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1 Introduction

My talk is about a class of parabolic free boundary problems arising as mathematical
models in combustion theory. Their common feature is the fact that the velocity of the
free (unknown) boundary is not given explicitly as a function of the other unknowns. The
simplest significant example is the free boundary heat equation,

ut = ∆u, t > 0, x ∈ Ωt,

u = 0,
∂u

∂ν
= −1, t > 0, x ∈ ∂Ωt,

(1)

where the unknowns are the open sets Ωt ⊂ RN for t > 0, and the real valued function
u, defined for t > 0 and x ∈ Ωt. The initial set Ω0 and the initial function u(0, ·) = u0 :
Ω0 7→ R are given data.

These problems are well understood in space dimension N = 1, in which case a
satisfactory theory is available since many years, see e.g. the review paper [22]. On
the contrary, in the multidimensional case many of the basic questions have not been
answered yet. For instance, wellposedness of the initial value problem for (1) is still an
open problem. In particular, there are not uniqueness results for the classical solution to
(1) for general initial data.

Many results for (1) can be extended to evolution problems of the type

ut(t, x) = Lu(t, x) + f(t, x, u(t, x), Du(t, x)), t ≥ 0, x ∈ Ωt,

u(t, x) = g0(t, x), t ≥ 0, x ∈ ∂Ωt,

∂u

∂ν
(t, x) = g1(t, x), t ≥ 0, x ∈ ∂Ωt,

u(0, x) = u0(x), x ∈ Ω0,

(2)

where the boundary data g0, g1 satisfy the transversality condition

∂g0

∂ν
(0, x) 6= g1(0, x), x ∈ ∂Ω0. (3)

Again, the unknowns are the open sets Ωt ⊂ RN for t > 0, and the function u. The
data are: the second order elliptic operator L =

∑N
i,j=1 aij(t, x)Dij, the functions f :

[0, T ]×RN ×R×RN → R, g0, g1 : [0, T ]×RN 7→ R, the (possibly unbounded) initial set
Ω0 ⊂ RN , and the initial function u0 : Ω0 7→ R.

Problem (1) is motivated by models in combustion theory ([8, 23]) for equidiffusional
premixed flames, where u = λ(T ∗−T ), T is the temperature, T ∗ is the temperature of the
flame, and λ > 0 is a normalization factor. It can be seen as the high activation energy
limit of the regularizing problems ut = ∆u−βε(u) in [0, T ]×RN , where T > 0 is fixed and
βε(s) = β1(s/ε)/ε is supported in a small interval [0, ε]. In [9], Caffarelli and Vazquez used
this regularization to prove existence of global weak solutions to (1) for C2 initial data



(Ω0, u0), under suitable geometric assumptions on u0. Such solutions may not be unique,
and enjoy some regularity properties. The free boundary is locally Lipschitz continuous,
and u is 1/2-Hölder continuous with respect to time, Lipschitz continuous with respect to
the space variables. This regularity is in some sense optimal, as the example of self-similar
solutions show.

Self-similar solutions are solutions of the type

u(t, x) = (T − t)αf(η) , η =
|x|

(T − t)β
, Ωt = {|x| < r(T − t)β}, 0 ≤ t < T (4)

with f : [0,+∞) 7→ R, r > 0. It is not hard to see that the couple (u,Ωt) defined in 4 is a
solution to (1) if and only α = β = 1/2, and the function g(x) = f(|x|) is an eigenfunction
of an Ornstein-Uhlenbeck type operator in the ball B(0, r),

∆g − 1

2
〈x,Dg(x)〉+

1

2
g = 0,

with two boundary conditions, g = 0, ∂g/∂ν = −1. In other words, f has to verify

f ′′(η) +
N − 1

η
f ′(η) +

1

2
f(η) =

1

2
ηf ′(η) for 0 < η ≤ r ; f ′(0) = f(r) = 0 , f ′(r) = −1 .

(5)
In [9] it was proved that there exist a unique r > 0 and a unique C2 function f : [0, r] 7→ R

satisfying (5) and such that f(η) > 0 for 0 ≤ η < r. Moreover f is analytic. But, in spite
of the regularity of f , at the extintion time T the solution u is not better than 1/2-Hölder
continuous in time and Lipschitz continuous in space.

I will describe a completely different approach, developed in collaboration with C.-M.
Brauner, J. Hulshof, O. Baconneau, that leads to existence, uniqueness, and smoothness
for t > 0 of local regular solutions (with u bounded, in the case of unbounded domains)
to problem (1), and more generally to problem (2).

