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Abstract

We study the realization A of the operator A = 1
2 ∆−〈DU,D·〉 in L2(Ω, µ), where Ω is

a possibly unbounded convex open set in RN , U is a convex unbounded function such
that limx→∂Ω, x∈Ω U(x) = +∞ and lim|x|→+∞, x∈Ω U(x) = +∞, DU(x) is the element
with minimal norm in the subdifferential of U at x, and µ(dx) = c exp(−2U(x))dx is
a probability measure, infinitesimally invariant for A. We show that A, with domain
D(A) = {u ∈ H2(Ω, µ) : 〈DU,Du〉 ∈ L2(Ω, µ)} is a dissipative self-adjoint operator
in L2(Ω, µ). Note that the functions in the domain of A do not satisfy any partic-
ular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study
smoothing properties and asymptotic behavior of the semigroup generated by A.

1 Introduction

In this paper we give a contribution to the theory of second order elliptic operators with
unbounded coefficients, that underwent a great developement in the last few years. See
e.g. [1, 7, 5, 6, 8, 12, 13].

Here we consider the operator

Au =
1
2

∆u− 〈DU,Du〉 (1.1)

in a convex open set Ω ⊂ RN , where U is a convex function such that

lim
x→∂Ω, x∈Ω

U(x) = +∞, lim
|x|→+∞, x∈Ω

U(x) = +∞. (1.2)

Since we do not impose any growth condition on U , the usual Lp and Sobolev spaces with
respect to the Lebesgue measure are not the best setting for the operator A. It is more
convenient to introduce the measure

µ(dx) =
(∫

Ω
e−2U(x)dx

)−1

e−2U(x)dx, (1.3)

which is infinitesimally invariant for A, i.e.∫
Ω
Au(x)µ(dx) = 0, u ∈ C∞0 (RN ),
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and lets A be formally self-adjoint in L2(Ω, µ), as an easy computation shows. We prove
in fact that the realization A of A in L2(Ω, µ), with domain

D(A) = {u ∈ H2(Ω, µ) : Au ∈ L2(Ω, µ)} = {u ∈ H2(Ω, µ) : 〈DU,Du〉 ∈ L2(Ω, µ)}

is a self-adjoint and dissipative operator, provided C∞0 (Ω) is dense in H1(Ω, µ). We recall
that H1(Ω, µ) is naturally defined as the set of all u ∈ H1

loc(Ω) such that u, Diu ∈ L2(Ω, µ),
for i = 1, . . . , N . While it is easy to see that C∞0 (Ω) is dense in L2(Ω, µ), well-known
counterexamples show that C∞0 (Ω) is not dense in H1(Ω, µ) in general.

Once we know that C∞0 (Ω) is dense in H1(Ω, µ), it is not hard to show that for each
u ∈ D(A) and ψ ∈ H1(Ω, µ) we have∫

Ω
(Au)(x)ψ(x)µ(dx) = −1

2

∫
Ω
〈Du(x), Dψ(x)〉µ(dx).

This crucial integration formula implies that A is symmetric and dissipative. The next
step is to prove that λI −A is onto for λ > 0, so that A is m-dissipative. This is done by
approximation, solving first, for each λ > 0 and f ∈ C∞0 (Ω),

λuα(x)− (Aαuα)(x) = f(x), x ∈ RN , (1.4)

where Aα is defined as A, with U replaced by its Moreau-Yosida approximation Uα.
To be more precise, first we extend f and U to the whole RN setting f(x) = 0 and
U(x) = +∞ for x outside Ω; since the extension of U is lower semicontinuous and convex
the Moreau-Yosida approximations Uα are well defined and differentiable with Lipschitz
continuous gradient in RN . Then (1.4) has a unique solution uα ∈ H2(RN , µα), with
µα(dx) = (

∫
RN

e−2Uα(x)dx)−1e−2Uα(x)dx, and the norm of uα in H2(RN , µα) is bounded
by C(λ)‖f‖L2(RN ,µα), where the constant C(λ) is independent of α, due to the estimates
for equations in the whole RN already proved in [5]. Using the convergence properties of
Uα and of DUα to U and to DU respectively, we arrive at a solution u ∈ H2(Ω, µ) of

λu(x)− (Au)(x) = f(x), x ∈ Ω, (1.5)

that belongs to D(A), satisfies ‖u‖H2(Ω,µ) ≤ C(λ)‖f‖L2(Ω,µ) and is the unique solution to
the resolvent equation because A is dissipative. If f is just in L2(Ω, µ), (1.5) is solved
approaching f by a sequence of functions in C∞0 (Ω).

