
Maximal regularity for Kolmogorov operators in L2 spaces with

respect to invariant measures

B. Farkasa,∗,1, A. Lunardib

aTechnische Universität Darmstadt, Fachbereich Mathematik, AG4, Schloßgartenstraße 7,
D-64289, Darmstadt, Germany
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Abstract
We prove an optimal embedding result for the domains of Kolmogorov (or degenerate hypoelliptic
Ornstein–Uhlenbeck) operators in L2 spaces with respect to invariant measures. We use an
interpolation method together with optimal L2 estimates for the space derivatives of T (t)f near
t = 0, where T (t) is the Ornstein–Uhlenbeck semigroup and f is any function in L2.

Résumé
Nous montrons un résultat d’injection optimal pour les domaines des opérateurs de Kolmogorov
(ou les opérateurs d’Ornstein–Uhlenbeck hypoelliptiques dégénérés) sur les espaces L2 avec une
mesure invariante. On utilise une méthode d’interpolation et des estimations optimales pour la
norme L2 de la dérivée spatiale de T (t)f près de t = 0. Où T (t) est le semi-groupe d’Ornstein–
Uhlenbeck et f est un élément de L2.
Keywords: degenerate Ornstein–Uhlenbeck operator; hypoellipticity; invariant measure; maxi-
mal regularity
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1 Introduction

This note concerns the differential operator

Lu(x) =
1
2

d∑
i,j=1

qijDiju(x) +
d∑

i,j=1

bijxjDiu =
1
2

Tr(QD2u(x)) + 〈Bx, Du(x)〉, x ∈ Rd, (1)

where B and Q are real d×d-matrices, Q is symmetric and nonnegative. Therefore L is a possibly
degenerate elliptic operator that we assume to be hypoelliptic, and that is called Kolmogorov
or degenerate Ornstein–Uhlenbeck operator. The hypoellipticity assumption may be stated as
follows: the symmetric matrices Qt defined by

Qt :=

t∫
0

esBQesB∗
ds
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have nonzero determinant for some (equivalently, for all) t > 0. An obvious assumption that
ensures the non-singularity of Qt is the non-singularity of Q. In this case the operator in (1)
is non-degenerate, and this paper gives just an alternative proof to already known results ([10],
[14]). So, we emphasize here the degenerate case.
The hypoellipticity condition implies that the Gaussian measures NetBx,Qt

with covariance op-
erator Qt and mean etBx (t > 0, x ∈ Rd) are all absolutely continuous with respect to the
d-dimensional Lebesgue measure. With the aid of such measures the Ornstein–Uhlenbeck semi-
group (T (t))t≥0 is readily defined by

(T (t)f)(x) =
∫
Rd

f dNetBx,Qt
:=

1
(2π)d/2(detQt)1/2

∫
Rd

e−
1
2
〈Q−1

t y,y〉f(etBx− y) dy, x ∈ Rd. (2)

As is easily seen, the function u(t, x) := (T (t)f)(x) is a classical solution to the Cauchy problem
ut = Lu (t > 0, x ∈ Rd), u(0, ·) = f , for a wide class of initial data f .
Together with hypoellipticity, the other structural assumption of this paper is existence of an
invariant measure for L, i.e., a probability measure µ such that∫

Rd

Lu dµ = 0

for all u ∈ C2
b (Rd). It is well known that such a measure exists if and only if the improper

integral

Q∞ :=

∞∫
0

esBQesB∗
ds converges, (3)

(see, e.g., [2, Sec. 6.2.1]) and this happens if and only if all the eigenvalues of B have negative
real part. Under this hypothesis the determinant of Q∞ is positive, the invariant measure is
unique, and it is the Gaussian measure µ := N0,Q∞ , i.e.,

dµ(x) =
1

(2π)d/2(detQ∞)1/2
e−

1
2
〈Q−1

∞ x,x〉 dx := ρ(x) dx. (4)

The simplest significant example is a Kolmogorov operator in R2:

Lu(x, y) =
1
2
uxx(x, y)− (y + x)ux(x, y) + xuy(x, y), (5)

which arises in stochastic perturbations of motions with friction (see, e.g., [6]) and which has
the Gaussian measure N0,I/2 as invariant measure (see Section 5).
An important feature of second order elliptic operators in L2 spaces with respect to invariant
measures is their dissipativity. In our case, since L(u2) = 2uLu + 〈QDu,Du〉 and the integral
of L(u2) vanishes, we have

〈Lu, u〉L2 =
∫
Rd

uLu dµ = −1
2

∫
Rd

〈QDu,Du〉 dµ ≤ 0 (6)

for all u ∈ C2
b (Rd). Therefore, L : D(L) := C2

b (Rd) → L2(Rd, µ) is closable, and we denote by
(L,D(L)) (or simply by L) its closure. L turns out to be the infinitesimal generator of T (t) in
L2(Rd, µ), see, e.g., [4, Sec. 10.2].
Note that L is not symmetric in the degenerate hypoelliptic case, because symmetry is equivalent
to Q1/2esB∗

