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OPTIMAL REGULARITY AND FREDHOLM PROPERTIES
OF ABSTRACT PARABOLIC OPERATORS IN L?
SPACES ON THE REAL LINE

DAVIDE DI GIORGIO, ALESSANDRA LUNARDI AND
ROLAND SCHNAUBELT

1. Introduction
This paper is devoted to the investigation of the operator
u = Lu=u" —A(-)u

in the space LP(R;X), with 1 < p < oo, for generators A(t) : D(A(t)) C X — X,
with ¢ € R, of analytic semigroups in a Banach space X. The natural domain of £
is the space

D(L) = {u € W"P(R; X) : u(t) € D(A(t)) a.e., A(-)u(-) € L*(R; X)}.
Given any f € LP(R; X), the problem
u'(t) — A(t)u(t) = f(t) with t € R, (1.1)
differs to a large extent from the Cauchy problem

{u’(t) — A()u(t) = f(t) fora<t<b,

u(a) = . (12)

In treating (1.1), we encounter the same difficulties as in (1.2) as far as local regularity
is concerned, but in addition we have to deal with the asymptotic behavior. Under
mild regularity assumptions on A(-), the well-known Acquistapace—Terreni
conditions, a parabolic evolution operator G(t, s), with ¢ > s, exists and the unique
solution to (1.2) is represented by the familiar variation-of-constants formula

t

u(t) = G(t,a)x —|—J G(t,s)f(s)ds fora<t<b
a
(at least if f is, say, locally Holder continuous in ¢). On the contrary, even in the
autonomous case A(t) = A and for finite-dimensional X, problem (1.1) may have
no solution, solutions may be not unique, and reasonable representation formulas
for the solutions, when they do exist, are not available in general. The simplest situation
occurs if the evolution operator has an exponential dichotomy with projections
{P(s) : s € R} inR. Then problem (1.1) has a unique solution v € L?(R; X) given by
+00

u(t) = J G(t,s)(I — P(s))f(s)ds — J G(t,s)P(s)f(s)ds forteR.

—00 t
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This happens, for instance, in the periodic case A(t) = A(t + T') if the unit circle is
contained in the resolvent set of G(T,0). In the general case, one has an exponential
dichotomy, for example, if the operators A(t) are small perturbations of a fixed
hyperbolic operator A. (See [22, 23, 27, 37, 38] and the references therein.) We recall
that a closed operator is called hyperbolic if its spectrum does not intersect the
imaginary axis.

In this paper we consider the asymptotically hyperbolic case, that is, we assume
that A(t) — Aiy as t — oo for two hyperbolic sectorial operators A_,, and
A, . Since the domains of A(t) may vary, the above limits have to be understood
in the resolvent sense. Then exponential dichotomies exist in the half-lines
(—o00,—T] and [T, +o0) for sufficiently large 7'>0 by [10, 37, 38].

The difficulties concerning local regularity, shared by problems (1.1) and (1.2),
are well understood. We say that the problem (1.2) has optimal (or maximal)
regularity of type L? if for each f € L?((a,b); X) there is a unique solution wu of
(1.2) with wu(a) =0 such that ue€ W"?((a,b); X), u(t) € D(A(t)) ae., and
A(-)u(-) € LP((a,b); X). This property implies, in particular, that the operator
L is closed on the above given domain; see Corollary 2.6. If A(t) is equal to a fixed
sectorial operator A and X is a UMD space, then optimal L? regularity is
equivalent to the R-boundedness of {R(i€, A — wI) : £ € R}, thanks to a theorem
by Weis, [42]. We use a non-autonomous version of this result proved by Strkalj in
[39]; cf. also [32]. (See §2 and also [17] and [25] for details.) For instance, L7
spaces and (fractional) Sobolev spaces W% with 1 < g < oo are UMD spaces
thanks to, for example, [6, Theorem II1.4.5.2]. If  is an open set in R? with
smooth boundary and each A(t) is the realization of an elliptic operator in L?(£2)
with uniformly continuous coefficients and good boundary conditions, then the
assumption of R-boundedness holds; see [17] and §5.

Concerning asymptotic behavior, we characterize the couples

(f,z) € LP((T, +00); X) x X
such that the solution to
u'(t) = At)u(t) + f(t) fort>T; w(T)=um,
belongs to W?((T,+o0); X) (Theorem 2.4), and the couples
(9,y) € L7((=00, =T); X) x X
such that the backward problem
v'(t) = At)v(t) + g(t) fort < —T; o(-T)=y,

has a solution in W'?((—oo,~T); X) (Theorem 2.5). As in [20], where £ was
studied on C*(R; X), such characterizations are the starting point to investigate
the operator £. We describe several properties of £ in terms of the stable space
W*#(T) and the unstable subspace W"(T') at T. See Theorem 3.8, whose statement
is similar to (and in fact, it was inspired by) the case of bounded operators A(t)
discussed in [1]. See also the papers [11] and [30] for earlier ODE results. As a
corollary, we obtain the fact that if P, (X) and P_(X) are finite dimensional,
then £ is a Fredholm operator with index

ind £ = dim P_,(X) — dim P, . (X).
Here P, and P

—00

are the spectral projections with respect to the subsets of the
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spectra of A, and of A__ with positive real part. The above formula coincides
with the well-known spectral flow formula (‘index = —spectral flow’) in finite
dimensions; cf. [1, 21, 31, 35]. The spectral flow is an algebraic count of the
eigenvalues of A(t) that cross the imaginary axis as ¢ runs from —oo to +oo.
Under suitable assumptions it is meaningful even in infinite dimensions, and it
may or may not coincide with minus the index of L. The first important
infinite-dimensional example in which the spectral flow equals minus the index of
L was given by Robbin and Salamon in the paper [35], for a path of self-adjoint
operators with constant and compactly embedded domain in a Hilbert space, and
p=2. Their result was recently extended in [33] to any p € (1,+0o0) and to
possibly non-symmetric operators in UMD spaces. In both papers, compactness
plays an essential role, and the operators A(t) need not be sectorial. On the other
hand, interesting examples of smooth paths of bounded self-adjoint operators in a
Hilbert space such that the formula ‘index = — spectral flow’ does not hold for
p=2 are given in [1]. We point out that the operators A(t) in [35, 33] have
common and compactly embedded domain, while we can consider non-constant
domains and, more importantly, we have no compactness assumptions in our main
results. However, we are restricted to sectorial operators A(t) while less stringent
spectral assumptions are made in [35, 33]. This has important consequences for
Cauchy problems: both forward and backward Cauchy problems are in general
ill-posed under the assumptions of [35, 33], so that they have no evolution
operator, while in our case forward Cauchy problems are well-posed, and (as in
[26]) we have a forward evolution operator G(t,s), with ¢>s. Results like
Theorems 2.4 and 2.5 are not meaningful in the setting of [35, 33].

Fredholm properties of ill-posed problems on the line have further been
considered in the work by Sandstede, Scheel and co-authors; see, for example, [36].
We refer to [1, 20, 26, 33, 36] for further references and comments.

Besides theorems on maximal L regularity and Fredholm properties for a given
path of sectorial operators A(t), we focus on perturbation theory for operators
B(t) : D(A(t)) — X being of the same order as A(t). Here again one has to use
optimal L? regularity, and in particular, the fact that the map v — A(-)u(-) is
bounded from D(L£) to LP(R; X) under our assumptions. In §4 we assume that £
is a Fredholm operator, and we consider the operator L:D(L) — L(R; X)
defined by (Lu)(t) :=u'(t) — A(t)u(t) — B(t)u(t) for t € R. The theory developed
in §2 directly implies that £ is Fredholm provided that the A(t)-bounds of B(t)
are sufficiently small; see Theorem 4.2. In Theorems 4.8 and 4.9 we show similar
results if B(t) : D(A(t)) — X is compact and it converges as |t| — oo. The case of
bounded perturbations B(t) : X — X was treated in [26] in a more general setting.
Moreover, if also A(t): X — X are bounded and X is a Hilbert space, more
precise and refined results can be found in [1].

In §5 we establish the Fredholm property of £ for parabolic boundary value
systems of second order on bounded domains satisfying the Lopatinskii—Shapiro
conditions. Second, we study Ornstein—Uhlenbeck type operators perturbed by
potentials in L9 spaces on R? with respect to suitable weighted measures.

The definition of £ can be extended to the case where one only has an
exponentially bounded, strongly continuous evolution operator G(t,s), based on
the variation-of-constants formula. In this setting Latushkin and Tomilov
characterized in the very recent paper [26] the Fredholm property of £ in
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terms of the exponential dichotomy of G(t,s) and of a condition connecting
the projections at —T and T, precisely the Fredholmity of the operator
N P(-T)(X) — P(T)(X), where Nz = P(T)G(T,—T)z. See also [8] and [9]
for related investigations. In Proposition 3.9 we recover one implication of this
result, as a consequence of (a part of) Theorem 3.8. We remark that the
assumptions of [26] are weaker than ours, but our proofs are simpler and more
direct, and our results are more specific: in the situation of [26] one cannot
determine the domain of £ in a reasonable way, and optimal regularity results like
Theorems 2.4 and 2.5 are out of reach.

The last due comparison is with [20], which is the counterpart of this paper in the
Holder space setting. In fact, we followed the approach of [20] as far as possible. The
present assumptions on the operators A(t) are more general, because we allow for
non-constant domains; moreover, we develop a perturbation theory that is not
considered in [20] and we give much more general examples. A generalization of
the results of [20] to the case of operators with non-constant domains satisfying
the Acquistapace—Terreni conditions may be found in the thesis [19].

2. Notation, assumptions and preliminaries

We are given a family of sectorial operators {A(t):t € R} satisfying the
Acquistapace—Terreni conditions, [4, 2]: there are w € R, 0 € (7/2,7), and K > 0
such that

p(A(t) D X9 :={A € C: |arg(A —w)| <O} U{w},
K (2.1)

[R(A, AR < TH P —o|

for all t€R and A€ 3,y and there are a; and §; for i=1,...,k with
0<8; < a; <2, such that § = min{a; — G;:i=1,...,k} € (0,1) and

k
IA®) RO, A1) [R(w, A1) = Rlw, A S K Y (t=s)"A—w"™" (2.2)
i=1

(3

for all teR and AeX, )\ {w}. These conditions imply that the family
{A(t) : t € R} generates an evolution operator G(t,s), with ¢>s € R, which is
strongly continuous for ¢ > s. In other words, for each s € R the Cauchy problem

{u’(t) = A(t)u(t) fort > s, (2.3)
u(s) =z
(with = € D(A(s))) is well-posed. Its unique solution
u € C([s,+00); X) N C"((s,400); X)
is given by
t
u(t) = G(t, s)z = =940y —|—J Z(r, s)xdr, (2.4)

where Z(t,s) is the operator given by formula (2.7) of [2]. In Theorem 2.3 and
Lemma 2.2 of [2] it is proved that there exist constants My, M; > 0 such that

1G(t,8)|Lx) < My,  [J[A@R)G(E, 8) || x) < My ( — s)t fors<t<s+2, (2.5)
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and that there exist constants c,c, , > 0 such that

)6_1 X) g Cz/,l) (T - 5)6+V_1 (26)

1Z(r, )|l <e(r—s5)"",  [1Z(r,8)|lix.pa)

v,pr

for p € [1,+00], v € [0,1), and s < r< s+ 2. We recall that, if A: D(A) — X is a
sectorial operator, then for v € (0,1), (X, D(A)), , is the real interpolation space
between X and D(A) defined by

v.p

{ (X,D(A)),,={reX:t —gt) = 17" AetAz|| belongs to LP((0,1),dt/t)},

Izl x.pca)),, = Izl + 19l Lr0,1)0t /1)

v,p

and for v =0 we set (X,D(A));, = X. From now on we denote by |||, the
norm in (X, D(A(s))), ,- We refer to [4, 2, 6, 27] for the construction of the
evolution operator and to [27, 40] for interpolation spaces.

