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Abstract

We study the realization A of the operator A = 3 A—(DU, D-) in L*(, p), where Q is
a possibly unbounded convex open set in RY, U is a convex unbounded function such
that lim, a0, zeq U(x) = +00 and lim || 4 o0, ze U(z) = +00, DU(2) is the element
with minimal norm in the subdifferential of U at z, and u(dz) = cexp(—2U(z))dx is
a probability measure, infinitesimally invariant for .A. We show that A, with domain
D(A) = {u € H*(Q,pn) : (DU, Du) € L*(Q,u)} is a dissipative self-adjoint operator
in L2(2, ). Note that the functions in the domain of A do not satisfy any partic-
ular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study
smoothing properties and asymptotic behavior of the semigroup generated by A.

1 Introduction

In this paper we give a contribution to the theory of second order elliptic operators with
unbounded coefficients, that underwent a great developement in the last few years. See
eg. [1,7,5,6,8, 12, 13].

Here we consider the operator

Au = %Au — (DU, Du) (1.1)

in a convex open set Q C RY, where U is a convex function such that

lim  U(z) = 400, i U(z) = +00. 1.2

Since we do not impose any growth condition on U, the usual LP and Sobolev spaces with
respect to the Lebesgue measure are not the best setting for the operator A. It is more
convenient to introduce the measure

-1
w(dz) = </962U(m)dm> e @)y, (1.3)

which is infinitesimally invariant for A, i.e.
/ Au(z)p(dz) =0, ue CPRY),
Q
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and lets A be formally self-adjoint in L?(£2, i), as an easy computation shows. We prove
in fact that the realization A of A in L?*(Q, u1), with domain

D(A) ={ue H*(Q,pu): Auc L*(Q,u)} = {u € H*(Q,u) : (DU, Du) € L*(Q, u)}

is a self-adjoint and dissipative operator, provided C§°(Q) is dense in H'(€2, u). We recall
that H'(€2, 1) is naturally defined as the set of all u € H}. () such that u, D;u € L?(, ),
for i = 1,...,N. While it is easy to see that C§°(Q) is dense in L%(Q, i), well-known
counterexamples show that C§°(€2) is not dense in H'(Q, i) in general.

Once we know that C§°(€2) is dense in H'({, u1), it is not hard to show that for each
u € D(A) and ¢ € HY(Q, u) we have

1
| an@u@ntds) = =3 [ (Dute). Di(@) ().
This crucial integration formula implies that A is symmetric and dissipative. The next
step is to prove that A\l — A is onto for A > 0, so that A is m-dissipative. This is done by
approximation, solving first, for each A > 0 and f € C§°(Q),

Mg (2) — (Aque)(z) = f(z), = eRY, (1.4)

where A, is defined as A, with U replaced by its Moreau-Yosida approximation U,.
To be more precise, first we extend f and U to the whole RY setting f(x) = 0 and
U(x) = +oo for x outside €2; since the extension of U is lower semicontinuous and convex
the Moreau-Yosida approximations U, are well defined and differentiable with Lipschitz
continuous gradient in RY. Then (1.4) has a unique solution u, € H2(RY,u,), with
pa(dz) = (fpn e 2@ dz)~te=2Va@) gy, and the norm of u, in H2(RY, ) is bounded
by C(N)[|fll L2~ ), Where the constant C'(A) is independent of «, due to the estimates
for equations in the whole RY already proved in [5]. Using the convergence properties of
U, and of DU, to U and to DU respectively, we arrive at a solution u € H?($, 1) of

Au(z) — (Au)(x) = f(x), x€Q, (1.5)

that belongs to D(A), satisfies |[ul|g2(q,) < C(N|fllz2(q,u) and is the unique solution to
the resolvent equation because A is dissipative. If f is just in L2(£2, ), (1.5) is solved
approaching f by a sequence of functions in C§°(£2).

A lot of nice consequences follow: A generates an analytic contraction semigroup 7'(t)
in L2(Q, 1), which is a Markov semigroup and may be extended in a standard way to a
contraction semigroup in LP (2, u) for each p > 1. The measure p is invariant for T'(t), i.e.

/ (T(t) ) () () = / f@yudz), e L),
Q Q

and moreover T'(t) f converges to the mean value f = [, f(z)u(dz) of f as t — +oo, for
each f € L%(Q, u).

