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Abstract

We prove optimal embedding estimates for the domains of second order elliptic
operators in L! spaces. OQur procedure relies on general semigroup theory and in-
terpolation arguments, and on estimates for VZI'(t)f in L', in L, and possibly in
fractional Sobolev spaces, for f € L!. It is applied to a number of examples, including
some degenerate hypoelliptic operators, and operators with unbounded coefficients.
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1 Introduction

It is well known that the domains of the realizations of elliptic operators in L' spaces are
not as nice as in the case of LP spaces with p € (1, 00). For instance, it is easy to see that
the domain of the realization of the Laplacian in L'(RY) is not contained in W2!(RM)
if N > 1. However, it is continuously embedded in W' *+#1(RN) for each 8 € (0,1).
Therefore, if u and Au are in L'(RY), then any first order derivative Dju, i = 1,... , N,
belongs to W1 (RYN) for each 8 € (0,1), and by Sobolev embedding it belongs also to
LP(RY) for each p < N/(N — 1), with

IDiullzr < Cp)(lullpr + l|Aul ). (1.1)

Easy counterexamples show that we cannot take p = N/(N — 1). They show also that,
in general, D;u does not belong to any Lorentz space Llj(\)lé(N_l)’q(RN ) with ¢ < oo, see
Example 6.2. On the other hand, it is possible to prove that each derivative D;u belongs

to the Besov space B&'(RN), and

IDull i1y < C(llullps + 1| Aul ). (1.2)

See e.g. [5, Cor. 4.3.16]. Since BY'(RY) is continuously embedded in the Lorentz space
LN/(N=1),00(RN) it follows that each derivative D;u belongs to LN/ (N=1:2(RN) and

I Dsull vyev-1y.00 vy < C(llullpr + [[Aullzr). (1.3)



For definitions and properties of Lorentz and Besov spaces see Section 2. In this paper we
show that similar embeddings hold for a large class of second order elliptic operators,

A= Z ai;Dyj + Zb D; +ec. (1.4)

,5=1

We assume that the realization of A, endowed with a suitable domain D(A), is the in-
finitesimal generator of a semigroup (7'(¢))¢>0 in L'(2), Q being an open set in RY with
empty or smooth boundary. Our approach is based on interpolation arguments, on esti-
mates for the semigroup (T'(¢));>0 and on the well known representation formula for the
resolvent

R\ A) = /Ooo e M (t)dt,

for X large enough. The needed estimates are

@) IVT@) fllpr < Cet™ " fllpr, (i) [VT(#)flloo < Ce*t || fllz1, >0, f € LIEQ),)
1.5

for Lorentz regularity, with 0 <y, <1 < 2, w € R, and
IT(®) flwsa < Cet | fllLr, >0, (1.6)

for Besov regularity, with § > 0, v > 1, w € R. Then we show that the map

V:D(A) = LT (Q,RV) (respectively, D(A) — B/ (0, RV))

is bounded, by a procedure which was used up to now to find optimal Schauder estimates.
See e.g. [17, Theorem 2.1], [20]. In the case of the Laplace operator in RY, the heat
semigroup (T'(t));>0 is easily seen to satisfy both (1.5) with v = 1/2, y» = (N +1)/2,
and (1.6) with 8 =3, v = 3/2, for each f € L'(RY). Hence we get (1.2) and (1.3).

Embedding results in weaker norms are much easier. Estimates (1. 5) assuming for

. . . . / )
simplicity that w = 0, imply by interpolation ||VT(t)f||» < C(N)t~ = 1fllzs

for every p € (1,00). Let u € D(A) and, for A > 0, set f = Au — Au. Then u =
Jo7 e MT(t) f dt, and taking p < N/(N — 1) we get

IVulle < CIN,p)XHIfllr < CN,p) A [lull g1 + X7 Aul| 1),

N(1-1/p)+1
2

where v = < 1. Taking the minimum for A > 0 one obtains the inequality

IVulle < C(N,p)|lull; || Aull],

which is well known for elliptic operators with bounded smooth coefficients, see e.g. [27,
Theorem 5.8], [4, Theorem 8], [2, Proposition 9.2]. Taking p = N/(N—1) we get v =1 and
this direct approach fails. To treat the limiting case we need the more refined argument
used in the proofs of Theorems 3.1 and 4.1.