We shall assume that the path ¢ — A(t) is asymptotically hyperbolic, that is,
there are two operators A__ : D(A_) — X and A, : D(A,,) — X satistying

(2.1) and
lim R(w, A(t)) = R(w, A_),
e (2.7)
Jim R(w, A1) = B, A.)  (in LX)
(A ) NiR = o(A_,) NiR = 0. (2.8)

Finally, to have local maximal L? regularity, we assume that the operators A(t)
are uniformly R-sectorial. More precisely, we suppose that

X is a UMD space and sup {R{{R(i§, A(t) —wl): £ €R} : t € R} < co. (2.9)

A Banach space X is a UMD space (that is, X has the ‘unconditional martingale
sequences property’) if and only if the Hilbert transform is bounded on L*(R, X).
It is known that in this case X is reflexive; see the references given in [6, §I1I.4.4].
Hence (2.1) and (2.9) imply that the operators A(t) are densely defined, and thus
the evolution operator is strongly continuous at ¢ =s by [2, Theorem 2.3]. The
R-bound R(7T) of a family 7 of bounded linear operators is the infimum of all
constants C'> 0 such that

n n
> e T > e
=0 =0

for all n e NU{0}, Ty, ..., T, € T, wy,...,z, € X, where ¢;(t) = signsin(2/nt) for
j€NU{0}, are the Rademacher functions on [0,1]; see [17, 25, 42], and the
references therein. Observe that the R-boundedness of 7 implies its boundedness
and that the converse holds for Hilbert spaces X, due to Plancherel’s theorem. In
particular, condition (2.9) follows from (2.1) if X is a Hilbert space. We observe
that (2.9) implies that

<C
L*([0,1],X)

£2([0.1].X)

sup {R{AR(X, A(t) — wI) : |arg\|< ¢} : t e R} =t R < o0 (2.10)

for some ¢ € (7/2,0) by (the proof of) Theorem 4.2 of [42]. Moreover, if we
replace w in (2.10) by a larger real number, then (2.10) remains valid with the
same ¢ and R due to Proposition 2.8 in [42].
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We shall consider the operator £ defined by

{D(ﬁ) — {u c Wl’p(R; X) ;u(t) S D(A(t)) a.e., A( )U( ) S LP(R; X)}7 (2.11)

L:D(L) = L'(R; X), (Lu)(t) =u'(t) — At)u(t)
for 1 < p < oo. In this context we introduce the space of maximal regularity
EI) ={ue W'(I; X) : u(t) € D(A(t))a.e., A(-)u(-) € LP(I; X)} (2.12)

for an interval I C R, endowed with its natural norm ||u[| ,r(z.x) + [|AC )u( )|l Lorx)-

The main tool in our study will be exponential dichotomies. We recall that an
evolution operator G(t, s) is said to have an exponential dichotomy in an interval
I C R if there exist a family of projections P(t) € L(X), with ¢ € I, being strongly
continuous with respect to ¢, and numbers 3, N > 0 such that for all s,t € I with
s<t we have

(a) G(t,)P(s) = P(t)G(t,s), )
(b) G(t,s): P(s)(X) — P(t (X) is invertible with inverse G(s,t), (2.13)
(c) IG(t,8)(I — (3))H<Ne Bli=s), .
(d) [IG(s, 1) P(t)]| < Ne~

Since A(t)P(t) = A(t)G(t,s)G(s,t)P(t) for t>s with t,s €, the ‘unstable
projection’ P(t) maps X continuously into D(A(t)) for every t € I'\infI, and
A(t)P(t) is uniformly bounded for ¢t >n+ inf I with n > 0, and for all t € T if I is
unbounded below. Hence P(t) : X — (X, D(A(t))),,, is bounded as well, and we
denote its norm by

v,p

Pyps = IIPOlix.x,00a0)),,)- (2.14)

For more details on exponential dichotomies see [13, 23, 27, 38] and the references
therein.

Under assumptions (2.1), (2.2), (2.7) and (2.8), there exists 7'>0 such that
G(t,s) has exponential dichotomies in (—oo,—T] and in [T,+o0). For k=1 in
(2.2) and the interval [T, +4o0), this has been shown in Theorem 4.3 of [38]. The
proofs given there may be extended in an obvious way to the general condition
(2.2) and the interval (—oo,—T]. The case of dense domains was treated before in
[10] and, for a slightly stronger version of (2.7), in [37]. Moreover, we have

dim P (X) fort>T,

dim P(2)(X) = {dimp_oo(X) for t < — 1T,

where P, are the projections for A, . Finally, in the proof of [38, Theorem 4.3],
the projections P(t) (for t>T and t< — T, respectively) are obtained as the
restriction of projections for a parabolic evolution operator having an exponential
dichotomy on I =R. Thus the constants P, ,, introduced above are in fact
uniformly bounded for [¢| >T in our situation.

We have to establish some results about forward and backward Cauchy
problems in the L? setting, which are known in C'“ spaces; see [27, Chapter 6].
The starting point is local maximal L regularity of the evolution operator.

LEMMA 2.1. Assume that (2.1) and (2.2) hold. Let a<beR and
€ (1,4+00). Then for each x € X, the function t — G(t,a)x belongs to
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Wh?((a,b); X) if and only if x € (X,D(A(a)))1_1/p, In this case there is
C = C(p,b— a) such that ||G(-,a)z|

wir((ap)x) < ClTlli-1/p, pa-

Proof. Formula (2.4) shows that

A)G(t, a)x = %G(t, a)r = A(a)e™ Wz 4 Z(t,a)x fora<t<b.  (2.15)

Recall that = belongs to (X, D(A(a)))i_1/p,, if and only if the map
t — Ala)el" 9@y

is contained in L”((a,b); X). By estimate (2.6), the function Z(-,a)x belongs to
L((a,b); X) for every x € X and ¢ such that ¢(1 —6) < 1. If z € (X, D(A(a))),.p,
then Z(-,a)x € L((a,b); X) for every q such that ¢(1 — 6 —v) < 1. In particular,
if »e (X,D(A(a)))i-1/p,p then Z(-,a)x belongs to L”((a,b); X). Therefore, if
z € (X,D(A(a)))1-1/p,p then u € W"?((a,b); X), and the asserted estimate holds.

To prove the converse, let u€ W"?((a,b);X). If p(1—6)<1, then
Z(-,a)x € L?((a,b); X) and hence

Aa)e =M ¢ LP((a,b); X),
so that z € (X,D(A(a)))i—1/p, If p(1-06)=>1, set q =( —16)7'. Since
qi(1 —6) <1, we have Z(-,a)x € L"((a,b); X) and thus = € (X, D(A(a)))1-1/¢,.,-
It follows that Z(-,a)z € LY((a,b);X) for each ¢ such that g(1—36) <1. If

p(1— %5) < 1 we have finished, otherwise we proceed in this way, and after n steps
(with p(1 — (37 + 1)6) < 1) we obtain = € (X, D(A(a)))1-1/p, p- O

THEOREM 2.2. Assume that (2.1), (2.2) and (2.9) hold. Let a <b€ R and
1 <p<+oo, and let f€ L"((a,b);X) and x € (X,D(A(a)))1-1/p,p- Then the

problem
{ uw'(t) = A(t)u(t) + f(t) fora <t <b, (2.16)
u(a) =z,
has a unique solution u € &((a,b)), given by
u(t) = G(t,a)u(a) + rG(t, T)f(r)dr for t>a. (2.17)

There is a constant C,;_, (independent of f and x) such that

Nwllwrrapyx) + IACOuC) N Le(an)x)
< Cp,bfa, (HfHL”((a,,b);X) + Hlefl/p,p,a)' (218)

If xe€ X, then equation (2.17) gives the unique solution in the class
C([a,b]; X) N W,LP((a,b]; X) with u(t) € D(A(t)) a.e.

Proof. For x =0 the existence of a solution u € £((a,b)) was shown in Satz
4.2.6 of [39] for the case k=1 in (2.2). The proof also works for the general case,
and it can be seen that the constant C,;_, only depends on the length of the
interval, but not on the initial time itself. Alternatively, one can use Theorem 1 of
[32]. Now Lemma 2.1 and [2, Theorem 2.3] yield the existence for the general case
x #0, since u is the sum of the solution to (2.16) with z =0 plus G(-,a)z.
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Uniqueness and formula (2.17) are shown in the usual way. Let

u € C([a,b]; X) N Wl’p((a,b];X)

loc
be a solution of (2.16). Fix t >0 and ¢ > 0; set v(s) = G(t, s)u(s) for s € [a + ¢,1].
Due to [2, Theorem 2.3], we obtain
v'(s) = —G(t,s)A(s)u(s) + G(t, s)A(s)u(s) + G(t,5)f(s) = G(t,s)f(s)

for a.e. s € [a+ ¢, t]. Integrating from a + € to ¢t and using the continuity of v and
G, we deduce that u satisfies (2.17). d

In the next corollary we show a crucial embedding of the space £((a,b)), defined
in (2.12).