If, in addition, U —w|x|?/2 is still convex for some w > 0, T'(t) enjoys further properties.
0 comes out to be a simple isolated eigenvalue in o (A), the rest of the spectrum is contained
in (—o0, —w], and T'(t)f converges to f at an exponential rate as t — 4oc0. Moreover,
T(t) is a bounded operator (with norm not exceeding 1) from LP(€, 1) to LM (Q, 1), with
q(t) = 1+ (p — 1)e**. This hypercontractivity property is the best we can expect in
weighted Lebesgue spaces with general weight, and there is no hope that T'(t) maps, say,
L2(Q, 1) into L®°(€2). Similarly, Sobolev embeddings are not available in general. The
best we can prove is a logarithmic Sobolev inequality,

| Paos(F@putds) < < [ IDf@)Putdn) + Plog(P), 1 € H' (@),



2 Preliminaries: operators in the whole RY
Let U : RN — R be a convex C! function, satisfying

lim U(x) = +ooc. (2.1)

|| =00
Then there are a € R, b > 0 such that U(z) > a + b|z|, for each z € RY. Tt follows that
the probability measure v(dz) = e 2V dz/ Jon e V@) dz is well defined.

The spaces H*(RY,v) and H*(RY,v), consist of the functions u € H} _(RY) (respec-
tively, u € H2,_(RY)) such that u and its first (resp., first and second) order derivatives
are in L2(RV, v).

We recall some results proved in [5] on the realization A of A in L?(RY,v). Tt is defined
by

D(A) = {ue H*RM,v): Auc LRV v)}

= {ue€ H*RY,v): (DU,Du) € L*(RN,v)}, (2.2)
(Au)(x) = Au(z), =€ RV,

Theorem 2.1 Let U : RY — R be a convex function satisfying assumption (2.1). Then
the resolvent set of A contains (0,+00) and

. 1
(@) IR A fllzey ) < <2y ),

.. 2
(@) N DRN A fl 2@y < ﬁ”f”LQ(RN,u)y (2.3)

(i) | ID*ROL AV g2y < 4 e,

Theorem 2.2 Let U : RY — R satisfy (2.1), and be such that x — U(z) — w|z|?/2 is
convez, for some w > 0. Then, setting U = [px u(x)v(dz), we have

_2 1 2
| @) —avida) < 5= [ Dute)Putdn)

w

/ W2(2) log (12 () w(dz) < = / | Du(z) 2o(dz) + a2 log(@?),
RN RN

w

for each v € H' (RN, v) (we adopt the convention 0log0 = 0).

3 The operator A

Let U : Q — R be a convex function satisfying assumption (1.2), and let us extend it to
the whole RY setting
U(x) =+o0, x ¢ Q. (3.1)

The extension, that we shall still call U, is lower semicontinuous and convex. For each
x € RY| the subdifferential OU (x) of U at x is the set {y € RY : U(&) > U(x) + (y,& —
z), V&€ RN} At each z € , since U is real valued and continuous, OU () is not empty
and it has a unique element with minimal norm, that we denote by DU (z). Of course if
U is differentiable at z, DU (x) is the usual gradient. At each z ¢ Q, OU (x) is empty and
DU (z) is not defined.

Lemma 3.1 There are a € R, b > 0 such that U(x) > a + b|x| for each x € Q.



Proof — The statement is obvious if € is bounded. If 2 is unbounded, we may assume
without loss of generality that 0 € ). Assume by contradiction that there is a sequence z,,
with |z,| — +oo such that lim, o, U(z,)/|z,| = 0. Let R be so large that min{U(x) —
U0): z €, |z| =R} > 0. Since U is convex, for n large enough we have

so that R R
limsupU<—x ) —U(0) < lim —U(x,) — —U(0) =0,

n

a contradiction. OJ

We set as usual e~ = 0. The function
ze W@ pe RV,

is continuous, it is positive in €2, and it vanishes outside 2. Lemma 3.1 implies that it is in
L'(Q). Therefore, the probability measure (1.3) is well defined, and it has Q as support.

Lemma 3.2 C§°(Q) is dense in L?(, ).

Proof — It is well known that every function u € L?(Q2) with compact support may
be approximated in L?(2) by a sequence of C§° functions obtained by convolution with
smooth mollifiers. Since u has compact support, such a sequence approximates v also in
L2(Q, ).

