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1. Introduction

This paper is devoted to the investigation of the operator

u 7!Lu :¼ u 0 �Að � Þu
in the space LpðR;XÞ, with 1 < p <1, for generators AðtÞ : DðAðtÞÞ � X ! X,
with t 2 R, of analytic semigroups in a Banach space X. The natural domain of L
is the space

DðLÞ ¼ fu 2W 1; pðR;XÞ : uðtÞ 2 DðAðtÞÞ a.e.; Að � Þuð � Þ 2 LpðR;XÞg:
Given any f 2 LpðR;XÞ, the problem

u 0ðtÞ � AðtÞuðtÞ ¼ fðtÞ with t 2 R; ð1:1Þ
di/ers to a large extent from the Cauchy problem

u 0ðtÞ � AðtÞuðtÞ ¼ fðtÞ for a < t < b;

uðaÞ ¼ x:

�
ð1:2Þ

In treating (1.1), we encounter the same di4culties as in (1.2) as far as local regularity
is concerned, but in addition we have to deal with the asymptotic behavior. Under
mild regularity assumptions on Að � Þ, the well-known Acquistapace--Terreni
conditions, a parabolic evolution operator Gðt; sÞ, with t> s, exists and the unique
solution to (1.2) is represented by the familiar variation-of-constants formula

uðtÞ ¼ Gðt; aÞxþ
ðt
a
Gðt; sÞfðsÞ ds for a < t < b

(at least if f is, say, locally H€oolder continuous in t). On the contrary, even in the
autonomous case AðtÞ � A and for 9nite-dimensional X, problem (1.1) may have
no solution, solutions may be not unique, and reasonable representation formulas
for the solutions,when theydo exist, are not available in general.The simplest situation
occurs if the evolution operator has an exponential dichotomy with projections
fP ðsÞ : s 2 Rg inR. Then problem (1.1) has a unique solution u 2 LpðR;XÞ given by

uðtÞ ¼
ðt
�1
Gðt; sÞðI � P ðsÞÞfðsÞ ds�

ðþ1
t
Gðt; sÞP ðsÞfðsÞ ds for t 2 R:
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This happens, for instance, in the periodic case AðtÞ ¼ Aðtþ T Þ if the unit circle is
contained in the resolvent set of GðT; 0Þ. In the general case, one has an exponential
dichotomy, for example, if the operators AðtÞ are small perturbations of a 9xed
hyperbolic operator A. (See [22, 23, 27, 37, 38] and the references therein.) We recall
that a closed operator is called hyperbolic if its spectrum does not intersect the
imaginary axis.

In this paper we consider the asymptotically hyperbolic case, that is, we assume
that AðtÞ ! A�1 as t! �1 for two hyperbolic sectorial operators A�1 and
Aþ1. Since the domains of AðtÞ may vary, the above limits have to be understood
in the resolvent sense. Then exponential dichotomies exist in the half-lines
ð�1;�T � and ½T;þ1Þ for su4ciently large T > 0 by [10, 37, 38].

The di4culties concerning local regularity, shared by problems (1.1) and (1.2),
are well understood. We say that the problem (1.2) has optimal (or maximal)
regularity of type Lp if for each f 2 Lpðða; bÞ;XÞ there is a unique solution u of
(1.2) with uðaÞ ¼ 0 such that u 2 W 1; pðða; bÞ;XÞ, uðtÞ 2 DðAðtÞÞ a.e., and
Að � Þuð � Þ 2 Lpðða; bÞ;XÞ. This property implies, in particular, that the operator
L is closed on the above given domain; see Corollary 2.6. If AðtÞ is equal to a 9xed
sectorial operator A and X is a UMD space, then optimal Lp regularity is
equivalent to the R-boundedness of f�Rði�; A� !IÞ : � 2 Rg, thanks to a theorem
by Weis, [42]. We use a non-autonomous version of this result proved by KSStrkalj in
[39]; cf. also [32]. (See x 2 and also [17] and [25] for details.) For instance, Lq

spaces and (fractional) Sobolev spaces W�;q with 1 < q <1 are UMD spaces
thanks to, for example, [6, Theorem III.4.5.2]. If L is an open set in R

d with
smooth boundary and each AðtÞ is the realization of an elliptic operator in LqðLÞ
with uniformly continuous coe4cients and good boundary conditions, then the
assumption of R-boundedness holds; see [17] and x 5.

Concerning asymptotic behavior, we characterize the couples

ðf; xÞ 2 LpððT;þ1Þ;XÞ � X

such that the solution to

u 0ðtÞ ¼ AðtÞuðtÞ þ fðtÞ for t > T ; uðT Þ ¼ x;

belongs to W 1; pððT;þ1Þ;XÞ (Theorem 2.4), and the couples

ðg; yÞ 2 Lpðð�1;�T Þ;XÞ � X

such that the backward problem

v 0ðtÞ ¼ AðtÞvðtÞ þ gðtÞ for t < �T ; vð�T Þ ¼ y;

has a solution in W 1; pðð�1;�T Þ;XÞ (Theorem 2.5). As in [20], where L was
studied on C�ðR;XÞ, such characterizations are the starting point to investigate
the operator L. We describe several properties of L in terms of the stable space
WsðT Þ and the unstable subspace WuðT Þ at T . See Theorem 3.8, whose statement
is similar to (and in fact, it was inspired by) the case of bounded operators AðtÞ
discussed in [1]. See also the papers [11] and [30] for earlier ODE results. As a
corollary, we obtain the fact that if Pþ1ðXÞ and P�1ðXÞ are 9nite dimensional,
then L is a Fredholm operator with index

indL ¼ dimP�1ðXÞ � dimPþ1ðXÞ:
Here Pþ1 and P�1 are the spectral projections with respect to the subsets of the
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spectra of Aþ1 and of A�1 with positive real part. The above formula coincides
with the well-known spectral Oow formula (‘index ¼ � spectral Oow’) in 9nite
dimensions; cf. [1, 21, 31, 35]. The spectral Oow is an algebraic count of the
eigenvalues of AðtÞ that cross the imaginary axis as t runs from �1 to þ1.
Under suitable assumptions it is meaningful even in in9nite dimensions, and it
may or may not coincide with minus the index of L. The 9rst important
in9nite-dimensional example in which the spectral Oow equals minus the index of
L was given by Robbin and Salamon in the paper [35], for a path of self-adjoint
operators with constant and compactly embedded domain in a Hilbert space, and
p ¼ 2. Their result was recently extended in [33] to any p 2 ð1;þ1Þ and to
possibly non-symmetric operators in UMD spaces. In both papers, compactness
plays an essential role, and the operators AðtÞ need not be sectorial. On the other
hand, interesting examples of smooth paths of bounded self-adjoint operators in a
Hilbert space such that the formula ‘index ¼ � spectral Oow’ does not hold for
p ¼ 2 are given in [1]. We point out that the operators AðtÞ in [35, 33] have
common and compactly embedded domain, while we can consider non-constant
domains and, more importantly, we have no compactness assumptions in our main
results. However, we are restricted to sectorial operators AðtÞ while less stringent
spectral assumptions are made in [35, 33]. This has important consequences for
Cauchy problems: both forward and backward Cauchy problems are in general
ill-posed under the assumptions of [35, 33], so that they have no evolution
operator, while in our case forward Cauchy problems are well-posed, and (as in
[26]) we have a forward evolution operator Gðt; sÞ, with t> s. Results like
Theorems 2.4 and 2.5 are not meaningful in the setting of [35, 33].

Fredholm properties of ill-posed problems on the line have further been
considered in the work by Sandstede, Scheel and co-authors; see, for example, [36].
We refer to [1, 20, 26, 33, 36] for further references and comments.

Besides theorems on maximal Lp regularity and Fredholm properties for a given
path of sectorial operators AðtÞ, we focus on perturbation theory for operators
BðtÞ : DðAðtÞÞ ! X being of the same order as AðtÞ. Here again one has to use
optimal Lp regularity, and in particular, the fact that the map u 7!Að � Þuð � Þ is
bounded from DðLÞ to LpðR;XÞ under our assumptions. In x 4 we assume that L
is a Fredholm operator, and we consider the operator eLL : DðLÞ ! LpðR;XÞ
de9ned by ðeLLuÞðtÞ :¼ u 0ðtÞ � AðtÞuðtÞ �BðtÞuðtÞ for t 2 R. The theory developed
in x 2 directly implies that eLL is Fredholm provided that the AðtÞ-bounds of BðtÞ
are su4ciently small; see Theorem 4.2. In Theorems 4.8 and 4.9 we show similar
results if BðtÞ : DðAðtÞÞ ! X is compact and it converges as jtj ! 1. The case of
bounded perturbations BðtÞ : X ! X was treated in [26] in a more general setting.
Moreover, if also AðtÞ : X ! X are bounded and X is a Hilbert space, more
precise and re9ned results can be found in [1].

In x 5 we establish the Fredholm property of L for parabolic boundary value
systems of second order on bounded domains satisfying the Lopatinskii --Shapiro
conditions. Second, we study Ornstein--Uhlenbeck type operators perturbed by
potentials in Lq spaces on R

d with respect to suitable weighted measures.
The de9nition of L can be extended to the case where one only has an

exponentially bounded, strongly continuous evolution operator Gðt; sÞ, based on
the variation-of-constants formula. In this setting Latushkin and Tomilov
characterized in the very recent paper [26] the Fredholm property of L in
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terms of the exponential dichotomy of Gðt; sÞ and of a condition connecting
the projections at �T and T , precisely the Fredholmity of the operator
N : P ð�T ÞðXÞ 7!P ðT ÞðXÞ, where Nx ¼ P ðT ÞGðT;�T Þx. See also [8] and [9]
for related investigations. In Proposition 3.9 we recover one implication of this
result, as a consequence of (a part of) Theorem 3.8. We remark that the
assumptions of [26] are weaker than ours, but our proofs are simpler and more
direct, and our results are more speci9c: in the situation of [26] one cannot
determine the domain of L in a reasonable way, and optimal regularity results like
Theorems 2.4 and 2.5 are out of reach.

The last due comparison is with [20], which is the counterpart of this paper in the
H€oolder space setting. In fact, we followed the approach of [20] as far as possible. The
present assumptions on the operators AðtÞ are more general, because we allow for
non-constant domains; moreover, we develop a perturbation theory that is not
considered in [20] and we give much more general examples. A generalization of
the results of [20] to the case of operators with non-constant domains satisfying
the Acquistapace--Terreni conditions may be found in the thesis [19].

2. Notation, assumptions and preliminaries

We are given a family of sectorial operators fAðtÞ : t 2 Rg satisfying the
Acquistapace--Terreni conditions, [4, 2]: there are ! 2 R, " 2 ð#=2; #Þ, and K > 0
such that

&ðAðtÞÞ � P!;" :¼ f' 2 C : j argð'� !Þj6 "g [ f!g;

kRð';AðtÞÞk6 K

1þ j'� !j
ð2:1Þ

for all t 2 R and ' 2 P!;", and there are �i and (i for i ¼ 1; . . . ; k, with
06 (i < �i6 2, such that * ¼ minf�i � (i : i ¼ 1; . . . ; kg 2 ð0; 1Þ and

kAðtÞRð';AðtÞÞ ½Rð!;AðtÞÞ �Rð!;AðsÞÞ�k6K
Xk
i¼1

ðt� sÞ�i j'� !j(i�1 ð2:2Þ

for all t 2 R and ' 2 P!;" n f!g. These conditions imply that the family
fAðtÞ : t 2 Rg generates an evolution operator Gðt; sÞ, with t> s 2 R, which is
strongly continuous for t > s. In other words, for each s 2 R the Cauchy problem

u 0ðtÞ ¼ AðtÞuðtÞ for t > s;

uðsÞ ¼ x

�
ð2:3Þ

(with x 2 DðAðsÞÞ ) is well-posed. Its unique solution

u 2 Cð½s;þ1Þ;XÞ \ C1ððs;þ1Þ;XÞ
is given by

uðtÞ ¼ Gðt; sÞx ¼ eðt�sÞAðsÞxþ
ðt
s
Zðr; sÞx dr; ð2:4Þ

where Zðt; sÞ is the operator given by formula (2.7) of [2]. In Theorem 2.3 and
Lemma 2.2 of [2] it is proved that there exist constants M0;M1 > 0 such that

kGðt; sÞkLðXÞ6M0; kAðtÞGðt; sÞkLðXÞ6M1 ðt� sÞ�1 for s < t < sþ 2; ð2:5Þ
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and that there exist constants c; c0; p > 0 such that

kZðr; sÞkLðXÞ6 c ðr� sÞ*�1; kZðr; sÞkLððX;DðAðsÞÞÞ0; p;XÞ6 c0; p ðr� sÞ*þ0�1 ð2:6Þ

for p 2 ½1;þ1�, 0 2 ½0; 1Þ, and s < r6 sþ 2. We recall that, if A : DðAÞ ! X is a
sectorial operator, then for 0 2 ð0; 1Þ, ðX;DðAÞÞ0; p is the real interpolation space
between X and DðAÞ de9ned by

ðX;DðAÞÞ0; p ¼ fx 2 X : t 7! gðtÞ ¼ kt1�0AetAxk belongs to Lpðð0; 1Þ; dt=tÞg;
kxkðX;DðAÞÞ0; p ¼ kxk þ kgkLpðð0;1Þ;dt=tÞ;

(

and for 0 ¼ 0 we set ðX;DðAÞÞ0; p ¼ X. From now on we denote by k � k0;p;s the
norm in ðX;DðAðsÞÞÞ0; p. We refer to [4, 2, 6, 27] for the construction of the
evolution operator and to [27, 40] for interpolation spaces.

