On a class of elliptic operators with unbounded coefficients in convex domains

Giuseppe Da Prato Scuola Normale Superiore Piazza dei Cavalieri 7, 56126 Pisa, Italy E-mail: daprato@sns.it

Alessandra Lunardi Dipartimento di Matematica, Universit`a di Parma Via D'Azeglio 85/A, 43100 Parma, Italy E-mail: lunardi@unipr.it, www: http://math.unipr.it/∼lunardi

March 15, 2005

Abstract

We study the realization A of the operator $\mathcal{A} = \frac{1}{2} \Delta - \langle DU, D \cdot \rangle$ in $L^2(\Omega, \mu)$, where Ω is a possibly unbounded convex open set in \mathbb{R}^N , \tilde{U} is a convex unbounded function such that $\lim_{x\to\partial\Omega, x\in\Omega} U(x) = +\infty$ and $\lim_{|x|\to\infty, x\in\Omega} U(x) = +\infty$, $DU(x)$ is the element with minimal norm in the subdifferential of U at x, and $\mu(dx) = c \exp(-2U(x))dx$ is a probability measure, infinitesimally invariant for A . We show that A , with domain $D(A) = \{u \in H^2(\Omega, \mu) : \langle DU, Du \rangle \in L^2(\Omega, \mu)\}\$ is a dissipative self-adjoint operator in $L^2(\Omega,\mu)$. Note that the functions in the domain of A do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by A.

1 Introduction

In this paper we give a contribution to the theory of second order elliptic operators with unbounded coefficients, that underwent a great developement in the last few years. See e.g. [1, 7, 5, 6, 8, 12, 13].

Here we consider the operator

$$
\mathcal{A}u = \frac{1}{2}\Delta u - \langle DU, Du \rangle \tag{1.1}
$$

in a convex open set $\Omega \subset \mathbb{R}^N$, where U is a convex function such that

$$
\lim_{x \to \partial \Omega, x \in \Omega} U(x) = +\infty, \quad \lim_{|x| \to +\infty, x \in \Omega} U(x) = +\infty.
$$
\n(1.2)

Since we do not impose any growth condition on U , the usual L^p and Sobolev spaces with respect to the Lebesgue measure are not the best setting for the operator A . It is more convenient to introduce the measure

$$
\mu(dx) = \left(\int_{\Omega} e^{-2U(x)} dx\right)^{-1} e^{-2U(x)} dx,\tag{1.3}
$$

which is infinitesimally invariant for A , i.e.

$$
\int_{\Omega} \mathcal{A}u(x)\mu(dx) = 0, \ \ u \in C_0^{\infty}(\mathbb{R}^N),
$$

and lets A be formally self-adjoint in $L^2(\Omega, \mu)$, as an easy computation shows. We prove in fact that the realization A of A in $L^2(\Omega,\mu)$, with domain

$$
D(A) = \{ u \in H^2(\Omega, \mu) : Au \in L^2(\Omega, \mu) \} = \{ u \in H^2(\Omega, \mu) : \langle DU, Du \rangle \in L^2(\Omega, \mu) \}
$$

is a self-adjoint and dissipative operator, provided $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega,\mu)$. We recall that $H^1(\Omega,\mu)$ is naturally defined as the set of all $u \in H^1_{loc}(\Omega)$ such that $u, D_i u \in L^2(\Omega,\mu)$, for $i = 1, ..., N$. While it is easy to see that $C_0^{\infty}(\Omega)$ is dense in $L^2(\Omega, \mu)$, well-known counterexamples show that $C_0^{\infty}(\Omega)$ is not dense in $H^1(\Omega,\mu)$ in general.

Once we know that $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega,\mu)$, it is not hard to show that for each $u \in D(A)$ and $\psi \in H^1(\Omega, \mu)$ we have

$$
\int_{\Omega} (Au)(x)\psi(x)\mu(dx) = -\frac{1}{2} \int_{\Omega} \langle Du(x), D\psi(x) \rangle \mu(dx).
$$

This crucial integration formula implies that A is symmetric and dissipative. The next step is to prove that $\lambda I - A$ is onto for $\lambda > 0$, so that A is m-dissipative. This is done by approximation, solving first, for each $\lambda > 0$ and $f \in C_0^{\infty}(\Omega)$,

$$
\lambda u_{\alpha}(x) - (\mathcal{A}_{\alpha} u_{\alpha})(x) = f(x), \ \ x \in \mathbb{R}^{N}, \tag{1.4}
$$