Therefore it is sufficient to show that every u € L?(Q, 1) may be approximated by
a sequence of L? functions with compact support, contained in €. In this case also the
functions obtained by convolution with smooth mollifiers have support in Q.

Let 0,, : R — R be a sequence of smooth functions such that 0 < 6,,(y) < 1 for each y,
0, =1fory<n,6d,=0for y>2n. We set

un(x) = u(z)f,(U(x)), x € Q, up(z) =0, = & Q.

Then u,, has compact support in €2, and u, — u in L?(RY, u). Indeed,
[l = ulute) < [ uPu(d)
RN {zeQ:U(z)>n}
which goes to 0 as n — co. [J

We remark that in general C5°(Q) is not dense in H'(RY, 1). See next example 4.1.
We introduce now the main tool in our study, i.e. the Moreau-Yosida approrimations
of U,

1
Ua(x):inf{U(y)—F%]x—yF: yERN}, zeRYN, a>0,

that are real valued on the whole RY and enjoy good regularity properties: they are
convex, differentiable, and for each x € RY we have (see e.g. [2, prop. 2.6, prop. 2.11])

Ua(z) < U(2),|DUa()| < |DU ()|,
lim Ua(z) = U(x), = €RY,

lin%DUa(a:) =DU(x), x € lin%) | DUy ()| = +00, x & Q.

Moreover DU, is Lipschitz continuous for each «, with Lipschitz constant 1/c.



Let us define now the realization A of A in L?(Q, 1) by

D(A) ={u € H*(Q,p) : (DU, Du) € L*(Q, i)},
(3.2)
(Au)(z) = Au(z), x € Q.

We shall show that A is a self-adjoint dissipative operator, provided C§°(2) is dense
in H'(RY, u). The fact that A is symmetric is a consequence of the next lemma.

Lemma 3.3 If C5°(Q) is dense in HY(RN, 1), then for each u € D(A), v € H' (RN, u)

we have

[ Aw@@wn =~ [ (Dua), Dote)ntda), (33)
Q Q

Proof — Since C§°(RY) is dense in HY(RY, 11) it is sufficient to show that (3.3) hold for
each ¢ € C§°(RN).

If ¢ € C§°(12), then the function ¢ exp(—2U) is continuously differentiable and it has
compact support in Q. Integrating by parts (Au)(z)y(z)exp(—2U(x)) we get

3 | B Ot = =5 [ (Du(w). Dw(a)e D))o

= _% /Q <Du(x),D¢(m)>e—2U<x>dx+% /Q (Du(), 2DU (x))¢(x)e >V ) da

so that (3.3) holds. O

Taking 1) = u in (3.3) shows that A is symmetric.

Once we have the integration formula (3.3) and the powerful tool of the Moreau-Yosida
approximations at our disposal, the proof of the dissipativity of A is similar to the proof
of theorem 2.4 of [5]. However we write down all the details for the reader’s convenience.

Theorem 3.4 Let U : Q +— R be a convex function satisfying assumption (1.2), and be
such that C§°(Q) is dense in H'(Q, u). Then the resolvent set of A contains (0,+00) and

. 1
(@) RO Afll2u < XHfHLQ(Q,M)a

.. 2
(@) [ IDRN A) f 2, < ﬁ”me(Q,ﬂ), (3.4)

L (@) |[ID*ROA)fl 2o < 402 -

Moreover the resolvent R(\, A) is positivity preserving, and R(A, A)1 = 1/\.

Proof — For A > 0 and f € L?(£2, i) consider the resolvent equation
Au— Au = f. (3.5)

It has at most a solution, because if u € D(A) satisfies A\u = Au then by (3.3) we have

1
[ Mut@)Putan) = [ (u@puanta) = = [ 1Du@)Ea(da) <o,

so that u = 0.

To find a solution to (3.5), we approximate U by the Moreau—Yosida approximations
U, defined above, we consider the measures vy (dz) = e~ 2Va(®)dy/ Jzn e 2Va@)dg in RN
and the operators A, defined by Ayu = Au/2 — (DU, Du,).