We shall assume that the path t 7!AðtÞ is asymptotically hyperbolic, that is,
there are two operators A�1 : DðA�1Þ ! X and Aþ1 : DðAþ1Þ ! X satisfying
(2.1) and

lim
t!�1

Rð!;AðtÞÞ ¼ Rð!;A�1Þ;

lim
t!þ1

Rð!;AðtÞÞ ¼ Rð!;Aþ1Þ ðin LðXÞÞ;
ð2:7Þ

1ðAþ1Þ \ iR ¼ 1ðA�1Þ \ iR ¼ ;: ð2:8Þ

Finally, to have local maximal Lp regularity, we assume that the operators AðtÞ
are uniformly R-sectorial. More precisely, we suppose that

X is a UMD space and sup
�
Rf�Rði�; AðtÞ � !IÞ : � 2 Rg : t 2 R

�
<1: ð2:9Þ

A Banach space X is a UMD space (that is, X has the ‘unconditional martingale
sequences property’) if and only if the Hilbert transform is bounded on L2ðR; XÞ.
It is known that in this case X is reOexive; see the references given in [6, x III.4.4].
Hence (2.1) and (2.9) imply that the operators AðtÞ are densely de9ned, and thus
the evolution operator is strongly continuous at t ¼ s by [2, Theorem 2.3]. The
R-bound RðT Þ of a family T of bounded linear operators is the in9mum of all
constants C > 0 such that����Xn

j¼0

"j Tjxj

����
L2ð½0;1�;XÞ

6C

����Xn
j¼0

"j xj

����
L2ð½0;1�;XÞ

for all n 2 N [ f0g, T0; . . . ; Tn 2 T , x0; . . . ; xn 2 X, where "jðtÞ ¼ sign sinð2j#tÞ for
j 2 N [ f0g, are the Rademacher functions on ½0; 1�; see [17, 25, 42], and the
references therein. Observe that the R-boundedness of T implies its boundedness
and that the converse holds for Hilbert spaces X, due to Plancherel’s theorem. In
particular, condition (2.9) follows from (2.1) if X is a Hilbert space. We observe
that (2.9) implies that

sup
�
Rf'Rð';AðtÞ � !IÞ : j arg 'j65g : t 2 R

�
¼: R <1 ð2:10Þ

for some 5 2 ð#=2; "Þ by (the proof of) Theorem 4.2 of [42]. Moreover, if we
replace ! in (2.10) by a larger real number, then (2.10) remains valid with the
same 5 and R due to Proposition 2.8 in [42].
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We shall consider the operator L de9ned by

DðLÞ :¼ fu 2 W 1; pðR;XÞ : uðtÞ 2 DðAðtÞÞ a.e.; Að � Þuð � Þ 2 LpðR;XÞg;
L : DðLÞ ! LpðR;XÞ; ðLuÞðtÞ ¼ u 0ðtÞ � AðtÞuðtÞ

(
ð2:11Þ

for 1 < p <1. In this context we introduce the space of maximal regularity

EðIÞ ¼ fu 2W 1; pðI;XÞ : uðtÞ 2 DðAðtÞÞa.e.; Að � Þuð � Þ 2 LpðI;XÞg ð2:12Þ

for an interval I � R, endowedwith its natural norm ku 0kLpðI;XÞ þ kAð � Þuð � ÞkLpðI;XÞ.
The main tool in our study will be exponential dichotomies. We recall that an

evolution operator Gðt; sÞ is said to have an exponential dichotomy in an interval
I � R if there exist a family of projections P ðtÞ 2 LðXÞ, with t 2 I, being strongly
continuous with respect to t, and numbers (;N > 0 such that for all s; t 2 I with
s6 t we have

ðaÞ Gðt; sÞP ðsÞ ¼ P ðtÞGðt; sÞ;
ðbÞ Gðt; sÞ : P ðsÞðXÞ ! P ðtÞðXÞ is invertible with inverse eGGðs; tÞ;
ðcÞ kGðt; sÞðI � P ðsÞÞk6Ne�(ðt�sÞ;
ðdÞ k eGGðs; tÞP ðtÞk6Ne�(ðt�sÞ:

ð2:13Þ

Since AðtÞP ðtÞ ¼ AðtÞGðt; sÞ eGGðs; tÞP ðtÞ for t > s with t; s 2 I, the ‘unstable
projection’ P ðtÞ maps X continuously into DðAðtÞÞ for every t 2 I n inf I, and
AðtÞP ðtÞ is uniformly bounded for t> 7 þ inf I with 7 > 0, and for all t 2 I if I is
unbounded below. Hence P ðtÞ : X ! ðX;DðAðtÞÞÞ0; p is bounded as well, and we
denote its norm by

P0;p;t :¼ kP ðtÞkLðX;ðX;DðAðtÞÞÞ0; pÞ: ð2:14Þ

For more details on exponential dichotomies see [13, 23, 27, 38] and the references
therein.

Under assumptions (2.1), (2.2), (2.7) and (2.8), there exists T > 0 such that
Gðt; sÞ has exponential dichotomies in ð�1;�T � and in ½T;þ1Þ. For k ¼ 1 in
(2.2) and the interval ½T;þ1Þ, this has been shown in Theorem 4.3 of [38]. The
proofs given there may be extended in an obvious way to the general condition
(2.2) and the interval ð�1;�T �. The case of dense domains was treated before in
[10] and, for a slightly stronger version of (2.7), in [37]. Moreover, we have

dimP ðtÞðXÞ ¼
dimPþ1ðXÞ for t>T;

dimP�1ðXÞ for t6 � T;

�
where P�1 are the projections for A�1. Finally, in the proof of [38, Theorem 4.3],
the projections P ðtÞ (for t>T and t6 � T , respectively) are obtained as the
restriction of projections for a parabolic evolution operator having an exponential
dichotomy on I ¼ R. Thus the constants P0; p;t introduced above are in fact
uniformly bounded for jtj>T in our situation.

We have to establish some results about forward and backward Cauchy
problems in the Lp setting, which are known in C� spaces; see [27, Chapter 6].
The starting point is local maximal Lp regularity of the evolution operator.

LEMMA 2.1. Assume that (2.1) and (2.2) hold. Let a < b 2 R and
p 2 ð1;þ1Þ. Then for each x 2 X, the function t 7!Gðt; aÞx belongs to
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W 1; pðða; bÞ;XÞ if and only if x 2 ðX;DðAðaÞÞÞ1�1=p; p. In this case there is

C ¼ Cðp; b� aÞ such that kGð �; aÞxkW 1; pðða;bÞ;XÞ 6Ckxk1�1=p; p;a.

Proof. Formula (2.4) shows that

AðtÞGðt; aÞx ¼ d

dt
Gðt; aÞx ¼ AðaÞeðt�aÞAðaÞxþ Zðt; aÞx for a < t6 b: ð2:15Þ

Recall that x belongs to ðX;DðAðaÞÞÞ1�1=p; p if and only if the map

t 7!AðaÞeðt�aÞAðaÞx
is contained in Lpðða; bÞ;XÞ. By estimate (2.6), the function Zð �; aÞx belongs to
Lqðða; bÞ;XÞ for every x 2 X and q such that qð1� *Þ < 1. If x 2 ðX;DðAðaÞÞÞ0; p;
then Zð �; aÞx 2 Lqðða; bÞ;XÞ for every q such that qð1� * � 0Þ < 1. In particular,
if x 2 ðX;DðAðaÞÞÞ1�1=p; p then Zð �; aÞx belongs to Lpðða; bÞ;XÞ. Therefore, if
x 2 ðX;DðAðaÞÞÞ1�1=p; p then u 2 W 1; pðða; bÞ;XÞ, and the asserted estimate holds.

To prove the converse, let u 2 W 1; pðða; bÞ;XÞ. If pð1� *Þ < 1, then
Zð �; aÞx 2 Lpðða; bÞ;XÞ and hence

AðaÞeð ��aÞAðaÞx 2 Lpðða; bÞ;XÞ;
so that x 2 ðX;DðAðaÞÞÞ1�1=p; p. If pð1� *Þ> 1, set q1 ¼ ð1� 1

2 *Þ
�1. Since

q1ð1� *Þ < 1, we have Zð �; aÞx 2 Lq1ðða; bÞ;XÞ and thus x 2 ðX;DðAðaÞÞÞ1�1=q1;q1 .

It follows that Zð �; aÞx 2 Lqðða; bÞ;XÞ for each q such that qð1� 3
2 *Þ < 1. If

pð1� 3
2 *Þ < 1 we have 9nished, otherwise we proceed in this way, and after n steps

(with pð1� ð12nþ 1Þ*Þ < 1) we obtain x 2 ðX;DðAðaÞÞÞ1�1=p; p. �

THEOREM 2.2. Assume that (2.1), (2.2) and (2.9) hold. Let a < b 2 R and
1 < p < þ1, and let f 2 Lpðða; bÞ;XÞ and x 2 ðX;DðAðaÞÞÞ1�1=p; p. Then the
problem

u 0ðtÞ ¼ AðtÞuðtÞ þ fðtÞ for a < t < b;

uðaÞ ¼ x;

�
ð2:16Þ

has a unique solution u 2 Eðða; bÞÞ, given by

uðtÞ ¼ Gðt; aÞuðaÞ þ
ðt
a
Gðt; 8Þfð8Þ d8 for t> a: ð2:17Þ

There is a constant Cp;b�a (independent of f and x) such that

kukW 1; pðða;bÞ;XÞ þ kAð � Þuð � ÞkLpðða;bÞ;XÞ

6Cp;b�a ðkfkLpðða;bÞ;XÞ þ kxk1�1=p; p;aÞ: ð2:18Þ

If x 2 X, then equation (2.17) gives the unique solution in the class
Cð½a; b�;XÞ \W 1; p

loc ðða; b�;XÞ with uðtÞ 2 DðAðtÞÞ a.e.

Proof. For x ¼ 0 the existence of a solution u 2 Eðða; bÞÞ was shown in Satz
4.2.6 of [39] for the case k ¼ 1 in (2.2). The proof also works for the general case,
and it can be seen that the constant Cp;b�a only depends on the length of the
interval, but not on the initial time itself. Alternatively, one can use Theorem 1 of
[32]. Now Lemma 2.1 and [2, Theorem 2.3] yield the existence for the general case
x 6¼ 0, since u is the sum of the solution to (2.16) with x ¼ 0 plus Gð �; aÞx.
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Uniqueness and formula (2.17) are shown in the usual way. Let

u 2 Cð½a; b�;XÞ \W 1; p
loc ðða; b�;XÞ

be a solution of (2.16). Fix t> 0 and " > 0; set vðsÞ ¼ Gðt; sÞuðsÞ for s 2 ½aþ "; t�.
Due to [2, Theorem 2.3], we obtain

v 0ðsÞ ¼ �Gðt; sÞAðsÞuðsÞ þGðt; sÞAðsÞuðsÞ þGðt; sÞfðsÞ ¼ Gðt; sÞfðsÞ

for a.e. s 2 ½aþ "; t�. Integrating from aþ " to t and using the continuity of v and
G, we deduce that u satis9es (2.17). �

In the next corollary we show a crucial embedding of the space Eðða; bÞÞ, de9ned
in (2.12).

COROLLARY 2.3. Assume that (2.1), (2.2) and (2.9) hold. Let a < b 2 R and
p 2 ð1;þ1Þ. If u 2 Eðða; bÞÞ then uðt0Þ 2 ðX;DðAðt0ÞÞÞ1�1=p; p for all t0 2 ½a; b�.
Moreover, for every t0 2 ½a; b� there exists a positive constant eCC ¼ eCCp;b�a such that

kuðt0Þk1�1=p; p;t0 6
eCC ðkukW 1; pðða;bÞ;XÞ þ kAð � Þuð � ÞkLpðða;bÞ;XÞÞ: ð2:19Þ

Proof. First, we assume that t0 6 b� 1. Set fðtÞ :¼ u 0ðtÞ �AðtÞuðtÞ for
t0 6 t6 t0 þ 1. The restriction of u to ½t0; t0 þ 1� is the sum of Gðt; t0Þuðt0Þ plus
the solution of the Cauchy problem

v 0ðtÞ � AðtÞvðtÞ ¼ fðtÞ for t0 < t6 t0 þ 1;
vðt0Þ ¼ 0;

�
which belongs to W 1; pððt0; t0 þ 1Þ;XÞ by Theorem 2.2. Therefore, t
7!Gðt; t0Þuðt0Þ is in W 1; pððt0; t0 þ 1Þ;XÞ, and so uðt0Þ 2 ðX;DðAðt0ÞÞÞ1�1=p; p by
Lemma 2.1. Moreover, the de9nition of the interpolation space, (2.15), (2.6), and
Theorem 2.2 imply that

kuðt0Þk1�1=p; p;t0

¼ kuðt0Þk þ kAðt0Þe�Aðt0Þuðt0ÞkLpð½t0;t0þ1�;XÞ

6 kuðt0Þk þ kAð � ÞGð �; t0Þuðt0ÞkLpð½t0;t0þ1�;XÞ þ kZð �; t0Þuðt0ÞkLpð½t0;t0þ1�;XÞ

6 c ðkAð � Þuð � ÞkLpð½t0;t0þ1�;XÞ þ kAð � Þvð � ÞkLpð½t0;t0þ1�;XÞ þ kuðt0Þk0; p;t0Þ
6 c ðkAð � Þuð � ÞkLpð½t0;t0þ1�;XÞ þ ku 0ð � ÞkLpð½t0;t0þ1�;XÞ þ kuðt0Þk0; p;t0Þ;

where 0 ¼ maxf0; 1� 1=p� 1
2 *g and the constants c only depend on the given

constants. As in the proof of Lemma 2.1, we can iterate this procedure until 0 ¼ 0.
Then the asserted estimate follows from the embedding

W 1; pððt0; t0 þ 1Þ;XÞ " Cððt0; t0 þ 1Þ;XÞÞ:

If t0 > b� 1, then we extend u and A to ½b; 2b� a� by de9ning uðtÞ :¼ uð2b� tÞ
and AðtÞ :¼ Að2b� tÞ for b6 t6 2b� a. Set fðtÞ :¼ u 0ðtÞ � AðtÞuðtÞ for
a6 t6 2b� a. If 2b� a� t0 > 1, we can conclude as above. Otherwise, we repeat
the extension until we obtain a time interval that is longer than 1, so that we can
derive the asserted estimate as before. �

PLMS 1540---30/6/2005---SRUMBAL---154116

D. DI GIORGIO, A. LUNARDI AND R. SCHNAUBELT8



Once local optimal Lp regularity results are established, we may study optimal
Lp regularity in half-lines. This is done in Theorem 2.4 for right half-lines and in
Theorem 2.5 for left half-lines, using the well-known formulas (2.22) and (2.31);
see for example, [23, xx 5.1, 5.2]. Under the assumptions of Theorem 2.4 it may
happen that the constant P0; p;t de9ned in (2.14) blows up as t! a. In xx 3 and 4
we shall assume that (2.1), (2.2), (2.7), (2.8) and (2.9) hold. As observed after
formula (2.13), in this case T > 0 is 9xed in advance and we may take a ¼ �1.

