn) ≤ const.‖ui(t)− ui(s)‖1−α/θ∞ ‖ui(t)− ui(s)‖α/θCθ(Rn)

≤ const.(t− s)(θ−α)/2(2K)α/θ ≤ const.(t− s)ν(2K)α/θδ(θ−α)/2−ν ,
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and
‖tβui(t)‖C1+ρ(Rn) ≤ const.tβ‖ui(t)‖1−(1+ρ−θ)/2

Cθ(Rn)
‖ui(t)‖(1+ρ−θ)/2

C2+θ(Rn)

≤ const.tβt−(1+ρ−θ)/2K ≤ const.δβ−(1+ρ−θ)/2K,

for i = 1, 2, so that if δ is small enough, both u1|[t0,t0+δ] and u2|[t0,t0+δ] belong to Y0. This implies that
u1|[t0,t0+δ] ≡ u2|[t0,t0+δ], a contradiction.

This concludes the proof of the theorem.

4. An application to stochastic forward-backward systems

In this section we discuss an application of Theorem 2.2 to a class of forward-backward systems. We make
the following assumptions.
Hypothesis 4.1. We are given:

(i) a final time T > 0;
(ii) an n-dimensional Brownian motion {Wt}t≥0 defined on a probability space (Ω,F ,P), we denote by
Ft its natural filtration completed with the null sets of F ;

(iii) the maps h(x, u, p) : Rn×R×Rn → R, g(x, u, p) : Rn×R×Rn → R
n and σ(x, u) : Rn×R→ R

n2
that

are Lipschitz continuous in the first variable uniformly with respect to u and p and twice continuously
differentiable in the other variables with second derivatives bounded uniformly with respect to x;

(iv) a constant K > 0 such that for all x ∈ Rn, y ∈ R and z ∈ Rn:

‖σ(x, y)‖ ≤ K(1 + |y|),
‖g(x, y, z)‖ ≤ K(1 + |y|+ ‖z‖),
|h(x, y, z)| ≤ K(1 + |y|+ ‖z‖2);

(v) a positive constant c0 such that for every x ∈ Rn, y ∈ R,
ai,j(x, y)ηiηj ≥ c0‖η‖2 ∀η ∈ Rn,

where ai,j(x, y) = (σσ∗)i,j(x, y) for every x ∈ Rn, y ∈ R;
(vi) a function ψ ∈ Cθ(Rn), θ ∈ (0, 1).
For every r ∈ [0, T ] we introduce the following partial differential equation,

∂tu(t, x) + 1
2

∑
i,j ai,j(x, u(t, x))∂2

i,ju(t, x) = f(x, u(t, x),∇u(t, x)), (t, x) ∈ [r, T ]× Rn,

u(T, x) = ψ(x),
(4.1)

where

f(x, u(t, x),∇u(t, x)) :=

− 〈g(x, u(t, x),∇u(t, x)∗σ(x, u(t, x))),∇u(t, x)〉+ h(x, u(t, x),∇u(t, x)∗σ(x, u(t, x))).

We recall the abstract formulation of equation (4.1) in the space Cα(Rn),{
u′(t) +A(u(t))u(t) = F (u(t)), t ∈]r, T ],
u(T ) = ψ,

(4.2)

with the identification of Section 2 for A and F , and u(t)(x) := u(t, x).
It easy to verify that under the above assumptions (iii), (iv), (v) on the coefficients, the functions A and

F satisfy Hypotheses 2.1, so that Theorem 2.2 may be applied, and there exists a unique local solution of
(4.2), u ∈ Cθ/2([T − δ, T ];Cb(Rn))∩B([T − δ, T ];Cθ(Rn)) for some δ ∈]0, T [, such that u(t) ∈ C2+θ′(Rn) for
each θ′ ∈]0, 1[, t ∈ [T − δ, T [, and (T − t)1+(θ′−θ)/2‖u(t)‖C2+θ′ (Rn) is bounded in [T − δ, T [.