It consists in transforming problem (1) into a fully nonlinear parabolic problem in
the fixed domain Ω0 for an auxiliary unknown w, for which the usual techniques of fully
nonlinear parabolic problems in Hölder spaces (see e.g. [19, Ch. 8]) give a local existence
and uniqueness result. Coming back to (1), for Ω0 with C3+α+k boundary and u0 ∈
C3+α+k(Ω0), 0 < α <, k = 0, 1, we obtain a local solution with ∂Ωt ∈ C2+α+k and u(t, ·)
in C2+α+k(Ωt).

The coordinate transformation that fixes the boundary is rather natural. Set Γ = ∂Ω0,
and for a > 0 define the map

X : Γ× [−a, a] → R
N , X(ξ′, r) = ξ′ + rν(ξ′). (6)

If a is sufficiently small, then (6) is a diffeomorphism to a compact neighborhood R of
Γ. InR every ξ can be written in a unique way as ξ = X(ξ′, r) with ξ′ ∈ Γ and r ∈ [−a, a].
So, ξ′ = ξ′(ξ) is the nearest point to ξ in Γ, and r = r(ξ) is the signed distance from ξ to
Γ.

We look for Ωt close to Ω in some time interval I, in the sense that its boundary is
sought as

∂Ωt = {x = ξ′ + s(t, ξ′)ν(ξ′), ξ′ ∈ Γ},



where s : Γ× I → [−a, a] is one of the unknowns of the problem.
Then we extend the vector field

Φ(t, ξ) = s(t, ξ)ν(ξ), ξ ∈ Γ, (7)

to the whole of RN in a standard way, by setting

Φ(t, ξ) =


α(r)s(t, ξ′)ν(ξ′) if ξ ∈ R,

0 otherwise ,
(8)

where r = r(ξ), ξ′ = ξ′(ξ), and α : R 7→ [0, 1] is a smooth mollifier which is equal to 1
near 0 and has compact support in (−a, a).

The extension Φ is used now to transform (1) to a problem on the fixed domain Ω0.
We define the coordinate transformation

x = ξ + Φ(t, ξ), (9)

which differs from the identity only in a small neighborhood of Γ, and maps Ω0 onto Ωt.
After the change of coordinates, we get a Cauchy problem for the couple (s, ũ) where

ũ(t, ξ) = u(t, x) is again the function u in the new coordinates,

ũt − 〈Dũ, (I +tDΦ)−1Φt〉 = A(s)ũ, t > 0, x ∈ Ω0,

ũ = 0, B(s)ũ = −1, t > 0, x ∈ Γ,

s(0, ·) = 0, ũ(0, ·) = u0, x ∈ Γ,

ũ(0, ·) = u0, x ∈ Ω0.

(10)

Here A(s) is the Laplacian in the new coordinates, and B(s) is the normal derivative in
the new coordinates.

System (10) still has to be decoupled. To this aim, we introduce a new unknown w
by splitting ũ as

ũ(t, ξ) = u0(ξ) + 〈Du0(ξ),Φ(t, ξ)〉+ w(t, ξ). (11)

At t = 0 we have ũ(0, ξ) = u0(ξ), Φ(0, ·) ≡ 0, so that

w(0, ξ) = 0, ξ ∈ Ω0. (12)

(11) allows to get s in terms of w thanks to the boundary condition u = 0 at ∂Ωt, which
gives

s(t, ξ) = w(t, ξ), t ≥ 0, ξ ∈ Γ, (13)

so that
Φ(t, ξ) = w(t, ξ′)ν̃(ξ), t ≥ 0, ξ ∈ Ω0, (14)

where ν̃(ξ) is the extension of the normal vector field in formula (8): ν̃(ξ) = α(r)ν(ξ′) if
ξ ∈ R, ν̃(ξ) = 0 otherwise. Replacing (14) in (10) we get

wt = F1(ξ, w,Dw,D2w) + F2(ξ, w,Dw)st, t ≥ 0, ξ ∈ Ω0, (15)



where F1, F2 are obtained respectively from A(s)ũ = A(s)(u0 + 〈Du0,Φ〉+ w) and from
〈Dũ, (I +tDΦ)−1Φt〉 − 〈Du0,Φt〉, replacing Φ = w(t, ξ′)ν̃(ξ).

Equation (15) still contains st, that we eliminate using again the identity s = w at the
boundary which gives st = wt. Replacing in (15) for ξ ∈ Γ we get

st(1−F2(ξ, w,Dw)) = F1(ξ, w,Dw,D2w), t ≥ 0, ξ ∈ Γ.