Estimates of the type (1.5) or (1.6) are satisfied by a number of elliptic operators,
including elliptic operators in bounded domains with Dirichlet or Neumann boundary
conditions, a class of elliptic operators with unbounded Lipschitz continuous coefficients in
R, and degenerate elliptic operators such as Kolmogorov type operators, the Heisenberg
Laplacian in R?, and more generally sublaplacians in nilpotent stratified Lie groups. For all
these operators the application of Theorems 3.1 and 4.1 gives optimal embedding results.
See Sections 5 and 6. Some of these embeddings were already known, and ours is just
an alternative approach. This is the case of elliptic operators with bounded and Holder
continuous coefficients in the whole RY, and in regular bounded open sets in RY with



Dirichlet boundary condition. See [14, Thm. 1.7, Thm. 3.3], where a class of general
2m-order elliptic systems is considered. On the other hand, the study of elliptic operators
with unbounded coefficients is much more recent and the general theory is still under
developement. Here we consider operators of the type

N
A=A+ FD,
=1

with globally Lipschitz continuous coefficients F;. It has been recently proved that the
domain of the realization of A in LP(RY) is contained in W2P(RY) for 1 < p < oo ([24]),
and that the domain of the realization of A in C*(RY) is contained in C?***(RY) for
0 < a < 1 ([21]). We prove here that the semigroup T'(¢) generated by the realization of A
in L' (RY) satisfies (1.5) with y; = 1/2, 72 = (N +1)/2, like in the case of bounded regular
coefficients. As a first step, ultracontractivity of T'(¢) is proved adapting to our situation a
classical argument based on Nash inequality. This gives ||T'()| ;11 ro0) < Cevtt—(N+1)/2,
Then the estimate ||[VT'(2)|z(z~) < Ce“tt=1/2 which is known for smooth F, is extended
to our situation by a perturbation argument. Using the semigroup law, we arrive at
(1.5)(ii). For (1.5)(i), we use the fact that the commutator T'(¢t)V —VT'(t) may be extended
to a bounded operator from L (RN, RY) to itself, and then we use a duality argument and
again the estimate ||[VT'(?)[|(re) < Ce“tt=1/2 to conclude. Theorem 4.1 about Lorentz
regularity implies then that for each v € D(A), D;u belongs to LY/(N=1:00(RN) for
1=1,...,N, and
I Diul| /v -1)e0 vy < C(llullpr + [|AullL1).

2 Preliminaries, Besov and Lorentz spaces

In the next sections we shall consider the usual real interpolation spaces (X, D)y, for
couples of Banach spaces (X, D) with D C X. We refer to the book [28] for an extensive
treatment of these spaces. We recall that if X, Y, D are Banach spaces such that D C
Y C X with continuous embeddings, and 0 < § < 1, Y is said to belong to the class
Jo(X, D) if there is C' > 0 such that

Iflly < CIFIN PN, Vf e D.

The Reiteration Theorem (see e.g. [28, §1.10.2]) implies that if ¥} belongs to Jy, (X, D),
and Y3 belongs to Jy, (X, D), then

(Y1,Y2)9,4 O (X, D) (100,400, 4
for all € (0,1), g € [1, 400}, and the embedding is continuous.

Let  be an open set in RY. By LP(Q), 1 < p < oo, we mean LP(f2, dx) where dz is
the usual Lebesgue measure. The norm of a function f in LP(12) is denoted by || f||,.

Now we recall briefly definitions and main properties of the Besov and Lorentz spaces
B3 () and LP4(Q). We refer the reader to [29, 28, 13] for a detailed treatment of these
spaces. Let s =7+ a with 7 € Nand 0 < o < 1. A function f € W™ (R") belongs to
BSHRN) if

1 g = I lwmr ey + D heRN Bl DPu(- + h) = 2DPu + DPu(- — h)||y < oo.
|8]=r "€

BSH(RYN) is a Banach space with the above norm. If © # RV, the space B3 (Q) consists
of the restrictions to €2 of the functions in B3 (RY). The norm of f is the infimum of
”f”BS*l(RN) over all the extensions f of f to the whole RY.