THEOREM 2.4. Assume that (2.1), (2.2) and (2.9) hold, and that Gðt; sÞ has
an exponential dichotomy on an interval ða;þ1Þ. Fix T > a. For each t0 >T ,
1 < p < þ1, f 2 Lpððt0;þ1Þ;XÞ, and x 2 X, let u be the solution of

u 0ðtÞ ¼ AðtÞuðtÞ þ fðtÞ for t > t0; uðt0Þ ¼ x: ð2:20Þ

Then u belongs to Lpððt0;þ1Þ;XÞ if and only if

P ðt0Þx ¼ �
ðþ1
t0

eGGðt0; sÞP ðsÞfðsÞ ds; ð2:21Þ

in which case it is given by

uðtÞ ¼ Gðt; t0ÞðI � P ðt0ÞÞx

þ
ðt
t0

Gðt; sÞðI � P ðsÞÞfðsÞ ds�
ðþ1
t

eGGðt; sÞP ðsÞfðsÞ ds: ð2:22Þ

If, in addition, x 2 ðX;DðAðt0ÞÞÞ1�1=p; p then u 2 Eððt0;þ1ÞÞ, and uðtÞ 2
ðX;DðAðtÞÞÞ1�1=p; p for each t> t0. Moreover, there is C1 ¼ C1ðT Þ > 0 independent
of x, f and t0, such that

kukW 1; pððt0;þ1Þ;XÞ þ kAð � Þuð � ÞkLpððt0;þ1Þ;XÞ þ sup
t> t0

kuðtÞk1�1=p; p;t

6C1

	
kxk1�1=p; p;t0 þ kfkLpððt0;þ1Þ;XÞ



: ð2:23Þ

Proof. By Theorem 2.2 the solution of (2.20) is given by the variation-of-
constants formula

uðtÞ ¼ Gðt; t0Þxþ
ðt
t0

Gðt; sÞfðsÞ ds for t0 < t:

We can thus split uðtÞ into the sum u1ðtÞ þ u2ðtÞ where

u1ðtÞ :¼ Gðt; t0ÞðI � P ðt0ÞÞx

þ
ðt
t0

Gðt; sÞðI � P ðsÞÞfðsÞ ds�
ðþ1
t

eGGðt; sÞP ðsÞfðsÞ ds;
u2ðtÞ :¼ Gðt; t0Þ

�
P ðt0Þxþ

ðþ1
t0

eGGðt0; sÞP ðsÞfðsÞ ds�:
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Using estimates (2.13)(c),(d) and Young’s inequality, we obtainðþ1
t0

kGðt; t0ÞðI � P ðt0ÞÞxkp dt

6

ðþ1
t0

N pe�p(ðt�t0Þkxkp dt ¼ N p

p(
kxkp;

ðþ1
t0

����ðt
t0

Gðt; sÞðI � P ðsÞÞfðsÞ ds
����p dt

6

��	9½0;þ1ÞNe
�(ð � Þ # 9½t0;þ1Þ kfð � ÞkX


��p
L pðR;XÞ 6N

p(�pkfkpL pððt0;þ1Þ;XÞ;ðþ1
t0

����ðþ1
t

eGGðt; sÞP ðsÞfðsÞ ds����p dt
6

��	9ð�1;0�Ne(ð � Þ # 9½t0;þ1Þ kfð � ÞkX

��p

L pðR;XÞ 6N
p(�pkfkpL pððt0;þ1Þ;XÞ;

where 9E is the characteristic function of the set E. Hence,

ku1kLpððt0;þ1Þ;XÞ6Nðp(Þ�1=pkxk þ 2N(�1kfkLpððt0;þ1Þ;XÞ: ð2:24Þ
Moreover,����P ðt0Þxþ ðþ1

t0

eGGðt0; sÞP ðsÞfðsÞ ds���� ¼ k eGGðt0; tÞu2ðtÞk6Ne�(ðt�t0Þku2ðtÞk;
and

ku2ðtÞk>N�1e(ðt�t0Þ
����P ðt0Þxþ ðþ1

t0

eGGðt0; sÞP ðsÞfðsÞ ds����
¼ N�1e(ðt�t0Þku2ðt0Þk:

Consequently, we have u2 =2Lpððt0;þ1Þ; XÞ unless u2ðt0Þ ¼ 0. Therefore,
u 2 Lpððt0;þ1Þ; XÞ if and only if u2ðt0Þ ¼ 0; that is, (2.21) holds.

Now assume that (2.21) holds, and let x 2 ðX;DðAðt0ÞÞÞ1�1=p; p. Then the

solution u is given by (2.22). We will prove that Að � Þuð � Þ 2 Lpððt0;þ1Þ;XÞ.
Using estimates (2.13)(c)(d) and (2.15), (2.5) and (2.6) again, we 9rst getðþ1

t0

kAðtÞGðt; t0ÞðI � P ðt0ÞÞxkp dt

6 2p
ðt0þ1

t0

ðkAðt0Þeðt�t0ÞAðt0ÞðI � P ðt0ÞÞxkp þ kZðt; t0ÞðI � P ðt0ÞÞxkpÞ dt

þ
ðþ1
t0þ1

kAðtÞGðt; t� 1Þk p kGðt� 1; t0ÞðI � P ðt0ÞÞxkp dt

6 2pð1þ P1�1=p; p;t0Þ
pkxkp1�1=p; p;t0

þ ð2c1�1=p; pð1þ P1�1=p; p;t0Þkxk1�1=p; p;t0Þ
p

�
ðt0þ1

t0

ðt� t0Þ*p�1 dtþ ðM1NkxkÞp
ðþ1
t0

e�p(ðt�t0�1Þ dt:

(We recall that P1�1=p; p;t0 ¼ kP ðt0ÞkLðX;ðX;DðAðt0ÞÞÞ1�1=p; pÞ). Hence there is K1 > 0
such that

kAð � ÞGð �; t0ÞðI � P ðt0ÞÞxkLpððt0;þ1Þ;XÞ 6K1kxk1�1=p; p;t0 : ð2:25Þ
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Second, we haveðþ1
t0

����AðtÞðt
t0

Gðt; sÞðI � P ðsÞÞfðsÞ ds
����p dt

6

ðt0þ1

t0

����AðtÞðt
t0

Gðt; sÞðI � P ðsÞÞfðsÞ ds
����p dt

þ
Xþ1
k¼1

ðt0þkþ1

t0þk
2p

����AðtÞðt
t0þk�1

Gðt; sÞðI � P ðsÞÞfðsÞ ds
����p dt

þ
Xþ1
k¼1

ðt0þkþ1

t0þk
2p

����AðtÞGðt; t� 1Þ
ðt0þk�1

t0

Gðt� 1; sÞðI � P ðsÞÞfðsÞ ds
����pdt:

Then the inequalities (2.18), (2.5) and (2.13)(c) imply thatðþ1
t0

����AðtÞðt
t0

Gðt; sÞðI � P ðsÞÞfðsÞ ds
����p dt

6Cp
p;1 kfk

p
L pððt0;t0þ1Þ;XÞ þ

Xþ1
k¼1

2pC p
p;2 kfk

p
L pððt0þk�1;t0þkþ1Þ;XÞ

þ
Xþ1
k¼1

2pM p
1N

p

ðt0þkþ1

t0þk

�ðt0þk�1

t0

e�(ðt�s�1ÞkfðsÞk ds
�p

dt

6 3 � 2pC p
p;2kfk

p
L pððt0;þ1Þ;XÞ þ 2pM p

1N
p

ðþ1
t0

�ðt
t0

e�(ðt�s�1ÞkfðsÞk ds
�p

dt

6

	
3 � 2pC p

p;2 þ ð2M1N(
�1e(Þp



kfkpL pððt0;þ1Þ;XÞ:

Hence there is K2 > 0 such that

kAð � Þ
ð�
t0

Gð �; sÞðI � P ðsÞÞfðsÞ dskLpððt0;þ1Þ;XÞ6K2kfkLpððt0;þ1Þ;XÞ: ð2:26Þ

Similarly, we estimate the third summand in (2.22) byðþ1
t0

����AðtÞðþ1
t

eGGðt; sÞP ðsÞfðsÞ ds����pdt
¼

ðþ1
t0

����AðtÞGðt; t� 1Þ
ðþ1
t

eGGðt� 1; sÞP ðsÞfðsÞ ds
����pdt

6

ðþ1
t0

N pM p
1

�ðþ1
t
e�(ðs�tþ1ÞkfðsÞk ds

�p

dt

6N pM p
1 (

�1e�(kfkpL pððt0;þ1Þ;XÞ:

Therefore, ����Að � Þðþ1� eGGð �; sÞP ðsÞfðsÞ ds����
Lpððt0;þ1Þ;XÞ

6NM1(
�1=pe�(=pkfkLpððt0;þ1Þ;XÞ: ð2:27Þ
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Since u is given by (2.22) and solves (2.20), the estimate

kukW 1; pððt0;þ1Þ;XÞ þ kAð � Þuð � ÞkLpððt0;þ1Þ;XÞ

6C 0
1

	
kxk1�1=p; p;t0 þ kfkLpððt0;þ1Þ;XÞ



ð2:28Þ

follows from the inequalities (2.25), (2.26) and (2.27). In order to estimate
kuðtÞk1�1=p; p;t, we apply Corollary 2.3 to the restriction of u to ½t; tþ 1�, and then
we use (2.28). So we have shown (2.23). �

THEOREM 2.5. Assume that (2.1), (2.2) and (2.9) hold, and that Gðt; sÞ has
an exponential dichotomy on an interval ð�1;�T �. Let t0 6 � T , y 2 X,
1 < p < þ1, and g 2 Lpðð�1; t0Þ;XÞ. Then the problem

v 0ðtÞ ¼ AðtÞvðtÞ þ gðtÞ for t < t0; vðt0Þ ¼ y; ð2:29Þ

has a solution v in Lpðð�1; t0Þ;XÞ if and only if

ðI � P ðt0ÞÞy ¼
ðt0
�1
Gðt0; sÞðI � P ðsÞÞgðsÞ ds; ð2:30Þ

in which case v is given by

vðtÞ ¼ eGGðt; t0ÞP ðt0Þy
þ
ðt
t0

eGGðt; sÞP ðsÞgðsÞ dsþ ðt
�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds: ð2:31Þ

Moreover, v 2W 1; pðð�1; t0Þ;XÞ, and for each t6 t0, vðtÞ 2 DðAðtÞÞ a.e. and
vðtÞ 2 ðX;DðAðtÞÞÞ1�1=p; p. There exists C2 > 0 (independent of y, f and t0) such
that

kvkW 1; pðð�1;t0Þ;XÞ þ kAð � Þvð � ÞkLpðð�1;t0Þ;XÞ þ sup
t6 t0

kvðtÞk1�1=p; p;t

6C2 ðkykX þ kgkLpðð�1;t0Þ;XÞÞ: ð2:32Þ

Proof. Let v be a solution of (2.29). For every a6 t0 the variation-of-constants
formula (2.17) gives

vðtÞ ¼ Gðt; aÞvðaÞ þ
ðt
a
Gðt; sÞgðsÞ ds for a6 t6 t0; ð2:33Þ

so that

ðI � P ðtÞÞvðtÞ ¼ Gðt; aÞðI � P ðaÞÞvðaÞ �
ða
�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds

þ
ðt
�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds:

Suppose now that v 2 Lpðð�1; t0Þ;XÞ. Since v is continuous, there exists a
sequence ðanÞn2N going to �1 such that limn!þ1 vðanÞ ¼ 0. Taking a ¼ an in the

PLMS 1540---30/6/2005---SRUMBAL---154116

D. DI GIORGIO, A. LUNARDI AND R. SCHNAUBELT12



above expression, we obtain

ðI � P ðtÞÞvðtÞ �
ðt
�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds

¼ Gðt; anÞðI � P ðanÞÞvðanÞ �
ðan
�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds ð2:34Þ

for every n 2 N and t> an. Estimate (2.13)(c) yields����Gðt; anÞðI � P ðanÞÞvðanÞ � ðan
�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds

����
6Ne�(ðt�anÞkvðanÞk þ

ðan
�1
Ne�(ðt�sÞkgðsÞk ds:

Therefore, letting n! þ1 in (2.34), we deduce that

ðI � P ðtÞÞvðtÞ ¼
ðt
�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds ð2:35Þ

for every t6 t0. If we take t ¼ t0, identity (2.30) follows.
Suppose now that (2.30) holds. Then the function v de9ned by (2.31) satis9es

(2.33), as is easy to check, and vðt0Þ ¼ y, so that v solves (2.29). Let us verify that
v 2 Lpðð�1; t0Þ;XÞ. Using (2.13)(c) and Young’s inequality as in Theorem 2.4,
we obtain����ð��1Gð �; sÞðI � P ðsÞÞgðsÞ ds