The usual techniques of a priori estimates for parabolic equations may be employed to prove that u is
extendable to a solution in the whole interval [0, T ]. Since we have not found any proper reference in the
literature, we give a proof below.
Proposition 4.2. The local solution given by Theorem 2.2 has an extension to a global solution u ∈
Cθ/2([0, T ];Cb(Rn)) ∩B([0, T ];Cθ(Rn)) such that u(t) ∈ C2+θ′(Rn) for each θ′ ∈ ]0, 1[, t ∈ [0, T [,

sup
0≤t<T

(T − t)1+(θ′−θ)/2‖u(t)‖C2+θ′ (Rn) <∞, sup
0≤t<T

(T − t)(1−θ)/2‖u(t)‖C1(Rn) <∞. (4.3)
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Proof. Let us reverse time once again and consider problem (3.1). It is clear from the proof of Theorem
3.1 that the number δ depends only on ‖ψ‖Cθ(Rn). Therefore it is enough to bound ‖u(t)‖Cθ′ (Rn) for some
θ′ ∈ ]0, 1[ by a constant independent of t. Then standard arguments will yield the statement.

Let C > 0 be such that
f(x, u, 0)u ≤ C(1 + u2), x ∈ Rn, u ∈ R. (4.4)

As a first step, we estimate ‖u‖L∞([0,r];Cb(Rn)), for any r in the maximal interval of existence of u, proving
that

sup
a≤t≤r

‖u(t)‖∞ ≤ eλr max

{
‖u(a)‖∞,

√
C

λ− C

}
, (4.5)

for each λ > C and a ∈ ]0, r[.
Fix any λ > C, and set v(t, x) = u(t)(x)e−λt. If ‖v‖L∞([a,r]×Rn) = |v(t0, x0)| for some (t0, x0), the usual

arguments that lead to the maximum principle in bounded sets (see e.g. [8, Thm. 2.9]) yield (4.5). If |v|
does not attain a maximum, the arguments of [8, Thm. 2.9] have to be modified. We assume here that
‖v‖∞ = sup v > 0; if ‖v‖∞ = − inf v < 0 we may argue similarly. For each k ∈ N let (tk, xk) be such that
v(tk, xk) ≥ ‖v‖∞ − 1/k. Let ϕ be a smooth function such that

0 ≤ ϕ(x) ≤ 1, ϕ ≡ 1 in B(0, 1), ϕ ≡ 0 outside B(0, 2),

and set
vk(t, x) = v(t, x) +

2
k
ϕ(x− xk), a ≤ t ≤ r, x ∈ Rn, k ∈ N. (4.6)

Then each vk has a maximum, ‖vk‖∞ = max vk, and

Dtvk(t, x) = 1
2

∑
i,j ai,j(x, v(t, x)eλt)

(
∂2
i,jvk(t, x)− 2∂2

i,jϕ(x−xk)

k

)
+f(x, v(t, x)eλt,∇v(t, x)eλt)e−λt − λvk(t, x) +

2λ
k
ϕ(x− xk).

If the maximum of vk is attained at t = a, then

‖vk‖∞ ≤ ‖v(a)‖∞ + 2/k. (4.7)

Otherwise, at any maximum point (t, x) for vk, with t > a, we have

0 ≤ vkDtvk −
vk
2

∑
i,j

ai,j(x, v(t, x)eλt)∂2
i,jvk = −λv2

k + f(x, v(t, x)eλt, 0)e−λtv(t, x) +
g0(t, x)
k

+
g1(t, x)vk

k
,

where
g0(t, x) = 2f(x, v(t, x)eλt, 0)e−λtϕ(x− xk),

g1(t, x) = −
∑
i,j

ai,j(x, v(t, x)eλt)∂2
i,jϕ(x− xk) + 2λϕ(x− xk)− 2

∫ 1

0

〈Dpf(x, veλt, σDveλt), Dϕ(x− xk)〉dσ,

so that
‖g0‖∞ ≤ 2 sup |f(x, u, 0)| := C0,

‖g1‖∞ ≤
∑
i,j

‖∂2
i,jϕ‖∞ sup |ai,j(x, u)|+ 2‖Dϕ‖∞ sup |Dpf(x, u, p)|+ 2λ := C1,

where the suprema are taken for x ∈ Rn, u ∈ Range u|[a,r]×Rn , p ∈ Range Du|[a,r]×Rn and hence they are
finite. On the other hand, due to (4.4),

f(x, v(t, x)eλt, 0)e−λtv(t, x) ≤ C(1 + v(t, x)2) ≤ C
(

1 + vk(t, x)2 +
4
k
‖v‖∞ +

4
k2

)
.

