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Abstract

We study the realization Ay of the operator A = $A — (DU, D-) in L*(Q, 1) with
Neumann boundary condition, where € is a possibly unbounded convex open set in
RYN, U is a convex unbounded function, DU (z) is the element with minimal norm in
the subdifferential of U at x, and u(dz) = cexp(—2U(z))dz is a probability measure,
infinitesimally invariant for 4. We show that Ay is a dissipative self-adjoint operator
in L?(Q, u). Log-Sobolev and Poincaré inequalities allow then to study smoothing
properties and asymptotic behavior of the semigroup generated by Ay .

1 Introduction

Linear elliptic operators with regular and bounded coefficients in R™ is an old and well
studied subject. In particular, unique solvability and estimates for the solutions to equa-
tions of the type

Au— Au = f (1.1)

in suitable Banach spaces, such as L spaces, Sobolev spaces, Holder spaces etc. has been
the object of deep investigation and nowadays a satisfactory theory is available. See e.g.
the classical book [10].

If the coefficients of the elliptic operator A are regular but unbounded one can prove
in general existence of a solution for large A but not uniqueness. For instance, for each
A > 0 the one dimensional equation

1
= Prr — 3739030 =0,
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has a bounded non zero classical solution. See [9].

In the last few years an increasing interest has been devoted to elliptic operators with
unbounded coefficients in the whole RY, or in an unbounded open subset Q of R”. In the
case of regular coefficients we refer to [4, 9, 11, 12, 14].

When the coefficients are not continuous one cannot expect in general existence of any
solution in spaces of continuous functions; also the choice of LP spaces with respect to the



Lebesgue measure is not appropriate and leads to several difficulties. See the book [7],
where (1.1) is considered under minimal regularity conditions on the coefficients of A. A
more natural choice is the space LP(RY, ;1) where p is a probability measure such that

/Q.Au(x)u(d:p) =0, u€ CPRY).

Several papers have been devoted to existence and uniqueness of invariant measures u
associated to elliptic operators, and to the properties of the realizations of such operators
in LP(RY, i), 1 < p < oo, especially for p = 2. See e.g. [7, 5, 6, 16, 17].

In this paper we shall consider elliptic operators of the form

Au = %Au — (DU, Du) (1.2)

This class of operators enjoys nice functional properties. As first realized by Kolmogorov
[8], if U is a C' function and exp(—2U) is in L'(RY), the probability measure

~1
v(dz) = </ e_QU(x)dx> e 2@ gy (1.3)
RN

is an infinitesimally invariant measure for A, and A is symmetric in L?(R"™, ) in the sense
that
Au(z) v(z)v(dz) = Av(z) u(z)v(dz), u,v e CPRYN).
RN RN

The condition that the drift (F, Du) has F' = —DU looks rather restrictive. However, it
is well known (and easy to see) that if an operator A of the type Au = +Au + (F, Du)
with regular F admits an infinitesimally invariant probability measure v = p(z)dz, then
A is symmetric in L?>(R",v) if and only if 2F = Dlogp. In this case the corresponding
diffusion process, described by the differential stochastic equation

dX = F(X)dt + dW (t),

is said to be reversible.
We shall assume that U is a real valued convex function such that

lim U(x)= +oo. (1.4)

No other growth assumption will be made. If U is differentiable at x, DU (x) is the
gradient of U at z; if U is not differentiable at z, DU (x) is meant as the element with
minimal norm in the subdifferential of U at x. Since U is real valued and convex, it is
continuous and DU (z) is well defined for each z € RY | but the function x — DU(z) may
be discontinuous.

After the study of the realization of A in L?(RY,v), we shall consider an open convex
set Q C RY with C? boundary, and we shall study the realization Ay of A in L?(, )
with Neumann boundary condition, where

-1
u(dz) = </§26_2U($)dx> e 2@y, (1.5)

It is easy to see that if u € C?(Q) has compact support and null normal derivative at the
boundary, then

/ Au(z)p(dz) = 0.
Q

Therefore, the measure p is infinitesimally invariant for A. Note that this is not true if u
satisfies the Dirichlet boundary condition.