where A_{α} is defined as A, with U replaced by its Moreau-Yosida approximation U_{α} . To be more precise, first we extend f and U to the whole \mathbb{R}^N setting $f(x) = 0$ and $U(x) = +\infty$ for x outside Ω ; since the extension of U is lower semicontinuous and convex the Moreau-Yosida approximations U_{α} are well defined and differentiable with Lipschitz continuous gradient in \mathbb{R}^N . Then (1.4) has a unique solution $u_\alpha \in H^2(\mathbb{R}^N, \mu_\alpha)$, with $\mu_\alpha(dx) = (\int_{\mathbb{R}^N} e^{-2U_\alpha(x)} dx)^{-1} e^{-2U_\alpha(x)} dx$, and the norm of u_α in $\overline{H}^2(\mathbb{R}^N, \mu_\alpha)$ is bounded by $C(\lambda) ||f||_{L^2(\mathbb{R}^N,\mu_\alpha)}^{\mathbb{R}^N}$, where the constant $C(\lambda)$ is independent of α , due to the estimates for equations in the whole \mathbb{R}^N already proved in [5]. Using the convergence properties of U_{α} and of DU_{α} to U and to DU respectively, we arrive at a solution $u \in H^2(\Omega, \mu)$ of

$$
\lambda u(x) - (\mathcal{A}u)(x) = f(x), \quad x \in \Omega,
$$
\n(1.5)

that belongs to $D(A)$, satisfies $||u||_{H^2(\Omega,\mu)} \leq C(\lambda) ||f||_{L^2(\Omega,\mu)}$ and is the unique solution to the resolvent equation because A is dissipative. If f is just in $L^2(\Omega,\mu)$, (1.5) is solved approaching f by a sequence of functions in $C_0^{\infty}(\Omega)$.

A lot of nice consequences follow: A generates an analytic contraction semigroup $T(t)$ in $L^2(\Omega,\mu)$, which is a Markov semigroup and may be extended in a standard way to a contraction semigroup in $L^p(\Omega, \mu)$ for each $p \geq 1$. The measure μ is invariant for $T(t)$, i.e.

$$
\int_{\Omega} (T(t)f)(x)\mu(dx) = \int_{\Omega} f(x)\mu(dx), \ \ f \in L^{1}(\Omega, \mu),
$$

and moreover $T(t)f$ converges to the mean value $\overline{f} = \int_{\Omega} f(x) \mu(dx)$ of f as $t \to +\infty$, for each $f \in L^2(\Omega, \mu)$.

If, in addition, $U - \omega |x|^2/2$ is still convex for some $\omega > 0$, $T(t)$ enjoys further properties. 0 comes out to be a simple isolated eigenvalue in $\sigma(A)$, the rest of the spectrum is contained in $(-\infty, -\omega]$, and $T(t)f$ converges to \overline{f} at an exponential rate as $t \to +\infty$. Moreover, $T(t)$ is a bounded operator (with norm not exceeding 1) from $L^p(\Omega,\mu)$ to $L^{q(t)}(\Omega,\mu)$, with $q(t) = 1 + (p-1)e^{2\omega t}$. This hypercontractivity property is the best we can expect in weighted Lebesgue spaces with general weight, and there is no hope that $T(t)$ maps, say, $L^2(\Omega,\mu)$ into $L^{\infty}(\Omega)$. Similarly, Sobolev embeddings are not available in general. The best we can prove is a logarithmic Sobolev inequality,

$$
\int_{\Omega} f^2(x) \log(f^2(x)) \mu(dx) \leq \frac{1}{\omega} \int_{\Omega} |Df(x)|^2 \mu(dx) + \overline{f^2} \log(\overline{f^2}), \ \ f \in H^1(\Omega, \mu).
$$

2 Preliminaries: operators in the whole \mathbb{R}^N

Let $U: \mathbb{R}^N \mapsto \mathbb{R}$ be a convex C^1 function, satisfying

$$
\lim_{|x| \to +\infty} U(x) = +\infty. \tag{2.1}
$$

Then there are $a \in \mathbb{R}$, $b > 0$ such that $U(x) \ge a + b|x|$, for each $x \in \mathbb{R}^N$. It follows that the probability measure $\nu(dx) = e^{-2U(x)} dx / \int_{\mathbb{R}^N} e^{-2U(x)} dx$ is well defined.

The spaces $H^1(\mathbb{R}^N,\nu)$ and $H^2(\mathbb{R}^N,\nu)$, consist of the functions $u \in H^1_{loc}(\mathbb{R}^N)$ (respectively, $u \in H_{loc}^2(\mathbb{R}^N)$ such that u and its first (resp., first and second) order derivatives are in $L^2(\mathbb{R}^N,\nu)$.