COROLLARY 2.3. Assume that (2.1), (2.2) and (2.9) hold. Let a < b € R and
p € (1,+o00). If u e &((a,b)) then wu(ty) € (X, D(A(ty)))1-1/p,p, for all t, € [a,b].
Moreover, for every t, € [a,b] there exists a positive constant C = C,,_, such that

lu(to)li=1/p, pts < C (lullwrrapyx) + IACuC ) Lo(ap)x))- (2.19)

Proof. First, we assume that t,<b—1. Set f(t):=u'(¢t) — A(t)u(t) for
to<t<ty+ 1. The restriction of u to [tg,ty + 1] is the sum of G(t,¢y)u(ty) plus
the solution of the Cauchy problem

v'(t) — A(t)v(t) = f(t) for tyg <t<ty+ 1,

’U(to) = 07
which belongs to W?'P((t),ty+1); X) by Theorem 2.2. Therefore, ¢
HG(t,t())U,(to) Is in Wlﬁp((t(]vt()'i_l);XL and so u(t()) € (X7D(A(t0)))171/p,p by
Lemma 2.1. Moreover, the definition of the interpolation space, (2.15), (2.6), and
Theorem 2.2 imply that

llu(to)ll1-1/p, p,
= [[uto)ll + 1A (to)e ™ ulto) o (ityty+1:)
<ulto) |l + IJAC )G (-5 to)ulto)ll Loqitg o+1:) + 125 to)w(to) lno ey to11:x)
Sc(AC)uC )z e + TAC)OC Er(i b1 + Nulto) ], pr,)
< (A uC) et 3 + " COllLrgeerx) + 1wl )s

where v =max{0,1—1/p—36} and the constants ¢ only depend on the given
constants. As in the proof of Lemma 2.1, we can iterate this procedure until v = 0.
Then the asserted estimate follows from the embedding

WP ((tg, to + 1); X) € C((to, to + 1); X)).

If ty > b — 1, then we extend v and A to [b,2b — a] by defining u(t) := u(2b — t)
and  A(t) := A(2b—1t) for b<t<2b—a. Set f(t):=u'(t)— A({t)u(t) for
a<t<2b—a. If 2b—a—t;>1, we can conclude as above. Otherwise, we repeat
the extension until we obtain a time interval that is longer than 1, so that we can
derive the asserted estimate as before. U
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Once local optimal L? regularity results are established, we may study optimal
L? regularity in half-lines. This is done in Theorem 2.4 for right half-lines and in
Theorem 2.5 for left half-lines, using the well-known formulas (2.22) and (2.31);
see for example, [23, §§5.1, 5.2]. Under the assumptions of Theorem 2.4 it may
happen that the constant P, ,, defined in (2.14) blows up as t — a. In §§3 and 4
we shall assume that (2.1), (2.2), (2.7), (2.8) and (2.9) hold. As observed after
formula (2.13), in this case T >0 is fixed in advance and we may take a = —o0.

THEOREM 2.4. Assume that (2.1), (2.2) and (2.9) hold, and that G(t,s) has
an exponential dichotomy on an interval (a,+o0). Fix T> a. For each ty>T,
1< p<+oo, feLP((ty, +0); X), and z € X, let u be the solution of

u'(t) = A()u(t) + f(t) fort >ty;  ulty) = . (2.20)

Then u belongs to LP((ty, +o0); X) if and only if

+00

P(ty)x = —J G(tg, s)P(s)f(s)ds, (2.21)

to

in which case it is given by

u(t) = Glt,to)(I - Plty))a

+ J G(t,s)(I — P(s))f(s)ds — J G(t,s)P(s)f(s)ds. (2.22)

t t

If, in addition, x € (X,D(A(ty)))1-1/p,, then wue&E((ty,+00)), and wult) e
(X, D(A(t)))1-1/p,p for each t >t,. Moreover, there is Cy = C,(T') > 0 independent
of x, f and t;, such that

L7((tg,+00);X) + sup ||u(t)||1—1/p,p7t

]

< Cl (”‘IE”lfl/p,p,tq + ||f||L1’((to,+oo);X))' (223)

l[llwr gy, +o0yix) + I1ACu( )]

Proof. By Theorem 2.2 the solution of (2.20) is given by the variation-of-
constants formula

u(t) = G(t, tg)x + Jt G(t,s)f(s)ds for ty < t.

ty
We can thus split u(t) into the sum wu;(t) + uy(t) where

ui(t) := G(t, 1) (I = P(ty))x

+ J G(t,5)(I — P(s))f(s) ds — J G(t,5)P(s)f(s) ds,

to t

wlt) = (e.0)(Pltgis + |G P is).

iy
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Using estimates (2.13)(c),(d) and Young’s inequality, we obtain

|, 160 - Pyl

+00 NP
< j NP dt =
pB

p

G P(s))f(s)ds|| dt

0

| (X[o 100 N5 X0 oo IFCO N E ey S NPB PN w1 001300

+00

G(t, s)P(s)f(s) ds

—
S +
8

p
dt

—

B

8

N —

|| (X(foo,O] NePt) s Xltg.+00) £ )HX) Hzp(JR;X) SNPBP| S fﬂ((t0,+m);x)7

where Y is the characteristic function of the set E. Hence,

11|t 400030 < N@B) P[] + 2NB7 || Fll oty 00):3)- (2.24)
Moreover,
+oo ~ .
“P(to)x+Jt Glto, $)P(s)f(s) ds|| = [|G(to, t)ua(t)]| < Ne™ ™= [luy (1),
and
+oo
lua(t)]| > N~ e ) P(to)$+J G(to, s)P(s)f(s)ds
iy

= Nﬁleﬂ(tit0>||uz(tu)||-

Consequently, we have wuy ¢ LP((ty,4+00),X) unless wuy(ty) =0. Therefore,
u € LP((ty, +00), X) if and only if uy(ty) = 0; that is, (2.21) holds.

Now assume that (2.21) holds, and let x € (X, D(A(t))))1-1/p,,- Then the
solution u is given by (2.22). We will prove that A(-)u(-) € LP((ty, +00); X).
Using estimates (2.13)(c)(d) and (2.15), (2.5) and (2.6) again, we first get

j:mnA(t)G(t,to)(I—P(to»wnpdt
<2 1A AT Pl + 120,10 - Pleo)al) d

Lo

+00

+ L +1IIA(t)G(t,t = D" Gt = 1,t0)(I — P(to))z|” dt

0

<2°(1+ Plfl/p,p.,to)pHfofl/p,tho + (2¢1-1/p,p(1 4+ Pi1yp pi) 1T ll=1/p,pt, )7
to+1 +00

: J (t—to)P L dt + (M1N||x||)”J e PRl g

ty 0

(We recall that Py_y/, . = ||P(t0)|‘L(X,(X,D(A(to)))1,1/1),,)))~ Hence there is K; >0
such that

IAC)G (- t0) (I — P(to)) x| oty +00):x) < Killlli-1/p, p, - (2.25)
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Second, we have

J+OCHA(t)r G(t, s)(I = P(s))f(s) ds "t

ty Ly

thO A(t)Jf G(t,S)(I— P(S))f(s) ds pdt

+00 pto+ht1 . ,

+ ;Jto+k 2 A(t)Jt0+k1G(t’8)(I — P(s))f(s)ds| dt
S to+h—1

+ ij ! 2MAG(t,t — 1)J Gt —1,5)(I — P(s))f(s)ds
f=1 ot t

Then the inequalities (2.18), (2.5) and (2.13)(c) imply that
L OCHA@L Glt,5)(T - Pls))f(s)ds| dt

+00
S lel ||f||£p((t0,t0+1);X) + Z 2?0;2 Hng”((to+k71,t0+k+l);X)
k=1

+00 to+k+1 7 pto+h—1 P
+)° ZPMf’N”J (J e A== 1(9)]| ds) dt
k=1

to+k ty

p

11

dt.

+00 3 p
<Py + 2N ([ s as)

0

<(3-27CE, + M NS ) 1112 4 o0y

Hence there is Ky > 0 such that

| A(- )L G(+,8)(I = P(5))f(5) dsll Loty +00):x) < Fll fIl Lo ((tg,400):) -
0

Similarly, we estimate the third summand in (2.22) by

p

J N HA“)J%O@(& s)P(s)f(s)ds| dt

1 t

+oo

— JWHA(t)G(t,t — 1)J G(t—1,5)P(s)f(s)ds

t ¢

+00 +00 p
<f ([ e as) i
t

1y

P
dt

< N”M{’,@’_le_ﬂﬂf|\fp((t0,+oo);X)'

Therefore,

HA( ' )J.mé( - 8)P(s)f(s)ds

< NMl,B_l/pe_ﬁ/pHf||L”((tm+°°>%X>'

LP((ty,+00);:X)

(2.26)

(2.27)
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Since u is given by (2.22) and solves (2.20), the estimate

Nwllwrn g, +00):x) T IAC)UC) Lo((t0,400):0)
< Oll (HxHI—l/p,p,tg + ||f||L”((f,0,+OC):X)) (228)

follows from the inequalities (2.25), (2.26) and (2.27). In order to estimate
llw(t)]l1-1/p, ps:» we apply Corollary 2.3 to the restriction of u to [t + 1], and then
we use (2.28). So we have shown (2.23). O

THEOREM 2.5. Assume that (2.1), (2.2) and (2.9) hold, and that G(t,s) has
an exponential dichotomy on an interval (—oo,—T]. Let ty< —T, ye€ X,
1 <p<+o0, and g € LP((—00,ty); X). Then the problem

v'(t) = A(t)w(t) + g(t) fort <ty v(ty) =y, (2.29)
has a solution v in L?((—o0,ty); X) if and only if
(1= Pty = | Glts)(T = P)gls) s, (230

—00

in which case v is given by
o(t) = G(t,10) P(ty)y

+ J G(t,s)P(s)g(s) ds + J G(t,s)(I — P(s))g(s) ds. (2.31)

to —00

Moreover, v € W'P((—o0,t,); X), and for each t<t,, v(t) € D(A(t)) a.e. and
v(t) € (X, D(A(t)))1-1/p,p- There exists Cy > 0 (independent of y, f and t,) such
that

Vllwrr((—ooty)x) T TAC V) Lo ((—o0ite)ix) + tSE? lv()1-1/p, p.t
< bo
<Gy (1Yllx + gl Lo (=00 t0):))- (2.32)

Proof. Let v be a solution of (2.29). For every a <t the variation-of-constants
formula (2.17) gives

v(t) = G(t,a)v(a) + J G(t,s)g(s)ds for a<t<ty, (2.33)
so that

(I = P(t)v(t) = G(t,a)(I = P(a))v(a) - J G(t,s)(I — P(s))g(s) ds

—00

+ J G(t,s)(I — P(s))g(s) ds.

—00

Suppose now that v e LP((—o0,ty); X). Since v is continuous, there exists a
sequence (a,),en going to —oo such that lim,_,, . v(a,) = 0. Taking a = a, in the
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above expression, we obtain

t

(I—P@DWﬂ—¢LmG@JWI—P@Dﬂ@dS

= G(t,a,)(I = Play))v(a,) — J G(t,s)(I — P(s))g(s)ds  (2.34)

for every n € N and ¢ > a,. Estimate (2.13)(c) yields

ap,

HG(t, a,)(I — P(a,))v(a,) — J G(t,s)(I — P(s))g(s)ds

—00

(%
< Ne o)+ | Ne ()] ds.

Therefore, letting n — 400 in (2.34), we deduce that

t
(1= Pt = |Gl 5)(T - Pls)gls) ds (2.35)
for every t <ty. If we take t = ¢, identity (2.30) follows.