= esBQ1/2 for each s > 0 (see again [4, Sec. 10.2]), and this implies that the kernel
of each Qt contains the kernel of Q1/2, so that det Qt = 0.
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The main achievement of this paper is a regularity result for the functions in the domain of L.
We show that they belong to a non-isotropic Sobolev space “naturally” associated to L. They
have first and second order derivatives with respect to some variables in L2(Rd, µ), and they
belong to suitable fractional weighted Sobolev spaces with respect to the other variables. In the
case of the two-dimensional example (5), the functions u ∈ D(L) have first and second order
derivatives with respect to x in L2(R2, µ), and they satisfy∫

R

∫
R2

|u(x, y1)e−y2
1/2 − u(x, y2)e−y2

2/2|2

|y1 − y2|7/3
dy1 dy2 e−x2

dx < ∞.

For a precise statement in the general case, we use an equivalent condition to hypoellipticity,
which is known as Kalman rank condition and is the following: the block matrix

[Q1/2, BQ1/2, B2Q1/2, . . . , Bd−1Q1/2] has rank d.

This allows to decompose Rd into the direct sum of n nontrivial subspaces, where n is the
minimum integer such that the rank of [Q1/2, BQ1/2, B2Q1/2, . . . , Bn−1Q1/2] is d. Set Vh :=
Range Q1/2 + Range BQ1/2 + · · ·+ Range BhQ1/2 for h = 0, . . . , n− 1, let P0 be the orthogonal
projection on W0 := V0 and let Ph be the orthogonal projection onto Wh := Vh 	 Vh−1 if
h = 1, . . . , n− 1. Then Rd =

⊕n−1
h=0 Wh. We fix orthonormal bases in the subspaces Wh, whose

union is an orthonormal basis {e1, . . . , ed} of Rd. For every h = 0, . . . , n− 1 we denote by Ih the
set of indices i such that the vectors ei with i ∈ Ih span Wh. After this change of coordinates
the second order derivatives which appear in (1) are only the Diju with i, j ∈ I0.
The main theorem of this paper states that the domain of L is continuously embedded in
H2,2/3,...,2/(2n−1)(Rd, µ). This space is defined in terms of series developments with Hermite
polynomials, see Section 3. Its elements u have derivatives Diu, Diju in L2(R2, µ) for every
i, j ∈ I0, and for every index i ∈ Ih, h = 1, . . . , n− 1, they satisfy∫

Rd−1

∫
R2

|(u√ρ)(x1, . . . , x
1
i , . . . , xd)− (u

√
ρ)(x1, . . . , x

2
i , . . . , xd)|2

|x1
i − x2

i |1+4/(2h+1)
dx1

i dx2
i dx̂i < ∞

where ρ is the density of µ given by (4) and dx̂i = dx1 . . . dxi−1 dxi+1 . . . dxd is the (d − 1)-
dimensional Lebesgue measure in Rd−1.
More generally, we prove that for each positive integer k the domain of Lk is continuously
embedded in H2k,2k/3,...,2k/(2n−1)(Rd, µ), whose definition for general k is similar to the case
k = 1.
Since our weighted Lebesgue and Sobolev spaces are locally equivalent to the usual Lebesgue
and Sobolev spaces, it follows that for each u ∈ D(L) there exist the derivatives Diu, Diju for
i, j ∈ I0 and they are in L2

loc(Rd, dx); moreover u ∈ H
2/(2n−1)
loc (Rd, dx). The last exponent

2/(2n − 1) agrees with the general local regularity results of [15]. Concerning local maximal
regularity, we mention also the paper [5] where it was proved that the second order derivatives
Diju, i, j ∈ I0, exist and belong to L2

loc(Rd, dx). In fact, the papers [5, 15] deal with second
order operators of the type X0 +

∑k
j=1 X2

j in nilpotent Lie groups, such that all the Xj ’s are left
invariant vector fields, homogeneous with respect to suitable families of dilations, and satisfy
the Hörmander commutator condition. It can be proved that under suitable assumptions on B,
the operator L− d

dt belongs to this class of operators, see, e.g., [9].
Global regularity results and estimates in weighted or non-weighted Sobolev spaces seem to be
missing from the literature yet. The different regularity degree with respect to different variables
should not be surprising, being a typical feature of hypoelliptic operators. A result of this type
in non-isotropic Hölder spaces instead of Sobolev spaces has been already proved in [11].
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Our result is proved by an interpolation method that uses sharp estimates for the space deriva-
tives of T (t)f for small t > 0 and for each f ∈ L2(Rd, µ). Let us describe it in the case of
example (5). For each couple of nonnegative integers k1, k2 there is c > 0 such that

‖Dk1
x Dk2

y T (t)f‖L2(R2,µ) ≤
c

t(k1+k2)/2+k2
‖f‖L2(R2,µ), t ∈ (0, 1).