Fix any ε > 0, and let k be so large that C0/k + 4C/k2 ≤ ε and (C1 + 4C)/k ≤ ε. Then

(λ− C)‖vk‖2∞ − ε‖vk‖∞ − ε− C ≤ 0,

so that

‖vk‖∞ ≤
ε+

√
ε2 + 4(λ− C)(ε+ C)

2(λ− C)
.

Recalling (4.7) and (4.6), this leads to (4.5).
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As a second step, we find a bound for the Hölder norm of u(t). Due to (4.5), the functions

ãi,j(t, x) := ai,j(x, u(t)(x)), a ≤ t ≤ r, x ∈ Rn,

satisfy

c0|η|2 ≤
n∑

i,j=1

ãi,j(t, x)ηiηj ≤ c1|η|2, a ≤ t ≤ r, x, η ∈ Rn,

where c0 is given by hypothesis 4.1(v), c1 depends only on K, C, λ, and the function

f̃(t, x, p) := f(x, u(t)(x), p), a ≤ t ≤ r, x, p ∈ Rn,

satisfies
|f̃(t, x, p)| ≤ c2(|p|2 + 1),

with c2 depending only on K, C, λ. Since

Dtu(t, x) =
n∑

i,j=1

ãi,j(t, x)Diju(t, x) + f̃(t, x,Du(t, x)), a ≤ t ≤ r, x ∈ Rn,

we may apply the nonlinear version of the Krylov-Safonov Theorem (see e.g. [9, lemma 11.4]), to get the
existence of θ′ ∈ (0, 1) such that

‖u(t)‖Cθ′ (Rn) ≤ c3, a ≤ t ≤ r,
with c3 depending only on c0, c1, c2 and on supa≤t≤r ‖u(t)‖∞. The statement follows.

Let us introduce now a family of stochastic differential equations - SDEs -, for every r ∈ [0, T ] and every
Fr-measurable and square integrable random variable ξ,{

dXs = σ(Xs, u(s,Xs)) dWs + g(Xs, u(s,Xs),∇u(s,Xs)∗σ(Xs, u(s,Xs)) ds, s ∈ [r, T ],
Xr = ξ.

(4.8)

We will need the following lemma.
Lemma 4.3. Assume that (i)-(ii)-(iii)-(iv) hold. Then equation (4.8) has a unique strong solution that is
an adapted process {Xr,ξ

s : s ∈ [r, T ]} with continuous trajectories such that

E sup
s∈[r,T ]

‖Xr,ξ
s ‖2 < +∞. (4.9)

Sketch of the proof. The solution is found, as usual, by a fixed point theorem in the Banach space of
processes that are adapted and continuous, endowed with the norm ‖X‖=̇(E sups∈[r,T ] ‖Xs‖2)1/2. Indeed,
thanks to (4.3), the coefficients behave like the Lipschitz continuous coefficients treated by the classical
theory of SDEs, see [7] for instance. The details of the proof of similar results can be found in [7] or in [5,
Proposition 3.2], that deals with the infinite dimensional case.

We have
Theorem 4.4. Let Hypothesis 4.1 hold, fix x ∈ Rn, 0 ≤ r < T , and consider the system

dXr,x
s = g(Xr,x

s , Y r,xs , Zr,xs ) ds+ σ(Xr,x
s , Y r,xs ) dWs, s ∈ [r, T ],

dY r,xs = h(Xr,x
s , Y r,xs , Zr,xs ) ds+ Zr,xs dWs,

Xr,x
r = x,

Y r,xT = φ(Xr,x
T ).

(4.10)

There exists a unique triplet of adapted processes (Xr,x
s , Y r,xs , Zr,xs ) : Ω× [r, T ]→ R

n ×R×Rn that satisfies
(4.10). Moreover for every x ∈ Rn and r ∈ [0, T ],

E sup
s∈[r,T ]

‖Xr,x
s ‖2 + E sup

s∈[r,T ]

|Y r,xs |2 + E

(∫ T

r

‖Zr,xs ‖2 ds

)
< +∞.