The main result of this paper is that Ay : D(Ax) = {u € H2(Q, ) : Ou/On =0, Au €
L?(Q, 1)} is a self-adjoint dissipative operator.
We use a penalization method, introducing the family of operators in RV

Au(z) = %Au(:ﬂ) (DU, (z), Du(z)), =€ RY, (1.6)
where
1
Us(z) =U(z) + g(dlst(:ﬂ, )2 (1.7)

Operators of this type in the whole RY have been already considered, for instance in [5],
under further assumptions on U. Here we prove that the realizations of the operators A,
in L2(RY,v,), with domain D, = {u € H*(R",v.) : (DU, Du) € L*>(R",v.)} and

-1
ve(dz) = </ e_QUE(I)d:B> e 2Ve(@) gy
RN
are self-adjoint and dissipative. Therefore the equation
Au— A.u = f,

where f is the null extension of f to the whole RY, has a unique solution u, € D,.
It is possible to see that |[uc||g2ry ) is bounded by a constant independent of e. It
follows that the restrictions u. | are bounded in H 2(Q, 1) by a constant independent of
€. Therefore a sequence u., | converges to a limiting function v € H 2(Q, ) which turns

out to be a solution to
A—Au=f in§,

Ju

— =0 at 09Q.

on
The solution is unique thanks to an a priori estimate, which comes from the integration
by parts formula

| An@pantan) = = [ Duta), Di@ntds) + 5 [ S, (18
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Indeed, taking v = u, where u is any solution, we get immediately

1
lull 2, < I lL2ee,pm); (1.9)

so that the solution is unique.

Formula (1.8) is crucial in our analysis. It implies also that Ay is symmetric, and,
through its consequence (1.9), that Ay is dissipative. Since the resolvent set of Ay is not
empty, it follows that A is self-adjoint.

The general theory of operators in Hilbert spaces yields that Ay is the infinitesimal
generator of an analytic contraction semigroup 7'(¢), which can be naturally extended to
an analytic contraction semigroup in LP (), 1) for each p € (1, 0).

Under the further assumption that U — w|x|?/2 is convex for some w > 0 we show that
1 satisfies Poincaré and log-Sobolev inequalities, that is

ﬁwmemsifmemm1mmmm (1.10)
Q 0

and

[ ) ogtu@)utds) < [ 1Dule)Pulde) + W logiR), we H'(@p). (111)
Q Q
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Here @ = [, u(z)pu(dz) is the mean value of u, and we adopt the convention 0log0 = 0.
As well known, (1.11) implies that T'(¢) is hypercontractive, with

||T(t)<p||Lq(f)(Q,p,) < HQDHLP(Q,;J,)v >0, p2>2 p e LP(Q7/~1’)a

and g(t) = 1 + (p — 1)e?t.

A more general class of operators, namely Bu = Au + (G, Du) has been recently
studied in [16], where suitable assumptions are made in order that the realization B, of
Bin LP(RY,v), 1 < p < oo, generates an analytic semigroup in LP(RY,v). In the case
G =0, i.e. B= A, the assumptions of [16] are not comparable to ours; however they lead
to the characterization of the domain of B, as the space W2P(RN,v), for 1 < p < o0.
Their method seems to be hardly extendable to the case of an unbounded € with Neumann
boundary condition, and to the case of discontinuous coefficients. In fact, to our knowledge
there are no papers about elliptic operators with unbounded coefficients in an unbounded
domain and Neumann boundary condition. The paper [2] deals with elliptic operators with
possibly unbounded discontinuous coefficients in an unbounded domain, but it is focused
on existence and properties of infinitesimally invariant measures, the underlying boundary
condition is the Dirichlet condition, and no effort is made towards the characterization of
the domain of their realizations.

2 The realization of A in L?(RY v)

In this section we describe the main properties of the realization of A in L?(RV,v). We
give alternative proofs of the results of [5] that we need here, avoiding some unnecessary
assumptions made in [5].

Let U : RY — R be a convex function, satisfying (1.4). Then U is continuous, and
there are a € R, b > 0 such that U(z) > a + b|z|, for each z € RY. Tt follows that the
probability measure (1.3) is well defined, and that [,y |z[Fe=2V (@) dz < oo for each k > 0.