Suppose now that (2.30) holds. Then the function v defined by (2.31) satisfies
(2.33), as is easy to check, and v(ty) = y, so that v solves (2.29). Let us verify that
v € LP((—o0,ty); X). Using (2.13)(c) and Young’s inequality as in Theorem 2.4,
we obtain

M{WGVJNI—PwnﬂwdS

<Afﬁil||gHL”((700,tU);X)7 (236)
Lp((foovtﬂ);X)

and hence (I —P(-))v(-) € LP((—00,ty); X). In order to estimate P(t)v(t) for
t<ty, we first apply P(t) to both sides of (2.33) and then use the inverse of
G(to, 1)@y

t

P(t)v(t) = P(t)G(t,a)v(a) + P(t)JaG(t, s)g(s)ds

=Gmm(mewm@mw+jGwﬁﬂwmwm§

a

n J G(t, 5)P(s)g(s) ds

iy

= Gl t)Py + || G5 PEs)g(s)

where we have again employed (2.33) for ¢t = ¢;. As in the proof of Theorem 2.4,
estimate (2.13)(d) and Young’s inequality yield

1P )o(-)]

Estimates (2.36) and (2.37) now imply that v € L?((—o00,t)); X).

Lo((—o0,ty):X) S N(pB)*||y|| + Ng~* 91l Lo ((—o0,t0):x) - (2.37)
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In order to prove the second part of the statement we have to control
IAC)v( )l Lr((—o0ty);x)- Arguing as in Theorem 2.4, we derive

|" 1awétpaor a

1o -
<J7 [A@)G(t,t = DIIP |Gt — 1,0)P(to)yll” dt

(2.38)
1o
<[ apare ot yra,
| A(- )é( 5 to) P(to)Yll Lo((—o0ty):x) < MN(pB)~ 7 ||y].
Similarly, we obtain
t t p
J HA(t)J G(t,s)P(s)g(s)ds| dt
—00 to
< Mpr||XR,€6( U X (—o00,t) ||g( . )” ||§p<(,m7t(]>;x)
<(MNB e gl o((-oon)x) s (2.39)
40 @t opote) as
) LP((—00,t9); X)
<M NS e gl o(—oo))-
Finally, to estimate the L” norm of A(-) [ G(- P(s))g(s)ds, we have
again to split it into a series and use Theorem 2.2 on local LP-maximal regularity.
So we get
N t p
J ’A(t)J G(t,s)(I — P(s))g(s)ds|| dt
00 pty—k ty—k—2 P
< ZJ 2P A(t)J G(t,s)(I — P(s))g(s)ds|| dt
—0 to—k—1 —00
+00 (lg—k t p
+ ZJ 2P A(t)J G(t,s)(I — P(s))g(s)ds|| dt
= )tk tg—k—2
+00 (ty—k to—k—2 p
< ZJ 2P MY J Gt —1,8)(I— P(s))g(s)ds| dt
=0 Jto—k—1 —00

+00
+Z 04 2p||g|| ((to—k—2,to—k);X)
=0

@MIN)? i, e 5 X oot 190N ey + 200027 19117 (o)

<
<(2MN)* _pepﬁ”!ngp((,oQ’fﬂ) xt 2p+1cp2”9|

LP((—00,t9);X)"
Thus there is K3 > 0 such that

< K|l Lo((—o0,t0):) - (2.40)
LP((—00,ty);X)

Ja0)] 6t = P as

Since v is given by (2.31) and solves (2.29), the inequalities (2.38), (2.39), (2.40),
(2.19) and Corollary 2.3 imply (2.32), as in the proof of the previous theorem. O
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COROLLARY 2.6. Assume that (2.1), (2.2) and (2.9) hold and let
1 < p < 4o00. Then there is a real number v such that the equation yu + Lu = f
has a unique solution w € D(L) for each f € L?(R;X), given by

u(t) = r e G(t,s) f(s)ds  for t € R.

—00

Moreover, there is a constant Cy such that, for u € D(L),

lullwrr x) + IAC)uC) | ze@x) < Cs | fllor@ix)-

Proof. By (2.5) there is a 7>0 such that e ?"9G(t,s) is exponentially
stable. Theorem 2.5 for A(t) —~I and P(t) =0 then easily implies the
assertions. O

3. Properties of the operator L

Throughout this section {A(¢):¢ € R} is a family of operators satisfying
assumptions (2.1), (2.2), (2.7), (2.8) and (2.9), G(t,s) is the associated evolution
operator, and £ is the operator defined in (2.11) with p € (1,400). In particular,
G(t,s) has exponential dichotomies on (—oo,—T] and [T,+o0) with projections
P(t), for some T >0. The stable and unstable subspaces are defined as usual; cf.
1, 20].

DEFINITION 3.1. Let ¢, € R. We define the stable space at t, by
W*(ty) := {a: €X: tliinoo G(t, ty)r = 0},
and the unstable space at t; by
W"(ty) == {:z: € X :3ue C'((—o0,ty); X) such that u(t) € D(A(t)), t <t,
u'(t) = A(t)u(t), A(-)u(-) € C((—o0, tg); X),

u(ty) = x, tlil}loo u(t) = ()}.

LEMMA 3.2. The following statements hold true:

(i) for each ty=T, W*(ty) = (I — P(ty))(X); for each ty< —T, W"(ty) =
P(ty)(X);

(i) for each ty =T, W?(ty) = {z € X : G(-,ty)x € LP((ty, +00); X)};

(iii) for each to < — T, W'(ty) = {x € X : Ju € W"P((—o0,ty); X) with u(t) €
D(A(t)) and u'(t) = A(t)u(t) a.e., u(ty) =z}

(iv) for each t,ty € R with t>ty, G(t,tg)W?*(ty) C W*(t);

(v) for each t,ty € R with t >ty, G(t,to)W"(ty) = W"(¢);

(vi) for each ty € R, W*(ty) is closed.

Proof. The first assertion in (i) follows directly from the exponential
dichotomy on [T, +0o0). For the second one, let z = u(t)) € W"(ty) with u as in
Definition 3.1. Then u(ty) = G (g, t)u(t) and

11 = Ptg)uto)ll = G (to, )T = P(8))u(t)]| < Ne "7 Jlu]l
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for all t<ty< —7T. Letting t — —oco we see that x € P(t;)(X). The other
inclusion is clear. The remaining assertions can be shown exactly as Proposition
3.2 in [20], now using Theorems 2.4 and 2.5. O

To study the operator L, it is useful to introduce the realizations of the
operator w +—u’ — A(-)u in spaces on half-lines; that is,
LT D(LT) = E((T, +00)) — LP((T, +00): X);
(L) (t) = u'(t) — A(t)u(t) fort >T.
L7 D(L) = &((—00,T)) — LP((—00,T); X):
(L7u)(t) = u'(t) — A(t)u(t) fort <T.

Theorems 2.4 and 2.5 allow us to introduce right inverses R" on L?((T,+o0); X)
and R~ on L?((—o0,T); X) for Lt and L™, respectively:

(3.1)

(3.2)

Hoo t
(RTh)(t) = —Jt G(t,s)P(s)h(s)ds + JTG(t,s)(I— P(s))h(s) ds, (33)
for t > T,
7OOG(t, s)(I — P(s))h(s)ds + J,Té(t’ s)P(s)h(s)ds,
Rt ={ t fort< =T, (3.4)
7ocG(t’ s)(I — P(s))h(s)ds + J,TG(t’ s)h(s)ds,
for -T<t<T.

ProOPOSITION 3.3. The following statements hold:
(i) R* is a bounded operator from L”((T,+o00);X) to D(L"), and we have
LTR"h = h for each h € L?((T,+o0); X);
(ii) R~ is a bounded operator from L*((—oc0,T); X) to D(L™), and we have
LR h=h for each h € L*((—00,T); X).

Proof.  Statement (i) is an immediate consequence of Theorem 2.4, since R™h
coincides with the solution u of (2.20) with ty =T, x = — [ G(T, s)P(s)h(s) ds,
and f = h, given by formula (2.22).

Concerning statement (ii), let h € LP((—o00,T);X). By Theorem 2.5, the
restriction of R™h to (—oo,—T) belongs to E((—oo, —T)), its norm in this space
is less than C'||R] (oo —1):x), and (R™h)'(t) = A(t)R™h(t) + h(t) for almost all
t < =T. So Corollary 2.3 yields (R™h)(—T) € (X, D(A(=T)))1-1/p,, and

I(RR)(=T)lx.peac-1)), 1), < CIA

Theorem 2.2 thus implies that the restriction of R™h to [-T,T] is contained in
E([-T,T]), that its norm in E([-T,T]) is bounded by

CUIPl Lr—rryx) + IR™R) (=T (x,0AC1)11)0,)

and that (R™h)'(t) = A(t)R h(t) + h(t) for almost all t € (=T, T). The assertion
follows once the restrictions of R™h to (—oo,—T] and to [-T,T] have been
patched together. O

LP((—00,=T);X)"
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The following trace lemma is taken from [20], where it was used in the C'®

setting. The same construction works in the L? setting.

LEMMA 3.4. For every wy€ P(T)(X) there exists uy € D(L) such that
(R ug)(T) = wy, (R™u)(T) =0, and ||Jug|| gy < K||wyl|, where K >0 is a constant
independent of wy.

Proof. Let ¢ € Cj°(R) be such that

+00
lole <1, @(t)=0 fort<T, J o(s)ds = —1,

and set
uy(t) == o(t)G(t, T)wy for t =T, up(t) ;=0 for t<T.

Then uy € D(£) and there exists a constant K >0 such that gl pz) < KlJwyl|.
Finally, R*uy(T) = wy and R uy(T) = 0. O

At this point, we have all the tools to extend the results of [20] to our situation.

ProrosiTioN 3.5. (i) We have

Ker £ = {u:u(t) = G(t,T)x for t >T;
z € (I = P(T))(X) N (X, D(A(T))1-1/p,p}-

(ii) We have

Ker L7 ={u:u(t) =G, —T)x for —T<t<T;
u(t) = G(t,~T)z for t < — T; x € P(~T)(X)}.

(iii) The kernel of L is the set of the functions w:R — X that may be
represented as

u(t) = G(t,—T)x fort< — T,
u(t) =G, —T)x fort> —T,

where x € P(—T)(X) is such that G(T,—T)x € (I — P(T))(X). Consequently, it
is isomorphic to {x € P(-T)(X):G(T,-T)x € (I — P(T))(X)} := Z, with iso-
morphism u +— u(—=T).

(iv) Range L ={h € LP(R; X) : R"h(T) —

R W(T) € W*(T) + W*(T)}.
(v) RangeL ={h € L?(R; X) : R*h(T) — R h

(T) e W(T)+W*(T)}.

Proof. Assertions (i) and (ii) are consequences of Lemma 3.2 and Theorems
2.4 and 2.5.