3



Besov spaces arise naturally as real interpolation spaces between Sobolev spaces. We
recall the definition of Sobolev spaces of noninteger order. Let s = r + a with » € N and
0 < a < 1. A function f € W™ (RY) belongs to W*!(RY) if

Dff(z+h)—DPf(x
1 lwoseny = I llweany + 3 /" | PO gy an < oo
|l=r TRV XEY B

IfQ # RY, the space W*! () consists of the restrictions to Q of the functions in W*!(RY).
The norm of f is the infimum of || f||;ys, 1Ny over all the extensions f of f to the whole
RN, If Q is the whole RY, or a half space, or a bounded open set with C” boundary, then
for0<0<1,1<¢g< 00 we have

(L (), W5H(Q))g,00 = BIEH(Q),

for 0 < s < p, with equivalence of the respective norms, see e.g. [29, 13]. This is in fact
the only property of Besov spaces that we will need in the sequel.

Let now  be any measurable subset of RV. Let f : Q — C be a measurable function
and define for o > 0

m(o, f) = [{z € Q: |f(2)] > o},
where |E| denotes the Lebesgue measure of E. Next, we introduce the decreasing rear-
rangement of f, that is

f*(@t) = inf{o : m(o, f) < t}.

The function f* is decreasing on (0, 00), it satisfies f*(0) = sup ess|f| and, moreover,
[{t>0:f*(t) >0} = {z € Q:|f(2)] > a}|.

The Lorentz spaces LP7(Q) (1 <p < o0, 1< ¢ < 00) are defined by

([t <o)

LPA(Q) = { feLl Q) +L®Q):

for ¢ < 0o, and
LP(9) = {] € L'(@) + L2(Q) [ fllpoo = supt"Pf*(1) < oo.
t>0

We remark that LP%(Q) — LP%2(Q) if ¢ < ¢o and that LPP(Q) = LP(Q2). We shall
consider the Lorentz spaces mainly with ¢ = oo, using the following characterization in
terms of the distribution function m(f, o), see [28, Lemma 1.18.6].

Proposition 2.1 The following equality holds:
LP(Q) = {f : Q= C: supo(m(f,0))'/? < oo}.

>0
Moreover, || f||p,0o := SUPy= a(m(f,a))l/p, for every f € LP>°(Q).

Also the Lorentz spaces arise naturally as real interpolation spaces between Lebesgue
spaces. Indeed, for 0 < 0 < 1,1 < ¢ < oo we have

(LHQ),L®(Q))g,q = L 709(Q),

with equivalence of the respective norms. See [28, §1.18.6].
The following lemma, allows us to treat the vector-valued integrals appearing in the
proofs of Theorems 3.1 and 4.1. The space V1*°(Q) is defined by

vieo(Q) = {f eLN(Q): Vfe LOO(Q,]RN)} (2.1)

and it is a Banach space when endowed with the norm || f|[y1.00() = IIfll1 + [[ [V f] [loo-



Lemma 2.2 Let Q be an open set in RN . Then the following properties hold.
(i) Closed balls in WH1(Q) N VL2(Q) are closed in L'(9).

(i) If s is not an integer and Q = RN, or Q is a half space, or Q is bounded with C?
boundary, p > s, then closed balls in W51 () are closed in L'().

ProoF. (i) Let (f,) € WHL(Q) N V1>(Q) converge to f in L'(f2), and be such that
IDifulli < Ci, ||Difnlloc < Co for i = 1,... N, with Cy, Cy independent of n. Then

IDifrllz2 < C = max{C;,C>} for each i, and hence (Vf,) converges to Vf weakly in
L?(Q,RN). Tt follows that for every ¢ € C$°(2) and for each i =1,... , N

C|plloc
<

=t | oo Callgl

Hence [Difli < Ci, [IDiflloo < Coo (i) Let (fu) € WHL(Q), [fullwer() < C be

convergent to f € L'(Q). Write s = r + « with r € N and 0 < a < 1. By interpolation,
(fn) is a Cauchy sequence in W™!(£2) and hence (f,) — f in W™!(Q). Fatou’s Lemma
yields easily || f|lyys1(0) < C. O

Observe that (ii) of Lemma 2.2 fails if s is an integer. For example, if s = 1, the function
f in the proof above is just of bounded variation and it does not belong necessarily to
wWhi(Q).