����
Lpðð�1;t0Þ;XÞ

6N(�1kgkLpðð�1;t0Þ;XÞ; ð2:36Þ

and hence ðI � P ð � ÞÞvð � Þ 2 Lpðð�1; t0Þ;XÞ. In order to estimate P ðtÞvðtÞ for
t6 t0, we 9rst apply P ðtÞ to both sides of (2.33) and then use the inverse of
Gðt0; tÞjP ðtÞðXÞ:

P ðtÞvðtÞ ¼ P ðtÞGðt; aÞvðaÞ þ P ðtÞ
ðt
a
Gðt; sÞgðsÞ ds

¼ eGGðt; t0Þ�P ðt0ÞGðt0; aÞvðaÞ þ ðt0
a
Gðt0; sÞP ðsÞgðsÞ ds

�
þ
ðt
t0

eGGðt; sÞP ðsÞgðsÞ ds
¼ eGGðt; t0ÞP ðt0Þyþ ðt

t0

eGGðt; sÞP ðsÞgðsÞ ds
where we have again employed (2.33) for t ¼ t0. As in the proof of Theorem 2.4,
estimate (2.13)(d) and Young’s inequality yield

kP ð � Þvð � ÞkLpðð�1;t0Þ;XÞ 6Nðp(Þ�1=pkyk þN(�1kgkLpðð�1;t0Þ;XÞ: ð2:37Þ

Estimates (2.36) and (2.37) now imply that v 2 Lpðð�1; t0Þ;XÞ.
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In order to prove the second part of the statement we have to control
kAð � Þvð � ÞkLpðð�1;t0Þ;XÞ. Arguing as in Theorem 2.4, we deriveðt0

�1
kAðtÞ eGGðt; t0ÞP ðt0Þykp dt

6

ðt0
�1

kAðtÞGðt; t� 1Þkp k eGGðt� 1; t0ÞP ðt0Þykp dt

6

ðt0
�1
Mp

1N
pe�p(ðt0�tþ1Þkykp dt;

kAð � Þ eGGð �; t0ÞP ðt0ÞykLpðð�1;t0Þ;XÞ 6M1Nðp(Þ�1=pe(kyk:

9>>>>>>>>>>>=>>>>>>>>>>>;
ð2:38Þ

Similarly, we obtainðt0
�1

����AðtÞðt
t0

eGGðt; sÞP ðsÞgðsÞ ds����pdt
6Mp

1N
pk9R�e

(ð ��1Þ # 9ð�1;t0�kgð � Þk kpL pðð�1;t0Þ;XÞ

6 ðM1N(
�1e�(kgkLpðð�1;t0Þ;XÞÞp;����Að � Þð�

t0

eGGð �; sÞP ðsÞgðsÞ ds����
Lpðð�1;t0Þ;XÞ

6M1N(
�1e�(kgkLpðð�1;t0Þ;XÞ:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
ð2:39Þ

Finally, to estimate the Lp norm of Að � Þ
Ð �
�1Gð �; sÞðI � P ðsÞÞgðsÞ ds, we have

again to split it into a series and use Theorem 2.2 on local Lp-maximal regularity.
So we getðt0

�1

����AðtÞðt�1Gðt; sÞðI � P ðsÞÞgðsÞ ds
����p dt

6

Xþ1
k¼0

ðt0�k
t0�k�1

2p
����AðtÞðt0�k�2

�1
Gðt; sÞðI � P ðsÞÞgðsÞ ds

����p dt
þ
Xþ1
k¼0

ðt0�k
t0�k�1

2p
����AðtÞðt

t0�k�2
Gðt; sÞðI � P ðsÞÞgðsÞ ds

����p dt
6

Xþ1
k¼0

ðt0�k
t0�k�1

2pM p
1

����ðt0�k�2

�1
Gðt� 1; sÞðI � P ðsÞÞgðsÞ ds

����p dt
þ
Xþ1
k¼0

Cp
p;22

pkgkpL pððt0�k�2;t0�kÞ;XÞ

6 ð2M1NÞp k9Rþe
�(ð ��1Þ # 9ð�1;t0�kgð � Þk kpL pðR;XÞ þ 2Cp

p;22
p kgkpL pðð�1;t0Þ;XÞ

6 ð2M1NÞp(�pep(kgkpL pðð�1;t0Þ;XÞ þ 2pþ1Cp
p;2kgk

p
L pðð�1;t0Þ;XÞ:

Thus there is K3 > 0 such that����Að � Þð��1Gð �; sÞðI � P ðsÞÞgðsÞ ds
����
Lpðð�1;t0Þ;XÞ

6K3kgkLpðð�1;t0Þ;XÞ: ð2:40Þ

Since v is given by (2.31) and solves (2.29), the inequalities (2.38), (2.39), (2.40),
(2.19) and Corollary 2.3 imply (2.32), as in the proof of the previous theorem. �
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COROLLARY 2.6. Assume that (2.1), (2.2) and (2.9) hold and let
1 < p < þ1. Then there is a real number ; such that the equation ;uþ Lu ¼ f
has a unique solution u 2 DðLÞ for each f 2 LpðR;XÞ, given by

uðtÞ ¼
ðt
�1
e�;ðt�sÞGðt; sÞfðsÞ ds for t 2 R:

Moreover, there is a constant C3 such that, for u 2 DðLÞ,
kukW 1; pðR;XÞ þ kAð � Þuð � ÞkLpðR;XÞ 6C3 kfkLpðR;XÞ:

Proof. By (2.5) there is a ;> 0 such that e�;ðt�sÞGðt; sÞ is exponentially
stable. Theorem 2.5 for AðtÞ � ;I and P ðtÞ � 0 then easily implies the
assertions. �

3. Properties of the operator L
Throughout this section fAðtÞ : t 2 Rg is a family of operators satisfying

assumptions (2.1), (2.2), (2.7), (2.8) and (2.9), Gðt; sÞ is the associated evolution
operator, and L is the operator de9ned in (2.11) with p 2 ð1;þ1Þ. In particular,
Gðt; sÞ has exponential dichotomies on ð�1;�T � and ½T;þ1Þ with projections
P ðtÞ, for some T > 0. The stable and unstable subspaces are de9ned as usual; cf.
[1, 20].

DEFINITION 3.1. Let t0 2 R. We de9ne the stable space at t0 by

Wsðt0Þ :¼
n
x 2 X : lim

t!þ1
Gðt; t0Þx ¼ 0

o
;

and the unstable space at t0 by

Wuðt0Þ :¼
n
x 2 X : 9 u 2 C1ðð�1; t0�;XÞ such that uðtÞ 2 DðAðtÞÞ; t6 t0;

u 0ðtÞ ¼ AðtÞuðtÞ; Að � Þuð � Þ 2 Cðð�1; t0�;XÞ;

uðt0Þ ¼ x; lim
t!�1

uðtÞ ¼ 0
o
:

LEMMA 3.2. The following statements hold true:
(i) for each t0 >T , W

sðt0Þ ¼ ðI � P ðt0ÞÞðXÞ; for each t0 6 � T , Wuðt0Þ ¼
P ðt0ÞðXÞ;

(ii) for each t0 >T , W
sðt0Þ ¼ fx 2 X : Gð �; t0Þx 2 Lpððt0;þ1Þ;XÞg;

(iii) for each t0 6 � T , Wuðt0Þ ¼ fx 2 X : 9 u 2W 1; pðð�1; t0Þ;XÞ with uðtÞ 2
DðAðtÞÞ and u 0ðtÞ ¼ AðtÞuðtÞ a.e., uðt0Þ ¼ xg

(iv) for each t; t0 2 R with t> t0, Gðt; t0ÞWsðt0Þ " WsðtÞ;
(v) for each t; t0 2 R with t> t0, Gðt; t0ÞWuðt0Þ ¼WuðtÞ;
(vi) for each t0 2 R, Wsðt0Þ is closed.

Proof. The 9rst assertion in (i) follows directly from the exponential
dichotomy on ½T;þ1Þ. For the second one, let x ¼ uðt0Þ 2 Wuðt0Þ with u as in
De9nition 3.1. Then uðt0Þ ¼ Gðt0; tÞuðtÞ and

kðI � P ðt0ÞÞuðt0Þk ¼ kGðt0; tÞðI � P ðtÞÞuðtÞk6Ne�(ðt0�tÞkuk1
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for all t6 t0 6 � T . Letting t! �1 we see that x 2 P ðt0ÞðXÞ. The other
inclusion is clear. The remaining assertions can be shown exactly as Proposition
3.2 in [20], now using Theorems 2.4 and 2.5. �

To study the operator L, it is useful to introduce the realizations of the
operator u 7!u 0 � Að � Þu in spaces on half-lines; that is,

Lþ : DðLþÞ ¼ EððT;þ1ÞÞ ! LpððT;þ1Þ;XÞ;

ðLþuÞðtÞ ¼ u 0ðtÞ �AðtÞuðtÞ for t > T:
ð3:1Þ

L� : DðL�Þ ¼ Eðð�1; T ÞÞ ! Lpðð�1; T Þ;XÞ;

ðL�uÞðtÞ ¼ u 0ðtÞ �AðtÞuðtÞ for t < T:
ð3:2Þ

Theorems 2.4 and 2.5 allow us to introduce right inverses Rþ on LpððT;þ1Þ;XÞ
and R� on Lpðð�1; T Þ;XÞ for Lþ and L�, respectively:

ðRþhÞðtÞ ¼ �
ðþ1
t

eGGðt; sÞP ðsÞhðsÞ dsþ ðt
T
Gðt; sÞðI � P ðsÞÞhðsÞ ds;

for t>T ;

ð3:3Þ

ðR�hÞðtÞ ¼

ðt
�1
Gðt; sÞðI � P ðsÞÞhðsÞ dsþ

ðt
�T

eGGðt; sÞP ðsÞhðsÞ ds;
for t6 � T;ð�T

�1
Gðt; sÞðI � P ðsÞÞhðsÞ dsþ

ðt
�T
Gðt; sÞhðsÞ ds;

for �T 6 t6T:

8>>>>>>><>>>>>>>:
ð3:4Þ

PROPOSITION 3.3. The following statements hold:
(i) Rþ is a bounded operator from LpððT;þ1Þ;XÞ to DðLþÞ, and we have

LþRþh ¼ h for each h 2 LpððT;þ1Þ;XÞ;
(ii) R� is a bounded operator from Lpðð�1; T Þ;XÞ to DðL�Þ, and we have

L�R�h ¼ h for each h 2 Lpðð�1; T Þ;XÞ.

Proof. Statement (i) is an immediate consequence of Theorem 2.4, since Rþh
coincides with the solution u of (2.20) with t0 ¼ T , x ¼ �

Ðþ1
T

eGGðT; sÞP ðsÞhðsÞ ds,
and f ¼ h, given by formula (2.22).

Concerning statement (ii), let h 2 Lpðð�1; T Þ;XÞ. By Theorem 2.5, the
restriction of R�h to ð�1;�T Þ belongs to Eðð�1;�T ÞÞ, its norm in this space
is less than C khkLpðð�1;�T Þ;XÞ, and ðR�hÞ 0ðtÞ ¼ AðtÞR�hðtÞ þ hðtÞ for almost all
t < �T . So Corollary 2.3 yields ðR�hÞð�T Þ 2 ðX;DðAð�T ÞÞÞ1�1=p; p and

kðR�hÞð�T ÞkðX;DðAð�T ÞÞÞ1�1=p; p
6CkhkLpðð�1;�T Þ;XÞ:

Theorem 2.2 thus implies that the restriction of R�h to ½�T; T � is contained in
Eð½�T; T �Þ, that its norm in Eð½�T; T �Þ is bounded by

CðkhkLpðð�T;T Þ;XÞ þ kðR�hÞð�T ÞkðX;DðAð�T ÞÞÞ1�1=p; p
Þ;

and that ðR�hÞ 0ðtÞ ¼ AðtÞR�hðtÞ þ hðtÞ for almost all t 2 ð�T; T Þ. The assertion
follows once the restrictions of R�h to ð�1;�T � and to ½�T; T � have been
patched together. �
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The following trace lemma is taken from [20], where it was used in the C�

setting. The same construction works in the Lp setting.

LEMMA 3.4. For every w0 2 P ðT ÞðXÞ there exists u0 2 DðLÞ such that
ðRþu0ÞðT Þ ¼ w0, ðR�u0ÞðT Þ ¼ 0, and ku0kDðLÞ 6Kkw0k, where K> 0 is a constant
independent of w0.

Proof. Let ’ 2 C1
0 ðRÞ be such that

k’k1 6 1; ’ðtÞ ¼ 0 for t6T;

ðþ1
T
’ðsÞ ds ¼ �1;

and set

u0ðtÞ :¼ ’ðtÞGðt; T Þw0 for t>T; u0ðtÞ :¼ 0 for t6T:

Then u0 2 DðLÞ and there exists a constant K> 0 such that ku0kDðLÞ 6Kkw0k.
Finally, Rþu0ðT Þ ¼ w0 and R�u0ðT Þ ¼ 0. �

At this point, we have all the tools to extend the results of [20] to our situation.

PROPOSITION 3.5. (i) We have

KerLþ ¼ fu : uðtÞ ¼ Gðt; T Þx for t>T ;

x 2 ðI � P ðT ÞÞðXÞ \ ðX;DðAðT ÞÞ1�1=p;pg:

(ii) We have

KerL� ¼ fu : uðtÞ ¼ Gðt;�T Þx for � T 6 t6T ;

uðtÞ ¼ eGGðt;�T Þx for t6 � T ; x 2 P ð�T ÞðXÞg:

(iii) The kernel of L is the set of the functions u : R 7!X that may be
represented as

uðtÞ ¼
eGGðt;�T Þx for t6 � T;
uðtÞ ¼ Gðt;�T Þx for t> � T;

(

where x 2 P ð�T ÞðXÞ is such that GðT;�T Þx 2 ðI � P ðT ÞÞðXÞ. Consequently, it
is isomorphic to fx 2 P ð�T ÞðXÞ : GðT;�T Þx 2 ðI � P ðT ÞÞðXÞg :¼ Z, with iso-
morphism u 7!uð�T Þ.