This implies that for every positive integer k the norm of T (t) as an operator from L2(R2, µ)
to H3k,k(R2, µ) is bounded by c/t3k/2 near t = 0. An argument from general interpola-
tion/semigroup theory shows now that this estimate with k = 1 implies that the real inter-
polation space (L2(R2, µ), D(L2))1/2,2 is continuously embedded in (L2(R2, µ),H3,1(R2, µ))2/3,2.
On the one hand, the space (L2(R2, µ), D(L2))1/2,2 coincides with D(L), because L is the in-
finitesimal generator of a contraction positivity preserving semigroup in a Hilbert space. On the
other hand, the interpolation space (L2(R2, µ),H3,1(R2, µ))2/3,2 is contained in H2,2/3(R2, µ),
and the embedding follows.
We remark that, although not very common in the literature about PDE’s, Lp and Sobolev
spaces with respect to invariant measures are much more suited to Kolmogorov operators than
Lp spaces with respect to the Lebesgue measure or other weighted spaces. Apart from their
intrinsic interest as nice examples of hypoelliptic operators, the main motivation for the study
of Kolmogorov operators is probabilistic: given the stochastic differential equation in Rd{

dXt = BXt dt + Q1/2 dWt,
X(0) = x,

where W (t) is a standard Brownian motion, the Ornstein–Uhlenbeck semigroup is nothing but
the transition semigroup of the process, i.e., T (t)f(x) = E(f(Xt)) for each Borel measurable
and bounded f , and µ is the invariant measure of the process, i.e., for any t > 0 we have∫

Rd T (t)f dµ =
∫

Rd f dµ, again for each Borel measurable and bounded f . So, the invariant
measure is associated to a property of conservation of mean values which is widely used in
probability and in ergodic theory (see, e.g., the books [2, 8]).
A description of the basic features Ornstein–Uhlenbeck semigroups in Lp spaces with respect to
invariant measures, under hypoellipticity conditions, may be found in [2]. A detailed study of
the spectral properties of their generators is in [13].

2 The Ornstein–Uhlenbeck semigroup

Throughout this section we write ‖f‖2 instead of ‖f‖L2(Rd,µ). Di denotes the partial derivative in
the direction ei, and D denotes the gradient. Moreover Ph, h = 0, . . . , n− 1, are the projections
associated to the Kalman rank condition, introduced in Section 1.
The Ornstein–Uhlenbeck semigroup is defined on L2(Rd, µ) by formula (2). It is not hard to see
that it is a contraction semigroup; indeed, for each f ∈ L2(Rd, µ) and for all x ∈ Rd we have by
the Hölder inequality

|(T (t)f)(x)|2 ≤
∫
Rd

|f(etBx− y)|2 dµ0,Qt = (T (t)f2)(x),

so integrating both sides against the invariant measure µ we obtain ‖T (t)f‖2 ≤ ‖f‖2. The
representation formula (2) shows that T (t)f is differentiable for all f ∈ L2(Rd, µ), and

(DT (t)f)(x) = −ct

∫
Rd

e−
1
2
〈Q−1

t (etBx−y),etBx−y〉f(y)etB∗
Q−1

t (etBx− y) dy
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with ct = (2π)−d/2(detQt)−1/2, so for each i = 1, . . . , d we have

|(DiT (t)f)(x)| ≤ ct

∫
Rd

e−
1
2
〈Q−1

t (etBx−y),etBx−y〉|f(y)| · |〈etB∗
Q−1

t (etBx− y), ei〉| dy.

By the Cauchy–Schwartz inequality we obtain

|(DiT (t)f)(x)|2 ≤ c2
t

(∫
Rd

e−
1
2
〈Q−1

t (etBx−y),etBx−y〉|f(y)| · |〈etB∗
Q−1

t (etBx− y), ei〉| dy

)2

≤

≤ ct

∫
Rd

e−
1
2
〈Q−1

t (etBx−y),etBx−y〉f2(y) dy·

· ct

∫
Rd

e−
1
2
〈Q−1

t (etBx−y),etBx−y〉|〈etB∗
Q−1

t (etBx− y), ei〉|2 dy =

= (T (t)f2)(x) · 1
(2π)d/2(det Qt)1/2

∫
Rd

e−
1
2
〈Q−1

t (etBx−y),etBx−y〉|〈etB∗
Q−1

t (etBx− y), ei〉|2 dy =

= (T (t)f2)(x) · 1
(2π)d/2

∫
Rd

e−
|y|2
2 |〈etB∗

Q
−1/2
t y, ei〉|2 dy ≤

≤ c̃ ‖Q−1/2
t etBPh‖2 · (T (t)f2)(x),

so that integrating with respect to µ and using its invariance we obtain

‖DiT (t)f‖2
2 ≤ c‖Q−1/2

t etBPh‖2 · ‖f‖2
2 for some constant c > 0. (7)

This shows that to estimate the derivatives of T (t)f near t = 0 the crucial part is a precise
estimation of Q

−1/2
t etB for various directions in Rd, according to the decomposition of the

space. This was done in [11], where the proof is based on sharp estimates on Qt near t = 0 (see
Seidman [16]).