A lot of nice consequences follow: A generates an analytic contraction semigroup T (t)
in L2(Ω, µ), which is a Markov semigroup and may be extended in a standard way to a
contraction semigroup in Lp(Ω, µ) for each p ≥ 1. The measure µ is invariant for T (t), i.e.∫

Ω
(T (t)f)(x)µ(dx) =

∫
Ω
f(x)µ(dx), f ∈ L1(Ω, µ),

and moreover T (t)f converges to the mean value f =
∫

Ω f(x)µ(dx) of f as t → +∞, for
each f ∈ L2(Ω, µ).

If, in addition, U−ω|x|2/2 is still convex for some ω > 0, T (t) enjoys further properties.
0 comes out to be a simple isolated eigenvalue in σ(A), the rest of the spectrum is contained
in (−∞,−ω], and T (t)f converges to f at an exponential rate as t → +∞. Moreover,
T (t) is a bounded operator (with norm not exceeding 1) from Lp(Ω, µ) to Lq(t)(Ω, µ), with
q(t) = 1 + (p − 1)e2ωt. This hypercontractivity property is the best we can expect in
weighted Lebesgue spaces with general weight, and there is no hope that T (t) maps, say,
L2(Ω, µ) into L∞(Ω). Similarly, Sobolev embeddings are not available in general. The
best we can prove is a logarithmic Sobolev inequality,∫

Ω
f2(x) log(f2(x))µ(dx) ≤ 1

ω

∫
Ω
|Df(x)|2µ(dx) + f2 log(f2), f ∈ H1(Ω, µ).
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2 Preliminaries: operators in the whole RN

Let U : RN 7→ R be a convex C1 function, satisfying

lim
|x|→+∞

U(x) = +∞. (2.1)

Then there are a ∈ R, b > 0 such that U(x) ≥ a + b|x|, for each x ∈ RN . It follows that
the probability measure ν(dx) = e−2U(x)dx/

∫
RN

e−2U(x)dx is well defined.
The spaces H1(RN , ν) and H2(RN , ν), consist of the functions u ∈ H1

loc(R
N ) (respec-

tively, u ∈ H2
loc(R

N )) such that u and its first (resp., first and second) order derivatives
are in L2(RN , ν).

We recall some results proved in [5] on the realization A of A in L2(RN , ν). It is defined
by 

D(A) = {u ∈ H2(RN , ν) : Au ∈ L2(RN , ν)}

= {u ∈ H2(RN , ν) : 〈DU,Du〉 ∈ L2(RN , ν)},

(Au)(x) = Au(x), x ∈ RN .

(2.2)

Theorem 2.1 Let U : RN 7→ R be a convex function satisfying assumption (2.1). Then
the resolvent set of A contains (0,+∞) and

(i) ‖R(λ,A)f‖L2(RN ,ν) ≤
1
λ
‖f‖L2(RN ,ν),

(ii) ‖ |DR(λ,A)f | ‖L2(RN ,ν) ≤
2√
λ
‖f‖L2(RN ,ν),

(iii) ‖ |D2R(λ,A)f | ‖L2(RN ,ν) ≤ 4‖f‖L2(RN ,ν).

(2.3)

Theorem 2.2 Let U : RN 7→ R satisfy (2.1), and be such that x 7→ U(x) − ω|x|2/2 is
convex, for some ω > 0. Then, setting u =

∫
RN

u(x)ν(dx), we have∫
RN

|u(x)− u|2ν(dx) ≤ 1
2ω

∫
RN

|Du(x)|2ν(dx),

∫
RN

u2(x) log(u2(x))ν(dx) ≤ 1
ω

∫
RN

|Du(x)|2ν(dx) + u2 log(u2),

for each u ∈ H1(RN , ν) (we adopt the convention 0 log 0 = 0).

3 The operator A

Let U : Ω 7→ R be a convex function satisfying assumption (1.2), and let us extend it to
the whole RN setting

U(x) = +∞, x /∈ Ω. (3.1)

The extension, that we shall still call U , is lower semicontinuous and convex. For each
x ∈ RN , the subdifferential ∂U(x) of U at x is the set {y ∈ RN : U(ξ) ≥ U(x) + 〈y, ξ −
x〉, ∀ ξ ∈ RN}. At each x ∈ Ω, since U is real valued and continuous, ∂U(x) is not empty
and it has a unique element with minimal norm, that we denote by DU(x). Of course if
U is differentiable at x, DU(x) is the usual gradient. At each x 6∈ Ω, ∂U(x) is empty and
DU(x) is not defined.