Since the functions U, are convex and satisfy (2.1), the results of theorem 2.1 hold
for the operators Ay: D(A,) = H*(RY,v,) — L*(RY,v,). In particular, for each f €
C§°(RY) with support contained in €2, the equation

Mg — Agg = (3.6)

has a unique solution u, € D(A,). Moreover, each u, is bounded with bounded and

Holder continuous second order derivatives, thanks to the Schauder estimates and the

maximum principle that hold for operators with Lipschitz continuous coefficients, see [10].
Estimates (2.3) imply that

( 1
[uallL2 @y v,y < XHfHLQ(RN,Va)v

2
I 1Dual || 2 ) < ﬁ\lfllm(w,ya),

1Dt [l 2@ vy < 41 FIL2@Y 1)

so that

[uallm2@y vy < CllfllL2@Y va)
with C' = C(\) independent of «. Since U, (x) goes to U(xz) monotonically as o — 0,
then exp(—2U,(z)) goes to exp(—2U(x)) monotonically, and ([px e 2@ dz) =1 goes to
(Jan e 2U@) dg) 1, [ fllL2@®™ 1y g0es to [ fllL2@n ) as o — 0. It follows that the norm

U || H2(RN is bounded by a constant independent of «, and Consequently also the norm
( 71'/[1)
U || H2(RN is bounded by a constant independent of a. Therefore there is a sequence
( )

Uq,, that converges weakly in H2(R™, ;1) to a function u € H2(R™, 1), and converges to u
in H!(K) for each compact subset K C €. This implies easily that u solves (3.5). Indeed,
let ¢ € C§°(Q2). For each n € N we have

1
/ (Mo, — =Aug,, + (DU, , Dug,) — f)pe 2Vde = 0.
]RN 2

Letting n — oo, we get immediately that [,y (Aua, — 2Aua, )pe ™2V @ dz goes to [n (Au—
SAu)pe V@ gz, Moreover  [pn (DUa,,, Dua, )pe V@ dz  goes  to

Jpn (DU, Du)pe V@) dx because DU,, goes to DU in L*(supp¢). Therefore letting
n — 00 we get

/ (M — Au — f)pe Vdz =0
RN

for each ¢ € C°(RY), and hence A\u — Au = f almost everywhere in €. So, uq € D(A)

is the solution of the resolvent equation, and letting o — 0 in (3.7) we get
1 2

||U’HL2(QHU,) < _HfHL2(Q,u)7 |||DU|||L2(Q,u) < ﬁ”f”[ﬂ(fl,l/)’

(3.8)

1D?ulll 20,0y < 4l1f1 200

Let now f € L?(Q,u) and let f, be a sequence of C§°(f2) functions going to f in
L?(Q, 1) as n — oo. Thanks to estimates (3.8), the solutions wu,, of

Ay, — Aup = fr

are a Cauchy sequence in H2(Q, 1), and converge to a solution u € H?(Q, i) of (3.5). Due
again to estimates (3.8), u satisfies (3.4).



If in addition f(x) > 0 a.e. in Q, we may take f,,(z) > 0 in 2, see the proof of lemma
3.2. Each wu,, solution to (3.6) with f replaced by f,, has nonnegative values thanks to
the maximum principle for elliptic operators with Lipschitz continuous coefficients proved
n [10]. Our limiting procedure gives R(X, A) fn(x) > 0 for each x, and R(\, A)f(z) > 0
for each x. So, R(\, A) is a positivity preserving operator. [J

4 Examples and consequences

Example 4.1 Let  be the unit open ball in RY, and let U(z) = —$log(1 — |z|) for
r € ), with o > 0. Then
exp(—2U(z)) = (1 — |z)*, DU(z) = — 2 0<|z| <1
’ 202|(1 — Jz)” ’

and it is known that C§°(€2) is dense in H*(Q, u) iff @ > 1. See e.g. [14, thm. 3.6.1]. In
this case the result of theorem 3.4 holds, and A is a self-adjoint dissipative operator in
L*(Q,p). O

Under the assumptions of theorem 3.4, A is the infinitesimal generator of an analytic
contraction semigroup T'(t) in L(£2, ).

Since the resolvent R(\, A) is positivity preserving for A > 0, also T'(t) is positivity
preserving. Since R(X, A)1 = 1/, then T'(¢t)1 = 1 for each ¢t > 0. Therefore, T'(t) is a
Markov semigroup and it may be extended in a standard way to a contraction semigroup
(that we shall still call T'(¢)) in LP(Q,pu), 1 < p < oo. T(t) is strongly continuous in
LP(Q,pu) for 1 < p < oo, and it is analytic for 1 < p < oco. See e.g [4, ch. 1]. The
infinitesimal generator of T'(¢) in LP(12, 1) is denoted by A,. The characterization of the
domain of A, in LP(Q, 1) is an interesting open problem.