For each z € RY, the subdifferential OU (z) of U at x is the set {y € RN : U(¢) >
U(z)+{y,E—xz), V& € RN} Since U is convex, OU (x) has a unique element with minimal
norm, that we denote by DU (z). Of course if U is differentiable at xz, DU (x) is the usual
gradient.

Since DU is not continuous in general, and we made no growth assumptions, handling
the operator A is rather delicate. To overcome these difficulties we introduce the Moreau-
Yosida approzimations of U,

1
Ua(z) = inf{U(y) +oglr -yl g€ RN}, zeRN, a>0,

which will be the main technical tool of this section. The functions U, are convex, differ-
entiable, and for each z € RV we have (see e.g. [3, Pr. 2.6, Pr. 2.11](1))

Ua(z) < U(SE), |DU0<($)| < |DU($)|7 ill)% Ua(x) = U(SE), iiL%DUa(x) = DU(‘T)

Moreover DU, is Lipschitz continuous for each «, with Lipschitz constant 1/«. This is
of much help, because elliptic operators with Lipschitz continuous (although unbounded)
coefficients have nice properties, and they are well studied. See e.g. [12, 13, 15].

The space H!(RY,v) is naturally defined as the set of all u € H} (RY) such that u,
Dju € L*(RN,v), i =1,...,N. It is a Hilbert space with the standard scalar product

-1 n
(u,v) = </ e‘QU(I)das) / (uv + Z DiuDv)e V@) dgz.
RN RN

=1

'To be precise, what is called “Yosida approximations” in [3] are the functions DU, = (I — (I +
adU)™ 1) /a, which approximate DU.



Similarly, the space H?(RY,v) is defined as the set of all u € H? (RY) such that u,
Dju, Diju € L*(RN,v), 4,5 =1,...,N. It is a Hilbert space with the scalar product

-1 N N
(u,v) = </RN e—QU(I)dx> /RN (uv + ZDiUDiU + Z DijUDijU)e_QU(x)dx.

i=1 ij=1

We shall use also the spaces CF(RY) (k € N U {oo}), consisting of all C* functions
u : RN — R with bounded derivatives up to the order k, their subspace C(‘)’O(RN ) consisting
of all smooth compactly supported functions, and the spaces Cf"'a(RN ) (k € NU {0},
6 € (0,1)) consisting of functions in CF(RM) with uniformly ¢-Holder continuous k-th
order derivatives.

Lemma 2.1 C§°(RY) is dense in L>(RY,v), in H'(RN,v) and in H*(RN,v).

Proof — It is well known that every function v € X with compact support (where
X =L*(RY), X = H'(RY), or X = H?(R")) may be approximated in X by a sequence
of C§° functions obtained by convolution with smooth mollifiers. Since u has compact
support, such a sequence approximates u also in L?(RY,v), in H'(RY,v), or in H?(RY,v),
respectively.

Therefore it is sufficient to show that every u € L?(RY,v) (respectively, u € H'(RY,v),
u € H?(RY,v)) may be approximated by a sequence of L? (respectively, H', H?) functions
with compact support. Let 6 : RV ++ R be a smooth function such that 0 < 6(z) < 1 for
each z, 0 = 1in B(0,1), 6 = 0 outside B(0,2), and set uy(z) = u(z)0(x/n). Then u, — u
in L?(RY,v). Indeed,

/ |un — ul?v(dz) < / lul?v(dz)
RN |z|>n

which goes to 0 as n — oo. If u € H'(RY,v), then
Diun = Diu(x)0(x/n) + u(z)Dib(x/n)/n,

where D;uf(-/n) goes to D;u and uD;0(-/n)/n goes to 0 as n — oco. If u € H*(RN,v),
then

Djjun(z) =
= Djju(z)0(z/n) + Dyu(z)D;0(x/n)/n + Dju(z)D;0(z/n)/n + u(z)D;ij0(z/n)/n?,

and D;juf(-/n) goes to D;ju while the sequences uD;0(-/n)/n, D;uD;0(-/n)/n, D;u
D;0(-/n)/n, uD;;0(-/n)/n? go to zero in L?(RY,v) as n — oo. The statement follows. O

Let us define now the realization A of A in L?>(RY,v) by
D(A) = {ue€ H*RY,v): Auc L*(RN,v)}
= {u€ H*RY,v): (DU,Du) € L*(RN,v)}, (2.1)

(Au)(z) = Au(z), =€ RN,

We shall show that A is a self-adjoint dissipative operator. A first important step is
next lemma, which yields that A is symmetric.