3 Besov regularity

Throughout the section we shall consider the following assumptions (C > 0, w € R).

(H1) (T(t))i>0 is a strongly continuous semigroup in L'(£2) with generator A : D(A) —
L' (), and
IT®)flh < Ce! I f I, f € LHR).

(H2) There are v > 1, > 0 such that for t > 0 and f € L'(Q), T'(t)f belongs to W#1(Q)
and satisfies the estimate

IT @) fllwes < Ce 7 fll1.

Moreover, either Q = RV, or € is a half space, or  is bounded with C? boundary,
p> p.

We shall adapt to the present situation the procedure of [20, Theorem 2.5], to get an
optimal embedding result for D(A). To be more precise, we get an optimal embedding
result for (L'(€2), D(A?)) /9,00, in which D(A) is continuously embedded (see [28, Thm.
1.13.2(b)]. Since we work in specific Sobolev spaces, we do not need the measurability
assumption made in [20].

Theorem 3.1 Let (H1) and (H2) hold. Then
(Ll(Q)vD(Az))l/Q,oo c BN (@)
with continuous embedding, and therefore
D(A4) c B/ (Q)

with continuous embedding.



PROOF. As a first step, we prove that the statement holds for 8 ¢ N. Since D(A?) =
D((A — wI)?) with equivalence of the norms, possibly replacing A by A — wl we may
assume also that w = 0. We shall show that

(L'(92), DA™)1 o0 C (L), W) 1/ 00

with continuous embedding, for m large enough. Indeed, it is well known (see e.g. [28,
Thm. 1.13.5]) that (L'(€2), D(A?))1 /9,06 = (L*(2), D(A™))1 i, for every integer m > 2.
Fix any integer m > . Let u € D(A™), A > 0 and set (Al — A)"™u = f. Then
u=(R(A\ A))™f, so that

-1 m—1 dm—l 1
- ((m)—l)! T A A =

T /O T im0 £, (3.1)

the integral being understood in L'(£2). However, u belongs to W5(Q), with

C [ i
sy < gy [ 47 N 1 (3.2)
Indeed,
1 1 b 1 At d
L'~ lim ——— [ ¢ le Ny
“ a—)Ol,rbn—mo (m— 1)!/a t ¢ (t)f b

and for fixed 0 < a < b < o0, fab tm1=Ye N (¢) f dt = L' — lim,, oo I,, where

L= 0 b= o)y DT 0 k- a)jn)f. (39
k=1

Due to assumption (H2), I, € W#1(Q) and

C(b— - —1—v_—X(a —a)/n
O S0t b — a) 1 e RO

k=1

[ Inllwe.1(0) <

The right hand side goes to C’f: tm1=7e=Adt|| £l 1 as n goes to +o0o. By Lemma 2.2(ii)
closed balls in W51(Q) are closed in L' (), and then fab tm=Le= AT () f dt € WP (Q) and

b
H / tmlem AT (1) f dt‘
a

b
<C / =17~ Mg £l
[ () a

Letting a — 0 and b — oo and using again Lemma 2.2(ii) it follows that u belongs to
WHL(Q) and that it satisfies (3.2). The proof now goes on as in [20]; we write it down for
the reader’s convenience. From (3.2) we get

C CT(m — )

o
< —Atym—y—1 t _ y—m

ooy < gy [ et = SN

1—\ . m m
= %ﬂ)m—m > (m> AT (=1 ATl < O YN[ ATull, A > 0.

(m o ) r=0 r 1 r=0

We recall now the interpolation inequalities
14" ully < Callullfamlluly ™™, #=1,...,m, ueDA™)

(see e.g.. [28, §1.14.3]). Using such inequalities and then ab < (a? + b%)/2 we get

lullwei) < CsAT(A " [ullpeam) + llullr1), A >0,

6



so that, taking the minimum for A > 0,

1—
lullws.s ) < Calluly™ ™},

This means that W51(Q) € J, /m(Ll, D(A™)), and therefore, by the Reiteration Theorem,
(LH(90), D(A™)1 00 © (L), WHH Q)10 = BEH(Q),

with continuous embedding. So, the statement is proved if 5 ¢ N. If 8 € N fix g’ €
(8 — 1,8) such that v/ = v8'/8 > 1. Using assumptions (H1) and (H2) we get by
interpolation

1T fllysrn < Ce 7 |If|l1, >0, f €L

Since ' is not integer, the first part of the proof yields

(L'(2), D(A?))1 /9,00 € BE/T1(Q) = BE 1 (Q).