Proof. We already remarked that equations (4.1) and (4.8) have (unique) solutions.
Thus it is sufficient to verify that the triplet

(Xr,ξ
s , Y r,ξs , Zr,ξs ) = (Xr,ξ

s , u(s,Xr,ξ
s ),∇u(s,Xr,ξ

s )∗σ(Xr,ξ
s , u(s,Xr,ξ

s )))

is a solution to the forward-backward system (4.10).
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Indeed, since u solves (4.1) and for every ε > 0 it belongs to C1([0, T−ε], Cα(Rn))∩C([0, T−ε], C2+α(Rn)),
we can apply the Itô formula to get

u(τ,Xr,ξ
τ ) = u(T − ε,Xr,ξ

T−ε)−
∫ T−ε

τ

∂su(s,Xr,ξ
s ) ds−

∫ T−ε

τ

∇xu(s,Xr,ξ
s )∗σ(Xr,x

s , u(s,Xr,ξ
s )) dWs

− 1
2

∫ T−ε

τ

n∑
i,j

ai,j(Xr,ξ
s , u(s,Xr,ξ

s ))∂2
i,ju(s,Xr,ξ

s ) ds

−
∫ T−ε

τ

〈g(Xr,ξ
s , u(s,Xr,ξ

s ),∇u(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s ))),∇u(s,Xr,ξ

s )〉 ds

= u(T − ε,Xr,ξ
T−ε)−

∫ T−ε

τ

h(Xr,ξ
s , u(s,Xr,ξ

s ),∇u(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s )) ds

+
∫ T−ε

τ

∇xu(s,Xr,x
s )∗σ(Xr,x

s , u(s,Xr,ξ
s )) dWs.

Now, since u ∈ C(θ−α)/2([0, T ];Cα(Rn)) and Xr,ξ
s has continuous trajectories, letting ε go to 0 we obtain

u(T − ε,Xr,ξ
T−ε)→ φ(Xr,ξ

T ), P− a.s.

Moreover for some constant C̃ > 0,

|h(Xr,ξ
s , u(s,Xr,ξ

s ),∇u(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s ))| ≤ K(1 + |u(s,Xr,ξ

s )|+ |∇u(s,Xr,ξ
s )|2)

≤ C̃(1 + (T − s)−1+θ−ρ), P− a.s,

with ρ ∈ (0, θ). Letting ε go to 0 we find∫ T−ε

τ

h(Xr,ξ
s , u(s,Xr,ξ

s ),∇u(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s )) ds→∫ T

τ

h(Xr,ξ
s , u(s,Xr,ξ

s ),∇u(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s )) ds, P− a.s

Hypothesis (iv) and (4.3) imply that there exists a constant κ > 0 such that

E(|∇xu(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s ))|2) ≤ 2K2

E(‖∇xu(s,Xr,ξ
s )‖2(1+ |u(s,Xr,ξ

s )|2). ≤ κ(T −s)−1+θ−ρ (4.11)

Then, at least along a subsequence εh > 0,∫ T−ε

τ

∇xu(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s )) dWs →

∫ T

τ

∇xu(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s )) dWs P − a.s.

Therefore, for every τ ∈ [0, T ],

u(τ,Xr,ξ
τ ) = Ψ(Xr,ξ

T )−
∫ T

τ

h(Xr,ξ
s , u(s,Xr,ξ

s ),∇u(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s )) ds

+
∫ T

τ

∇xu(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s )) dWs, P− a.s.

Thus we have verified that (Xr,ξ
s , Y r,ξs , Zr,ξs ) solves system (4.10).

We still have to prove the claimed regularity properties of the processes {Y r,ξs : s ∈ [r, T ]} and {Zr,ξs : s ∈
[r, T ]}. Thanks to the regularity of u we have, for every r ∈ [0, T ],

E sup
s∈[r,T ]

‖Y r,ξs ‖2 = E sup
s∈[r,T ]

‖u(s,Xr,ξ
s )‖2 ≤ ‖u‖2L∞([r,T ]×Rn) := κ1 <∞. (4.12)

and recalling estimate (4.11) we get∫ T

r

E‖Zr,ξs ‖2 ds =
∫ T

r

E‖∇u(s,Xr,ξ
s )∗σ(Xr,ξ

s , u(s,Xr,ξ
s ))‖2 ds ≤ κ

∫ T

r

(T − s)−1+θ−ρ ds.

This concludes the proof of the theorem.
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