Lemma 3.1 There are a ∈ R, b > 0 such that U(x) ≥ a+ b|x| for each x ∈ Ω.
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Proof — The statement is obvious if Ω is bounded. If Ω is unbounded, we may assume
without loss of generality that 0 ∈ Ω. Assume by contradiction that there is a sequence xn
with |xn| → +∞ such that limn→∞ U(xn)/|xn| = 0. Let R be so large that min{U(x) −
U(0) : x ∈ Ω, |x| = R} > 0. Since U is convex, for n large enough we have

U

(
R

|xn|
xn

)
≤ R

|xn|
U(xn) +

(
1− R

|xn|

)
U(0)

so that

lim sup
n→∞

U

(
R

|xn|
xn

)
− U(0) ≤ lim

n→∞

R

|xn|
U(xn)− R

|xn|
U(0) = 0,

a contradiction. �

We set as usual e−∞ = 0. The function

x 7→ e−2U(x), x ∈ RN ,

is continuous, it is positive in Ω, and it vanishes outside Ω. Lemma 3.1 implies that it is in
L1(Ω). Therefore, the probability measure (1.3) is well defined, and it has Ω as support.

Lemma 3.2 C∞0 (Ω) is dense in L2(Ω, µ).

Proof — It is well known that every function u ∈ L2(Ω) with compact support may
be approximated in L2(Ω) by a sequence of C∞0 functions obtained by convolution with
smooth mollifiers. Since u has compact support, such a sequence approximates u also in
L2(Ω, µ).

Therefore it is sufficient to show that every u ∈ L2(Ω, µ) may be approximated by
a sequence of L2 functions with compact support, contained in Ω. In this case also the
functions obtained by convolution with smooth mollifiers have support in Ω.

Let θn : R 7→ R be a sequence of smooth functions such that 0 ≤ θn(y) ≤ 1 for each y,
θn ≡ 1 for y ≤ n, θn ≡ 0 for y ≥ 2n. We set

un(x) = u(x)θn(U(x)), x ∈ Ω, un(x) = 0, x 6∈ Ω.

Then un has compact support in Ω, and un → u in L2(RN , µ). Indeed,∫
RN

|un − u|2µ(dx) ≤
∫
{x∈Ω:U(x)≥n}

|u|2µ(dx)

which goes to 0 as n→∞. �

We remark that in general C∞0 (Ω) is not dense in H1(RN , µ). See next example 4.1.
We introduce now the main tool in our study, i.e. the Moreau-Yosida approximations

of U ,

Uα(x) = inf
{
U(y) +

1
2α
|x− y|2 : y ∈ RN

}
, x ∈ RN , α > 0,

that are real valued on the whole RN and enjoy good regularity properties: they are
convex, differentiable, and for each x ∈ RN we have (see e.g. [2, prop. 2.6, prop. 2.11])

Uα(x) ≤ U(x), |DUα(x)| ≤ |DU(x)|,

lim
α→0

Uα(x) = U(x), x ∈ RN ,

lim
α→0

DUα(x) = DU(x), x ∈ Ω; lim
α→0
|DUα(x)| = +∞, x 6∈ Ω.

Moreover DUα is Lipschitz continuous for each α, with Lipschitz constant 1/α.
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Let us define now the realization A of A in L2(Ω, µ) by
D(A) = {u ∈ H2(Ω, µ) : 〈DU,Du〉 ∈ L2(Ω, µ)},

(Au)(x) = Au(x), x ∈ Ω.
(3.2)

We shall show that A is a self-adjoint dissipative operator, provided C∞0 (Ω) is dense
in H1(RN , µ). The fact that A is symmetric is a consequence of the next lemma.

Lemma 3.3 If C∞0 (Ω) is dense in H1(RN , µ), then for each u ∈ D(A), ψ ∈ H1(RN , µ)
we have ∫

Ω
(Au)(x)ψ(x)ν(dx) = −1

2

∫
Ω
〈Du(x), Dψ(x)〉µ(dx). (3.3)

Proof — Since C∞0 (RN ) is dense in H1(RN , µ) it is sufficient to show that (3.3) hold for
each ψ ∈ C∞0 (RN ).