Lemma 1. Let ω > ω0(B), the growth bound of (etB)t≥0. Then there exists a constant c > 0
such that for all 0 ≤ h, k ≤ n− 1 and t ≥ 0 the estimates

‖PhetBPk‖ = ‖PhetB∗
Pk‖ ≤

{
cth−keωt, h ≥ k,

cteωt, h < k.
(8)

hold. Furthermore, there is a constant c > 0 such that

‖Q−1/2
t Ph‖ ≤

c

t1/2+h
, ‖PhQ

1/2
t ‖ ≤ ct1/2+h, 0 < t ≤ 1,

‖Q−1/2
t ‖ ≤ c, ‖Q1/2

t ‖ ≤ cmax(1, eωt) t ≥ 1,

‖PhetB∗
Q
−1/2
t ‖ ≤ ceωt

t1/2+h
, ‖Q1/2

t etBPh‖ ≤ ceωtt1/2+h, t > 0.

Now (7) and the above Lemma 1 yield

‖DiT (t)f‖2 ≤
ceωt

t1/2+h
‖f‖2, i ∈ Ih, t > 0. (9)

This is the first step in proving the following proposition.

5



Proposition 2. For any N ∈ N there exist a constant c such that

‖Di1Di2 · · ·DiN T (t)f‖2 ≤
c

tN/2+h1+h2+···+hN
‖f‖2, t ∈ (0, 1), (10)

for all f ∈ L2(Rd, µ) and ij ∈ Ihj
, j = 1, . . . , N .

Proof. We prove by induction on N ∈ N. The cases N = 0, 1 are already settled.
First of all, notice that for any continuously differentiable f

DT (t)f = etB∗
T (t)Df (11)

holds, hence for each f ∈ L2(Rd, µ) we have

(DiT (t)f)(x) =
d∑

l=1

(etB∗
)il(T (t)Dlf)(x),

and for any N ∈ N, i, i1, i2, . . . , iN ∈ N

(Di1Di2 · · ·DiN DiT (t)f)(x) = (Di1Di2 · · ·DiN DiT (t/2)T (t/2)f)(x) =

=
d∑

l=1

(etB∗/2)ilDi1Di2 · · ·DiN T (t/2)DlT (t/2)f(x).

Fix ω > ω0(B), suppose that assertion (10) is true for some N > 0, and let i ∈ Ih, 0 ≤ h ≤
n−1. According to the induction hypothesis we can estimate the L2-norm by using the triangle
inequality

‖Di1Di2 · · ·DiN DiT (t)f‖2 ≤
c

(t/2)N/2+h1+h2+···+hN

d∑
l=1

∣∣(etB∗/2)il

∣∣ · ‖DlT (t/2)f‖2 ≤

≤ c

(t/2)N/2+h1+h2+···+hN

d∑
l=1

∥∥PhetB∗/2Pk(l)

∥∥ · ‖Pk(l)DT (t/2)f‖2,

where k(l) is such that l ∈ Ik(l). Applying first (8) from Lemma 1 and then inequality (9) we
can continue the above estimate and obtain

‖Di1Di2 · · ·DiN DiT (t)f‖2 ≤
c

(t/2)N/2+h1+h2+···+hN

n−1∑
k=0

∥∥PhetB∗/2Pk

∥∥ · ‖PkDT (t/2)f‖2 ≤ (12)

≤ c2eωt/2

(t/2)N/2+h1+h2+···+hN

(h−1∑
k=0

t/2‖PkDT (t/2)f‖2 +
n−1∑
k=h

(t/2)k−h‖PkDT (t/2)f‖2

)
≤ (13)

≤ c2eωt/2

(t/2)N/2+h1+h2+···+hN

(h−1∑
k=0

dkt/2 · ceωt/2

(t/2)1/2+k
‖f‖2 +

n−1∑
k=h

(t/2)k−h · dkce
ωt/2

(t/2)1/2+k
‖f‖2

)
≤

(14)

≤ c′

t(N+1)/2+h1+h2+···+hN+h
‖f‖2, t ∈ (0, 1). (15)

All the constants in (12) are absolute if N is fixed. This yields the statement.

Remark 3. Let ω > ω0(B). The above proof also shows that for any N ∈ N there exist a
constant c such that

‖Di1Di2 · · ·DiN T (t)f‖2 ≤
ceωt

tN/2+h1+h2+···+hN
‖f‖2 for all t ∈ (0,+∞),

and for all f ∈ L2(Rd, µ), ij ∈ Ihj
, j = 1, . . . , N .
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3 Interpolation for anisotropic, weighted Sobolev spaces

Here and in the following, if R is a k × k positive definite matrix and m is any positive integer,
Hm(Rk,N0,R) is the Hilbert space of the functions u ∈ L2(Rk,N0,R) such that all the (weak)
derivatives Dβf exist and belong to L2(Rk,N0,R) for |β| ≤ m.