(iv) RangeL ¼ fh 2 LpðR;XÞ : RþhðT Þ �R�hðT Þ 2WsðT Þ þWuðT Þg.
(v) RangeL ¼ fh 2 LpðR;XÞ : RþhðT Þ �R�hðT Þ 2WsðT Þ þWuðT Þg.

Proof. Assertions (i) and (ii) are consequences of Lemma 3.2 and Theorems
2.4 and 2.5.

Part (iii) follows from (i) and (ii): the restrictions to ½T;þ1Þ and to ð�1; T � of
any u 2 KerL belong to KerLþ and to KerL�, respectively. Therefore uðT Þ ¼
GðT;�T Þuð�T Þ 2 ðI � P ðT ÞÞðXÞ and uð�T Þ 2 P ð�T ÞðXÞ, that is, uð�T Þ 2 Z,
and u has the asserted representation. Conversely, each x 2 Z allows one to de9ne
a unique element u 2 KerL with uð�T Þ ¼ x as in the claim.
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To prove (iv), let h ¼ Lu for some u 2 DðLÞ. Restricting this equation to half-
lines, we deduce from Proposition 3.3 that

u ¼ Rþhþ vþ on ½T;þ1Þ;
R�hþ v� on ð�1; T �;

�
for some v� in the kernel of L�. Thus

ðRþhÞðT Þ � ðR�hÞðT Þ ¼ v�ðT Þ � vþðT Þ 2WuðT Þ þWsðT Þ

by (i) and (ii). Conversely, let h 2 LpðR;XÞ with

ðRþhÞðT Þ � ðR�hÞðT Þ ¼ xs þ xu 2WsðT Þ þWuðT Þ:

Corollary 2.3 yields ðRþhÞðT Þ; ðR�hÞðT Þ 2 ðX;DðAðT ÞÞÞ1�1=p; p. Since xu 2 DðAðT ÞÞ
by Lemma 3.2(iv), we have xs 2 ðX;DðAðT ÞÞÞ1�1=p; p. We now de9ne

uðtÞ ¼
�Gðt; T Þxs þ ðRþhÞðtÞ for t>T;euuðtÞ þ ðR�hÞðtÞ for t6T;

�
where euuðT Þ ¼ xu for a function euu as in De9nition 3.1. It is easy to see that
u 2 DðLÞ and Lu ¼ h. Assertion (v) follows from (iv) and Lemma 3.4 as in
Proposition 3.7 of [20]. �

We recall the de9nitions of semi-Fredholm and Fredholm operators, and of
semi-Fredholm and Fredholm couples of subspaces.

DEFINITION 3.6. Let E and F be Banach spaces. We say that a closed linear
operator A : DðAÞ " E ! F is a semi-Fredholm operator if RangeA is closed and
if at least one of the dimensions dimKerA and codimRange A is 9nite. If both
dimensions are 9nite, we say that A is a Fredholm operator. The index of a semi-
Fredholm operator A is de9ned by

indA :¼ dimKerA� codimRangeA:

DEFINITION 3.7. Let V and W be subspaces of a Banach space E. We say
that ðV;W Þ is a semi-Fredholm couple if V þW is closed and if at least one of the
dimensions dimðV \W Þ and codimðV þW Þ is 9nite. If both dimensions are 9nite,
we say that ðV;W Þ is a Fredholm couple. The index of a semi-Fredholm couple
ðV;W Þ is de9ned by

indðV;W Þ :¼ dimðV \WÞ � codimðV þW Þ:

Now we are able to describe the properties of L in terms of properties of the
subspaces WsðT Þ and WuðT Þ, arguing exactly as in Theorem 3.10 in [20] and its
corollaries and using the above results.

THEOREM 3.8. Assume that (2.1), (2.2), (2.7), (2.8) and (2.9) are satis�ed.
Then the following assertions hold.

(i) Range L is closed if and only if WsðT Þ þWuðT Þ is closed.
(ii) The operator L is surjective if and only if WsðT Þ þWuðT Þ ¼ X.
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(iii) We have dimðKerLÞ ¼ dimðWsðT Þ \WuðT ÞÞ þ dimðKerGðT;�T ÞjP ð�T ÞðXÞÞ.
Consequently, if L is one-to-one, then

WsðT Þ \WuðT Þ ¼ KerGðT;�T ÞjP ð�T ÞðXÞ ¼ f0g:

If GðT;�T ÞjP ð�T ÞðXÞ is one-to-one and WsðT Þ \WuðT Þ ¼ f0g, then L is one-to-
one.

(iv) If L is invertible, then WsðT Þ %WuðT Þ ¼ X. If GðT;�T ÞjP ð�T ÞðXÞ is one-to-
one and WsðT Þ %WuðT Þ ¼ X, then L is invertible.

(v) If L is a semi-Fredholm operator, then ðWsðT Þ;W uðT ÞÞ is a semi-Fredholm
couple and

codimðWsðT Þ þWuðT ÞÞ ¼ codimðRangeLÞ; indðWsðT Þ;W uðT ÞÞ6 indL: ð3:5Þ

If, in addition, the kernel of GðT;�T ÞjP ð�T ÞðXÞ is �nite dimensional, then

indðWsðT Þ;W uðT ÞÞ ¼ indL � dimKerGðT;�T ÞjP ð�T ÞðXÞ: ð3:6Þ

Conversely: if ðWsðT Þ;W uðT ÞÞ is a semi-Fredholm couple and the kernel of
GðT;�T ÞjP ð�T ÞðXÞ is �nite dimensional, then L is a semi-Fredholm operator and
(3.6) holds. If ðWsðT Þ;W uðT ÞÞ is a Fredholm couple, then L is semi-Fredholm and
(3.5) holds; if in addition the kernel of GðT;�T ÞjP ð�T ÞðXÞ is �nite dimensional, then
L is a Fredholm operator and (3.6) holds.

Concerning the kernel of GðT;�T ÞjP ð�T ÞðXÞ, we remark that, in general, a
para_bolic evolution operator Gðt; sÞ is not one-to-one. See for example [29].
Su4cient conditions for backward uniqueness are known: see [7, 12] for abstract
evolution operators in Hilbert spaces, and [41] for evolution operators associated
to speci9c parabolic partial di/erential operators. But a satisfactory description of
the kernel of Gðt; sÞ (or of some restriction of Gðt; sÞ) under general assumptions
does not exist in the literature, and it constitutes an important open problem.

As a consequence of Theorem 3.8, we recover a characterization of the
Fredholm property of L given in [26]. We further give simple su4cient conditions
for L to be a Fredholm operator; cf. [20].

PROPOSITION 3.9. Under the assumptions of Theorem 3.8, de�ne the
operator

N : P ð�T ÞðXÞ 7!P ðT ÞðXÞ; Nx :¼ P ðT ÞGðT;�T Þx:

Then L is a semi-Fredholm (respectively, Fredholm) operator if and only if N is a
semi-Fredholm (respectively, Fredholm) operator. If this is the case, we have
dimKerL ¼ dimKerN and codimRangeL ¼ codimRangeN , so that L and N
have the same index.

Proof. Statement (iii) of Proposition 3.5 implies that the kernel of L is
isomorphic to the kernel of N , an isomorphism being u 7! uð�T Þ.

Now we prove that the range of L is closed if and only if the range of N is
closed. By Theorem 3.8, it is enough to prove that WsðT Þ þWuðT Þ is closed if
and only if the range of N is closed.
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Let xn ¼ P ðT ÞGðT;�T Þyn, with yn 2 P ð�T ÞðXÞ, converge to x 2 P ðT ÞðXÞ as
n! þ1. Then

xn ¼ GðT;�T Þyn � ðI � P ðT ÞÞGðT;�T Þyn;

where GðT;�T Þyn 2WuðT Þ by Lemma 3.2(i)+(v), and ðI � P ðT ÞÞGðT;�T Þyn 2
WsðT Þ by Lemma 3.2(i). Therefore xn 2 WsðT Þ þWuðT Þ. If WsðT Þ þWuðT Þ is
closed, then x 2WsðT Þ þWuðT Þ, and again by Lemma 3.2 we obtain x ¼
ðI � P ðT ÞÞzþGðT;�T ÞP ð�T Þy for some z; y 2 X. From x 2 P ðT ÞðXÞ we deduce
that x ¼ P ðT ÞGðT;�T ÞP ð�T Þy, so that x 2 Range N .

The converse is similar: if xn 2WsðT Þ þWuðT Þ converges to x 2 X, by Lemma
3.2, xn ¼ ðI � P ðT ÞÞzn þGðT;�T ÞP ð�T Þyn for some zn; yn 2 X, and P ðT Þxn ¼
P ðT ÞGðT;�T ÞP ð�T Þyn 2 Range N converges to P ðT Þx as n! þ1. If the range
of N is closed, then P ðT Þx ¼ P ðT ÞGðT;�T Þw for some w 2 P ð�T ÞðXÞ, so that
x ¼ ðI � P ðT ÞÞðx�GðT;�T ÞwÞ þGðT;�T Þw 2WsðT Þ þWuðT Þ by Lemma 3.2.

Similar arguments show that the mapping ½x� 7! ½P ðT Þx�, from the quotient
space X=ðWsðT Þ þWuðT ÞÞ to the quotient space P ðT ÞðXÞ=NðP ð�T ÞðXÞÞ, is
an isomorphism. �

COROLLARY 3.10. If dimPþ1ðXÞ <1 and dimP�1ðXÞ <1 then L is
Fredholm with index

indL ¼ dimP�1ðXÞ � dimPþ1ðXÞ:

COROLLARY 3.11. If the embeddings DðAþ1Þ,!X and DðA�1Þ,!X are
compact, then L is a Fredholm operator with index

indL ¼ dimP�1ðXÞ � dimPþ1ðXÞ:

Proposition 3.5 provides us with a convenient description of the kernel of L. For
many applications, for example, in the proof of Proposition 4.4 below, it is
important to determine the range of L in a similar way via duality. This task is
simpli9ed by the fact that LpðR;XÞ is reOexive and has the dual LqðR; X#Þ with
q ¼ p=ðp� 1Þ. (Recall that (2.9) implies that X is reOexive.) If L has closed range,
then

RangeL ¼ ðKerL#Þ? :¼
�
h 2 LpðR;XÞ :

ð
R

hv dx ¼ 0 8 v 2 KerL#
�

ð3:7Þ

by formulas (III.5.10) and (III.1.24) in [24]. In order to determine L#, we introduce
the so-called evolution semigroup

ðT ðtÞfÞ ðsÞ ¼ Gðs; s� tÞfðs� tÞ; where s 2 R; f 2 LpðR;XÞ; t> 0;

on LpðR;XÞ; cf. [13, 26, 37, 38]. By (2.5), there is a number ;> 0 such that
e�;ðt�sÞGðt; sÞ is exponentially stable. Then it is easy to verify that T ð � Þ is a
C0-semigroup.

PROPOSITION 3.12. Let G be the in�nitesimal generator of the semigroup T ðtÞ
de�ned above. Then G ¼ �L.
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Proof. The resolvent ð; � GÞ�1 is given by

ðð; � GÞ�1fÞ ðtÞ ¼
ðþ1
0
e�;rðT ðrÞfÞðtÞ dr ¼

ðt
�1
e�;ðt�sÞGðt; sÞfðsÞ ds

for f 2 LpðR; XÞ and a.e. t 2 R. Combining this equality with Corollary 2.6, we
see that the statement follows. �

As a result, �L# generates the adjoint C0-semigroup T ð � Þ# on LqðR; X#Þ.
Hence, the kernel of L# is the space of functions g 2 LqðR;X#Þ such that T ð � Þ#g ¼ g
for each t > 0. Since

ðT ðtÞ#gÞ ðsÞ ¼ Gðsþ t; sÞ#gðsþ tÞ for s 2 R; g 2 LqðR; X#Þ; t> 0;

we deduce that

KerL# ¼ fv 2 LqðR; X#Þ : vðsÞ ¼ Gðt; sÞ#vðtÞ 8 t> sg: ð3:8Þ

So we have shown the following result.

PROPOSITION 3.13. Assume that (2.1), (2.2) and (2.9) hold and that L has a
closed range (for example, if L is semi-Fredholm). Then the range of L is equal to
the space�

h 2 LpðR;XÞ :
ð
R

hv dx ¼ 0 8 v 2 LqðR; X#Þ with vðsÞ ¼ Gðt; sÞ#vðtÞ 8 t> s
�
:

One can see that the so-called ‘complete adjoint trajectories’ v (that is, the
functions satisfying vðsÞ ¼ Gðt; sÞ#vðtÞ for t> s) solve the dual evolution equation

�v 0ðsÞ ¼ AðsÞ#vðsÞ for s 2 R; ð3:9Þ

in a weak sense. The function v is a classical solution of (3.9) if, in addition, the
adjoint operators AðtÞ# satisfy the Acquistapace--Terreni conditions (2.1) and
(2.2); cf. [3, Proposition 2.9].

4. Perturbations

Let Að � Þ satisfy assumptions (2.1), (2.2), (2.9), and let BðtÞ : DðBðtÞÞ � X ! X
be a family of operators such that DðAðtÞÞ � DðBðtÞÞ and

kBðtÞxk6 akAðtÞxk þ bkxk; with x 2 DðAðtÞÞ and t 2 R; ð4:1Þ

for some constants a; b> 0. We introduce the operator

eLL : DðLÞ ! LpðR; XÞ; ðeLLuÞðtÞ :¼ u 0ðtÞ �AðtÞuðtÞ � BðtÞuðtÞ for t 2 R:

Suppose that L is a Fredholm operator. Then the question arises under which
assumptions on BðtÞ the operator eLL is Fredholm as well. We give three answers,
one for small perturbations BðtÞ and two more in the case of relatively
compact perturbations.
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4.1. Small AðtÞ-bounded perturbations

We 9rst provide conditions on BðtÞ such that the operators AðtÞ þ BðtÞ inherit
(2.1), (2.2) and (2.9) from AðtÞ.