We recall some results proved in [5] on the realization A of A in $L^2(\mathbb{R}^N,\nu)$. It is defined by

$$
\begin{cases}\nD(A) &= \{u \in H^2(\mathbb{R}^N, \nu) : \mathcal{A}u \in L^2(\mathbb{R}^N, \nu)\} \\
&= \{u \in H^2(\mathbb{R}^N, \nu) : \langle DU, Du \rangle \in L^2(\mathbb{R}^N, \nu)\}, \\
(Au)(x) &= \mathcal{A}u(x), \quad x \in \mathbb{R}^N.\n\end{cases}\n\tag{2.2}
$$

Theorem 2.1 Let $U : \mathbb{R}^N \to \mathbb{R}$ be a convex function satisfying assumption (2.1). Then the resolvent set of A contains $(0, +\infty)$ and

$$
\begin{cases}\n(i) & \|R(\lambda, A)f\|_{L^{2}(\mathbb{R}^{N}, \nu)} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\mathbb{R}^{N}, \nu)}, \\
(ii) & \| |DR(\lambda, A)f| \|_{L^{2}(\mathbb{R}^{N}, \nu)} \leq \frac{2}{\sqrt{\lambda}} \|f\|_{L^{2}(\mathbb{R}^{N}, \nu)}, \\
(iii) & \| |D^{2}R(\lambda, A)f| \|_{L^{2}(\mathbb{R}^{N}, \nu)} \leq 4 \|f\|_{L^{2}(\mathbb{R}^{N}, \nu)}.\n\end{cases}\n\tag{2.3}
$$

Theorem 2.2 Let $U : \mathbb{R}^N \to \mathbb{R}$ satisfy (2.1), and be such that $x \mapsto U(x) - \omega |x|^2/2$ is convex, for some $\omega > 0$. Then, setting $\overline{u} = \int_{\mathbb{R}^N} u(x) \nu(dx)$, we have

$$
\int_{\mathbb{R}^N} |u(x) - \overline{u}|^2 \nu(dx) \le \frac{1}{2\omega} \int_{\mathbb{R}^N} |Du(x)|^2 \nu(dx),
$$

$$
\int_{\mathbb{R}^N} u^2(x) \log(u^2(x)) \nu(dx) \le \frac{1}{\omega} \int_{\mathbb{R}^N} |Du(x)|^2 \nu(dx) + \overline{u^2} \log(\overline{u^2}),
$$

for each $u \in H^1(\mathbb{R}^N, \nu)$ (we adopt the convention $0 \log 0 = 0$).

3 The operator A

Let $U: \Omega \mapsto \mathbb{R}$ be a convex function satisfying assumption (1.2), and let us extend it to the whole \mathbb{R}^N setting

$$
U(x) = +\infty, \ \ x \notin \Omega.
$$
\n(3.1)

The extension, that we shall still call U , is lower semicontinuous and convex. For each $x \in \mathbb{R}^N$, the subdifferential $\partial U(x)$ of U at x is the set $\{y \in \mathbb{R}^N : U(\xi) \geq U(x) + \langle y, \xi - \xi \rangle\}$ x, $\forall \xi \in \mathbb{R}^N$. At each $x \in \Omega$, since U is real valued and continuous, $\partial U(x)$ is not empty and it has a unique element with minimal norm, that we denote by $DU(x)$. Of course if U is differentiable at x, $DU(x)$ is the usual gradient. At each $x \notin \Omega$, $\partial U(x)$ is empty and $DU(x)$ is not defined.

Lemma 3.1 There are $a \in \mathbb{R}$, $b > 0$ such that $U(x) \ge a + b|x|$ for each $x \in \Omega$.

Proof — The statement is obvious if Ω is bounded. If Ω is unbounded, we may assume without loss of generality that $0 \in \Omega$. Assume by contradiction that there is a sequence x_n with $|x_n| \to +\infty$ such that $\lim_{n\to\infty} U(x_n)/|x_n|=0$. Let R be so large that $\min\{U(x) U(0) : x \in \Omega, |x| = R$ > 0. Since U is convex, for n large enough we have

$$
U\left(\frac{R}{|x_n|}x_n\right) \le \frac{R}{|x_n|}U(x_n) + \left(1 - \frac{R}{|x_n|}\right)U(0)
$$

so that

$$
\limsup_{n \to \infty} U\left(\frac{R}{|x_n|}x_n\right) - U(0) \le \lim_{n \to \infty} \frac{R}{|x_n|} U(x_n) - \frac{R}{|x_n|} U(0) = 0,
$$

a contradiction. \Box

We set as usual $e^{-\infty} = 0$. The function

$$
x\mapsto e^{-2U(x)},\;\;x\in\mathbb{R}^N,
$$

is continuous, it is positive in Ω , and it vanishes outside Ω . Lemma 3.1 implies that it is in $L^1(\Omega)$. Therefore, the probability measure (1.3) is well defined, and it has Ω as support.

Lemma 3.2 $C_0^{\infty}(\Omega)$ is dense in $L^2(\Omega, \mu)$.

Proof — It is well known that every function $u \in L^2(\Omega)$ with compact support may be approximated in $L^2(\Omega)$ by a sequence of C_0^{∞} functions obtained by convolution with smooth mollifiers. Since u has compact support, such a sequence approximates u also in $L^2(\Omega,\mu).$

Therefore it is sufficient to show that every $u \in L^2(\Omega, \mu)$ may be approximated by a sequence of L^2 functions with compact support, contained in Ω . In this case also the functions obtained by convolution with smooth mollifiers have support in Ω .