3.1 Preliminaries on symmetric Ornstein–Uhlenbeck operators and Hermite
polynomials

We recall some well known facts about symmetric Ornstein–Uhlenbeck operators and Hermite
polynomials. In dimension 1, the latter are defined by

Hn(x) :=
(−1)n

√
n!

ex2/2 dn

dxn
e−x2/2, n ∈ N ∪ {0}, x ∈ R,

and they form an orthonormal basis in the space L2(R,N0,1). In general dimension k, for any
multi-index β we define the polynomials Hβ by

Hβ(x) =
k∏

j=1

Hβj

(
xj√
λj

)
, x ∈ Rk, (16)

if R = diag [λ1, . . . , λk], and by

Hβ(x) =
k∏

j=1

Hβj

(
(Ux)j√

λj

)
, x ∈ Rd, (17)

if R is not diagonal and U is an orthogonal matrix (fixed once and for all) such that URU−1 is
diagonal.
These polynomials constitute an orthonormal basis in L2(Rd,N0,R), being the eigenfunctions of
the self-adjoint non-positive Ornstein–Uhlenbeck operator A defined by

D(A) = H2(Rk,N0,R), Au(x) =
1
2

Tr(RD2u(x))− 1
2
〈x,Du(x)〉,

with eigenvalue −
∑k

j=1 βj/2.
It can be shown that Hm(Rk,N0,R) is the domain of the operator (

√
I −A)m, and its graph

norm is equivalent to the norm associated to the natural scalar product in Hm(Rk,N0,R),

〈f, g〉Hm(Rk,N0,R) :=
∑

0≤|β|≤m

〈Dβf,Dβg〉L2(Rk,N0,R). (18)

In fact, an extension of this result to Lp spaces with p 6= 2 holds even for Ornstein–Uhlenbeck
operators in infinitely many variables (see [3]).
This motivates the definition of Hs(Rk,N0,R) for any s > 0 as the domain of (

√
I −A)s, i.e.,

the set of functions u ∈ L2(Rk,N0,R) such that the series

∑
|β|≥0

(
1 +

k∑
j=1

βj

2

)2s

〈u, Hβ〉2L2(Rk,N0,R) := ‖u‖2
Hs(Rk,N0,R) (19)

converges. To be consistent we use the above norm also for s = m ∈ N, instead of the equivalent
norm associated to the scalar product (18).
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3.2 Anisotropic Sobolev spaces in dimension d

In this section it will be important that we fix some orthonormal basis e1, . . . , ed in the space
Rd and the partial derivatives Di are understood in these directions. In the next section this
will be chosen as the basis coming from the decomposition of the space Rd in connection with
the Kalman rank condition.
Let R be a d×d symmetric positive definite matrix and let ν := N0,R be the associated Gaussian
measure. For any multi-index β, let Hβ be the Hermite polynomial (in dimension d) defined in
Section 3.1.
Take m ∈ N and fix a subset I ⊆ {1, . . . , d} as well. Denote by ΛI the set of all multi-indices
β ∈ (N ∪ {0})d such that βj = 0 for j /∈ I.
For each s > 0, we define the Sobolev space Hs

I (Rd, ν) as the space of the functions u ∈ L2(Rd, ν)
such that the series ∑

|β|≥0, β∈ΛI

(
1 +

∑
j∈I

βj

2

)2s

〈u, Hβ〉2L2(Rd,ν) (20)

converges. It is a Hilbert space with the scalar product

〈f, g〉Hs
I (Rd,ν) :=

∑
|β|≥0, β∈ΛI

(
1 +

∑
j∈I

βj

2

)2s

〈f,Hβ〉L2(Rd,ν)〈g,Hβ〉L2(Rd,ν).

It follows from the considerations in Section 3.1 that if s = m is integer, we have

Hm
I (Rd, ν) =

{
f : f ∈ L2(Rd, ν), ∃Dβf ∈ L2(Rd), β ∈ ΛI , |β| ≤ m

}
,

and its scalar product is equivalent to

(f, g) 7→
∑

0≤|β|≤m, β∈ΛI

〈Dβf,Dβg〉L2(Rd,ν).

Now let us partition the set {1, . . . , d} into n non-empty subsets Ih (h = 0, . . . , n−1); we denote
by Wh the subspace of Rd spanned by {ej : j ∈ Ih}. Given n positive numbers s0, . . . , sn−1 we
define

Hs0,s1,...,sn−1(Rd, ν) :=
n−1⋂
h=0

Hsh
Ih

(Rd, ν), (21)

which is still a Hilbert space, with the sum scalar product. The associated norm is

‖u‖2
Hs0,s1,...,sn−1 (Rd,ν) =

∑
|β|≥0

n−1∑
h=0

(
1 +

∑
j∈Ih

βj

2

)2sh

〈u, Hβ〉2L2(Rd,ν).