Lemma 2.2 For cach u € D(A), ¢ € H'(RY,v) we have

[ A@petds) = -5 [ (Duta), Do) (2.2
RN RN



Proof — It is sufficient to prove that (2.2) holds for each ¢ € C§°(RY). Indeed, in this
case, for » € H'(RY,v), (2.2) is obtained approximating 1 by a sequence of C§° functions.

First we assume that U is continuously differentiable. If ¢ € C§°(RY), then the
function 1 exp(—2U) is continuously differentiable and it has compact support. Integrating
by parts (Au)(z)ip(z)exp(—2U (z)) we get

3 | @@@e@ds =5 [ (Dule), Dp(a)e ) da

RN 2

- —% /R (Du(a), D(a))e @z + % /R (Du(a), 2DU@)b(a)e @

so that (2.2) holds.

Let now U be merely continuous. Let U, be the Yosida approximations defined above,
and define accordingly the differential operator A, the measure v, (dx), and the operator
Ag : D(Ay) — L2(RY 1. For each o € C§°(RY) and for each a > 0 we have

[ (Acu)@)b(a) exp (~2Ua(@)ds =~ [ (Du(w), Di(a)) exp (~20a(w)da,
RN RN

where exp (—2U,,) goes to exp (—2U) uniformly in supp 1), and since DU is locally bounded,
Aquexp (—2U,) goes to Auexp (—2U) in L?(supp 7). Letting o — 0 we obtain (2.2). O

Taking 1) = u in (2.2) shows that A is symmetric.

In the next proposition we give good a priori estimates for regular functions, when U
has Lipschitz continuous derivatives. This is enough for our aims because we will apply it
to the operators A,,.

Proposition 2.3 Let U : RY s R satisfy (1.4) and have Lipschitz continuous derivatives.
For every u € CbQ(]RN) we have

1Dl 2z ) < 2 Aul g pyllull 2 o), (2.3)
and
I1D?ul |2 rn ) < AllAull 2rs )- (2.4)

Proof — Since DU is Lipschitz continuous, it has at most linear growth as |z| — oo, so
that |DU| € L?(RY,v). It follows that CZ(R") is contained in D(A). Then estimate (2.3)
follows immediately from (2.2) taking 1) = u. To prove (2.4) we first consider a function
u € CP(RY). In this case the functions f = Au and DyU, h = 1,..., N, are Lipschitz

continuous; hence they belong to H, lloc(RN ) and we have

N
ADyu—Y " DU Dy = Dy f,
k=1

2
loc

where the equality is meant in L? (RY). Multiplying by Dju and summing up we get

N N
ZADhuDhu > ZthDhu a.e.,

because D?U > 0 almost everywhere. Since Dpu € D(A) and f € H'Y(RY,v), we may
integrate both sides with respect to v(dz), and applying (2.2) to both sides we get

—E/RN |D?u)?v(dz) > —2/ Au- fv(dz),

2 RN

6



which yields (2.4).

Let now u € CZ(RY), and let uy, be a sequence in C§°(RY) that goes to u in H?(RY,v)
as k — oo. We may assume that ||Dug||o is bounded by a constant C' independent of &
(see the proof of lemma 2.1). Then Djjuy, goes to D;ju and Auy go to Au in L?(RY,v).
Moreover, up to a subsequence (DU, Duy — Du) goes to 0 almost everywhere and it is
bounded by (C + ||Dul|oo)|DU| € L*(RY,v). Therefore (DU, Duy) goes to (DU, Du) in
L?(RN,v), so that Auy, goes to Au in L*(RY,v). Since (2.4) holds for each uy, letting
k — oo we obtain that (2.4) holds for . O

Now we are ready to solve the resolvent equation,
Au—Au=f (2.5)
for each A > 0 and f € L?(RY,v).