Let $\theta_n : \mathbb{R} \to \mathbb{R}$ be a sequence of smooth functions such that $0 \leq \theta_n(y) \leq 1$ for each y, $\theta_n \equiv 1$ for $y \leq n$, $\theta_n \equiv 0$ for $y \geq 2n$. We set

$$
u_n(x) = u(x)\theta_n(U(x)), \ x \in \Omega, \quad u_n(x) = 0, \ x \notin \Omega.
$$

Then u_n has compact support in Ω , and $u_n \to u$ in $L^2(\mathbb{R}^N, \mu)$. Indeed,

$$
\int_{\mathbb{R}^N} |u_n - u|^2 \mu(dx) \le \int_{\{x \in \Omega : U(x) \ge n\}} |u|^2 \mu(dx)
$$

which goes to 0 as $n \to \infty$. \square

We remark that in general $C_0^{\infty}(\Omega)$ is not dense in $H^1(\mathbb{R}^N,\mu)$. See next example 4.1.

We introduce now the main tool in our study, i.e. the Moreau-Yosida approximations of U ,

$$
U_{\alpha}(x) = \inf \left\{ U(y) + \frac{1}{2\alpha}|x - y|^2 : y \in \mathbb{R}^N \right\}, \ x \in \mathbb{R}^N, \ \alpha > 0,
$$

that are real valued on the whole \mathbb{R}^N and enjoy good regularity properties: they are convex, differentiable, and for each $x \in \mathbb{R}^N$ we have (see e.g. [2, prop. 2.6, prop. 2.11])

$$
U_{\alpha}(x) \leq U(x), |DU_{\alpha}(x)| \leq |DU(x)|,
$$

$$
\lim_{\alpha \to 0} U_{\alpha}(x) = U(x), \quad x \in \mathbb{R}^{N},
$$

$$
\lim_{\alpha \to 0} DU_{\alpha}(x) = DU(x), \quad x \in \Omega; \quad \lim_{\alpha \to 0} |DU_{\alpha}(x)| = +\infty, \quad x \notin \Omega.
$$

Moreover DU_{α} is Lipschitz continuous for each α , with Lipschitz constant $1/\alpha$.

Let us define now the realization A of A in $L^2(\Omega,\mu)$ by

$$
\begin{cases}\nD(A) = \{u \in H^2(\Omega, \mu) : \langle DU, Du \rangle \in L^2(\Omega, \mu)\}, \\
(Au)(x) = Au(x), \quad x \in \Omega.\n\end{cases}
$$
\n(3.2)

We shall show that A is a self-adjoint dissipative operator, provided $C_0^{\infty}(\Omega)$ is dense in $H^1(\mathbb{R}^N,\mu)$. The fact that A is symmetric is a consequence of the next lemma.

Lemma 3.3 If $C_0^{\infty}(\Omega)$ is dense in $H^1(\mathbb{R}^N, \mu)$, then for each $u \in D(A)$, $\psi \in H^1(\mathbb{R}^N, \mu)$ we have

$$
\int_{\Omega} (Au)(x)\psi(x)\nu(dx) = -\frac{1}{2} \int_{\Omega} \langle Du(x), D\psi(x) \rangle \mu(dx). \tag{3.3}
$$

Proof — Since $C_0^{\infty}(\mathbb{R}^N)$ is dense in $H^1(\mathbb{R}^N,\mu)$ it is sufficient to show that (3.3) hold for each $\psi \in C_0^{\infty}(\mathbb{R}^N)$.

If $\psi \in C_0^{\infty}(\Omega)$, then the function $\psi \exp(-2U)$ is continuously differentiable and it has compact support in Ω . Integrating by parts $(\Delta u)(x)\psi(x)\exp(-2U(x))$ we get

$$
\frac{1}{2} \int_{\Omega} (\Delta u)(x) \psi(x) e^{-2U(x)} dx = -\frac{1}{2} \int_{\Omega} \langle Du(x), D(\psi(x)e^{-2U(x)}) \rangle dx
$$

$$
= -\frac{1}{2} \int_{\Omega} \langle Du(x), D\psi(x) \rangle e^{-2U(x)} dx + \frac{1}{2} \int_{\Omega} \langle Du(x), 2DU(x) \rangle \psi(x) e^{-2U(x)} dx
$$

so that (3.3) holds. \square

Taking $\psi = u$ in (3.3) shows that A is symmetric.

Once we have the integration formula (3.3) and the powerful tool of the Moreau-Yosida approximations at our disposal, the proof of the dissipativity of A is similar to the proof of theorem 2.4 of [5]. However we write down all the details for the reader's convenience.