Part (iii) follows from (i) and (ii): the restrictions to [T, 4o0) and to (—oo,T| of
any u € Ker £ belong to Ker £ and to Ker £~, respectively. Therefore u(7T) =
G(T,-T)u(-T) € (I — P(T))(X) and u(-T) € P(-T)(X), that is, u(-T) € Z,
and u has the asserted representation. Conversely, each z € Z allows one to define
a unique element u € Ker £ with u(—T) = z as in the claim.
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To prove (iv), let h = Lu for some u € D(L). Restricting this equation to half-
lines, we deduce from Proposition 3.3 that

_ R+h + er on [71? +OO)7
R h+v. on (—o0,T),

for some v, in the kernel of £*. Thus
(R)(T) — (RR)(T) = v_(T) — v,(T) € W"(T) + W*(T)
by (i) and (ii). Conversely, let h € LP(R; X) with
(R*R)(T) — (RB)(T) = 2, + 3, € W*(T) + W(T).

Corollary 2.3 yields (R*h)(T), (R”h)(T) € (X, D(A(T)))1-1/p,p- Since x,, € D(A(T))
by Lemma 3.2(iv), we have z, € (X, D(A(T )))1 1/p,p- We now define

(t)_{ G(t, Tz, + (RTh)(t) for t>T,
—La) + (R h)(t) for t<T,

where u(7T") =z, for a function u as in Definition 3.1. It is easy to see that
w€ D(L) and Lu = h. Assertion (v) follows from (iv) and Lemma 3.4 as in
Proposition 3.7 of [20]. O

We recall the definitions of semi-Fredholm and Fredholm operators, and of
semi-Fredholm and Fredholm couples of subspaces.

DEFINITION 3.6. Let E and F' be Banach spaces. We say that a closed linear
operator A : D(A) C E — F is a semi-Fredholm operator if Range A is closed and
if at least one of the dimensions dim Ker A and codim Range A is finite. If both
dimensions are finite, we say that A is a Fredholm operator. The index of a semi-
Fredholm operator A is defined by

ind A := dim Ker A — codim Range A.

DEeFINITION 3.7. Let V and W be subspaces of a Banach space E. We say
that (V, W) is a semi-Fredholm couple if V + W is closed and if at least one of the
dimensions dim(V N W) and codim(V + W) is finite. If both dimensions are finite,
we say that (V,;W) is a Fredholm couple. The index of a semi-Fredholm couple
(V, W) is defined by

ind(V, W) := dim(V N W) — codim(V + W).

Now we are able to describe the properties of £ in terms of properties of the
subspaces W*(T') and W"(T), arguing exactly as in Theorem 3.10 in [20] and its
corollaries and using the above results.

THEOREM 3.8. Assume that (2.1), (2.2), (2.7), (2.8) and (2.9) are satisfied.
Then the following assertions hold.
(i) Range L is closed if and only if W*(T) + W*"(T) is closed.
(ii) The operator L is surjective if and only if W*(T) +W*"(T) = X.
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(iii) We have dim(Ker £) = dim(W*(T') " W*(T)) + dim(Ker G(T, —T')|p(_1)(x))-
Consequently, if L is one-to-one, then

WS(T) n WU(T) = Ker G’(T‘7 —T)lp(,TxX) = {0}

If G(T,~T)p(-1)(x) is one-to-one and W*(T) " W"(T) = {0}, then L is one-to-
one.

(iv) If £ is invertible, then W*(T) @ W*(T) = X. If G(T, =T)p(_r1)(x) is one-to-
one and W*(T) @ W*(T) = X, then L is invertible.

(v) If L is a semi-Fredholm operator, then (W*(T), W"(T)) is a semi-Fredholm
couple and

codim(W*(T') + W*(T)) = codim(Range £), ind(W?*(T), W"(T))< ind L. (3.5)
If, in addition, the kernel of G(T,~T) p(_r)x) is finite dimensional, then
1nd(Ws(T), WU(T)) =ind £ — dim Ker G(T, _T)|P(7T)(X) (36)

Conversely: if (W*(T),W*(T)) is a semi-Fredholm couple and the kernel of
G(T,=T)p(—1)x) is finite dimensional, then L is a semi-Fredholm operator and
(3.6) holds. If (W*(T),W*(T)) is a Fredholm couple, then L is semi-Fredholm and
(3.5) holds; if in addition the kernel of G(T,—T) p(_r)x) Is finite dimensional, then
L is a Fredholm operator and (3.6) holds.

Concerning the kernel of G(T,~T)pr)x), we remark that, in general, a
para’bolic evolution operator G(t,s) is not one-to-one. See for example [29].
Sufficient conditions for backward uniqueness are known: see [7, 12] for abstract
evolution operators in Hilbert spaces, and [41] for evolution operators associated
to specific parabolic partial differential operators. But a satisfactory description of
the kernel of G(¢,s) (or of some restriction of G(¢,s)) under general assumptions
does not exist in the literature, and it constitutes an important open problem.

As a consequence of Theorem 3.8, we recover a characterization of the
Fredholm property of £ given in [26]. We further give simple sufficient conditions
for £ to be a Fredholm operator; cf. [20].

PrROPOSITION 3.9. Under the assumptions of Theorem 3.8, define the
operator

N : P(—-T)(X) — P(T)(X), Nz:=P(T)G(T,~T)x.

Then L is a semi-Fredholm (respectively, Fredholm) operator if and only if N is a
semi-Fredholm (respectively, Fredholm) operator. If this is the case, we have
dim Ker £ = dimKer AV and codim Range £ = codim Range N, so that £ and N
have the same index.

Proof. Statement (iii) of Proposition 3.5 implies that the kernel of L is
isomorphic to the kernel of NV, an isomorphism being u +— u(=T).

Now we prove that the range of £ is closed if and only if the range of N is
closed. By Theorem 3.8, it is enough to prove that W*(T) + W"(T) is closed if
and only if the range of N is closed.
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Let z, = P(T)G(T,-T)y,, with y, € P(—T)(X), converge to = € P(T)(X) as
n — 400. Then

Ty = G(T7 _T)yn - (I - P(T))G(T7 _T)yn:

where G(T,-T)y, € W*(T) by Lemma 3.2(i)+(v), and (I — P(T))G(T,-T)y, €
W?*(T) by Lemma 3.2(i). Therefore z, € W*(T)+W*(T). It W*(T) +W*(T) is
closed, then z € W*(T)+ W"(T), and again by Lemma 3.2 we obtain z =
(I -P(T1))z+ G(T,-T)P(—T)y for some z,y € X. From = € P(T)(X) we deduce
that © = P(T)G(T,—T)P(-T)y, so that x € Range N.

The converse is similar: if z, € W*(T) + W*(T) converges to z € X, by Lemma
32, z,=(I—-P(T))z, +G(T,-T)P(-T)y, for some z,,y, € X, and P(T)zx, =
P(T)G(T,—T)P(-T)y, € Range N converges to P(T)z as n — +oo. If the range
of N is closed, then P(T)x = P(T)G(T,—T)w for some w € P(—=T)(X), so that
x=(I—-PT)(z—GT,-T)w)+ GT,-T)we W*T)+ W"(T) by Lemma 3.2.

Similar arguments show that the mapping [z] — [P(T)z], from the quotient
space X/(W*(T)+ W"(T)) to the quotient space P(T)(X)/N(P(-T)(X)), is
an isomorphism. O

COROLLARY 3.10. If dim P, (X)<oo and dimP (X) <oo then L Iis
Fredholm with index

ind £ = dim P_,(X) — dim P, . (X).

COROLLARY 3.11. If the embeddings D(A,,)—X and D(A_,)—X are
compact, then L is a Fredholm operator with index

ind £ = dim P__(X) — dim P, . (X).

Proposition 3.5 provides us with a convenient description of the kernel of £. For
many applications, for example, in the proof of Proposition 4.4 below, it is
important to determine the range of £ in a similar way via duality. This task is
simplified by the fact that L?(R; X) is reflexive and has the dual LY(R, X*) with
qg=p/(p—1). (Recall that (2.9) implies that X is reflexive.) If £ has closed range,
then

Range £ = (Ker £*)* := {h e LP(R; X) : J hvde =0Vv e Kerﬁ*} (3.7)
R
by formulas (II11.5.10) and (II1.1.24) in [24]. In order to determine £*, we introduce
the so-called evolution semigroup
(T(t)f)(s) =G(s,s —t)f(s—t), wheres€eR, fe L'(R;X), t>0,

on LP(R; X); cf. [13, 26, 37, 38]. By (2.5), there is a number >0 such that
e =G (t,5) is exponentially stable. Then it is easy to verify that T(-) is a
C-semigroup.

PROPOSITION 3.12. Let G be the infinitesimal generator of the semigroup T'(t)
defined above. Then G = —L.
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Proof. The resolvent (y—G)~! is given by
¢

e (T(r) f)(t) dr = J e G, 5) f(s) ds

—00

+00
(r-9)"p 0 =,
for f e LP(R,X) and a.e. t € R. Combining this equality with Corollary 2.6, we
see that the statement follows. O

As a result, —L£* generates the adjoint Cy-semigroup T'(-)" on LI(R,X™).
Hence, the kernel of £* is the space of functions g € LY(R, X*) such that T(-)"'g=g
for each ¢t > 0. Since

(T(t)g)(s) =G(s+1t,8)g(s+t) forseR, ge LYR,X"), t>0,
we deduce that
Ker £ ={ve LYR, X") : v(s) = G(t,s)"v(t) Vi > s}. (3.8)
So we have shown the following result.
ProprosiTION 3.13.  Assume that (2.1), (2.2) and (2.9) hold and that L has a

closed range (for example, if £ is semi-Fredholm). Then the range of L is equal to
the space

{h € LP(R; X) : J hvde =0Vve LYR, X™) with v(s) = G(t,5) v(t) Vt}s}.
R

One can see that the so-called ‘complete adjoint trajectories’ v (that is, the
functions satisfying v(s) = G(t, s)"v(¢t) for t > s) solve the dual evolution equation

—v'(s) = A(s)"v(s) for s € R, (3.9)

in a weak sense. The function v is a classical solution of (3.9) if, in addition, the
adjoint operators A(t)" satisfy the Acquistapace—Terreni conditions (2.1) and
(2.2); cf. [3, Proposition 2.9].

4. Perturbations
Let A(-) satisfy assumptions (2.1), (2.2), (2.9), and let B(t) : D(B(t)) C X — X
be a family of operators such that D(A(t)) C D(B(t)) and
|1B(t)z|| <al|A(t)x|| + bllz||, with z € D(A(t)) and t € R, (4.1)
for some constants a,b>0. We introduce the operator
L:D(L) — LP(R, X); (Lu)(t) == u'(t) — A(t)u(t) — B(t)u(t) fort € R.

Suppose that £ is a Fredholm operator. Then the question arises under which
assumptions on B(t) the operator £ is Fredholm as well. We give three answers,
one for small perturbations B(t) and two more in the case of relatively

compact perturbations.