Theorem 2.4 Let U : RN — R satisfy assumption (1.4). Then the resolvent set of A
contains (0, +00) and

¢ 1
(@) IR A fllee@y ) < 1 lL2@y ),

.. 2
@) NDROAfl iz < Nl o (2.6)

[ (@@d) [ ID*RON A) fl 2y vy < 40F 1l 2@y 0)-

Proof — To begin with, we note that (2.5) has at most one solution in D(A). Indeed, if
u € D(A) satisfies Au = Au then by (2.2) we have

2 = USUUIL'VSU:—l USU2V$
[ Mut@)vian) = [ (Au@uainidn) == [ Duta)Putis) <o

so that u = 0.

To find a solution to (2.5), first we consider the case where f € C?(RY) for some
0 € (0,1).

Let U, be the Yosida approximations of U defined above, and let the differential
operator A,, the measure v,(dz), and the operator A, : D(Ay) — L*(RY,v,) be defined
accordingly. Since DU, is Lipschitz continuous, by [12, thm. 1] the problem

Mg — Aqtia = f

has a unique solution u, € C,?'HQ(RN). In fact [12, thm. 1] deals with large A’s, but
a standard application of the maximum principle (see e.g. [12, lemma 2.4]) and of the
Schauder estimates of [12, thm. 1] show that (2.5) is uniquely solvable in Cg‘w(RN ) for
each A\ > 0. The integration by parts formula (2.2) gives

1
[ Ot = Puaradn) = =5 [ |DuafPra(ds) <0,
RN 2 RN
so that
1
luall2@y vy < SIFIlL2 @y va)- (2.7)

Estimates (2.3) and (2.4) applied to u, give

2
1Dl Il 2@y ve) < @lAta = Fll 2@y vy tall 2@y b)) < _)\HfHL?(RN,ua) (2.8)



and

11D%ual llp2 @ ) < 20Mt0 = Fllzs o) < A1Fll2@n - (2.9)

Since U, () goes to U (z) monotonically as @ — 0, then exp(—2U, (z)) goes to exp(—2U (z))
monotonically, and ([py e 2Va(®)dz)~1 goes to (Jan e 2U@) dg) 1, £l L2y by gOES tO
| fll2 ) as @ — 0. Tt follows that [|ual g2~ ) is bounded by a constant independent
of a. Since || - |g2@n ) < c(@)|| - 2@y py), With limg—oc(a) = 1, also [Jua || g2wy )
is bounded by a constant independent of «, for « small. Therefore there is a sequence
g, that converges weakly in H?(R™ v) to a function v € H?(RY,v), and converges to u
pointwise a.e. and in H'(B(0, R)) for each R > 0. This implies easily that u solves (2.5).
Indeed, let ¢ € C°(RY). For each n € N we have

1
/RN()\uan — iAuan + (DU, ,Dug,) — f)pe 2Ydz = 0.

Letting n — oo, we get immediately that [y (Aua, — %Auanme_w(x)da: goes to [on (Au—
L Au)pe 2V @) gy, Moreover  [on (DU, Dug, )pe V@ dz  goes  to

fRN (DU, Du)qbe‘QU(“")dx because DU,, goes to DU in L?(supp¢). Therefore letting
n — 00 we get

/ M — Au — f)pe 2Vdz =0
RN

for each ¢ € C$°(RY), and hence Au — Au = f almost everywhere. So, u € D(A) is the
solution of the resolvent equation, and letting o — 0 in (2.7), (2.8), (2.9), we get

1 2
lull 2@y 0y < SIFll2@y ays NIDulllz2@ ) < \/_X”f”LQ(RN,y)a
(2.10)

11D?ulll 2wy vy < 4Nf 2@ 1)-

Let now f € L?>(RM,v) and let f, be a sequence of Cg (RY) functions going to f in
L?(RYN | v) as n — oco. Because of estimates (2.10), the solutions u, of

Ay, — Auyp = In

are a Cauchy sequence in H?(RY,v), and converge to a solution u € H?(RY,v) of (2.5).
Due again to estimates (2.10), u satisfies (2.6).
O

Corollary 2.5 The operator A is self-adjoint and dissipative. H'(RYN,v) is the domain

of V—A.