LEMMA 4.1. Assume that (2.1), (2.2) and (4.1) hold with a < ð1þKÞ�1. Let
the mapping R 3 t 7!BðtÞRð!;AðtÞÞ 2 LðXÞ be uniformly H€oolder continuous.
Then the operators AðtÞ þ BðtÞ with domain DðAðtÞÞ, where t 2 R, satisfy (2.1)
and (2.2) (possibly with di-erent constants). If, in addition, (2.9) holds and
a < ðð1þKÞð1þRÞÞ�1 (with R from (2.10)), then AðtÞ þ BðtÞ satis�es (2.9)
(possibly with di-erent constants).

Proof. Fix 7 2 ðað1þKÞ; 1Þ. It is well known that for su4ciently large ;>!
and eAAðtÞ ¼ AðtÞ � ;I we have

kBðtÞRð'; eAAðtÞÞk6 7 and Rð'; eAAðtÞ þ BðtÞÞ ¼ Rð'; eAAðtÞÞ ½I � BðtÞRð'; eAAðtÞÞ��1

for ' 2 P0;" and t 2 R. Thus (2.1) holds for AðtÞ þ BðtÞ. Observe that

ðI � Rð'; eAAðtÞÞBðtÞÞ�1 ¼ I þRð'; eAAðtÞÞ½I �BðtÞRð'; eAAðtÞÞ��1BðtÞ 2 LðDðAðtÞÞÞ;
Rð'; eAAðtÞ þBðtÞÞ ¼ �

I þ Rð'; eAAðtÞÞ½I �BðtÞRð'; eAAðtÞÞ��1BðtÞ
�
Rð'; eAAðtÞÞ:

These equalities yield

ð eAAðtÞ þ BðtÞÞRð'; eAAðtÞ þBðtÞÞ ½ð eAAðtÞ þ BðtÞÞ�1 � ð eAAðsÞ þ BðsÞÞ�1�
¼ ð eAAðtÞ þ BðtÞÞ�I þ Rð'; eAAðtÞÞ½I � BðtÞRð'; eAAðtÞÞ��1BðtÞ

� eAAðtÞ�1

� eAAðtÞRð'; eAAðtÞÞ� eAAðtÞ�1½ðI þ BðtÞ eAAðtÞ�1Þ�1 � ðI þBðsÞ eAAðsÞ�1Þ�1�
þ ð eAAðtÞ�1 � eAAðsÞ�1ÞðI þ BðsÞ eAAðsÞ�1Þ�1

�
for ' 2 P0;" and t 6¼ s 2 R. Since R 3 t 7! ðI þBðtÞ eAAðtÞ�1Þ�1 2 LðXÞ is uniformly
bounded and H€oolder continuous, we obtain (2.2) for AðtÞ þBðtÞ. The last
assertion is a direct consequence of [17, Proposition 4.3] or [25, Corollary 6.8]; see
also [42, Remark 4.5]. (Possibly one has to increase ;.) �

THEOREM 4.2. Assume that (2.1), (2.2), (2.9) and (4.1)holdwitha < ðð1þKÞ �
ð1þRÞÞ�1 (where R is given by (2.10)) and that R 3 t 7!BðtÞRð!;AðtÞÞ 2 LðXÞ is
uniformly H€oolder continuous. Suppose that L is a Fredholm operator. If a and b
from (4.1) are small enough, then eLL is a Fredholm operator with the same index
as L.

Proof. Combining estimate (4.1) with Corollary 2.6, we obtain

kBð � Þuð � ÞkLpðR;XÞ6 akAð � Þuð � ÞkLpðR;XÞ þ bkukLpðR;XÞ

6 aC3kLukLpðR;XÞ þ ðaC3; þ bÞkukLpðR;XÞ:

Now Theorem IV.5.22 of [24] shows that there exists C > 0 such that if

bþ aC3; þ aC3C < C;

then eLL is a Fredholm operator with the same index. �
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4.2. Relatively compact perturbations

Again we start with a perturbation result for our basic assumptions.

LEMMA 4.3. Assume that AðtÞ, for t 2 R, are densely de�ned and satisfy
(2.1), (2.2) and (2.7). Suppose that BðtÞ, for t 2 R, ful�ll (4.1) and that
BðtÞRð!;AðtÞÞ 2 LðXÞ are compact and uniformly H€oolder continuous for t 2 R

and converge in LðXÞ to operators B�1Rð!;A�1Þ as t! �1. Then the
operators AðtÞ þ BðtÞ with domain DðAðtÞÞ, for t 2 R, satisfy (2.1) and (2.2),
possibly with di-erent constants. If also (2.9) holds, then AðtÞ þ BðtÞ satisfy (2.9),
possibly with di-erent constants.

Proof. Replacing AðtÞ by AðtÞ � !I, we may suppose that ! ¼ 0. Let 7 2 ð0; 12 �
and set " ¼ 7ð3K þ 5Þ�1. Let t 2 R, and x 2 DðAðtÞÞ with kxk þ kAðtÞxk6 1.
Then we have

kRð';AðtÞÞBðtÞxk6 Kmaxfa; bg
j'j 6 "; ð4:2Þ

for ' 2 P;;" provided that ; is su4ciently large, say ;> ;1ð7Þ > 0. By assumption
there exist �1 ¼ t1 < t2 < . . . < tn�1 < tn ¼ þ1 such that for each t 2 R we 9nd
tk with

kBðtÞAðtÞ�1 � BðtkÞAðtkÞ�1k6 ":

Since the operators BðtiÞAðtiÞ�1, for i ¼ 1; . . . ; n, are compact, there exist vectors
y1; . . . ; ym 2 X such that for t and x as above there is an index j 2 f1; . . . ;mg
with

kBðtkÞAðtkÞ�1AðtÞx� yjk6 ":

Further observe that esAð8Þyj ! yj as s! 0 uniformly in 8 2 R due to our
assumptions and the Trotter--Kato theorem; [24, Theorem IX.2.16]. Therefore

kyj � yjrk6 "; where yjr :¼
1

r

ðr
0
esAðtÞyj ds;

for some r 2 ð0; 1� not depending on t and j. Combining these facts, we deduce
that

kAðtÞRð';AðtÞÞBðtÞxk6 kAðtÞRð';AðtÞÞðBðtÞAðtÞ�1 �BðtkÞAðtkÞ�1ÞAðtÞxk
þ kAðtÞRð';AðtÞÞðBðtkÞAðtkÞ�1AðtÞx� yjÞk
þ kAðtÞRð';AðtÞÞðyj � yj;rÞk
þ kRð';AðtÞÞðerAðtÞyj � yjÞ=rk

6 3ð1þKÞ"þ c7 j'j�1

for a constant c7 not depending on x, t, ' as above. Taking a su4ciently large
; ¼ ;ð7Þ> ;1ð7Þ, we thus obtain

kAðtÞRð';AðtÞÞBðtÞxk6 ð3K þ 4Þ" ð4:3Þ

for all t 2 R and x 2 DðAðtÞÞ with kxk þ kAðtÞxk6 1, and ' 2 P;;". We set
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eAAðtÞ ¼ AðtÞ � ;I. Combining (4.2) and (4.3), we conclude that

kRð'; eAAðtÞÞBðtÞkLðDðAðtÞÞÞ 6 76
1
2 ð4:4Þ

for t 2 R and ' 2 P0;", where DðAðtÞÞ is endowed with the graph norm. In
particular, there exist the resolvent operators

Rð'; eAAðtÞ þBðtÞÞ ¼ X1
n¼0

½Rð'; eAAðtÞÞBðtÞ�nRð'; eAAðtÞÞ; ð4:5Þ

and (2.1) holds for AðtÞ þ BðtÞ. We further have

CðtÞ :¼ ðI þ BðtÞ eAAðtÞ�1Þ�1 ¼ I � BðtÞ½I þ eAAðtÞ�1BðtÞ��1 eAAðtÞ�1:

The operators CðtÞ 2 LðXÞ are uniformly bounded by (4.4), and due to

CðtÞ � CðsÞ ¼ CðtÞ½BðsÞ eAAðsÞ�1 �BðtÞ eAAðtÞ�1�CðsÞ

the map t 7!CðtÞ 2 LðXÞ is globally H€oolder continuous. Now one can show (2.2)
as in the proof of Lemma 4.1.

To establish the second assertion, take 7 < ð1þ RÞ�1 and increase ; if
necessary. Based on (4.5), the second assertion can then be established as [17,
Proposition 4.3] or [25, Corollary 6.8]. �

We 9rst consider a path of operators of the type AðtÞ ¼ Aþ BðtÞ, where A is a
9xed R-sectorial operator, DðAðtÞÞ ¼ DðAÞ for t 2 R, and BðtÞ : DðAÞ 7!X is
compact for every t 2 R satisfying the assumptions of Lemma 4.3. Moreover the
operators Aþ Bþ1 and AþB�1 shall be hyperbolic. Then the operators AðtÞ
ful9ll (2.1), (2.2) and (2.9) by Lemma 4.3, and thus they generate an evolution
operator Gðt; sÞ. We further introduce the stepwise constant path A0 de9ned by

A0ðtÞ :¼
Aþ B�1 for t < 0;

Aþ Bþ1 for t> 0:

�
Clearly, A0 generates the evolution operator

G0ðt; sÞ ¼
eðt�sÞðAþBþ1Þ for t> s> 0;

etðAþBþ1Þe�sðAþB�1Þ for t> 0 > s;

eðt�sÞðAþB�1Þ for 0 > t> s:

8><>:
Further, we have exponential dichotomies in ½0;þ1Þ and in ð�1; 0� with the
constant projections

Pþ1 ¼ 1

2#i

ð
;
Rð';Aþ Bþ1Þ d' and P�1 ¼ 1

2#i

ð
;
Rð';Aþ B�1Þ d';

respectively. Here ; is any regular curve lying in fRe ' > 0g, surrounding both
1ðAþBþ1Þ \ fRe ' > 0g and 1ðAþ B�1Þ \ fRe ' > 0g and having index 1 with
respect to both sets. The stable and unstable manifolds Ws

0 and Wu
0 corresponding

to A0 at t ¼ 0 are given by

Ws
0 ¼ ðI � Pþ1ÞðXÞ and Wu

0 ¼ P�1ðXÞ:
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As in the general case, we de9ne the operator L0 by

L0 : DðL0Þ ¼ LpðR;DðAÞÞ \W 1; pðR;XÞ 7!LpðR;XÞ;
ðL0uÞðtÞ ¼ u 0ðtÞ � A0ðtÞuðtÞ for t 2 R:

The jump of A0 at t ¼ 0 a/ects only local regularity properties when crossing
t ¼ 0. All results of xx 2 and 3 concerning the operators Lþ

0 and L�
0 , with T ¼ 0,

still hold, as well as their consequences. In particular, if Pþ1ðXÞ and P�1ðXÞ are
9nite dimensional, Corollary 3.10 shows that L0 is a Fredholm operator with index
equal to dimP�1ðXÞ � dimPþ1ðXÞ. If one of the subspaces Pþ1ðXÞ and P�1ðXÞ
is not 9nite dimensional, then L0 is a Fredholm operator as well; but the proof is
less immediate.

PROPOSITION 4.4. Assume that A satis�es (2.1) and (2.9), that the mappings
B�1 : DðAÞ ! X are compact, and that 1ðAþB�1Þ \ iR ¼ ;. Then L0 is a
Fredholm operator with index

indL0 ¼ indððI � Pþ1ÞðXÞ; P�1ðXÞÞ
¼ dimððI � Pþ1ÞðXÞ \ P�1ðXÞÞ � dimð½ðI � Pþ1ÞðXÞ�? \ ½P�1ðXÞ�?Þ:

Proof. Statement (v) of Theorem 3.8, applied to A0, implies that L0 is a
Fredholm operator if and only if ððI � Pþ1ÞðXÞ; P�1ðXÞÞ is a Fredholm couple,
and then

indL0 ¼ indððI � Pþ1ÞðXÞ; P�1ðXÞÞ;
dimKerL0 ¼ dimððI � Pþ1ÞðXÞ \ P�1ðXÞÞ:

To prove that the couple is Fredholm, we observe that

Pþ1 � P�1 ¼ 1

2#i

ð
;
ðRð';Aþ Bþ1Þ � Rð';AþB�1ÞÞ d'

¼ 1

2#i

ð
;
Rð';Aþ Bþ1ÞðBþ1 � B�1ÞRð';AþB�1Þ d'

is a compact operator, because Bþ1 � B�1 : DðAÞ ! X is compact.
Thus the rangeof I � Pþ1 þ P�1 is closedandhasa9nite-dimensional complement.

As a result, the larger set ðI � Pþ1ÞðXÞ þ P�1ðXÞ is closed and has a 9nite
codimension, too. In addition, the spaceP�1ðXÞ \ ðI � Pþ1ÞðXÞ is 9nite dimensional
since it is a subspace of the kernel of I � ðI � Pþ1ÞP�1, and ðI � Pþ1ÞP�1 ¼
ðP�1 � Pþ1ÞP�1 is compact.

As a consequence, L0 is a Fredholm operator, and it remains to show that

codimRangeL0 ¼ dimð½ðI � Pþ1ÞðXÞ�? \ ½P�1ðXÞ�?Þ: ð4:6Þ

To this purpose we recall that codimRange L0 ¼ dimKerL#
0 by [24, Theorem

IV.5.13]. Due to (3.8), a function v : R ! X# belongs to KerL#
0 if and only if

v 2 LqðR; X#Þ and vðsÞ ¼ G0ðt; sÞ#vðtÞ for all t> s. Observe that G0ðt; sÞ# has
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exponential dichotomies on Rþ and R� by duality. Hence,

kvðsÞk ¼ ke�sðAþB�1Þ#vð0Þk
> ke�sðAþB�1Þ#P #

�1vð0Þk � ke�sðAþB�1Þ#ðI � P #
�1Þvð0Þk

>N�1e�(skP #
�1vð0Þk �Ne(skðI � P #

�1Þvð0Þk for s6 0;

and

kðI � P #
þ1Þvð0Þk ¼ ketðAþBþ1Þ#ðI � P #

þ1ÞvðtÞk6Ne�(tkvðtÞk for t> 0;

for v 2 KerL#
0. Since v 2 LqðR; X#Þ, we obtain vð0Þ 2 P #

þ1ðX#Þ \ ðI � P #
�1ÞðX#Þ.