If ψ ∈ C∞0 (Ω), then the function ψ exp(−2U) is continuously differentiable and it has
compact support in Ω. Integrating by parts (∆u)(x)ψ(x)exp(−2U(x)) we get

1
2

∫
Ω

(∆u)(x)ψ(x)e−2U(x)dx = −1
2

∫
Ω
〈Du(x), D(ψ(x)e−2U(x))〉dx

= −1
2

∫
Ω
〈Du(x), Dψ(x)〉e−2U(x)dx+

1
2

∫
Ω
〈Du(x), 2DU(x)〉ψ(x)e−2U(x)dx

so that (3.3) holds. �

Taking ψ = u in (3.3) shows that A is symmetric.
Once we have the integration formula (3.3) and the powerful tool of the Moreau-Yosida

approximations at our disposal, the proof of the dissipativity of A is similar to the proof
of theorem 2.4 of [5]. However we write down all the details for the reader’s convenience.

Theorem 3.4 Let U : Ω 7→ R be a convex function satisfying assumption (1.2), and be
such that C∞0 (Ω) is dense in H1(Ω, µ). Then the resolvent set of A contains (0,+∞) and

(i) ‖R(λ,A)f‖L2(Ω,µ) ≤
1
λ
‖f‖L2(Ω,µ),

(ii) ‖ |DR(λ,A)f | ‖L2(Ω,µ) ≤
2√
λ
‖f‖L2(Ω,µ),

(iii) ‖ |D2R(λ,A)f | ‖L2(Ω,µ) ≤ 4‖f‖L2(Ω,µ).

(3.4)

Moreover the resolvent R(λ,A) is positivity preserving, and R(λ,A)1l = 1l/λ.

Proof — For λ > 0 and f ∈ L2(Ω, µ) consider the resolvent equation

λu−Au = f. (3.5)

It has at most a solution, because if u ∈ D(A) satisfies λu = Au then by (3.3) we have∫
Ω
λ(u(x))2µ(dx) =

∫
Ω

(Au)(x)u(x)µ(dx) = −1
2

∫
Ω
|Du(x)|2µ(dx) ≤ 0,

so that u = 0.
To find a solution to (3.5), we approximate U by the Moreau–Yosida approximations

Uα defined above, we consider the measures να(dx) = e−2Uα(x)dx/
∫
RN

e−2Uα(x)dx in RN

and the operators Aα defined by Aαu = ∆u/2− 〈DUα, Du〉.
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Since the functions Uα are convex and satisfy (2.1), the results of theorem 2.1 hold
for the operators Aα : D(Aα) = H2(RN , να) 7→ L2(RN , να). In particular, for each f ∈
C∞0 (RN ) with support contained in Ω, the equation

λuα −Aαuα = f, (3.6)

has a unique solution uα ∈ D(Aα). Moreover, each uα is bounded with bounded and
Hölder continuous second order derivatives, thanks to the Schauder estimates and the
maximum principle that hold for operators with Lipschitz continuous coefficients, see [10].

Estimates (2.3) imply that

‖uα‖L2(RN ,να) ≤
1
λ
‖f‖L2(RN ,να),

‖ |Duα| ‖L2(RN ,να) ≤
2√
λ
‖f‖L2(RN ,να),

‖ |D2uα| ‖L2(RN ,να) ≤ 4‖f‖L2(RN ,να),

(3.7)

so that
‖uα‖H2(RN ,να) ≤ C‖f‖L2(RN ,να)

with C = C(λ) independent of α. Since Uα(x) goes to U(x) monotonically as α → 0,
then exp(−2Uα(x)) goes to exp(−2U(x)) monotonically, and (

∫
RN

e−2Uα(x)dx)−1 goes to
(
∫
RN

e−2U(x)dx)−1, ‖f‖L2(RN ,να) goes to ‖f‖L2(RN ,µ) as α → 0. It follows that the norm
‖uα‖H2(RN ,να) is bounded by a constant independent of α, and consequently also the norm
‖uα‖H2(RN ,µ) is bounded by a constant independent of α. Therefore there is a sequence
uαn that converges weakly in H2(RN , µ) to a function u ∈ H2(RN , µ), and converges to u
in H1(K) for each compact subset K ⊂ Ω. This implies easily that u solves (3.5). Indeed,
let φ ∈ C∞0 (Ω). For each n ∈ N we have∫

RN

(λuαn −
1
2

∆uαn + 〈DUαn , Duαn〉 − f)φ e−2Udx = 0.