3 The operator Ay

In this section we describe the main properties of the realization Ay of A in L2(Q, i1). We
recall that Q is a convex open set in RN with C? boundary, and U : RY — R is a convex
function satisfying (1.4). The functional spaces H'(Q, ), H*(Q, u), CF(Q, ), are defined
as in the case Q = RV,

Arguing as in the proof of lemma 2.1 we obtain a similar result.

Lemma 3.1 Let u be the measure defined in (1.5). Then the functions in C*(Q) with
compact support are dense in L*(Q, p), in H'(Q, 1), and in H*(Q, p).



Proof — First we consider a compactly supported function u, belonging to L?($, 1), to
HY(Q, ), or to H*(Q, p1). Since the boundary of Q is C?, then v may be extended to
the whole RN in such a way that the extension is in L2(RY), in H'(RN), or in H?(RY),
respectively. The extension is then approximated by a sequence u, of C{° functions
obtained by convolution with smooth mollifiers. The restrictions of u, to 2 converge to u
in L2(Q, ), in HY(Q, u), or in H?(S, 1), respectively.

If u has not compact support, let 6 be the function defined in the proof of lemma, 2.1.
The sequence uy,(z) = u(z)0(z/n) consists of L? (respectively, H', H?) functions with
compact support, and converges to u in L?(€2, 1), in H'(Q, i), or in H?(, j1), respectively
(the proof is the same of lemma 2.1). The statement follows. [J

The realization Ay of A in L?(, 1) with Neumann boundary condition is defined by
D(An) = {ue€ H*(Q,pu): Au € L*(Q,p), Ou/On = 0 at 00}

{u € H*(Q,u) : (DU, Du) € L*(Q, ), Ou/On = 0 at 00}, (3.1)

(Anu)(z) = Au(z), = € Q.

A formula similar to (2.2) holds if RV is replaced by Q. The proof is the same as in
lemma 2.2, and it is omitted.

Lemma 3.2 Let ¢ € H' (Q, ) and let u € H*(Q, 1) be such that Au € L*(2, ). Then

we have

[ An@p@ntds) = =3 [ (Duta) Di@)ntde) + 5 [ S@pautdn). (32

Q Qﬁn

Theorem 3.3 The resolvent set of An contains (0,400). For every A > 0 we have

- 1
(i) IR AN)fllz2up < I1Fllz2 @)

.. 2
@) DR ANl lizom < 2@ (3:3)

[ (i6d)  [[[ID*RO AN fl |2 < 41 |2
Proof — Let A > 0, let f € L?(Q, 11), and consider the resolvent equation

A—Au=f in§,
(3.4)
ou
— =0 t 0Q.
on 4
Uniqueness of the solution to (3.4) in H?(€, i) is easy. Indeed, if u € H?(Q, 1), Ou/On = 0
and Au — Au = 0, then taking 9 = v in (3.2) we get )\||u||%2(Q ) <0, and hence u = 0.
Now we show that (3.4) has a solution u € D(Ay). For each € > 0 let

1
Ve(z) =U(z) + g(dist(ac, 0)?%, zeRY,
and let the differential operator £, be defined by

(Lou)(z) = %Au(m) _(DV.(x), Du(z)), € R

9



The function V. satisfies obviously (1.4); moreover since ) is convex, then V. is convex.
Set

1
7. = /R _exp(~2V.(a))da, v.(dw) = - exp(~2V(x))da, (3.5)

€

and let A, be the realization of £, in L?>(R™,v .) defined by
D(A.) = {ue H* R ,v,) : (DV.,Du) € L>(RY,v,)}.