Theorem 3.4 Let $U : \Omega \mapsto \mathbb{R}$ be a convex function satisfying assumption (1.2), and be such that $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega,\mu)$. Then the resolvent set of A contains $(0, +\infty)$ and

$$
\begin{cases}\n(i) & \|R(\lambda, A)f\|_{L^{2}(\Omega, \mu)} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\Omega, \mu)}, \\
(ii) & \| |DR(\lambda, A)f| \|_{L^{2}(\Omega, \mu)} \leq \frac{2}{\sqrt{\lambda}} \|f\|_{L^{2}(\Omega, \mu)}, \\
(iii) & \| |D^{2}R(\lambda, A)f| \|_{L^{2}(\Omega, \mu)} \leq 4 \|f\|_{L^{2}(\Omega, \mu)}.\n\end{cases}
$$
\n(3.4)

Moreover the resolvent $R(\lambda, A)$ is positivity preserving, and $R(\lambda, A) \mathbb{1} = \mathbb{1}/\lambda$.

Proof — For $\lambda > 0$ and $f \in L^2(\Omega, \mu)$ consider the resolvent equation

$$
\lambda u - Au = f. \tag{3.5}
$$

It has at most a solution, because if $u \in D(A)$ satisfies $\lambda u = Au$ then by (3.3) we have

$$
\int_{\Omega} \lambda(u(x))^2 \mu(dx) = \int_{\Omega} (Au)(x)u(x)\mu(dx) = -\frac{1}{2} \int_{\Omega} |Du(x)|^2 \mu(dx) \le 0,
$$

so that $u = 0$.

To find a solution to (3.5) , we approximate U by the Moreau–Yosida approximations U_{α} defined above, we consider the measures $\nu_{\alpha}(dx) = e^{-2U_{\alpha}(x)}dx / \int_{\mathbb{R}^{N}} e^{-2\tilde{U}_{\alpha}(x)}dx$ in \mathbb{R}^{N} and the operators \mathcal{A}_{α} defined by $\mathcal{A}_{\alpha}u = \Delta u/2 - \langle DU_{\alpha}, Du \rangle$.

Since the functions U_{α} are convex and satisfy (2.1), the results of theorem 2.1 hold for the operators $A_\alpha: D(A_\alpha) = H^2(\mathbb{R}^N, \nu_\alpha) \mapsto L^2(\mathbb{R}^N, \nu_\alpha)$. In particular, for each $f \in$ $C_0^{\infty}(\mathbb{R}^N)$ with support contained in Ω , the equation

$$
\lambda u_{\alpha} - A_{\alpha} u_{\alpha} = f,\tag{3.6}
$$

has a unique solution $u_{\alpha} \in D(A_{\alpha})$. Moreover, each u_{α} is bounded with bounded and Hölder continuous second order derivatives, thanks to the Schauder estimates and the maximum principle that hold for operators with Lipschitz continuous coefficients, see [10].

Estimates (2.3) imply that

$$
\begin{cases} \|u_{\alpha}\|_{L^{2}(\mathbb{R}^{N},\nu_{\alpha})} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\mathbb{R}^{N},\nu_{\alpha})},\\ \| |Du_{\alpha}| \|_{L^{2}(\mathbb{R}^{N},\nu_{\alpha})} \leq \frac{2}{\sqrt{\lambda}} \|f\|_{L^{2}(\mathbb{R}^{N},\nu_{\alpha})},\\ \| |D^{2}u_{\alpha}| \|_{L^{2}(\mathbb{R}^{N},\nu_{\alpha})} \leq 4 \|f\|_{L^{2}(\mathbb{R}^{N},\nu_{\alpha})}, \end{cases}
$$
(3.7)

so that

$$
||u_{\alpha}||_{H^2(\mathbb{R}^N,\nu_{\alpha})} \leq C||f||_{L^2(\mathbb{R}^N,\nu_{\alpha})}
$$

with $C = C(\lambda)$ independent of α . Since $U_{\alpha}(x)$ goes to $U(x)$ monotonically as $\alpha \to 0$, then $\exp(-2U_{\alpha}(x))$ goes to $\exp(-2U(x))$ monotonically, and $(\int_{\mathbb{R}^N}e^{-2U_{\alpha}(x)}dx)^{-1}$ goes to $(\int_{\mathbb{R}^N}e^{-2U(x)}dx)^{-1},\ \|f\|_{L^2(\mathbb{R}^N,\nu_\alpha)}$ goes to $\|f\|_{L^2(\mathbb{R}^N,\mu)}$ as $\alpha\to 0$. It follows that the norm $\|\hat{u}_\alpha\|_{H^2(\mathbb{R}^N,\nu_\alpha)}$ is bounded by a constant independent of α , and consequently also the norm $||u_{\alpha}||_{H^2(\mathbb{R}^N,\mu)}$ is bounded by a constant independent of α . Therefore there is a sequence u_{α_n} that converges weakly in $H^2(\mathbb{R}^N, \mu)$ to a function $u \in H^2(\mathbb{R}^N, \mu)$, and converges to u in $H^1(K)$ for each compact subset $K \subset \Omega$. This implies easily that u solves (3.5). Indeed, let $\phi \in C_0^{\infty}(\Omega)$. For each $n \in \mathbb{N}$ we have

$$
\int_{\mathbb{R}^N} (\lambda u_{\alpha_n} - \frac{1}{2} \Delta u_{\alpha_n} + \langle DU_{\alpha_n}, Du_{\alpha_n} \rangle - f) \phi \, e^{-2U} dx = 0.
$$