Then it is easy to see that the mapping

T : KerL#
0 ! P #

þ1ðX#Þ \ ðI � P #
�1ÞðX#Þ; v 7! vð0Þ;

is an isomorphism. Observe that

P #
þ1ðX#Þ ¼ ½ðI � Pþ1ÞðXÞ�? and ðI � P #

�1ÞðX#Þ ¼ ½P�1ðXÞ�?:

Thus we have shown (4.6). �

Observe that if X is a Hilbert space and P�1 are self-adjoint, then the last
argument of the above proof shows that

indL0 ¼ dimððI � Pþ1ÞðXÞ \ P�1ðXÞÞ � dimðPþ1ðXÞ \ ðI � P�1ÞðXÞÞ:

As a second step, we write AðtÞ ¼ A0ðtÞ þ eBBðtÞ, with
eBBðtÞ ¼ BðtÞ � B�1 for t < 0;

BðtÞ � Bþ1 for t > 0:

�
Thus the perturbation eBBðtÞ is not only compact for each t, but it tends to 0 as
t! �1. Unfortunately, this is not enough to guarantee that the induced
perturbation DðL0Þ 7!LpðR; XÞ, u 7! eBBð � Þuð � Þ, is relatively compact, and hence
we cannot directly deduce that L is a Fredholm operator because it is a compact
perturbation of a Fredholm operator. Note that u 7! eBBð � Þuð � Þ is relatively
compact if the embedding D,!X is compact, but not in general.

However, we can circumvent this di4culty by working in ‘pðZ; XÞ instead of in
LpðR; XÞ, thanks to the following theorem taken from [26, Theorem 1.4].

THEOREM 4.5. Let Uðt; sÞ be an exponentially bounded, strongly continuous
evolution operator in a re/exive Banach space X, and let G : DðGÞ 7!LpðR; XÞ be
the generator of the corresponding evolution semigroup in LpðR; XÞ given by
ðT ðtÞfÞðsÞ ¼ Uðs; s� tÞfðs� tÞ. De�ne the operator D 2 Lð‘pðZ; XÞÞ, with
16 p <1, by

Dx ¼ ðxn � Uðn; n� 1Þxn�1Þn2Z; x ¼ ðxnÞn2Z 2 ‘pðZ; XÞ:

Then G is a Fredholm operator if and only if D is a Fredholm operator, in which
case they have the same index.

As observed at the end of x 3, under our assumptions �L generates the
evolution semigroup associated to the evolution operator Gðt; sÞ. Using similar
arguments one also sees that �L0 is the generator of the evolution semigroup
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corresponding G0ðt; sÞ. By Proposition 4.4 and Theorem 4.5, the operator

D0 : ‘
pðZ; XÞ 7! ‘pðZ; XÞ

de9ned by

D0x ¼ ðxn �G0ðn; n� 1Þxn�1Þn2Z; x ¼ ðxnÞn2Z 2 ‘pðZ; XÞ;

is a Fredholm operator with index equal to indL0. We will show that the
perturbation

x 7!Sx :¼ ðGðn; n� 1Þ �G0ðn; n� 1ÞÞxn�1Þn2Z; x ¼ ðxnÞn2Z 2 ‘pðZ; XÞ; ð4:7Þ

is compact in ‘pðZ; XÞ. Then the operator D de9ned by

Dx ¼ ðxn �Gðn; n� 1Þxn�1Þn2Z; x ¼ ðxnÞn2Z 2 ‘pðZ; XÞ;

is a Fredholm operator in ‘pðZ; XÞ with index indL0 by Theorem IV.5.26 of [24].
Using Theorem 4.5 again, we conclude that L is also a Fredholm operator, with
the same index as L0. To prove that the perturbation S is compact, we need the
following two results. Here we assume that A satis9es (2.1) and is densely de9ned,
that BðtÞ : DðAÞ 7!X is compact, uniformly bounded and globally H€oolder
continuous in LðDðAÞ; XÞ for t 2 R, and that BðtÞ converge to B�1 in
LðDðAÞ; XÞ as t! �1. The next lemma is a special case of results in [10, 20,
37, 38]; see for example, [38, Proposition 2.6].

LEMMA 4.6. We have limjnj!1 kGðn; n� 1Þ �G0ðn; n� 1ÞkLðXÞ ¼ 0:

PROPOSITION 4.7. The operator S : ‘pðZ; XÞ 7! ‘pðZ; XÞ is compact.

Proof. To prove that the range of the unit ball Bð0; 1Þ � ‘pðZ; XÞ is totally
bounded, it is enough to show that for each " > 0 the following statements hold:

(a) there exists N 2 N such that for each x 2 Bð0; 1Þ we haveX
jnj>N

kðGðn; n� 1Þ �G0ðn; n� 1ÞÞxn�1kp6 ";

(b) for each n 2 Z there is a compact set K � X such that

fðGðn; n� 1Þ �G0ðn; n� 1ÞÞxn�1 : x 2 Bð0; 1Þg

is contained in K þ BXð0; "Þ.
Point (a) is an obvious consequence of Lemma 4.6. Concerning point (b), we write

Gðn; n� 1Þ �G0ðn; n� 1Þ ¼ Gðn; n� 1þ hÞðGðn� 1þ h; n� 1Þ
�G0ðn� 1þ h; n� 1ÞÞ

þ
ðn�1

n�1þh
Gðn; sÞ eBBðsÞG0ðs; n� 1Þ ds

for each h 2 ð0; 1Þ. This identity follows from the variation-of-constants formula in
the interval ½n� 1þ h; n� and
d

dt
½Gðt; n� 1Þ �G0ðt; n� 1Þ� � AðtÞðGðt; n� 1Þ �G0ðt; n� 1ÞÞ ¼ eBBðtÞG0ðt; n� 1Þ
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for n� 1 < t6n. If n� 1> 0, then

Gðn� 1þ h; n� 1Þ �G0ðn� 1þ h; n� 1Þ

¼ ehAðn�1Þ � ehðAþBþ1Þ þ
ðn�1þh

n�1
Zðs; n� 1Þ ds;

where for all r > 1 2 R, Zðr; 1Þ is the operator in the representation formula (2.4).
Therefore,

Gðn; n� 1Þ �G0ðn; n� 1Þ ¼ Gðn; n� 1þ hÞðehAðn�1Þ � ehðAþBþ1ÞÞ

þ
ðn�1þh

n�1
Gðn; n� 1þ hÞZðs; n� 1Þ ds

þ
ðn�1

n�1þh
Gðn; sÞ eBBðsÞG0ðs; n� 1Þ ds:

Further, the operators

Gðn; n� 1þ hÞðehAðn�1Þ � ehðAþBþ1ÞÞ

¼ 1

2#i

ð
;
e'hGðn; n� 1þ hÞRð';Aðn� 1ÞÞðBðn� 1Þ � Bþ1ÞRð';Aþ Bþ1Þd';

and ðn�1

n�1þh
Gðn; sÞ eBBðsÞG0ðs; n� 1Þ ds

are compact, and����Gðn; n� 1þ hÞ
ðn�1þh

n�1
Zðs; n� 1Þ ds

����
LðXÞ

6M0c

ðn�1þh

n�1
ðs� nþ 1Þ*�1 ds

¼ cM0h
*=*:

Fix h 2 ð0; 1Þ such that cM0h
*=*6 ". Then Gðn; n� 1Þ �G0ðn; n� 1Þ is the

sum of a compact operator plus an operator with norm less than ", and (b) follows
for n> 1. If n6 0, we use the same argument, replacing Bþ1 by B�1. �

So we have shown the following theorem.

THEOREM 4.8. Let A be a �xed operator satisfying (2.1) and (2.9). Assume
that BðtÞ : DðAÞ ! X is compact and uniformly bounded and H€oolder continuous
in LðDðAÞ; XÞ for t 2 R and converges to B�1 in LðDðAÞ; XÞ as t! �1.
Suppose that 1ðAþ B�1Þ \ iR ¼ ;. Then L is a Fredholm operator with index

indL ¼ dimððI � Pþ1ÞðXÞ \ P�1ðXÞÞ � dimð½ðI � Pþ1ÞðXÞ�? \ ½P�1ðXÞ�?Þ:

Using the same arguments, one can establish a second result on compact
perturbations.

THEOREM 4.9. Let AðtÞ, with t 2 R, satisfy (2.1), (2.2), (2.7), (2.8) and (2.9),
and let L be Fredholm. Assume that BðtÞ : DðAðtÞÞ ! X is compact and that
t 7!BðtÞRð!;AðtÞÞ 2 LðXÞ is uniformly H€oolder continuous and converges to 0 in
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LðXÞ as t! �1. Then eLL is a Fredholm operator with index

ind eLL ¼ indL:

5. Examples

5.1. Parabolic systems on bounded domains

Due to recent advances in [17] we could treat very general parabolic boundary
value systems of order 2m. For the sake of simplicity, we concentrate on second
order systems with Robin type boundary conditions and we require more
regularity assumptions than necessary. Let N 2 N, q 2 ð1;þ1Þ, and L be an open
bounded subset of R

d with boundary U of class C2. We study the di/erential
operators

AðtÞ ¼ Aðt; x;DÞ ¼ �
Xd
k;l¼1

aklðt; xÞ@k@l þ
Xd
k¼1

akðt; xÞ@k þ a0ðt; xÞ;

for t 2 R and x 2 L, and the boundary operators

BðtÞ ¼ Bðt; x;DÞ ¼
Xd
k¼1

bkðt; xÞ;@k þ b0ðt; xÞ;

for t 2 R and x 2 U. The derivatives are understood in the distributional sense and
; is the trace operator. The coe4cients are complex ðN � NÞ-matrices satisfying

akl; aj 2 C�1

b ðR;CðL;CN�NÞÞ; bj 2 C�2

b ðR;C1ðU;CN�NÞÞ

for k; l ¼ 1; . . . ; d, j ¼ 0; . . . ; d and constants �1 2 ð0; 1Þ and �2 2 ð 12 ; 1Þ, where C
�
b

denotes the space of uniformly bounded and globally H€OOlder continuous functions.
We further suppose that

a�ðt; �Þ ! a�ð�1; �Þ in CðL;CN�NÞ; bjðt; �Þ ! bjð�1; �Þ in C1ðU;CN�NÞ

as t! �1, for � ¼ ðk; lÞ or � ¼ j, and k; l ¼ 1; . . . ; d, j ¼ 0; . . . ; d. The principal
symbols of Aðt; x;DÞ and Bðt; x;DÞ are de9ned by

a#ðt; x; �Þ ¼
Xd
k;l¼1

aklðt; xÞ�k�l and b#ðt; x; �Þ ¼
Xd
k¼1

bkðt; xÞ�k

for � 2 R
d, t 2 ½�1;þ1�, and x 2 L, respectively, x 2 U.

We further suppose that ðAðtÞ;BðtÞÞ are normally elliptic; cf. [5, 17, 18] and the
references therein. This means that

1ða#ðt; x; �ÞÞ � f' 2 C : Re ' > 0g

for t 2 ½�1;þ1�, x 2 L, and � 2 R
d with j�j ¼ 1, and the Lopatinskii --Shapiro

condition (see for example [5]) holds: for all t 2 ½�1;þ1�, x 2 U, tangent vectors
� of U at x 2 U, and Re '> 0 with ð�; 'Þ 6¼ ð0; 0Þ, v ¼ 0 is the unique solution in
C0ðRþ;C

NÞ of the ODE

'vð8Þ þ a#ðt; x; � þ 0ðxÞi@8 Þvð8Þ ¼ 0 for 8 > 0;

b#ðt; x; � þ 0ðxÞi@8 Þvð0Þ ¼ 0;
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where 0ðxÞ is the outer normal vector at x 2 U. The elliptic boundary value
problem ðAðtÞ;BðtÞÞ, with t 2 R, is normally elliptic if for instance, denoting
by h�; �i the usual scalar product in C

N , we have Reha#ðt; x; �Þ7; 7i > 0 for
7 2 C

N n f0g and � 2 R
d n f0g, and bjðt; xÞ ¼ (jðt; xÞbðt; xÞ for j ¼ 1; . . . ; d,

invertible matrices bðt; �Þ 2 C1ðU;CN�NÞ, and an outward pointing, nowhere
vanishing vector 9eld (ðt; �Þ 2 C1ðU;RdÞ; see [5, Theorem 4.2].

On X ¼ LqðL;CNÞ we now de9ne

AðtÞu ¼ �Aðt; �; DÞu; u 2 DðAðtÞÞ ¼ fu 2W 2;qðL;CNÞ : Bðt; �; DÞu ¼ 0 on Ug
for t 2 ½�1;þ1�. The Agmon--Douglis--Nirenberg estimates in the version of
Theorem 2.3 of [5] (where the normal ellipticity assumption is used) imply
condition (2.1) for t 2 ½�1;þ1�. See also [17, Theorem 8.2].