In the following corollary we consider an important special case of Theorem 3.1.

Corollary 3.2 Let either Q = RN, or Q be a half space, or Q be a bounded open set with
C? boundary, p > 2. Let (H1) and (H2) hold, with 2 < 8 < p and v = /2. Then

D(A) € BZ(),

with continuous embedding. Therefore, the gradient of each function uw € D(A) belongs to
Bcl,gl(Q,RN), which is continuously embedded in the space LN/(N=1:20(Q RN,

In the case of the Laplacian and of other elliptic operators with smooth coefficients in RY,
(H2) is satisfied with § = 3, v = 3/2 and we may apply Corollary 3.2. Therefore we get

D(A) ¢ BZHRY), (3.4)

with continuous embedding. So, the gradient of each function u € D(A) belongs to
B&I(RN,RN), which is continuously embedded in the space LN/(N=1:00(RN RN In
other situations, the semigroup T'(t) does not map L' into W#! for 8 > 2, and the
embedding (3.4) is not known. However, we are still able to get optimal Lorentz regularity
provided a somewhat weaker condition than (H2) holds. See next section.

4 Lorentz regularity

Throughout the section we shall consider Assumption (H1) together with the following
one (C >0, w € R).

(H3) There are constants 71 € (0,1), 42 > 1 such that for ¢ > 0 and f € L'() the
function T'()f belongs to W1 () N V1°(Q) and satisfies

IVT@) fll < Ce*'t ™I flly, VT (O flloo < Ce't™| f]1.

By a method similar to the one of Theorem 3.1 we get the following result.

Theorem 4.1 Assume that (T(t));>0 satisfies hypotheses (H1) and (H3). Then the map
J2—

V: (L', D(A?))1 /200 = L T °(Q,RN) is bounded. In particular, the map V : D(A) —

Lt (Q,RN) is bounded.




PROOF. We shall show that W1!(Q) and V1>°(Q) belong to Jm/m(Ll(Q), D(A™)) and to
Iy /m(L1 (), D(A™)), respectively, for any integer m > 9. By the Reiteration Theorem
it will follow that (Ll(Q),D(Am))l/m,C>o c (WHL(Q), V2 (Q)) 124, o~ With continuous

v2—71"

embedding. The latter space consists of functions in W1 (Q) + V1°°(Q) whose first order
derivatives belong to (L' (), L®(Q)) 1-+, o = Lot (). See [28, §1.18.6]. This yields
EPE—E

72—

the statement because (Ll(Q),D(Am))l/m,oo = (Ll(Q),D(Az))l/Q,OO, with equivalence of
the respective norms ([28, Thm. 1.12.5]). We may assume that w = 0 without loss of
generality. Let u € D(A™) with m > 79, let A > 0 and set (A — A)™u = f. Then (3.1)
holds, the integral being well defined in L'(£2). We show now that u € WH1(Q)NV1>(Q),
and

cooco
1Dl < gy [ e g,
(4.1)
Co[o
[Diufloe < m/o £ e dt f

As in the proof of Theorem 3.1, we remark that for 0 < a < b < oo, the sums I,, defined
in (3.3) belong to W1(Q) N V1>(Q), and for each i = 1,... , N we have

C(b—a) «—
1Dilnlly £ ——— ;(a + k(b — a)/n)™ e MetROmaO/m)) )
C(b—a) —
IDilnlloc < —— > (a+k(b—a)/n)m e Morkbmamy ),
k=1

The right hand sides go to C’f: tm 1Y Mt f|| 11, 4 = 1,2, as n goes to +o0. It follows

that the function f: tm=Le= T () f dt belongs to WH1(Q) N V1>(Q) and the proof of
Lemma 2.2(i) gives

b b
1D / 1= M) fdtl]y < C / =111 Mgl £l

b b
ID; / 171 NT (1) dioo < C / (1 N £,
a a

for i = 1,... ,N. Letting @ — 0 and b — oo we find that u belongs to Wh(Q) N
V1°(Q) and that it satisfies (4.1). Once (4.1) is established, arguing as in the proof of
Theorem 3.1 we obtain that W (Q) belongs to J,, /,, (L', D(A™)), and V1°(2) belongs
to Jw/m(Ll, D(A™)), just what we needed. O

Let us write down explicitly a particular but important case of Theorem 4.1.