Letting n→∞, we get immediately that
∫
RN

(λuαn− 1
2∆uαn)φe−2U(x)dx goes to

∫
RN

(λu−
1
2∆u)φe−2U(x)dx. Moreover

∫
RN
〈DUαn , Duαn〉φe−2U(x)dx goes to∫

RN
〈DU,Du〉φe−2U(x)dx because DUαn goes to DU in L2(suppφ). Therefore letting

n→∞ we get ∫
RN

(λu−Au− f)φ e−2Udx = 0

for each φ ∈ C∞0 (RN ), and hence λu −Au = f almost everywhere in Ω. So, u|Ω ∈ D(A)
is the solution of the resolvent equation, and letting α→ 0 in (3.7) we get

‖u‖L2(Ω,µ) ≤
1
λ
‖f‖L2(Ω,µ), ‖|Du|‖L2(Ω,µ) ≤

2√
λ
‖f‖L2(Ω,ν),

‖|D2u|‖L2(Ω,µ) ≤ 4‖f‖L2(Ω,µ).

(3.8)

Let now f ∈ L2(Ω, µ) and let fn be a sequence of C∞0 (Ω) functions going to f in
L2(Ω, µ) as n→∞. Thanks to estimates (3.8), the solutions un of

λun −Aun = fn

are a Cauchy sequence in H2(Ω, µ), and converge to a solution u ∈ H2(Ω, µ) of (3.5). Due
again to estimates (3.8), u satisfies (3.4).
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If in addition f(x) ≥ 0 a.e. in Ω, we may take fn(x) ≥ 0 in Ω, see the proof of lemma
3.2. Each uα, solution to (3.6) with f replaced by fn, has nonnegative values thanks to
the maximum principle for elliptic operators with Lipschitz continuous coefficients proved
in [10]. Our limiting procedure gives R(λ,A)fn(x) ≥ 0 for each x, and R(λ,A)f(x) ≥ 0
for each x. So, R(λ,A) is a positivity preserving operator. �

4 Examples and consequences

Example 4.1 Let Ω be the unit open ball in RN , and let U(x) = −α
2 log(1 − |x|) for

x ∈ Ω, with α > 0. Then

exp(−2U(x)) = (1− |x|)α, DU(x) =
αx

2|x|(1− |x|)
, 0 < |x| < 1,

and it is known that C∞0 (Ω) is dense in H1(Ω, µ) iff α ≥ 1. See e.g. [14, thm. 3.6.1]. In
this case the result of theorem 3.4 holds, and A is a self-adjoint dissipative operator in
L2(Ω, µ). �

Under the assumptions of theorem 3.4, A is the infinitesimal generator of an analytic
contraction semigroup T (t) in L2(Ω, µ).

Since the resolvent R(λ,A) is positivity preserving for λ > 0, also T (t) is positivity
preserving. Since R(λ,A)1l = 1l/λ, then T (t)1l = 1l for each t > 0. Therefore, T (t) is a
Markov semigroup and it may be extended in a standard way to a contraction semigroup
(that we shall still call T (t)) in Lp(Ω, µ), 1 ≤ p ≤ ∞. T (t) is strongly continuous in
Lp(Ω, µ) for 1 ≤ p < ∞, and it is analytic for 1 < p < ∞. See e.g [4, ch. 1]. The
infinitesimal generator of T (t) in Lp(Ω, µ) is denoted by Ap. The characterization of the
domain of Ap in Lp(Ω, µ) is an interesting open problem.

An important optimal regularity result for evolution equations follows, see [9].

Corollary 4.2 Let 1 < p < ∞, T > 0. For each f ∈ Lp((0, T );Lp(Ω, µ)) (i.e. (t, x) 7→
f(t)(x) ∈ Lp((0, T )× Ω; dt× µ)) the problem

u′(t) = Apu(t) + f(t), 0 < t < T,

u(0) = 0,

has a unique solution u ∈ Lp((0, T );D(Ap)) ∩W 1,p((0, T );Lp(Ω, µ)).

From lemma 3.3 we get, taking ψ ≡ 1,∫
Ω
Auµ(dx) = 0, u ∈ D(A),

and hence, ∫
Ω
T (t)f µ(dx) =

∫
Ω
f µ(dx), t > 0,

for each f ∈ L2(Ω, µ). Since L2(Ω, µ) is dense in L1(Ω, µ), the above equality holds for
each f ∈ L1(Ω, µ). In other words, µ is an invariant measure for the semigroup T (t).