Letting $n \to \infty$, we get immediately that $\int_{\mathbb{R}^N} (\lambda u_{\alpha_n} - \frac{1}{2} \Delta u_{\alpha_n}) \phi e^{-2U(x)} dx$ goes to $\int_{\mathbb{R}^N} (\lambda u - \frac{1}{2} \Delta u) \phi e^{-2U(x)} dx$. Moreover $\int_{\mathbb{R}^N} \langle DU_{\alpha_n}, Du_{\alpha_n} \rangle \phi e^{-2U(x)} dx$ goes to $\int_{\mathbb{R}^N} \langle DU, Du \rangle \phi e^{-2U(x)} dx$ because DU_{α_n} goes to DU in $L^2(\text{supp }\phi)$. Therefore letting $n \to \infty$ we get

$$
\int_{\mathbb{R}^N} (\lambda u - \mathcal{A}u - f) \phi \, e^{-2U} dx = 0
$$

for each $\phi \in C_0^{\infty}(\mathbb{R}^N)$, and hence $\lambda u - \mathcal{A}u = f$ almost everywhere in Ω . So, $u_{|\Omega} \in D(A)$ is the solution of the resolvent equation, and letting $\alpha \to 0$ in (3.7) we get

$$
\begin{cases} ||u||_{L^{2}(\Omega,\mu)} \leq \frac{1}{\lambda} ||f||_{L^{2}(\Omega,\mu)}, |||Du|||_{L^{2}(\Omega,\mu)} \leq \frac{2}{\sqrt{\lambda}} ||f||_{L^{2}(\Omega,\nu)}, \\ |||D^{2}u|||_{L^{2}(\Omega,\mu)} \leq 4 ||f||_{L^{2}(\Omega,\mu)}. \end{cases}
$$
(3.8)

Let now $f \in L^2(\Omega, \mu)$ and let f_n be a sequence of $C_0^{\infty}(\Omega)$ functions going to f in $L^2(\Omega,\mu)$ as $n \to \infty$. Thanks to estimates (3.8), the solutions u_n of

$$
\lambda u_n - Au_n = f_n
$$

are a Cauchy sequence in $H^2(\Omega,\mu)$, and converge to a solution $u \in H^2(\Omega,\mu)$ of (3.5). Due again to estimates (3.8) , u satisfies (3.4) .

If in addition $f(x) \geq 0$ a.e. in Ω , we may take $f_n(x) \geq 0$ in Ω , see the proof of lemma 3.2. Each u_{α} , solution to (3.6) with f replaced by f_n , has nonnegative values thanks to the maximum principle for elliptic operators with Lipschitz continuous coefficients proved in [10]. Our limiting procedure gives $R(\lambda, A) f_n(x) \geq 0$ for each x, and $R(\lambda, A) f(x) \geq 0$ for each x. So, $R(\lambda, A)$ is a positivity preserving operator. \Box

4 Examples and consequences

Example 4.1 Let Ω be the unit open ball in \mathbb{R}^N , and let $U(x) = -\frac{\alpha}{2}$ $\frac{\alpha}{2} \log(1 - |x|)$ for $x \in \Omega$, with $\alpha > 0$. Then

$$
\exp(-2U(x)) = (1-|x|)^{\alpha}, \quad DU(x) = \frac{\alpha x}{2|x|(1-|x|)}, \quad 0 < |x| < 1,
$$

and it is known that $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega,\mu)$ iff $\alpha \geq 1$. See e.g. [14, thm. 3.6.1]. In this case the result of theorem 3.4 holds, and A is a self-adjoint dissipative operator in $L^2(\Omega,\mu)$. \square

Under the assumptions of theorem 3.4, \vec{A} is the infinitesimal generator of an analytic contraction semigroup $T(t)$ in $L^2(\Omega, \mu)$.

Since the resolvent $R(\lambda, A)$ is positivity preserving for $\lambda > 0$, also $T(t)$ is positivity preserving. Since $R(\lambda, A)1 = 1/\lambda$, then $T(t)1 = 1$ for each $t > 0$. Therefore, $T(t)$ is a Markov semigroup and it may be extended in a standard way to a contraction semigroup (that we shall still call $T(t)$) in $L^p(\Omega, \mu)$, $1 \leq p \leq \infty$. $T(t)$ is strongly continuous in $L^p(\Omega,\mu)$ for $1 \leq p < \infty$, and it is analytic for $1 < p < \infty$. See e.g [4, ch. 1]. The infinitesimal generator of $T(t)$ in $L^p(\Omega,\mu)$ is denoted by A_p . The characterization of the domain of A_p in $L^p(\Omega, \mu)$ is an interesting open problem.