Let f be defined by f(z) = f(z) for z € Q, f(z) = 0 for z outside Q. By theorem 2.4, the
problem

M—Lou=Ff, 1RV, (3.6)

has a unique solution u. € D(A.), which satisfies the estimates

4 1 ~
luell 2@y vy < SI1Fl2@y v,

2 ~
| [ Due| || 2@y by < ﬁHfHLz(RN,ug)a

(D2 ue| | 2@ vy < 41l 2@ oy

due to (2.6). If in addition f(z) > 0 a.e., then u.(z) > 0 for each z. Since

1/2
7 _(1 2 —2U 1/2_ er_QUdQC
sy = (7 | Feae) " = (225 ) W lan

remains bounded as ¢ — 0, then u, is bounded in H*(R",1.) and the restriction u.|q is
bounded in H2(2, 1). Up to a sequence, Ug | converges weakly in H 2(Q, 1) to a function
u € H?(Q, 1) and it converges to u pointwise a.e. and in H3/2(Q N B(0, R), dz) for every
R > 0. Since \u, — Au, = f in Q, then u satisfies Au — Au = f almost everywhere in €.
Since Au, Au, f belong to L?(Q, i), then also (DU, Du) does.

Let us prove that du/dn = 0 at the boundary. For each 9 € C§°(RY) we have, by
(2.2)

Leucp v (de) = —%/ (Due, Dip)v,(dx).
RN RN

On the other hand,

@%¢%@w=/

Loupve(de) + / Loupve(dz),
RN\Q Q

RN

where

Jg ettty <A [ ot

RN\Q

because A\u, — Lou. = 0 in RY \ Q, and

1

1 Ou,
/Qﬁgug¢ ve(dx) = —§/Q<DU57D¢>VE(d$) + 5/8

Q8n

()4 () ve (dz)

because of (3.2). It follows that
1 Oug

2 80 (971,

()() ve(da) = — / (Due, Dywe(dr) = A | uctpwe(d).

RN\Q RN\Q
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Note that [|9[ ;1 &N\0,.) goes to 0 as e — 0. Since both u. and |Du.| are bounded in
L?(RY,v.), the right hand side goes to 0 as ¢ — 0. On the other hand, since u. goes to u
in H3/2(Q Nsupp ), then du./dn goes to du/dn in L*(9Q Nsuppvy). So we have

0 ) Ou, —Ve(z
| Gterpe) e e = tim | yp(o) e D

Ctim [ e 2@ gy / e (o yop() v (d) = 0.
e—0 RN 90 8”

This implies that du/On = 0 at 9Q, and u € D(Ay). So, u is the unique solution in
D(An) of problem (3.4). Therefore p(Ay) D (0, +00). Estimates (3.3) follow letting € to
0in (3.7). O

Corollary 3.4 The operator Ay is self-adjoint and dissipative in L*(Q, 1n). The measure
@ is an infinitesimally invariant measure for Ay. The space H'(Q, ) is the domain of

(—An)Y2,

Proof — The first statement is an immediate consequence of theorem 3.3, and of for-
mula (3.2) which yields that Ay is symmetric. Taking ¢ = 1, formula (3.2) shows that
Jo Anup(dz) = 0 for each u € D(Ay), and therefore y is an infinitesimally invariant
measure for Ay. It proves also that

/| (—AN)YuPu(ds) = /|Du|2 (dx)

for each u € D(Ay), and this implies that D((—Ay)Y/?) = H'(Q, p). O

4 Poincaré and Log—Sobolev inequalities

In this section we prove the Poincaré and Log—Sobolev inequalities for the measure u. In
addition to (1.4) we assume that

Jw > 0 such that z — U(z) — w|z|?/2 is convex. (4.1)

In the case of a twice continuously differentiable U this means just D?U(z) > wI for each
x.

If (A,m) is any measure space and u € L'(A,m) we set

ﬂmz/u(x)m(da:). (4.2)
A

Poincaré and Log-Sobolev inequalities in the whole RY were proved in [1] under the
further assumptions that U is continuously differentiable. In our case such assumptions
may be avoided.