An important optimal regularity result for evolution equations follows, see [9].

Corollary 4.2 Let 1 < p < oo, T > 0. For each f € LP((0,T); LP(Q, ) (i.e. (t,x) —
f(t)(x) € LP((0,T) x Q;dt x p)) the problem

u'(t) = Apu(t) + f(t), 0<t<T,

has a unique solution u € LP((0,T); D(Ap)) N WEP((0,T); LP(Q, 1)).

From lemma 3.3 we get, taking ¢ =1,

/ Aup(dz) =0, u e D(A),
Q
and hence,
[ 1@ utds) = [ fuiao). t>0
Q Q

for each f € L?(Q, ). Since L?(€2, p) is dense in L'(€2, i), the above equality holds for
each f € L'(Q, ). In other words, y is an invariant measure for the semigroup 7'(t).
From lemma 3.3 we get also

u€ D(A), Au=0= Du=0,

and hence the kernel of A consists of the constant functions. Let us prove now that

lim () = /Q Fnldy) n L2, ), (4.1)

t—+o0

7



for all f € L*(Q, p).

Indeed, since the function ¢ — ¢(t) = [o(T(¢) f)*p(dz) is nonincreasing and bounded,
there exists the limit lim;—, 1o ¢(t) = lim¢— o (T'(2) f, f) 12(0,u)- By a standard arguments
it follows that there exists a symmetric nonnegative operator Q € £(L?(€, 1)) such that

Jim T()f =Qf. € L*H.p).

On the other hand, using the Mean Ergodic Theorem in Hilbert space (see e.g. [11, p.
24]) we get easily

i 1) = p( [ 70)505),

where P is the orthogonal projection on the kernel of A. Since the kernel of A consists of
the constant functions, (4.1) follows.

From now on we make a strict convexity assumption on U:
3w > 0 such that z — U(z) — w|z|?/2 is convex. (4.2)

This will allow us to prove further properties for 7'(¢), through Poincaré and Log—Sobolev
inequalities.
If (A, m) is any measure space and u € L'(A, m) we set

Upy, = / u(xz)m(dx). (4.3)
A
Proposition 4.3 Let the assumptions of theorem 3.4 and (4.2) hold. Then

[ @) ~aPutde) < 5 [ Du@)Pdutdn), we B, (44)
Q Q
and
[ @ osu?@)utdo) < % [ [DuCe)Pi(de) + 2, 1og(), we HARp). (45)
Q Q

Proof — Let v € C’E)’O(RN ) have support in Q. Let U, be the Moreau-Yosida approx-
imations of U, and set as usual vo(dz) = ([~ e~ 2Va@) dy)~le=2Va(®)dy,  Since x —
Ua(z) — w(1 — a)|z|? is convex in the whole RY, by theorem 2.2 we have, for « € (0, 1),

— 2 1 2
/]R | (o) = P d) < 5 /R D) v (i), (4.6)

(where w, stands for @, ) and

/ u?(z) log(u?(z))ve(de) < / | Du(x)|?ve(dz) + uZq log(?a). (4.7)
RN RN

w(l—a)

Since

lim U, (z) =

a—0

U(z) ifxeQ
+oo ifz ¢ Q,

then @, goes to Ty, = [ u(x)p(dz), u2, goes to @u as a goes to 0, and letting a go to 0 in
(4.6), (4.7) we obtain that u satisfies (4.4) and (4.5). Since C°(Q) is dense in H'(Q, ),
the statement follows. OJ

Proposition 4.3 yields other properties of T'(t), listed in the next corollary. The proof
is identical to the proof of [5, cor. 4.3|, and we omit it.



Corollary 4.4 Let the assumptions of theorem 3.4 and (4.2) hold. Then 0 is a simple
isolated eigenvalue of A. The rest of the spectrum, o(A) \ {0} is contained in (—oo, —w],
and

”T(t)u - ﬁMHLQ(Q,M) < eimuu - HH”LQ(Q,M)a u € L2(Q7:u)7 t>0. (48)
Moreover we have
IT@) el Lawr o < Nlellr@p, P=2 ¢ € LP(Qp), (4.9)
where
qit) =1+ (p—1)e*t, t>0. (4.10)
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