An important optimal regularity result for evolution equations follows, see [9].

Corollary 4.2 Let $1 < p < \infty$, $T > 0$. For each $f \in L^p((0,T); L^p(\Omega, \mu))$ (i.e. $(t, x) \mapsto$ $f(t)(x) \in L^p((0,T) \times \Omega; dt \times \mu)$ the problem

$$
\left\{ \begin{array}{l} u'(t) = A_p u(t) + f(t), \;\; 0 < t < T, \\[0.2cm] u(0) = 0, \end{array} \right.
$$

has a unique solution $u \in L^p((0,T); D(A_p)) \cap W^{1,p}((0,T); L^p(\Omega, \mu)).$

From lemma 3.3 we get, taking $\psi \equiv 1$,

$$
\int_{\Omega} Au \,\mu(dx) = 0, \ \ u \in D(A),
$$

and hence,

$$
\int_{\Omega} T(t) f \mu(dx) = \int_{\Omega} f \mu(dx), \quad t > 0,
$$

for each $f \in L^2(\Omega, \mu)$. Since $L^2(\Omega, \mu)$ is dense in $L^1(\Omega, \mu)$, the above equality holds for each $f \in L^1(\Omega, \mu)$. In other words, μ is an invariant measure for the semigroup $T(t)$.

From lemma 3.3 we get also

$$
u \in D(A), \ \ Au = 0 \Longrightarrow Du = 0,
$$

and hence the kernel of A consists of the constant functions. Let us prove now that

$$
\lim_{t \to +\infty} T(t)f = \int_{\Omega} f(y)\mu(dy) \quad \text{in } L^2(\Omega, \mu), \tag{4.1}
$$

for all $f \in L^2(\Omega, \mu)$.

Indeed, since the function $t \to \varphi(t) = \int_{\Omega} (T(t)f)^2 \mu(dx)$ is nonincreasing and bounded, there exists the limit $\lim_{t\to+\infty}\varphi(t) = \lim_{t\to+\infty}\langle T(2t)f, f\rangle_{L^2(\Omega,\mu)}$. By a standard arguments it follows that there exists a symmetric nonnegative operator $Q \in \mathcal{L}(L^2(\Omega,\mu))$ such that

$$
\lim_{t \to +\infty} T(t)f = Qf, \quad f \in L^2(H, \mu).
$$

On the other hand, using the Mean Ergodic Theorem in Hilbert space (see e.g. [11, p. 24]) we get easily

$$
\lim_{t \to +\infty} T(t)f = P\bigg(\int_0^1 T(s)f ds\bigg),\,
$$

where P is the orthogonal projection on the kernel of A . Since the kernel of A consists of the constant functions, (4.1) follows.

From now on we make a strict convexity assumption on U:

$$
\exists \omega > 0 \text{ such that } x \mapsto U(x) - \omega |x|^2 / 2 \text{ is convex.} \tag{4.2}
$$

This will allow us to prove further properties for $T(t)$, through Poincaré and Log–Sobolev inequalities.

If (Λ, m) is any measure space and $u \in L^1(\Lambda, m)$ we set

$$
\overline{u}_m = \int_{\Lambda} u(x)m(dx). \tag{4.3}
$$

Proposition 4.3 Let the assumptions of theorem 3.4 and (4.2) hold. Then

$$
\int_{\Omega} |u(x) - \overline{u}_{\mu}|^2 \mu(dx) \le \frac{1}{2\omega} \int_{\Omega} |Du(x)|^2 d\mu(dx), \quad u \in H^1(\Omega, \mu), \tag{4.4}
$$

and

$$
\int_{\Omega} u^2(x) \log(u^2(x)) \mu(dx) \le \frac{1}{\omega} \int_{\Omega} |Du(x)|^2 \mu(dx) + \overline{u^2}_{\mu} \log(\overline{u^2}_{\mu}), \ \ u \in H^1(\Omega, \mu). \tag{4.5}
$$

Proof — Let $u \in C_0^{\infty}(\mathbb{R}^N)$ have support in Ω . Let U_{α} be the Moreau-Yosida approximations of U, and set as usual $\nu_{\alpha}(dx) = (\int_{\mathbb{R}^N} e^{-2U_{\alpha}(x)} dx)^{-1} e^{-2U_{\alpha}(x)} dx$. Since $x \mapsto$ $U_{\alpha}(x) - \omega(1-\alpha)|x|^2$ is convex in the whole $\mathbb{R}^{\tilde{N}^*}$, by theorem 2.2 we have, for $\alpha \in (0,1)$,

$$
\int_{\mathbb{R}^N} |u(x) - \overline{u}_\alpha|^2 \nu_\alpha(dx) \le \frac{1}{2\omega(1-\alpha)} \int_{\mathbb{R}^N} |Du(x)|^2 \nu_\alpha(dx),\tag{4.6}
$$