PLMS 1540—30/6/2005—SRUMBAL—154116

22 D. DI GIORGIO, A. LUNARDI AND R. SCHNAUBELT
4.1. Small A(t)-bounded perturbations

We first provide conditions on B(t) such that the operators A(t) + B(t) inherit
(2.1), (2.2) and (2.9) from A(t).

LEMMA 4.1.  Assume that (2.1), (2.2) and (4.1) hold with a < (1+ K)™'. Let
the mapping R >t — B(t)R(w, A(t)) € L(X) be uniformly Hélder continuous.
Then the operators A(t) + B(t) with domain D(A(t)), where t € R, satisfy (2.1)
and (2.2) (possibly with different constants). If, in addition, (2.9) holds and

<((1+K)1+R)™" (with R from (2.10)), then A(t)+ B(t) satisfies (2.9)
(possibly with different constants).

Proof. Fix n e (a(l1+ K),1). It is well known that for sufficiently large v>w
and A( ) = A(t) — I we have

IBORO A <n and RO A() + B(1) = RO, A®) [ - BORO, A1)
for A € ¥y and ¢t € R. Thus (2.1) holds for A(t) + B(t). Observe that

(I— RO\ A())B(t) ™ = I+ R\ A(1))[I — B(t)R(\, A(t ))1*1 <>eL<D<A< ),
RN A() + B(t)) = {I+ R\ A(t)[I — BH)R(A, A(t))] " B(t) L R(\, A(t)).
These equalities yield
(A(>+B( )) ( At) + B(1) [(A (>+B(t>>*1—({(s)+B(s))”~]
= (A(t) + Bt)){I + RO\ A(t)[I — BO)RO\, A1) B(t) }A(t) ™
At) ( AW) {A) (I + BOA®) ™)™ — (I + B(s)A(s) ™)™
+(A(t) = A(s) (I + B(s)A(s) ™)'}

)
for A€ Xpy and t #s € R. Since R3¢ +— (I + B(t)A(t)"")" € L(X) is uniformly
bounded and Hélder continuous, we obtain (2.2) for A(t) + B(t). The last
assertion is a direct consequence of [17, Proposition 4.3] or [25, Corollary 6.8]; see
also [42, Remark 4.5]. (Possibly one has to increase 7.) O

THEOREM 4.2. Assumethat (2.1),(2.2),(2.9) and (4.1) hold witha < ((1 + K) x
(1+ R))™" (where R is given by (2.10)) and that R > t — B(t)R(w, A(t)) € L(X) is
uniformly Holder continuous. Suppose that L is a Fredholm operator. If a and b
from (4.1) are small enough, then L is a Fredholm operator with the same index

as L.

Proof.  Combining estimate (4.1) with Corollary 2.6, we obtain

1B(-)u(- )HL"(R;X) <allA(- )u(- )HL”(R;X) + bl LP(R;X)
< aCs|Lul| rrx) + (aCsy + 0)||ul| o .x)-

Now Theorem IV.5.22 of [24] shows that there exists x > 0 such that if
b+ aCsy + aCsk < K,

then £ is a Fredholm operator with the same index. O
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4.2. Relatively compact perturbations

Again we start with a perturbation result for our basic assumptions.

LeEmMA 4.3. Assume that A(t), for t € R, are densely defined and satisfy
(2.1), (2.2) and (2.7). Suppose that B(t), for t€ R, fulfill (4.1) and that
B(t)R(w, A(t)) € L(X) are compact and uniformly Hoélder continuous for ¢t € R
and converge in L(X) to operators B, R(w,Ai,) as t— too. Then the
operators A(t) + B(t) with domain D(A(t)), for t € R, satisfy (2.1) and (2.2),
possibly with different constants. If also (2.9) holds, then A(t) + B(t) satisfy (2.9),
possibly with different constants.

Proof. Replacing A(t) by A(t) — wl, we may suppose that w = 0. Let n € (0,3]
and set e =7n(3K +5)". Let teR, and z € D(A(t)) with ||z| + |[[A(t)z| <1.
Then we have
K max{a, b}

<
Al

1R(A, A1) B(t)z|| < £ (4.2)

for A € ¥,y provided that v is sufficiently large, say v>~(n) > 0. By assumption
there exist —oco =1t; <ty <...<t,_; <t, =400 such that for each t € R we find
tk with

IBOAW®) ™ — Bty Aty [ <.

Since the operators B(t;)A(t;)"", for i = 1,...,n, are compact, there exist vectors
Yis--,Ym € X such that for ¢t and = as above there is an index j € {1,...,m}
with
IB(tr)A(ty) " Az — gl <e.
Further observe that eﬁA(T)y —y; as s — 0 uniformly in 7€ R due to our
assumptions and the Trotter—Kato theorem; [24, Theorem 1X.2.16]. Therefore
1(r
||yj - yjr” <e,  where y;, = ;J065A<t>yj ds,

for some r € (0, 1] not depending on ¢ and j. Combining these facts, we deduce
that

AR, A)B(t)z]| < | AR, A®))(BE)A®) ™ — Bt Alty) ™) A(t)z|
+ AR, AWD) (B(t) Alte) ™ Atz — )|
+ [[A@) R, A(8)) (y; — i)l
+ RO A®) (€D —y)) /7]
<3(1+ K)e + ¢, [\

for a constant ¢, not depending on x, t, A as above. Taking a sufficiently large
v =7(n) =v(n), we thus obtain

[A@) RN, A1) B(t)z]| < BK +4)e (4.3)
for all t€R and z € D(A(t)) with |z| + [[A(t)z|| <1, and A€ X 4. We set
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A(t) = A(t) — yI. Combining (4.2) and (4.3), we conclude that

|R(X, A(t)) B(t) (A SN<3 (4.4)

for t€ R and X € Xy, where D(A(t)) is endowed with the graph norm. In
particular, there exist the resolvent operators

ROVA() + B) = S RO A@) B RO, A®)), (15)

n=0

and (2.1) holds for A(t) + B(t). We further have
C(t) :== (I + BH)A) ™) =T — B@)[I + A(t) ' B(t)] ' A(t)
The operators C(t) € L(X) are uniformly bounded by (4.4), and due to
C(t) - C(s) = C(1)[B(s)A(s)™" — B)A(t)C(s)

the map ¢ +— C(t) € L(X) is globally Holder continuous. Now one can show (2.2)
as in the proof of Lemma 4.1.

To establish the second assertion, take 7 < (14 R)™' and increase ~ if
necessary. Based on (4.5), the second assertion can then be established as [17,
Proposition 4.3] or [25, Corollary 6.8]. O

We first consider a path of operators of the type A(t) = A+ B(t), where A is a
fixed R-sectorial operator, D(A(t)) = D(A) for t € R, and B(t) : D(A) — X is
compact for every ¢t € R satisfying the assumptions of Lemma 4.3. Moreover the
operators A + B, and A+ B__, shall be hyperbolic. Then the operators A(t)
fulfill (2.1), (2.2) and (2.9) by Lemma 4.3, and thus they generate an evolution
operator G(t,s). We further introduce the stepwise constant path A; defined by

A+ B_, fort<0,
Ay(t) =
A+ B, fort=0.

Clearly, A, generates the evolution operator

e(t=9)(A+B. ) fort>s>0,
Go(t,s) = elAtBix)e=s(AtBx)  for >0 > s,
e(t=s)(A+B ) for 0 > t>s.

Further, we have exponential dichotomies in [0,400) and in (—oc,0] with the
constant projections

1 1
—J RO\ A+ B,.)d\ and P = —J RO\ A+ B_)d\,
ol

27 )~ 2

P+oo:

respectively. Here v is any regular curve lying in {Re A > 0}, surrounding both
0(A+4 B.y)N{Re A >0} and 0(A + B_,) N{Re A > 0} and having index 1 with
respect to both sets. The stable and unstable manifolds W and Wy corresponding
to Ay at t =0 are given by

Wi = (I = Pioo)(X) and W' = P_(X).
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As in the general case, we define the operator L, by

Ly : D(Ly) = LP(R; D(A)) N W"P(R; X) + LP(R; X);
(Lou)(t) = u'(t) — Ap(t)u(t) fort € R.

The jump of A, at t =0 affects only local regularity properties when crossing
t = 0. All results of §§2 and 3 concerning the operators £J and L, with 7' =0,
still hold, as well as their consequences. In particular, if P, (X) and P_,(X) are
finite dimensional, Corollary 3.10 shows that £ is a Fredholm operator with index
equal to dim P_ (X) — dim P, (X). If one of the subspaces P, (X) and P_ (X)
is not finite dimensional, then £, is a Fredholm operator as well; but the proof is
less immediate.

PROPOSITION 4.4. Assume that A satisfies (2.1) and (2.9), that the mappings
Bi. : D(A) — X are compact, and that o(A+ Bi,)NiR=1. Then L, is a
Fredholm operator with index

ind £y = ind((I — Py )(X), P (X))
= dim((I — Pyoo)(X) N P (X)) = dim([(1 = Pyoc) (X)]" N [P (X)]).

Proof. Statement (v) of Theorem 3.8, applied to Ay, implies that £, is a
Fredholm operator if and only if ((I — P )(X), P_(X)) is a Fredholm couple,
and then

ind £, = ind(I — P, )(X), P (X)),
dim Ker £y = dim((I — Py, )(X) N P_oo(X)).

To prove that the couple is Fredholm, we observe that

1
P -P  =—
oo T T om

J (RN A+ B.o) — RO\ A+ B_))dA

1
= J R()‘aA+B+oo)(B+oo _Bfoo)R()‘?A"i_Bfoo)d)‘
v

T 2mi

is a compact operator, because B, — B_ : D(A) — X is compact.
Thustherangeof I — P, + P__ isclosed and hasafinite-dimensional complement.
As a result, the larger set (I — P, )(X) + P_,(X) is closed and has a finite
codimension, too. In addition, the space P_ . (X) N (I — P, )(X) is finite dimensional
since it is a subspace of the kernel of I — (I — P, )P_, and (I — P, )P_o =
(P_s — Prs)P_y is compact.
As a consequence, L is a Fredholm operator, and it remains to show that

codim Range £ = dim([(I — P, )(X)]" N [P_o(X)]F). (4.6)

To this purpose we recall that codimRange £, = dimKer £ by [24, Theorem
IV.5.13]. Due to (3.8), a function v:R — X" belongs to Ker £ if and only if
ve LYR,X*) and v(s) = Gy(t,s)"v(t) for all t>s. Observe that Gy(t,s)" has
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exponential dichotomies on R, and R_ by duality. Hence,
—s(A+B_.)*
[o(s)[| = [le™ = w(0)]
> [l P w(0)] — e

> Nl | P ocol0)]] - Ne*

—sAB) (1 = Pt Yo(0)
(I =P )v(0)]| for s <0,

and
(I = Pioo)v(0)]| = ([P (I = P yo()]| < Ne ™[[u(t)]| - for ¢ >0,

for v € Ker L. Since v € LY(R, X™), we obtain v(0) € P} (X)) N (I — P*)(X").
Then it is easy to see that the mapping

D:Ker Ly — Pl (X)N{T - P )(X"); v —uv0),
is an isomorphism. Observe that
PLo(X) = [(T = Po)(X)] and (I - PLO)(X7) = [P (X))
Thus we have shown (4.6). O

Observe that if X is a Hilbert space and P, are self-adjoint, then the last
argument of the above proof shows that

ind £, = dim((T — Pyog)(X) N Pyo (X)) — dim(Pyg (X) 0 (I — P} (X)),
As a second step, we write A(t) = Ay(t) + B(t), with

N()_{B(t)—Boo for t <0,
- | B(t) = B4y, fort>0.