We are interested in the real interpolation spaces
(
L2(Rd, ν),Hm0,m1,...,mn−1(Rd, ν)

)
θ,2

, when the
exponents m0,m1, . . . ,mn−1 are integers.

Proposition 4. Fix m0,m1, . . . ,mn−1 ∈ N and 0 < θ < 1. Then we have(
L2(Rd, ν),Hm0,m1,...,mn−1(Rd, ν)

)
θ,2

= Hθm0,θm1,...,θmn−1(Rd, ν).

Proof. i): First we consider the case of a diagonal matrix R. We introduce the self-adjoint
non-positive operators Ah in L2(Rd, ν), h = 0, . . . , n− 1, defined by

D(Ah) := H2
Ih

(Rd, ν), Ahu(x) =
1
2

∑
j∈Ih

λjD
2
j u−

1
2

∑
j∈Ih

xjDju(x). (22)
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The polynomials Hβ with β ∈ ΛIh
are the eigenfunctions of Ah, and for each s > 0 we have

Hs
Ih

(Rd, ν) = D((
√

I −AIh
)s) = (L2(Rd, ν), D((

√
I −AIh

)m))s/m,2, (23)

where the first equality holds by definition, and the second equality holds because
√

I −Ah is a
positive self-adjoint operator in a Hilbert space ([17, Thm. 1.18.10]).
Therefore,

Hm0,m1,...,mn−1(Rd, ν) =
n−1⋂
h=0

D((
√

I −Ah)mh), (24)

where the positive operators
√

I −Ah have commutative resolvents. Then we may use Theorem
1.14.1 of [17], which yields(

L2(Rd, ν),
n−1⋂
h=0

D((
√

I −Ah)mh)
)

θ,2
=

n−1⋂
h=0

(L2(Rd, ν), D((
√

I −Ah)mh))θ,2. (25)

Formula (23) with m = mh and s = θmh gives

(L2(Rd, ν), D((
√

I −Ah)mh))θ,2 = Hθmh
Ih

(Rd, ν). (26)

Now (24), (25), (26) imply the statement in the diagonal case.
ii): If the matrix R is not diagonal we need a further step for the description of our interpolation
spaces. We have to introduce the above mentioned orthogonal matrix U such that

URU−1 = diag [λ1, . . . , λd].

The change of coordinates y = Ux transforms the Gaussian measure N0,R into the Gaussian
measure N0,URU−1 , the basis {e1, . . . , ed} into the basis {Ue1, . . . , Ued} and the subspaces Wh

into the subspaces U(Wh), spanned by {Uej : j ∈ Ih}.
The mapping f 7→ f ◦ U−1 is an isomorphism between L2(Rd, ν) and L2(Rd,N0,URU−1), and
between Hm0,m1,...,mn−1(Rd, ν) and Hm0,m1,...,mn−1(Rd,N0,URU−1) (the latter is understood with
respect to the splitting associated to the subspaces U(Wh), h = 0, . . . , n − 1). Thus, f 7→
f ◦U−1 is an isomorphism between the interpolation spaces (L2(Rd, ν),Hm0,m1,...,mn−1(Rd, ν))θ,2

and (L2(Rd,N0,URU−1),Hm0,m1,...,mn−1(Rd,N0,URU−1))θ,2. Therefore, the interpolation space
(L2(Rd, ν), Hm0,m1,...,mn−1(Rd, ν))θ,2 consists of the functions f ∈ L2(Rd, ν) such that f ◦ U−1

belongs to Hθm0,θm1,...,θmn−1(Rd,N0,URU−1), and the statement follows.

It is important to remark that if θmh is integer for some h, say θmh = m ∈ N, then the functions
in the interpolation space belong to Hm

Ih
(Rd, ν), so that they have weak derivatives up to the

order m with respect to the variables xj , j ∈ Ih, and these derivatives belong to L2(Rd, ν). On
the other hand, if θmh is not integer, the regularity properties with respect to the variables
xj , j ∈ Ih, are not obvious. To describe them better, we consider another transformation, the
mapping f 7→ √

ρf , where ρ is the density kernel of ν,

ρ(x) =
1

(2π)d/2 det R1/2
e−

1
2
〈R−1x,x〉.

This mapping is an isometric isomorphism between L2(Rd, ν) and L2(Rd, dx), but it is not an iso-
morphism between our Sobolev spaces Hm0,m1,...,mn−1(Rd, ν) and the corresponding anisotropic
Sobolev spaces with respect to the Lebesgue measure. Nevertheless we have the following em-
bedding.
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Proposition 5. Let I ⊂ {1, . . . , d} and m ∈ N. Then

Hm
I (Rd, ν) ⊂

{
f : f ∈ L2(Rd, ν), ∃(√ρf) ∈ L2(Rd, dx), β ∈ ΛI , |β| ≤ m

}
and there is a constant C such that for each f ∈ Hm

I (Rd, ν) we have∑
|β|≤m, β∈ΛI

‖(√ρf)‖L2(Rd, dx) ≤ C‖f‖Hm
I (Rd,ν).