Moreover, the graph norms of the operators AðtÞ, with t 2 ½�1;þ1�, and the
norm of W 2;qðL;CNÞ are uniformly equivalent. Theorem 8.2 of [17] further implies
that all operators AðtÞ satisfy (2.9) for 9xed t 2 ½�1;þ1�. Let us check that the
corresponding R-bounds are uniformly bounded in t. Take t; s 2 ½�1;þ1� and
f 2 Lqð½0; 1�; XÞ. Set

uð8; xÞ ¼
ð8
0
ðeð8�1ÞAðsÞfð1ÞÞðxÞ d1 for 06 8 6 1:

(In fact, u depends also on s but we drop the dependence on s for notational
simplicity.) We then have, for 8 2 ½0; 1�,

@8uð8; xÞ þ Aðt; x;DÞuð8; xÞ
¼ fð8; xÞ þ ðAðt; x;DÞ � Aðs; x;DÞÞuð8; xÞ for x 2 L a.e.;

Bðt; x;DÞuð8; xÞ ¼ ðBðt; x;DÞ � Bðs; x;DÞÞuð8; xÞ for x 2 U a.e.;

uð0; xÞ ¼ 0 for x 2 L:

Given " > 0, we 9nd a neighborhood Uðt; "Þ of t 2 ½�1;þ1� such that

ka�ðt; �Þ � a�ðs; �ÞkL1ðL;CN�N Þ6 " and kbjðt; �Þ � bjðs; �ÞkC1ðU;CN�N Þ 6 "

for s 2 Uðt; "Þ, for � ¼ ðk; lÞ or � ¼ j, and k; l ¼ 1; . . . ; d, j ¼ 0; . . . ; d. Theorem 2.1
of [18] combined with the extension results in [18, x 3] then implies that

kukW 1;qð½0;1�;XÞ þ kukLqð½0;1�;W 2;qðL;CN ÞÞ

6 ct
	
kfkLqð½0;1�;XÞ þ "kukW 1;qð½0;1�;XÞ þ "kukLqð½0;1�;W 2;qðL;CN ÞÞ



:

Choosing " ¼ ð2ctÞ�1, and taking into account the fact that the norm of
W 2;qðL;CNÞ is equivalent to the graph norm of AðsÞ, with equivalence constants
independent of s, we deduce that

kukW 1;qð½0;1�;XÞ þ kAðsÞukLqð½0;1�;XÞ 6 c
0
t kfkLqð½0;1�;XÞ for s 2 Uðt; ð2ctÞ�1Þ:

The compactness of ½�1;þ1� thus yields

kukW 1;qð½0;1�;XÞ þ kAðsÞukLqð½0;1�;XÞ 6 c
0 kfkLqð½0;1�;XÞ

for s 2 R. This uniform estimate shows (2.9) due to (the proofs of) Theorem 4.2
and Remark 2.3 of [42]; see also [17, Proposition 3.17].

In order to check (2.2) we proceed as in [2]; see also [3]. We extend the
coe4cients bj to L preserving their norms. For f 2 X, t; s 2 R, and j arg 'j6 ", we
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set

v ¼ �Rð!;AðsÞÞf and u ¼ Rð'þ !;AðtÞÞð'þ !� AðsÞÞv;
where ! is the constant in (2.1). Then

u� v ¼ ðAðtÞ � !ÞRð'þ !;AðtÞÞðRð!;AðtÞÞ � Rð!;AðsÞÞÞf
and

ð'þ !ÞuþAðt; �; DÞu ¼ 'v� f;
Bðt; �; DÞu ¼ 0;

ð!þAðs; �; DÞÞv ¼ �f on L;

Bðs; �; DÞv ¼ 0 on U:

This shows that

ð'þ !Þðu� vÞ þ Aðt; �; DÞðu� vÞ ¼ ðAðs; �; DÞ � Aðt; �; DÞÞv on L;

Bðt; �; DÞðu� vÞ ¼ ðBðs; �; DÞ � Bðt; �; DÞÞv on @L:

The Agmon--Douglis --Nirenberg estimate from Theorem 2.3 of [5] and our
assumptions now imply that

ku� vkX 6
c

j'þ !j
	
kðAðs; �; DÞ � Aðt; �; DÞÞvkLqðL;CN Þ

þ j'þ !j1=2kðBðs; �; DÞ � Bðt; �; DÞÞvkW 1;qðL;CN Þ



6 c 0 ðj'þ !j�1 jt� sj�1 þ j'þ !j�1=2 jt� sj�2Þ kfkX:

In the same way one derives (2.7). Observe that the operators Að�1Þ have
compact resolvents. Hence the spectra of these operators consist of eigenvalues
only and do not depend on q (see for example [16, Theorem 1.6.3]). If we can
check (2.8), then Corollary 3.11 shows that L is a Fredholm operator with index
equal to dimP�1ðXÞ � dimPþ1ðXÞ.

We give a rather simple example to illustrate the spectral condition (2.8). The
example could occur if a reaction di/usion system with two species, diagonal
di/usion, and conormal boundary conditions is linearized along a heteroclinic
orbit. We consider the di/erential operator in divergence form

�Aðt; x;DÞ ¼ div aðt; xÞr þ a0ðt; xÞ bðt; xÞ
cðt; xÞ div dðt; xÞr þ d0ðt; xÞ

� �
for t 2 ½�1;þ1� and x 2 L, and the boundary operator

Bðt; x;DÞ ¼ aðt; xÞ0ðxÞ � r 0
0 dðt; xÞ0ðxÞ � r

� �
for t 2 ½�1;þ1� and x 2 U ¼ @L. Here L with outer normal 0 is given as above.
We assume that a, a0, b, c, d and d0 are real-valued, aðt; xÞ; dðt; xÞ> * > 0,

a; d 2 C�þ1=2
b ðR;C1ðLÞÞ \ Cð½�1;þ1�;C1ðLÞÞ;

a0; b; c; d0 2 C�
b ðR;CðLÞÞ \ Cð½�1;þ1�;CðLÞÞ

for some � > 0, and that the coe4cients at t ¼ �1 are equal to constants. Then
it is not hard to check that we are in the situation discussed above. We thus have
to study the spectra of the operators

Að�1Þ ¼
að�1ÞWþ a0ð�1Þ bð�1Þ

cð�1Þ dð�1ÞWþ d0ð�1Þ

� �
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on LqðLÞ2 with domains

DðAð�1ÞÞ ¼ fðu; vÞ 2W 2;qðLÞ2 : @0u ¼ @0v ¼ 0 on Ug:
Here @0 is the derivative in the direction of the outer normal direction at x 2 U. It
is straightforward to check that ' 2 C is an eigenvalue of Að�1Þ if and only if
there is an n 2 N0 such that ' is an eigenvalue of the matrix

M�
n ¼

að�1ÞJn þ a0ð�1Þ bð�1Þ
cð�1Þ dð�1ÞJn þ d0ð�1Þ

� �
where Jn6 0 are the distinct eigenvalues of the Neumann Laplacian on L. Thus
we have to ensure that none of the matrices M�

n , for n 2 N0, has an eigenvalue on
iR. One obtains a purely imaginary eigenvalue of Að�1Þ if and only if either
detðM�

n Þ ¼ 0 for some n 2 N0, or trðM�
n Þ ¼ 0 and detðM�

n Þ > 0 for some n 2 N0.
Therefore (2.8) holds if, for example,

Jn 6¼ �ða0ð�1Þ þ d0ð�1ÞÞ=ðað�1Þ þ dð�1ÞÞ for n 2 N0;

að�1Þd0ð�1Þ þ a0ð�1Þdð�1Þ < 0 and a0ð�1Þd0ð�1Þ > bð�1Þcð�1Þ;

since then trM�
n 6¼ 0 and detðM�ðJÞÞ > 0 for all J6 0. Taking n ¼ 0, we see that

the unstable subspaces of Að�1Þ are non-trivial if a0ð�1Þ þ d0ð�1Þ > 0, too.

5.2. Generalized Ornstein--Uhlenbeck operators

Let T : Rd 7!R be a convex function such that limjxj!þ1 TðxÞ ¼ þ1, so thatÐ
Rd e

�TðxÞdx < þ1 and the probability measure

JðdxÞ ¼
�ð

Rd
e�TðxÞ dx

��1

e�TðxÞ dx ð5:1Þ

is well de9ned. We choose X ¼ LqðRd; JÞ, with 1 < q < þ1. In the paper [15] it
was shown that the operator

A2 : DðA2Þ ¼ fu 2 W 2;2ðRd; JÞ : hDT; Dui 2 L2ðRd; JÞg; A2u ¼ Wu� hDT; Dui;

(where h�; �i denotes the usual scalar product in R
d) is the in9nitesimal generator

of a symmetric Markov semigroup T2ðtÞ in L2ðRd; JÞ. Moreover, DðA2Þ is
compactly embedded in L2ðRd; JÞ provided that

9 ! > 0 such that x 7!TðxÞ � 1
2!jxj

2 is convex; ð5:2Þ

which we shall assume throughout.
For 1 < q < 2 (respectively, 2 < q <1) we denote by TqðtÞ the standard

extension (respectively, restriction) of T2ðtÞ to X and by Aq its generator; cf. [16].
The question whether the domain of Aq is contained in W 2;qðRd; JÞ if q 6¼ 2 is still
open; su4cient conditions in order that DðAqÞ ¼ W 2;qðRd; JÞ are derived in [28]. In
any case, DðAqÞ is compactly embedded in X, the spectrum of Aq is independent
of q (see for example [16, Theorem 1.6.3]), and it consists of a sequence of negative
eigenvalues �'1 > �'2 > . . . having 9nite multiplicities k1; k2; . . . plus the simple
eigenvalue '0 ¼ 0.

We consider the path of sectorial operators

AðtÞ : DðAqÞ ! X; ðAðtÞuÞðxÞ ¼ ðAquÞðxÞ � ’ðt; xÞuðxÞ for t 2 R
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in LqðRd; JÞ, where ’ is a real-valued L1 function such that k’ðt; �Þ �
’ðs; �Þk1 6Cjt� sj� and

9 lim
t!�1

’ðt; � Þ ¼: ’� in L1ðRdÞ:

So, the domain of AðtÞ is constant and (2.1) and (2.2) are satis9ed. The limiting
operators Að�1Þ and Aðþ1Þ are hyperbolic under standard assumptions on the
ranges of ’�.

LEMMA 5.1. Let a� and b� be such that a� 6’�ðxÞ6 b� and aþ 6’þðxÞ6 bþ
for all x 2 R

d. Assume that there existn;m 2 N [ f0g such that 'mþ1 < a� 6 b� < 'm
and 'nþ1 < aþ 6 bþ < 'n. Then Að�1Þ and Aðþ1Þ are hyperbolic operators. The
unstable spaces P�1ðXÞ and Pþ1ðXÞ have positive �nite dimensions equal to
1þ k1 þ . . .þ km and 1þ k1 þ . . .þ kn, respectively, where kj is the multiplicity of
the eigenvalue �'j of A2.

Proof. First, let q ¼ 2. Since A2 is self-adjoint, the operators Að�1Þ and
Aðþ1Þ are self-adjoint too in L2ðRd; JÞ. The domain DðA2Þ is compactly
embedded in L2ðRd; JÞ. Therefore the spectra of Að�1Þ and of Aðþ1Þ consist of
sequences of real eigenvalues, each eigenvalue has 9nite geometric multiplicity,
and Að�1Þ and Aðþ1Þ are hyperbolic if and only if 0 is not an eigenvalue. In
view of our assumptions, the minmax principle (see for example, [34, Theorem
XIII.2]) implies that 0 is not an eigenvalue of Að�1Þ and Aðþ1Þ. Moreover, the
number of strictly positive eigenvalues of Að�1Þ and Aðþ1Þ (counting
multiplicities) is equal to 1þ k1 þ . . .þ km and 1þ k1 þ . . .þ kn, respectively.

In the case that q 6¼ 2, Theorems 1.6.1 and 1.6.3 and Corollary 1.6.2 of [16]
show that the spectra of Að�1Þ and Aðþ1Þ and the multiplicities of the
eigenvalues do not depend on q. Thus the lemma is proved. �

We do not need the general theory of optimal Lp regularity for the proof of
Theorem 2.2. An easy proof by perturbation is given below.

LEMMA 5.2. Let a < b 2 R and 1 < p < þ1, let ’ 2 L1ðða; bÞ � RÞ and let
f 2 Lpðða; bÞ;XÞ. Then the problem

u 0ðtÞ ¼ ApuðtÞ � ’ðt; �ÞuðtÞ þ fðtÞ for a < t < b;

uðaÞ ¼ 0;

�
ð5:3Þ

has a unique solution u, which belongs to W 1; pðða; bÞ;XÞ. For almost all t 2 ða; bÞ,
uðtÞ belongs to DðAqÞ, and there is Cp;b�a, independent of f, such that

kukW 1; pðða;bÞ;XÞ þ kAð � Þuð � ÞkLpðða;bÞ;XÞ6Cp;b�akfkLpðða;bÞ;XÞ: ð5:4Þ

Proof. Since Ap is the generator of a Markov semigroup, the result is true
when ’ � 0, thanks to [14]. In the general case, the solution to (5.3) must satisfy

uðtÞ ¼
ðt
a
Tpðt� sÞðfðsÞ � ’ðs; �ÞuðsÞÞ ds for a < t < b:

The operator X de9ned by ðXuÞðtÞ ¼
Ð t
a Tpðt� sÞðfðsÞ � ’ðs; �ÞuðsÞÞ ds is easily

seen to be a contraction in Lpðða; bÞ;XÞ with respect to the norm

jujLpðða;bÞ;XÞ :¼
�ðb

a
ðe�!skuðsÞkXÞp ds

�1=p

;
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provided ! is large enough. Therefore it has a unique 9xed point u. Since

s 7! effðsÞ :¼ fðsÞ þ ’ðs; �ÞuðsÞ 2 Lpðða; bÞ;XÞ;
the statement follows by applying the result of [14] to u ¼

Ð t
a Tpðt� sÞeffðsÞ ds. �

If the assumptions of Lemma 5.1 hold, our operator L has the domain

DðLÞ ¼ W 1; pðR;XÞ \ LpðR;DðAqÞÞ:

Applying Corollary 3.11 gives the fact that L is a Fredholm operator with index
equal to dimP�1ðXÞ � dimPþ1ðXÞ.

Acknowledgements. We thank the referee for suggestions leading to
Proposition 3.9, and for careful reading of the manuscript.
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