Thus the perturbation g(t) is not only compact for each ¢, but it tends to 0 as
t — Foo. Unfortunately, this is not enough to guarantee that the induced
perturbation D(L;) +— LP(R, X), u — B(-)u(-), is relatively compact, and hence
we cannot directly deduce that £ is a Fredholm operator because it is a compact
perturbation of a Fredholm operator. Note that w +— B(-)u(-) is relatively
compact if the embedding D— X is compact, but not in general.

However, we can circumvent this difficulty by working in ¢7(Z, X) instead of in
LP(R, X), thanks to the following theorem taken from [26, Theorem 1.4].

THEOREM 4.5. Let U(t,s) be an exponentially bounded, strongly continuous
evolution operator in a reflexive Banach space X, and let G : D(G) — LP(R, X) be
the generator of the corresponding evolution semigroup in LP(R,X) given by
(T()f)(s) =U(s,s—t)f(s—t). Define the operator D € L({*(Z,X)), with
1<p < o0, by

Dx = (xn - U(na n-— 1)‘7"71,71)7L€Z7 Tr = (mn)nez S ZP(Zv X)

Then G is a Fredholm operator if and only if D is a Fredholm operator, in which
case they have the same index.

As observed at the end of §3, under our assumptions —L generates the
evolution semigroup associated to the evolution operator G(t,s). Using similar
arguments one also sees that —L; is the generator of the evolution semigroup
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corresponding Gy (¢, s). By Proposition 4.4 and Theorem 4.5, the operator
Dy: 7 (2,X) — P (Z,X)
defined by
Dyz = (2, — Go(n,n — 1)y 1)nez, T = (2n)nez € €°(Z, X),
is a Fredholm operator with index equal to ind £;. We will show that the
perturbation
z = Sz:=(G(n,n—1) = Go(n,n = 1))xy1)nez, &= (Tn)nez € 7(Z, X), (4.7)
is compact in ¢#(Z, X). Then the operator D defined by
Dz = (z, — G(n,n — Dy )pezs T = (Ty)nez € 0P (2, X),

is a Fredholm operator in ¢7(Z, X) with index ind £, by Theorem IV.5.26 of [24].
Using Theorem 4.5 again, we conclude that £ is also a Fredholm operator, with
the same index as L. To prove that the perturbation S is compact, we need the
following two results. Here we assume that A satisfies (2.1) and is densely defined,
that B(t): D(A) — X is compact, uniformly bounded and globally Holder
continuous in L(D(A),X) for t€R, and that B(t) converge to By, in
L(D(A),X) as t — too. The next lemma is a special case of results in [10, 20,
37, 38]; see for example, [38, Proposition 2.6].

LEMMA 4.6. We have limy, . [|G(n,n — 1) — Go(n,n — 1)||x) = 0.
PROPOSITION 4.7. The operator S : ¢P(Z,X) — (P(Z,X) is compact.

Proof. To prove that the range of the unit ball B(0,1) C ¢*(Z,X) is totally
bounded, it is enough to show that for each £ > 0 the following statements hold:
(a) there exists N € N such that for each z € B(0,1) we have

Y (G n=1) = Gy(n,n — 1)z, || <e,
n| >N
(b) for each n € Z there is a compact set K C X such that
{(G(nrn - 1) - GO(nan - 1))'rn—1 HEGES B(Oa 1)}
is contained in K + Bx(0,¢).
Point (a) is an obvious consequence of Lemma 4.6. Concerning point (b), we write
G(n,m—1)—Gy(n,n—1)=Gn,n—1+h)(Gn—14+h,n—1)
—Gy(n—14+h,n—1))
n—1
+ J G(n,s)B(s)Gy(s,n —1)ds
n—1+h

for each h € (0,1). This identity follows from the variation-of-constants formula in
the interval [n — 14 h,n| and

%[G(t»n —1) = Go(t,n = 1)] = A(B)(G(t,n = 1) = Go(t,n — 1)) = Bt)Gy(t,n — 1)
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forn—1<t<n. If n—1>0, then

Gn—1+hn—-1)—Gyn—1+h,n—1)
n—1+h
= A1) _ hA+Bix) | J Z(s,n —1)ds,

n—1
where for all » > o € R, Z(r,0) is the operator in the representation formula (2.4).
Therefore,
G(n,n—1) = Gy(n,n —1) = G(n,n — 1+ h) ("D — hlA+Bix))

n—1+h
+J G(n,n—14+h)Z(s,n—1)ds

n—1

n—1 -
+ J G(n,s)B(s)Gy(s,n — 1) ds.
n—1+h

Further, the operators

G(n,n—1+ h)(ehA(nfl) _ eh(A+B+oc))
- %mj M'G(n,n — 1+ )R, A(n = 1))(B(n — 1) = Big)R(A\, A + Bio)dA,
¥
and
n—1 N
J G(n,s)B(s)Gy(s,n —1)ds
n—1+h
are compact, and
n—1+h
< M()CJ (S —n+ 1)571 ds
1

n—

n—1+h

Ha(n,n 1+ h)J Z(s,n—1)ds

n—1

L(X)
= cMyh' /6.

Fix h € (0,1) such that ¢Myh®/6<e. Then G(n,n —1) — Gy(n,n —1) is the
sum of a compact operator plus an operator with norm less than e, and (b) follows
for n>1. If n<0, we use the same argument, replacing B, by B_. O

So we have shown the following theorem.

THEOREM 4.8. Let A be a fixed operator satisfying (2.1) and (2.9). Assume
that B(t) : D(A) — X is compact and uniformly bounded and Hélder continuous
in L(D(A),X) for t € R and converges to By, in L(D(A),X) as t— toc.
Suppose that o(A+ Bi,,) NiR ={. Then L is a Fredholm operator with index

ind £ = dim(( — P,.0)(X) N P_o(X)) — dim([(I — P.o) (X)] N [P (X)]).

Using the same arguments, one can establish a second result on compact
perturbations.

THEOREM 4.9. Let A(t), with t € R, satisfy (2.1), (2.2), (2.7), (2.8) and (2.9),
and let £ be Fredholm. Assume that B(t) : D(A(t)) — X is compact and that
t — B(t)R(w, A(t)) € L(X) is uniformly Holder continuous and converges to 0 in
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L(X) as t — +oo. Then L is a Fredholm operator with index
ind £ = ind £.

5. Examples

5.1. Parabolic systems on bounded domains

Due to recent advances in [17] we could treat very general parabolic boundary
value systems of order 2m. For the sake of simplicity, we concentrate on second
order systems with Robin type boundary conditions and we require more
regularity assumptions than necessary. Let N € N, ¢ € (1, +00), and 2 be an open
bounded subset of R? with boundary I' of class C2. We study the differential
operators

d
A(t) = A(t,z, D) Zakltxakal+2aktx8k+ao(t ),

k=1 k=1

for t € R and = € Q, and the boundary operators

d
B(t) = B(t,z,D) = Z bi(t, )0y, + bo(t, x)y
k=1

for t € R and x € I'. The derivatives are understood in the distributional sense and
v is the trace operator. The coefficients are complex (N x N)-matrices satisfying

ay,a; € G (R;C(Q,CY YY), b e O (R; ¢ VYY)

for k,l=1,...,d, j=0,...,d and constants oy € (0,1) and o, € (%, 1), where C}'
denotes the space of uniformly bounded and globally HOlder continuous functions.
We further suppose that

a(t,-) = an(£00,-) in C(QCYVN),  by(t,-) — bi(E£oo,-) in CY(I;CVN)
as t — oo, for a = (k,1) or a« = j, and k,l=1,...,d, j=0,...,d. The principal
symbols of A(t,x, D) and B(t,z, D) are defined by

d d
#(t,x, &) = Z ap(t, )68 and  by(t,z,§) = Z k(t, )&k
=1 =1
for ¢ € RY, t € [—00,400], and z € Q, respectively, z € T.
We further suppose that (A(t), B(t)) are normally elliptic; cf. [5, 17, 18] and the
references therein. This means that
olay(t,z,§)) C{A € C:Re A > 0}

for t € [—o0,400], x € Q, and £ € R? with |¢] =1, and the Lopatinskii—Shapiro
condition (see for example [5]) holds: for all ¢ € [—o0,+00], x € T', tangent vectors
Eof I"at x €T, and Re A>0 with (§,\) # (0,0), v =0 is the unique solution in
Cy(R,,CY) of the ODE

M(T) 4+ ap(t, z, & + v(x)id,)v(r) =0 for 720,
by(t, =, &+ v(2)id;)v(0) = 0,
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where v(z) is the outer normal vector at x € I'. The elliptic boundary value
problem (A(t),B(t)), with ¢ € R, is normally elliptic if for instance, denoting
by (-,-) the usual scalar product in CV, we have Re(ay(t,z,&)n,n) >0 for
neCV\ {0} and £eR\{0}, and b;(t,z) = B(t,2)b(t,x) for j=1,....d,
invertible matrices b(t,-) € CY(T,CN*Y), and an outward pointing, nowhere
vanishing vector field 3(t,-) € C*(T,R%); see [5, Theorem 4.2].

On X = L9(Q;C") we now define

A(t)u = —A(t,-,D)u, uec D(A(t)) ={uecW>(Q;C"):B(t,-,D)u=0onT}

for t € [—o0,+0o0]. The Agmon-Douglis—Nirenberg estimates in the version of
Theorem 2.3 of [5] (where the normal ellipticity assumption is used) imply
condition (2.1) for t € [—o0,+0o0]. See also [17, Theorem 8.2].