Proof. We prove only for m = 1, then the case of general m follows by induction. If f is a
polynomial and j ∈ I, then Dj(

√
ρf) =

√
ρDjf −〈R−1x, ej〉

√
ρf/2. The first term is fine, while

the second term may be treated as in the isotropic case (e.g., [10, Lemma 2.2]):∫
Rd

(〈R−1x, ej〉f(x))2 dν = −
∫
Rd

(Djρ(x))〈R−1x, ej〉f(x)2 dx

=
∫
Rd

ρ(x)(〈R−1ej , ej〉f(x)2 + 2〈R−1x, ej〉f(x)Djf(x)) dx

≤ 〈R−1ej , ej〉‖f‖2
L2(Rd,ν) + 2

(∫
Rd

(〈R−1x, ej〉f(x))2ρ(x) dx

)1/2

‖Djf‖L2(Rd,ν)

≤ 〈R−1ej , ej〉‖f‖2
L2(Rd,ν) +

1
2

∫
Rd

(〈R−1x, ej〉f(x))2ρ(x) dx + 2‖Djf‖L2(Rd,ν).

Therefore,
‖〈R−1·, ej〉f‖2

L2(Rd,ν) ≤ 2〈R−1ej , ej〉‖f‖2
L2(Rd,ν) + 4‖Djf‖2

L2(Rd,ν),

and the statement follows because polynomials are dense in H1
I (Rd, ν).

Remark 6. Notice that the two spaces in the above proposition are not equal. Take for example

d = 1, ν = N0,1 so that ρ(x) = 1√
2π

e−
x2

2 . Some calculation gives that the function f(x) :=

e
x2

4 (1 + x2)−1/2 is such that
√

ρf ∈ H1(R, dx) but f does not belong to H1(R, ν).

Now the embedding of the interpolation spaces is easy:

Proposition 7. Let m0,m1, . . . ,mn−1 ∈ N and 0 < θ < 1. Then for each h = 0, . . . , n − 1 we
have (

L2(Rd, ν),Hm0,m1,...,mn−1(Rd, ν)
)

θ,2
⊂
{

f ∈ L2(Rd, ν) :
√

ρf ∈ Hθmh
Ih

(Rd, dx)
}

,

and there exists C > 0 such that

n−1∑
h=0

‖√ρf‖
H

θmh
Ih

(Rd, dx)
≤ C‖f‖(

L2(Rd,ν),Hm0,m1,...,mn−1 (Rd,ν)
)

θ,2

,

for each f ∈
(
L2(Rd, ν),Hm0,m1,...,mn−1(Rd, ν)

)
θ,2

.
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Here the anisotropic Sobolev spaces with respect to the Lebesgue measure are defined as one
can expect: a function f ∈ L2(Rd, dx) belongs to Hs

Ih
(Rd, dx) if it has derivatives up to the

order [s] with respect to the variables xj , j ∈ Ih, belonging to L2(Rd, dx), and the derivatives
Dβf of order [s] and β ∈ Λh have finite seminorm

[Dβf ]2Hs
Ih

(Rd, dx) :=
∫

Rd−1

∫
R2

|Dβf(x1, . . . , x
1
j , . . . , xd)−Dβf(x1, . . . , x

2
j , . . . , xd)|2

|x1
j − x2

j |1+2{s} dx1
i dx2

i dx̂i,

where {s} = s− [s]. The norm is

‖f‖2
Hs

Ih
(Rd, dx) :=

∑
|β|≥0, β∈Λh

‖Dβf‖2
L2(Rd, dx) +

∑
|β|=[s], β∈Λh

[Dβf ]2Hs
Ih

(Rd, dx).

Note that, since ρ and all its derivatives are locally bounded, then each f in the interpolation
space (L2(Rd, ν),Hm0,m1,...,mn−1(Rd, ν))θ,2 is locally Hθmh with respect to the variables xj , j ∈
Ih.

4 The main result

Recall the decomposition of Rd =
⊕n−1

h=0 Wh and the corresponding basis {e1, . . . , ed} together
with the grouping Ih, h = 0, . . . , n − 1 of the indices as given in Section 1. We introduce the
following abbreviation (µ is the invariant measure for the Ornstein–Uhlenbeck semigroup, see
Section 1), for s > 0,

Hs(Rd, µ) := Hs,s/3,s/5,...,s/(2n−1)(Rd, µ).

Let (L,D(L)) be the infinitesimal generator of the the Ornstein–Uhlenbeck semigroup (T (t))t≥0.
Our main result is the following inclusion of D(Lk) into the fractional Sobolev space H2k(Rd, µ).