(where \overline{u}_{α} stands for $\overline{u}_{\nu_{\alpha}}$) and

$$
\int_{\mathbb{R}^N} u^2(x) \log(u^2(x)) \nu_\alpha(dx) \le \frac{1}{\omega(1-\alpha)} \int_{\mathbb{R}^N} |Du(x)|^2 \nu_\alpha(dx) + \overline{u^2}_\alpha \log(\overline{u^2}_\alpha). \tag{4.7}
$$

Since

$$
\lim_{\alpha \to 0} U_{\alpha}(x) = \begin{cases} U(x) & \text{if } x \in \Omega \\ +\infty & \text{if } x \notin \Omega, \end{cases}
$$

then \overline{u}_{α} goes to $\overline{u}_{\mu} = \int_{\Omega} u(x) \mu(dx)$, u^2_{α} goes to u^2_{μ} as α goes to 0, and letting α go to 0 in (4.6), (4.7) we obtain that u satisfies (4.4) and (4.5). Since $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega,\mu)$, the statement follows. \square

Proposition 4.3 yields other properties of $T(t)$, listed in the next corollary. The proof is identical to the proof of [5, cor. 4.3], and we omit it.

Corollary 4.4 Let the assumptions of theorem 3.4 and (4.2) hold. Then 0 is a simple isolated eigenvalue of A. The rest of the spectrum, $\sigma(A) \setminus \{0\}$ is contained in $(-\infty, -\omega]$, and

$$
||T(t)u - \overline{u}_{\mu}||_{L^{2}(\Omega, \mu)} \le e^{-\omega t}||u - \overline{u}_{\mu}||_{L^{2}(\Omega, \mu)}, \ \ u \in L^{2}(\Omega, \mu), \ t > 0.
$$
 (4.8)

Moreover we have

$$
||T(t)\varphi||_{L^{q(t)}(\Omega,\mu)} \le ||\varphi||_{L^{p}(\Omega,\mu)}, \quad p \ge 2, \ \varphi \in L^{p}(\Omega,\mu), \tag{4.9}
$$

where

$$
q(t) = 1 + (p - 1)e^{2\omega t}, \quad t > 0.
$$
\n(4.10)

References

- [1] V.I. BOGACHEV, N.V. KRYLOV, M. RÖCKNER: On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm. Part. Diff. Eqns. 26 (2001), 2037–2080.
- [2] H. Brézis: *Opérateurs maximaux monotones*, North-Holland, Amsterdam (1973).
- [3] S. CERRAI, Second order PDE's in finite and infinite dimensions. A probabilistic approach, Lecture Notes in Mathematics 1762, Springer-Verlag, Berlin (2001).
- [4] E.B. DAVIES: Heat kernels and spectral theory, Cambridge Univ. Press, Cambridge (1989).
- [5] G. DA PRATO, A. LUNARDI: Elliptic operators with unbounded drift coefficients and Neumann boundary condition, preprint Dipart. Mat. Univ. Parma (2002).
- [6] G. DA PRATO, M. RÖCKNER: Singular dissipative stochastic equations in Hilbert spaces, Probab. Theory Relat. Fields 124 (2002), 261–303.
- [7] A. Eberle: Uniqueness and non-uniqueness of singular diffusion operators, Lecture Notes in Mathematics 1718, Springer-Verlag, Berlin (1999).
- [8] N. V. Krylov: On Kolmogorov's equations for finite-dimensional diffusions, in: "Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions", G. Da Prato Ed., Lecture Notes in Mathematics 1715, 1–64, Springer-Verlag, Berlin (1999).
- [9] $D.$ LAMBERTON: *Equations d'évolution linéaires associées à des semi-groupes de con*tractions dans les espaces L^p , J. Funct. Anal. **72** (1987), 252-262.
- [10] A. LUNARDI, V. VESPRI: Optimal L^{∞} and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. Proceedings of the Conference "Reaction-Diffusion Systems", Trieste 1995, G. Caristi, E. Mitidieri Eds., Lect. Notes in Pure and Applied Math. 194, M. Dekker, New York (1998), 217–239.
- [11] K. Petersen: Ergodic Theory, Cambridge Univ. Press, Cambridge (1983).
- [12] M. RÖCKNER: L^p -analysis of finite and infinite dimensional diffusion operators, in: "Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions", G. Da Prato Ed., Lecture Notes in Mathematics 1715, 65–116, Springer-Verlag, Berlin (1999).
- [13] W. STANNAT: (Nonsymmetric) Dirichlet operators on L^1 : existence, uniqueness and associated Markov processes, Ann. Sc. Norm. Sup. Pisa, Ser. IV 28 (1999), 99–140.
- [14] H. TRIEBEL: *Interpolation theory, function spaces, differential operators*, North-Holland, Amsterdam (1978).