From lemma 3.3 we get also

u ∈ D(A), Au = 0 =⇒ Du = 0,

and hence the kernel of A consists of the constant functions. Let us prove now that

lim
t→+∞

T (t)f =
∫

Ω
f(y)µ(dy) in L2(Ω, µ), (4.1)
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for all f ∈ L2(Ω, µ).
Indeed, since the function t→ ϕ(t) =

∫
Ω(T (t)f)2µ(dx) is nonincreasing and bounded,

there exists the limit limt→+∞ ϕ(t) = limt→+∞〈T (2t)f, f〉L2(Ω,µ). By a standard arguments
it follows that there exists a symmetric nonnegative operator Q ∈ L(L2(Ω, µ)) such that

lim
t→+∞

T (t)f = Qf, f ∈ L2(H,µ).

On the other hand, using the Mean Ergodic Theorem in Hilbert space (see e.g. [11, p.
24]) we get easily

lim
t→+∞

T (t)f = P

(∫ 1

0
T (s)fds

)
,

where P is the orthogonal projection on the kernel of A. Since the kernel of A consists of
the constant functions, (4.1) follows.

From now on we make a strict convexity assumption on U :

∃ ω > 0 such that x 7→ U(x)− ω|x|2/2 is convex. (4.2)

This will allow us to prove further properties for T (t), through Poincaré and Log–Sobolev
inequalities.

If (Λ,m) is any measure space and u ∈ L1(Λ,m) we set

um =
∫

Λ
u(x)m(dx). (4.3)

Proposition 4.3 Let the assumptions of theorem 3.4 and (4.2) hold. Then∫
Ω
|u(x)− uµ|2µ(dx) ≤ 1

2ω

∫
Ω
|Du(x)|2dµ(dx), u ∈ H1(Ω, µ), (4.4)

and∫
Ω
u2(x) log(u2(x))µ(dx) ≤ 1

ω

∫
Ω
|Du(x)|2µ(dx) + u2

µ log(u2
µ), u ∈ H1(Ω, µ). (4.5)

Proof — Let u ∈ C∞0 (RN ) have support in Ω. Let Uα be the Moreau-Yosida approx-
imations of U , and set as usual να(dx) = (

∫
RN

e−2Uα(x)dx)−1e−2Uα(x)dx. Since x 7→
Uα(x)− ω(1− α)|x|2 is convex in the whole RN , by theorem 2.2 we have, for α ∈ (0, 1),∫

RN

|u(x)− uα|2να(dx) ≤ 1
2ω(1− α)

∫
RN

|Du(x)|2να(dx), (4.6)

(where uα stands for uνα) and∫
RN

u2(x) log(u2(x))να(dx) ≤ 1
ω(1− α)

∫
RN

|Du(x)|2να(dx) + u2
α log(u2

α). (4.7)

Since

lim
α→0

Uα(x) =
{
U(x) if x ∈ Ω
+∞ if x /∈ Ω,

then uα goes to uµ =
∫

Ω u(x)µ(dx), u2
α goes to u2

µ as α goes to 0, and letting α go to 0 in
(4.6), (4.7) we obtain that u satisfies (4.4) and (4.5). Since C∞0 (Ω) is dense in H1(Ω, µ),
the statement follows. �

Proposition 4.3 yields other properties of T (t), listed in the next corollary. The proof
is identical to the proof of [5, cor. 4.3], and we omit it.
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Corollary 4.4 Let the assumptions of theorem 3.4 and (4.2) hold. Then 0 is a simple
isolated eigenvalue of A. The rest of the spectrum, σ(A) \ {0} is contained in (−∞,−ω],
and

‖T (t)u− uµ‖L2(Ω,µ) ≤ e−ωt‖u− uµ‖L2(Ω,µ), u ∈ L2(Ω, µ), t > 0. (4.8)

Moreover we have

‖T (t)ϕ‖Lq(t)(Ω,µ) ≤ ‖ϕ‖Lp(Ω,µ), p ≥ 2, ϕ ∈ Lp(Ω, µ), (4.9)

where
q(t) = 1 + (p− 1)e2ωt, t > 0. (4.10)
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[2] H. Brézis: Opérateurs maximaux monotones, North-Holland, Amsterdam (1973).

[3] S. Cerrai, Second order PDE’s in finite and infinite dimensions. A probabilistic
approach, Lecture Notes in Mathematics 1762, Springer-Verlag, Berlin (2001).

[4] E.B. Davies: Heat kernels and spectral theory, Cambridge Univ. Press, Cambridge
(1989).

[5] G. Da Prato, A. Lunardi: Elliptic operators with unbounded drift coefficients and
Neumann boundary condition, preprint Dipart. Mat. Univ. Parma (2002).
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