Theorem 8. Let k ∈ N. For the domain of the Ornstein–Uhlenbeck operator L we have

D(Lk) ⊆ H2k(Rd, µ) = H2k, 2k/3, 2k/5,..., 2k/(2n−1)(Rd, µ).

The proof relies on the abstract interpolation result given below (for a proof see [12]). Recall
that whenever Y ⊆ E ⊆ X are Banach spaces and 0 < β < 1, E is said to belong to the
class Jβ(X, Y ) if there exists a constant c > 0 such that for all y ∈ Y the norm inequality
‖y‖E ≤ c‖y‖1−θ

X · ‖y‖θ
Y holds ([17, Sec. 1.10.1]).

Theorem 9. Let (T (t))t≥0 be a C0-semigroup in a Banach space X with generator (A,D(A)).
Suppose that there is a Banach space E ⊆ X and some constants m ∈ N, 0 < β < 1, ω ∈ R,
c > 0 such that

‖T (t)‖L(X,E) ≤
ceωt

tmβ
for t > 0,

and for each x ∈ X the function (0,∞) 3 t 7→ T (t)x ∈ E is measurable. Then E belongs to the
class Jβ(X, D(Am)), so by reiteration

(X, D(Am))θ,p ⊂ (X, E)θ/β,p for all θ ∈ (0, β) and 1 ≤ p ≤ ∞.

The combination of this theorem with estimates of the derivatives of (T (t))t≥0 and with the
characterization of real interpolation spaces between L2(Rd, µ) and Hm(Rd, µ) yields the

Proof of Theorem 8. We apply Theorem 9 to the Ornstein–Uhlenbeck semigroup T by setting
X = L2(Rd, µ) and E = Hk(2n−1)!(Rd, µ). The measurability, actually the continuity, assumption
is obtained from Lemma 2. Also this lemma implies the estimate for the semigroup

‖T (t)‖L(L2(Rd,µ),Hk(2n−1)!(Rd,µ)) ≤
ceωt

tk(2n−1)!/2
.
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Let m ∈ N be so large that β := (2n− 1)!/2m belongs to (0, 1). Taking further θ = 1/m, we see
that the assumptions of Theorem 9 are fulfilled. Whence we conclude the inclusion(

L2(Rd, µ), D(Lkm)
)

1/m,2
⊆
(
L2(Rd, µ),Hk(2n−1)!(Rd, µ)

)
2/(2n−1)!,2

= H2k(Rd, µ).

Next, we show that the domain of Lk can be obtained as

D(Lk) =
(
L2(Rd, µ), D(Lkm)

)
1/m,2

.

The following argument easily proves this equality. Since L is m-dissipative, so are L − λI for
all λ > 0. A classical theorem of Kato [7] tells us that λI − L has bounded imaginary powers
for all λ > 0. Then by complex interpolation (see Triebel [17, Thm. 1.15.3.]), we obtain

D(Lk) =
[
L2(Rd, µ), D(Lkm)

]
1/m

.

And now the nice feature of Hilbert spaces enters the picture, namely we have the equality of
real an complex interpolation spaces (see Triebel [17, Sec.1.18.10, p. 143])[

L2(Rd, µ), D(Lkm)
]
1/m

=
(
L2(Rd, µ), D(Lkm)

)
1/m,2

.

The proof is hence complete.

5 An example

Consider the following operator in R2d:

Lf(x, y) =
1
2
∆xf − 〈My + x,Dxf〉+ 〈x,Dyf〉, (x, y) ∈ Rd × Rd,

where M ∈ Md×d(R) is positive. The corresponding matrices Q, B are

B =
(
−Id −M

Id 0

)
, and Q =

(
Id 0
0 0

)
.

With n = 1 the Kalman rank condition is satisfied:

rank[Q1/2, BQ1/2] = rank
(

Id 0 −Id 0
0 0 Id 0

)
= 2d.

The corresponding decomposition of the space R2d are given by the projections

P0 =
(

Id 0
0 0

)
and P1 =

(
0 0
0 Id

)
.

One can determine the matrix Q∞ as well,

Q∞ =
1
2

(
Id 0
0 M−1

)
,

so that, with obvious notation,

dµ(x, y) = dN0,Q∞(x, y) =
det M1/2

πd
exp

(
− |x|2 − 〈My, y〉

)
dx dy.

Hence Theorem 8 gives that for g ∈ L2(Rd, µ) and λ > 0 the solution f to

λf − Lf = g

lies in H2,2/3(Rd, µ). Therefore, it has derivatives up to the 2nd order with respect to the
variables in the x-subspace in L2(Rd, µ) and it satisfies∫

Rd

∫
Rd

|f(x, y1)e−
〈My1,y1〉

2 − f(x, y2)e−
〈My2,y2〉

2 |2

|y1 − y2|d+4/3
dy1 dy2 e−|x|

2
dx < ∞.
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