Proposition 4.1 Let U satisfy (1.4) and (4.1), and let v be defined by (1.8). Then

/ |u(a;)—ay|2y(dx)g2i / \Du(z)Pdv(dz), ue H'®,0),  (43)
RN w RN
and
/ W2 () log (12 () )(dz) < ~ / \Du(s)Pu(dz) + 02 log(u?,), u e H(RY,v).
RN w JrN w
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Proof — Let us consider the Moreau-Yosida approximations U, of U. For each «, U,
satisfies (1.4) with constant w, which goes to w as a goes to 0, and DU, is Lipschitz
continuous. Therefore (see e.g. [1]) Poincaré and Log-Sobolev inequalities hold for the
measures v, in the form

1
[ Ju@) = waPratde) < 5= [ 1Dule)aldo), we HURY, ),

Wy

(where 1, stands for u,,_) and

/ W2(5) log (12 () e (dz) < —— / | Du(z) Pra(ds) + 2, log(i2a), u € HY(RY, vy).
RN RN

Wa

Taking u € Cgo(]RN) and letting @ — 0 we see that u, goes to u,, u2q goes to u2,, and u
satisfies (4.3) and (4.4). Since C§°(RY) is dense in H'(RY,v) the statement follows. [J

Having estimates (4.3) and (4.4) as a tool, it is not hard to prove Poincaré and Log—
Sobolev inequalities in our situation.

Proposition 4.2 Let U satisfy (1.4) and (4.1), and let p be defined by (1.5). Then

[ o) ~wPutde) < o [ IDu(o)Pdutds), we B, p) (45)
Q Q
and

/ w2 (z) log(u?(2))u(da) < / |Du(w)*p(dz) + u?ylog(u?,), uwe H'(Q,p).  (4.6)
0 w Jo

Proof — Let u € H'(2, 1) have compact support, and extend u to an H'(R") function
with compact support, still denoted by u. Let

-1
ve(dz) = </ e‘QVe(I)d:v> e 2Vl gy,
RN

where V. is defined by (1.7). By proposition 4.2, for each ¢ > 0 we have

— 12 1 2
/R Jule) — 7 Pve(d) < o /R Dufa) v (dr), (4.7)

w

(where @, stands for w,,) and

/ u?(z) log(u?(z)) v, (dz) < 1 / | Du(z) v (dz) + u2. log(u2,). (4.8)
RN W JRN
Since V) if 0

. r) 1HxE

i‘i%vﬁ(x)z{ too ifz ¢ Q,

then . goes to U, = [, u(x)u(dz), u2, goes to WM as € goes to 0, and letting € go to 0
in (4.7), (4.8) we obtain that u satisfies (4.5) and (4.6). Since the compactly supported
functions are dense in H'(€2, ;1) the statement follows. O]

Proposition 4.2 yields important properties of the semigroup T'(t) generated by Ay .

Corollary 4.3 Under assumptions (1.4) and (4.1), 0 is a simple isolated eigenvalue of
An. The rest of the spectrum, o(An) \ {0} is contained in (—oo, —w], and

1T (#)u — Tl L2000 < e Y u — Upll L2y, © € L3(Q, ), t > 0. (4.9)
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Moreover we have

||T(t)go||Lq(t)(Q,u) < ”SOHLP(Q,M)a p>2 p€ LP(Q7/1')7 (410)

where
g(t) =1+ (p—1)e*", ¢>0. (4.11)

Proof — 0 is obviously an eigenvalue of Ay, whose kernel contains the constant functions.
In fact, the kernel of Ay consists only of constant functions: if Au = 0, then T'(t)u = u
and hence DT'(t)u = Du for each ¢ > 0, but since ||DT(t)ul|2(q,.) < Ct_1/2||u||L2(Q’u)
(this is a consequence of the equality D((—An)"/2) = HY(Q, 1)) letting t — +o0o we get
Du = 0 so that u is constant.

A standard argument shows now that 0 is isolated. Let u € H'(Q, ) and set g(t) =
T (t)u — E”%Q(Q,u)' Using (1.8) and (4.5) we get easily ¢'(t) < —2wg(t), for each t > 0,
so that u satisfies (4.9). Since H'(Q,u) is dense in L?(€, 1), then (4.9) holds for every
u € L?(, 1). From the general theory of strongly continuous semigroups it follows that 0
is isolated in o(A), and, since o(Ay) C R, that o(A) \ {0} C (—o0, —w].

Since Ay is self-adjoint, all its isolated eigenvalues are semisimple. The kernel of Ay
is one dimensional, and hence 0 is a simple eigenvalue.

The hypercontractivity estimate (4.10) is a consequence of the Log—Sobolev inequality
(4.6). See e.g. [1]. O
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