At t = 0 we have w ≡ 0, and F2 vanishes at (ξ, 0, 0), so that, at least for t small,
F2(·, w(t, ·), Dw(t, ·)) is different from 1 and we get st in terms of w,

st = F3(ξ, w,Dw,D2w) =
F1(ξ, w,Dw,D2w)

1−F2(ξ, w,Dw)
, t ≥ 0, ξ ∈ Γ,

which, replaced in (15), gives the final equation for w,

wt = F(w)(ξ), t ≥ 0, ξ ∈ Ω0,

where
F(w)(ξ) = F1(ξ, w,Dw,D2w) + F2(ξ, w,Dw)F3(ξ, w,Dw,D2w).

Note that F(0)(ξ) = ∆u0(ξ), and F(w)(ξ) = ∆w + ∆u0(ξ) if ξ is far from the boundary
Γ. Even near the boundary, the equation for w is parabolic for w small, in the sense that
the linear part of F side near w ≡ 0 is still ∆w plus a first order differential operator
applied to w. But the nonlinear part of F involves second order space derivatives of w
in a nonlocal way, through their traces at the boundary. Moreover, F depends on u0

through its derivatives up the third order, due to the splitting (11) that contains the first
order derivatives of u0.

The boundary condition for w comes from the boundary condition ∂u/∂n = −1 in
(1). We get

〈(I +tDΦ)−1ν, (I +tDΦ)−1D(u0 + 〈Du0,Φ〉+ w〉+ |(I +tDΦ)−1ν| = 0, (16)

which gives
G(w)(ξ) = 0, t ≥ 0, ξ ∈ Γ,

when we replace Φ = w(t, ξ′)ν̃(ξ) in (16). The function G is smooth, it vanishes at w ≡ 0,
and its linear part near w ≡ 0 is

Bw :=
∂w

∂ν
+
∂2u0

∂ν2
w.

Therefore, the final problem for the only unknown w is rewritten as

wt = F(w), t ≥ 0, ξ ∈ Ω0,

G(w) = 0, t ≥ 0, ξ ∈ Γ,

w(0, ·) = 0, ξ ∈ Ω0.

(17)



It may be seen as a fully nonlinear evolution equation, with fully nonlinear boundary
condition, which is parabolic near w ≡ 0. The usual techniques of parabolic problems
may be used to find a local solution of (17). Precisely, there is R0 > 0 such that for every
R ≥ R0 and for every sufficiently small T > 0 problem (17) has a unique solution in the
ball B(0, R) ⊂ C1+α/2,2+α([0, T ]× Ω0).

Now we come back to the original problem (1). Recalling that s(t, ξ) = w(t, ξ) for
each t ∈ [0, T ], ξ ∈ ∂Ω, we can define Γt. Of course s has the same regularity of w, i.e.
it is in C1+α/2,2+α([0, T ] × Γ0). Then we define ũ through (11), where Φ is given by (8).
Again, ũ has the same regularity of w. As a last step we define u through the change
of coordinates, u(t, x) = ũ(t, ξ) where x = ξ + Φ(t, ξ). This leads to loss of regularity:
starting with initial data in C3+α we get a local solution with C2+α space regularity. The
final result, dealing also with further regularity (see [2]), is the following.

Theorem 1.1 Let Ω0 ⊂ RN be a nonempty bounded open set with C3+α boundary Γ0,
and let u0 ∈ C3+α(Ω0) satisfy the compatibility conditions u0 = 0, ∂u0/∂n = −1 at Γ0.
Then there is T > 0 such that problem (1) has a solution (Ωt, u) such that the (N + 1)-
dimensional hypersurface S = {(t, x) : 0 ≤ t ≤ T, x ∈ Γt} and each Γt = ∂Ωt are of class
C1+α/2,2+α, and the function u : {(t, x); 0 ≤ t ≤ δ, x ∈ Ωt} 7→ R is of class C1+α/2,2+α.

If in addition Γ0 and u0 are in C4+α, and the further compatibility condition B(∆u0) =
0 at Γ0 holds, then S and each Γt are of class C3/2+α/2,3+α, and the function u is of class
C3/2+α/2,3+α. Moreover, the couple (Ωt, u) is the unique solution with such regularity
properties.

We are not able to show that the regularity of the initial datum is preserved throughout
the evolution. Although this is natural for global weak solutions, as the example of self-
similar solutions shows, it not satisfactory for local classical solutions. One could expect
that in a small time interval the solution remains at least as regular as the initial datum;
indeed this is what happens in other free boundary problems of parabolic type (e.g. [10, 11]
with boundary conditions of Stefan type), and in problem (2) for special initial data.