Corollary 4.2 Assume that the hypotheses in Theorem 4.1 are fulfilled with v; = 1/2
and v2 = (N +1)/2. Then the map V : (Ll(Q),D(AQ))l/Qpo — LN/(N=1)00(Q RN) s
bounded. In particular, the map V : D(A) — LN/ (N=1:00(Q RN) is bounded.

A less sharp version of Theorem 4.1 has a simpler proof, that we write below.

Theorem 4.3 Assume that (T(t));>0 satisfies hypotheses (H1) and (H3). Then the map
Vi D(A) = L 1%(Q,R) is bounded.



PROOF. Let A > w and let u € D(A). Setting Au — Au = f, then u is the Laplace
transform of T'(¢) f, that is

_ * —At
u-/o e T (t)f dt.

Let us fix £ > 0 and split u = a(&) + b(§) where

3 00
a(€) = / MW fdt, b(e) = /6 M) f dt.

0

The procedure of Theorem 4.1 gives a(¢) € WHL(Q), a(¢) € VI>2(2), and

IVa(@©llr < C& " fll, VBl < Co& 72 f 1.

Since {|Vu| > o} C {|Va(&)| > o/2} U{|Vb()| > o/2} for every o > 0, choosing & such
that £1772 = 0/2Cy we get {|Vb(€)| > 0/2} = () and therefore

m(|Vul,0) < |{|Va(€)| > 0/2}] < Cso~ 21 ||f]h,

with C3 independent of f. Applying Proposition 2.1 concludes the proof. ]

Remark 4.4 Assume that the hypotheses in Theorem 4.1 are fulfilled with v; = 1/2,w =
0. The first inequality in (4.1) with m =1 yields

IVully < KXTY2| Iy < K (A2 [|ully + A2 Aully)
for each u € D(A). Minimizing over A > 0, we get
1/2 1/2
IVully < Cllully/*||Aul?,

that is, W1 (2) belongs to the class Jl/Q(Ll(Q),D(A)).

5 Operators with Lipschitz continuous coefficients
In this section we apply the results of Section 4 to operators in RV of the form
A=A+F-V,

assuming that the drift vector field F' is globally Lipschitz continuous. An important
example is the Ornstein-Uhlenbeck operator, which may be reduced to this one by an
obvious change of coordinates,

n n
A= Z QijDz'j + Z bijiji,
i,j=1 ,j=1

where (Q = (gj;) is a real symmetric positive definite matrix, and B = (b;;) is a nonzero
real matrix. The Ornstein-Uhlenbeck semigroup in L' (R™) has the explicit representation

1 1
TON) = GmrmaergnTe fo &0 = ) dy
where
t
Qi = /0 e*BQe’P ds. (5.1)



Having an explicit representation formula, the hypotheses of Corollary 3.2 can be checked
immediately. Therefore u € B&I(RN ) and hence Vu € LN/(N _1)’°°(RN ,RY), for every
u € D(A). We shall prove that the last result still holds for general F. This will be done
in some steps; the first one consists in showing that a suitable realization of A in L!(R")
generates a strongly continuous semigroup. For technical reasons we need to consider the
realizations of the operator A in every LP(R), hence we set for 1 < p < oo

D, = {u e W2P(RN): F.Vu € LP(RN)}, (5.2)
and

Dy, = {u e Co(RM)n I/VlQ’p(RN) for every p < 0o : Au € CO(RN)}. (5.3)

ocC

Here Cy(RY) is the space of the continuous functions on RY vanishing as |z| — oo,
endowed with the sup norm. Observe that C§°(RY) is dense in D,, for 1 < p < co. We set
k= sup (—div F(z)). (5.4)
z€RN
Proposition 5.1 For 1 < p < oo the operator (A, D)) generates a strongly continuous
positive semigroup (Ty(t))i>0 in LP(RY) satisfying

1T, () fllp < €|\ fllp, f € LP(RN).