Moreover, the graph norms of the operators A(t), with ¢ € [—o00,4+00], and the
norm of W?4(Q;CY) are uniformly equivalent. Theorem 8.2 of [17] further implies
that all operators A(t) satisfy (2.9) for fixed t € [—o0, +00]. Let us check that the
corresponding R-bounds are uniformly bounded in ¢. Take t,s € [—o0,+00] and
feLY0,1],X). Set

T

u(r,x) = J (™48 f(5))(z) do for 0<T<1.
0
(In fact, u depends also on s but we drop the dependence on s for notational
simplicity.) We then have, for 7 € [0,1],
d-u(r,z) + A(t, =, D)u(r, 7)
= f(r,z) + (A(t,z, D) — A(s,z, D))u(r,z) for z € Q a.e.,
B(t,x, D)u(r,z) = (B(t,z, D) — B(s,z,D))u(r,z) forz el a.e.,
u(0,2) =0 forz € Q.
Given ¢ > 0, we find a neighborhood U(t,¢) of t € [—00, +00] such that
laa(t,+) = an(s, g~ ey <& and  [|bi(t,-) = bi(s, )| orrevevy <€
for s € U(t,¢e), for a = (k,1) or a =4, and k,l=1,...,d, j=0,...,d. Theorem 2.1
of [18] combined with the extension results in [18, §3] then implies that
lwllwrago.u:x) + 11wl Logogm2aicy)
<e(|If]
Choosing ¢ = (2¢;) ", and taking into account the fact that the norm of

W24(Q; CV) is equivalent to the graph norm of A(s), with equivalence constants
independent of s, we deduce that

Lo(o.1]:x) T EHUHWI"I([OJ];X) + 5”u”L‘I([(J.l]:,Vl/’2~‘I(Q;CN)))'
1

”u”W'-‘l([O,l];X) + HA(S)'UJ”L’I([O,I];X) < Cz‘{ Hf||L’1([0,1]:,X) for s € Ul(t, (2015)_1)'

The compactness of [—oo, +0o0] thus yields
lwllwrago,yx) + [1A(S)ull oo, 1:x) < I fll Lo

for s € R. This uniform estimate shows (2.9) due to (the proofs of) Theorem 4.2
and Remark 2.3 of [42]; see also [17, Proposition 3.17].

In order to check (2.2) we proceed as in [2]; see also [3]. We extend the
coefficients b; to 2 preserving their norms. For f € X, t,s € R, and |arg A\| <0, we
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set

v=—R(w,A(s))f and u=RA+w,A(t))(A+w— A(s))v,
where w is the constant in (2.1). Then

u—v=(A() - w)RA +w, At)) (R(w, A(t)) — R(w, A(s))) f
and

A+ wu+A(t,-,D)u= v —f, (w+ A(s,-,D))v=—f onQ,
B(t,-,D)u=0, B(s,-,D)v=0 onT.

This shows that

A+ w)(u—v) + A(t, -, D)(u —v) = (A(s, -, D) — A(t,-,D))v on €,
B(t,-,D)(u—v) = (B(s,-, D) — B(t,-,D))v on 0.

The Agmon-Douglis—Nirenberg estimate from Theorem 2.3 of [5] and our
assumptions now imply that
c

— <

(H(A(57 '7D) - A(t’ '7D))U||L"(SZ;CN)

+ N+ 2(Bs, -, D) = Blt, -, D)vllysaey)
< A+l E= s A w7 s1™) | fllx

In the same way one derives (2.7). Observe that the operators A(4oc) have
compact resolvents. Hence the spectra of these operators consist of eigenvalues
only and do not depend on ¢ (see for example [16, Theorem 1.6.3]). If we can
check (2.8), then Corollary 3.11 shows that £ is a Fredholm operator with index
equal to dim P_(X) — dim P, (X).

We give a rather simple example to illustrate the spectral condition (2.8). The
example could occur if a reaction diffusion system with two species, diagonal
diffusion, and conormal boundary conditions is linearized along a heteroclinic
orbit. We consider the differential operator in divergence form

diva(t,z)V + ay(t, z) b(t, x)
—Altz, D) = ( ) divd(t,2)V + dy(t, x) )

for t € [~o00, +00] and z € €, and the boundary operator
_ fa(t,x)v(z) -V 0

B(t,, D) = ( 0 d(t,2)v(z) -V
for t € [—o0,+o0] and z € I' = 9. Here Q with outer normal v is given as above.
We assume that a, ag, b, ¢, d and d; are real-valued, a(t,x),d(t,z)>6 > 0,

a,d € CYMP(R; CH@Y)) N C([—o0, +00]; CL(Q)),

ag, b, ¢, dy € Cy' (R; C(2)) N C([~o00, +o¢]; C(Q))
for some a > 0, and that the coefficients at ¢ = +00 are equal to constants. Then

it is not hard to check that we are in the situation discussed above. We thus have
to study the spectra of the operators

)= (a(iOO)A + ag(£00) b(£00) )

Ao ¢(+£00) d(£00)A + dy(200)
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on LY(0)* with domains
D(A(%00)) = {(u,v) € W*(Q)*: ,u=d,v=0o0onT}.

Here 0, is the derivative in the direction of the outer normal direction at x € T'. It
is straightforward to check that A € C is an eigenvalue of A(+o0) if and only if
there is an n € Ny such that A is an eigenvalue of the matrix

o (a(£00)u, + ag(£00) b(F00)
M= ( E=) d(F00)uy + do(ioo))

where pu, <0 are the distinct eigenvalues of the Neumann Laplacian on 2. Thus
we have to ensure that none of the matrices M, for n € N, has an eigenvalue on
iR. One obtains a purely imaginary eigenvalue of A(+oo) if and only if either
det(M) = 0 for some n € Ny, or tr(M7F) =0 and det(M;7) > 0 for some n € Nj.
Therefore (2.8) holds if, for example,

pin 7 —(ag(£00) + dy(+00))/(a(£00) + d(+00))  for n € Ny,
a(£00)dy(£o0) + ag(F£oo)d(£o0) <0 and ay(Foo)dy(£oo) > b(+oo)c(Eo0),

since then trM;F # 0 and det(M*(u)) > 0 for all 4 <0. Taking n = 0, we see that
the unstable subspaces of A(+o00) are non-trivial if ay(+o0) + dy(£o0) > 0, too.

5.2. Generalized Ornstein—Uhlenbeck operators

Let ® :R? R be a convex function such that lim, | 400 () = +00, s0 that
de e @ dzr < 400 and the probability measure

-1
p(dz) = (J et dgc) e~ @ dy (5.1)
R

is well defined. We choose X = LY(R?, 11), with 1 < ¢ < +oc. In the paper [15] it
was shown that the operator

Ay D(Ay) = {u e W (R, p) : (D®, Du) € L*(RY, 1)},  Ayu = Au — (D®, Du),

(where (-,-) denotes the usual scalar product in RY) is the infinitesimal generator
of a symmetric Markov semigroup Th(t) in L*(R% u). Moreover, D(A,) is
compactly embedded in L?(R?, 1) provided that

Jw > 0 such that z +— ®(x) — %w|m|2 is convex, (5.2)

which we shall assume throughout.

For 1< ¢ <2 (respectively, 2 < g <oo) we denote by T,(t) the standard
extension (respectively, restriction) of T5(¢) to X and by A, its generator; cf. [16].
The question whether the domain of A, is contained in W2HURY, 1) if g # 2 is still
open; sufficient conditions in order that D(4,) = W*4(R?, u) are derived in [28]. In
any case, D(A,) is compactly embedded in X, the spectrum of A, is independent
of ¢ (see for example [16, Theorem 1.6.3]), and it consists of a sequence of negative
eigenvalues —\; > —\y > ... having finite multiplicities k, ks, ... plus the simple
eigenvalue Ay = 0.

We consider the path of sectorial operators

A(t): D(Ay) — X, (A(t)u)(z) = (Au)(z) — o(t,z)u(x) forteR
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in LYRY ), where ¢ is a real-valued L™ function such that |[|p(t,-) —
@(s, )l <CJt — 5" and
3 lim @(t,-) =@, in L(RY).
t—=o0
So, the domain of A(t) is constant and (2.1) and (2.2) are satisfied. The limiting
operators A(—oo) and A(+00) are hyperbolic under standard assumptions on the
ranges of .

LEMMA 5.1. Let ay and by be such that a_ <¢_(xz)<b_ and a, <@, (z) <b,
forallz € RY. Assume that there existn,m € NU {0} such that \,,.; < a_ <b_ < \,,
and A\, < ay <by < \,. Then A(—ox) and A(+0o0) are hyperbolic operators. The
unstable spaces P_., (X) and P, (X) have positive finite dimensions equal to
1+k +...+k, and 1 +ky + ...+ k,, respectively, where k; is the multiplicity of
the eigenvalue —\; of A,.

Proof. First, let ¢=2. Since A, is self-adjoint, the operators A(—oco) and
A(+00) are self-adjoint too in L?(R% ). The domain D(A,) is compactly
embedded in L?(R%, 11). Therefore the spectra of A(—oo) and of A(+00) consist of
sequences of real eigenvalues, each eigenvalue has finite geometric multiplicity,
and A(—oo) and A(+o0) are hyperbolic if and only if 0 is not an eigenvalue. In
view of our assumptions, the minmax principle (see for example, [34, Theorem
XII1.2]) implies that 0 is not an eigenvalue of A(—o0) and A(400). Moreover, the
number of strictly positive eigenvalues of A(—oc0) and A(+oo) (counting
multiplicities) is equal to 1 +k; + ...+ k,, and 1+ k; + ... + k,,, respectively.

In the case that ¢ # 2, Theorems 1.6.1 and 1.6.3 and Corollary 1.6.2 of [16]
show that the spectra of A(—o0) and A(+oo) and the multiplicities of the
eigenvalues do not depend on ¢. Thus the lemma is proved. O

We do not need the general theory of optimal L” regularity for the proof of
Theorem 2.2. An easy proof by perturbation is given below.

LEMMA 5.2. Let a<beR and 1 <p < +oo, let ¢ € L*((a,b) x R) and let
f e L?((a,b); X). Then the problem
u'(t) = Ayu(t) — o(t, Ju(t) + f(t) fora <t <b,
Lo,
has a unique solution u, which belongs to W"?((a,b); X). For almost all t € (a,b),
u(t) belongs to D(A,), and there is C,,_,, independent of f, such that

el @z + 1ACu(-)]

(5.3)

Lo((ah):X) < Cpp—all fll Lo((ap):ix)- (5.4)

Proof. Since A, is the generator of a Markov semigroup, the result is true
when ¢ = 0, thanks to [14]. In the general case, the solution to (5.3) must satisfy

u(t) = J p(t—=8)(f(s) — (s, -)u(s))ds fora <t <b.

a

The operator A defined by (Au)(t) = fa (t—s)(f(s) — @(s,-)u(s))ds is easily
seen to be a contraction in L”((a,b); X) w1th respect to the norm

b 1/p
oo = (] € oo as)
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provided w is large enough. Therefore it has a unique fixed point u. Since

s = f(s) == f(s) + ¢(s,-)Ju(s) € L((a, b); X),

the statement follows by applying the result of [14] to u = [ T,(t — $)f(s)ds. O

If the assumptions of Lemma 5.1 hold, our operator £ has the domain

D(L£) = W"P(R; X) N LP(R; D(A,)).

Applying Corollary 3.11 gives the fact that £ is a Fredholm operator with index
equal to dim P__ (X) — dim P, (X).

Acknowledgements. We thank the referee for suggestions leading to

Proposition 3.9, and for careful reading of the manuscript.
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