An interesting situation in which there is no loss of regularity, at least in small time
intervals, is the case of initial data near special smooth solutions, such as stationary
solutions, self-similar solutions, travelling waves. In particular, C2+α initial data near any
smooth stationary solution (Ω, U) of (2), with bounded Ω, were considered in the paper
[3], where we studied stability of smooth stationary solutions, establishing a linearized
stability principle for (2) in the time independent case. Since self-similar solutions to
(1) become stationary solutions to a problem of the type (2) after a suitable change of
coordinates, we could also consider initial data for (1) near self-similar solutions.

Concerning the unbounded domain case, stability of planar (i.e., depending only on
one space variable) travelling waves is of physical interest. However, while stability under
one-dimensional perturbations is relatively easy (see e.g. [13, 6]), stability for genuinely
multidimensional perturbations comes out to be a rather complicated problem. See [4]
for the heat equation, and [7, 5, 17, 18] for other free boundary problems of this type.

Another example without loss of regularity was considered by Andreucci and Gianni
in [1], where a two-phase version of (2) was studied in a strip for C2+α initial data far from
special solutions, satisfying suitable monotonicity conditions, i.e. u0 was assumed to be



strictly monotonic in the direction orthogonal to the strip. This allowed them to perform
the classical procedure (already used in the Stefan problem and also in a two-dimensional
version of problem (2), see [21]) of taking u as new independent variable for small t.

We describe here the approach to stability of self-similar solutions to (1) developed in
[3]. We introduce self-similar variables,

x̂ =
x

(T − t) 1
2

, t̂ = − log(T − t), (18)

and we set

û(x̂, t̂) =
u(x, t)

(T − t) 1
2

, Ω̂t̂ = {x̂ : x ∈ Ωt}. (19)

Omitting the hats, we arrive at
ut = ∆u− 1

2
〈x,Du〉+

1

2
u, t > 0, x ∈ Ωt,

u = 0,
∂u

∂n
= 1, t > 0, x ∈ ∂Ωt.

(20)

The self-similar solution defined in (4) is transformed by (18)–(19) into a stationary
solution

U(x) = f(|x|), Ω = {x ∈ RN : |x| < r}, (21)

of (20). From now on we proceed as before: we change variables through the isomorphism
(9), taking now as reference domain the stationary set Ω instead of the initial set Ω0, we
set ũ(t, ξ) = u(t, x) − U(x), we define w by the splitting (11) and we arrive at a final
equation for w in the fixed domain Ω = B(0, r),

wt = ∆w − 1

2
〈ξ,Dw〉+

w

2
+ φ(w,Dw,D2w), t ≥ 0, ξ ∈ Ω,

∂w

∂ν
+
(
N − 1

r
− r

2

)
w = ψ(w,Dw), t ≥ 0, ξ ∈ ∂Ω,

w(0, ξ) = w0(ξ), ξ ∈ Ω,

(22)

where φ and ψ are smooth and quadratic near w ≡ 0; in particular, they vanish at
w ≡ 0. φ is still nonlocal in the second order derivatives. The initial datum w0 =
ũ0 − U − 〈DU,Φ(0, ξ)〉 does not vanish, but it is small if u0 is close to the stationary U .

Again, techniques of fully nonlinear parabolic problems may be used in problem (22),
showing a local existence result, and precisely

Theorem 1.2 For every T > 0 and α ∈ (0, 1) there are R, ρ > 0 such that (22)
has a solution w ∈ C1+α/2,2+α([0, T ] × Ω) provided ‖w0‖C2+α(Ω) ≤ ρ and ∂w0/∂ν +
((N − 1)/r) − (r/2))w0 = ψ(w0, Dw0). Moreover w is the unique solution in B(0, R) ⊂
C1+α/2,2+α([0, T ]× Ω).



We may go on in the analysis, applying the principle of linearized stability theorem
proved in [3] for problems of the type

wt = Aw + φ(w,Dw,D2w), t ≥ 0, ξ ∈ Ω,

Bw = ψ(w,Dw), t ≥ 0, ξ ∈ ∂Ω,
(23)

where Ω is a bounded open set with regular boundary, A is any second order elliptic
operator and B is any nontangential first order differential operator with good coefficients,
φ, ψ are smooth enough and quadratic at w ≡ 0.

Denoting by A the realization of A in Cα(Ω) with homogeneous boundary condition
Bw = 0, if all the eigenvalues of A have negative real part then the stationary solution w =
0 of problem (23) is stable with respect to the C2+α(Ω) norm. If A has some eigenvalues
with positive real part, then the null solution is unstable in C2+α(Ω). In this case there
exists a finite dimensional local unstable manifold, consisting of all the small (in the
C2+α(Ω) norm) initial data w0 satisfying the compatibility condition Bw0 = ψ(w0, Dw0)
and such that (23) has a backward solution going to 0 in C2+α(Ω) as t→ −∞. Denoting
by P the spectral projection associated to the eigenvalues of A with positive real part,
the dimension of the unstable manifold is equal to the dimension of P (Cα(Ω)).

In our case, we have

Av = ∆v − 1

2
〈x,Dv〉+

1

2
v,

Bv =
∂v

∂ν
+
(
N − 1

r
− r

2

)
v,

and the spectrum of A consists of the semisimple eigenvalues 1, 1/2 plus a sequence of
negative eigenvalues; moreover, the eigenspace with eigenvalue 1 is one-dimensional, the
eigenspace wih eigenvalue 1/2 has dimension N .

It follows that the null solution of (22) is unstable in C2+α(Ω), and therefore the self-
similar solution of the original problem (1) is unstable. This is not surprising, because
the original problem is invariant under translations in x and t; if we apply a small shift
to (21), we obtain another self-similar solution which is transformed by (18)–(19) into a
solution which starts close to (21) but moves far from it. Therefore, the local unstable
manifold of (21) must contain the images under (18) of shifts in space and time of (21),
that are given by √

1 + ε2et U
(
x− ε1e

1
2
t

√
ε2et + 1

)
, (24)

with ε1 ∈ RN and ε2 ∈ R. Since the local unstable manifold has to be (N+1)-dimensional,
then it consists only of the images of (24) under the transformation (18). However, all the
orbits in the unstable manifold have the same selfsimilar profile, so that the equilibrium
(21) looks stable even if it unstable. Roughly speaking, the profile itself is stable.

Together with loss of regularity, the other big question about problem (2) is uniqueness
of the classical solution. Indeed, the uniqueness results available up to now concern only
particular situations, such as radially symmetric solutions of (1), studied in [12], and
solutions in cylinders or strips, for initial data which are monotonic in the direction of



the axis of the cylinder (see [21] in dimension N = 2 and [15] in any dimension), or in the
direction orthogonal to the strip (see [1], for the two-phase case). The above mentioned
papers [3, 4] give also uniqueness results in the parabolic Hölder space C1+α/2,2+α, but
only for solutions close to the special solutions considered. The paper [2] gives uniqueness
of very regular solutions, in the space C3/2+α/2,3+α.

A detailed account of the theory up to 2002 may be found in the lecture notes [20].
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sional interface problem, Nonlinear Analysis T.M.A., 44 (2001), 263–280.

[8] J.D. Buckmaster, G.S.S. Ludford, Theory of Laminar Flames, Cambridge University
Press, Cambridge, 1982.

[9] L.A. Caffarelli, J.L. Vazquez, A free boundary problem for the heat equation arising
in flame propagation, T.A.M.S., 347 (1995), 411–441.

[10] J. Escher, G. Simonett, Maximal regularity for a free boundary problem, NoDEA, 2
(1995), 463–510.

[11] J. Escher, G. Simonett, Classical solutions of multidimensional Hele-Shaw models,
SIAM J. Math. Anal., 28 (1997), 1028–1047.

[12] V.A. Galaktionov, J. Hulshof, J.L. Vazquez, Extinction and focusing behaviour of
spherical and annular flames described by a free boundary problem, J. Math. Pures
Appl., 76 (1997), 563–608.



[13] D. Hilhorst, J. Hulshof, An elliptic-parabolic problem in combustion theory: conver-
gence to travelling waves, Nonlinear Analysis TMA, 17 (1991), 519–546.

[14] D. Hilhorst, J. Hulshof, A free boundary focusing problem, Proc. AMS, 121 (1994),
1193–1202.

[15] C. Lederman, J.L. Vázquez, N. Wolanski, Uniqueness of solution to a free boundary
problem from combustion, T.A.M.S., 353 (2001), 655–692.

[16] L. Lorenzi, A free boundary problem stemmed from Combustion Theory. Part I:
Existence, uniqueness and regularity results, J. Math. Anal. Appl., 274 (2002), 505–
535.

[17] L. Lorenzi, A free boundary problem stemmed from Combustion Theory. Part II:
Stability, instability and bifurcation results., J. Math. Anal. Appl., 275 (2002), 131–
160.

[18] L. Lorenzi, A. Lunardi, Stability in a two-dimensional free boundary combustion
model, Nonlinear Analysis TMA, 53 (2003), 227–276. Erratum, Nonlinear Analysis
TMA, 53 (2003), 859–860.

[19] A. Lunardi, Analytic semigroup and optimal regularity in parabolic problems,
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