The operator (A, Dy,) generates a strongly continuous semigroup of positive contractions
in Co(RY).

PROOF: The proof is in [24] for 1 < p < co. The statement about Cy(RY) follows from
[25, Corollary 3.18], since F' has at most linear growth. O

Note that for g # p, T, (t)f = T,(t)f for each f € LP(RY) N LY(RYN). Letting p — 1 it
follows that T),(¢) may be extended to a bounded operator T(¢) in L'(RY), and

IO fll < el fllr, f e L'RY). (5.5)
Actually more is true, as the next proposition shows.

Proposition 5.2 (T(t));>0 is strongly continuous in L'(RY) and its infinitesimal gener-
ator is the L'-closure of A : C°(RY) — LY(RN).

PROOF. Let B = A+ divF and u € C§°(RY) be real valued. Since

Ausignudz <0, (5.6)
RN
the operator B : C§°(RY) — L!(RY) is dissipative. Next we show that (A —B)(C§°(RY))
is dense in L'(R™) for A > 0. Let f € L>°(R") be such that

/ (A — Bu)fdx =0
RN

for every u € C§°(RY). By local elliptic regularity (see [I, Theorem 6.2]), f belongs to
VV&)CQ(RN) and it is a weak solution of the equation \f — B*f =0, where B* = A —F -V
is the formal adjoint of B. Since the coefficients of B* are locally bounded, the classical
method of difference quotients yields f € W2’2(RN ), hence A\f — B*f = 0 a.e. in RY and,

loc

finally, f € VVli’f(RN ) for all p < oo, by [12, Lemma 9.16]. Taking A > 0 and observing that
the coefficients of B* have at most linear growth, we may apply the maximum principle
in RV (see e.g. [19, Proposition 2.2]) to conclude that f = 0. Since A = B — div F, the
Lumer-Phillips Theorem implies that the closure of A : C§°(RY) — L'(RY) generates
a strongly continuous semigroup (S(t));>o satisfying ||S(¢)f]1 < €**||f|l1. On the other
hand, since the generator of (S(t))¢>o coincides with the generator of (T'(t));>0 on C§°(RY)
which is a core both in L' and in L?, it follows that the Laplace transform of S(t)f and
T(t)f coincide for f € L'(RV)NLP(RY). Therefore S(t)f = T(t) for f € L'(RV)NLP(RY)
and the proof is complete. l

10



In some arguments below we need the adjoint semigroup (T'(¢)*)i>0 of (T'(t))¢>0. Let
us consider the formal adjoint A* of A defined by

A*=A—F.V—divF (5.7)

Since div F' is bounded, it follows from Proposition 5.1 that A* : D, — LP(RY) generates
a strongly continuous semigroup in LP(RY) for 1 < p < oo.

Lemma 5.3 Let 1 < p < oco. Then the adjoint semigroup (T'(t)*)i>0 in LY (RN) s
generated by (A*, D,y).

PROOF. The adjoint semigroup in L? (RV) is generated by the dual operator of (A, D,),
let it be C' : D(C) — L' (RY). An elementary integration by parts yields C¢p = A*¢ for
each ¢ € C°(RY). Since C§°(RY) is a core for (A*, D,y), by Proposition 5.1 we obtain
that (C,D(C)) is an extension of (A*, D)), hence they do coincide because both of them
are generators in Lp/(]RN ). U

Next we prove an ultracontractivity property of (T'(t));>0, showing that T'(¢) maps
L'(RN) into L>®°(RY) with a behavior similar to the one of the heat semigroup near ¢ = 0.
We adapt a classical argument based on the so called Nash inequality

2+4/N 4/N
lglly ™ < Cligliyallglt’™, g € W2@Y) 0 L (RY). (5.8)
See e.g. [7, Theorem 2.4.6].
Proposition 5.4 There exist constants M,w such that for every f € LY(RN), ¢t > 0

ewt
7)o < 1711 (5.9

Moreover, for every t > 0, T(t) maps L'(RY) into Co(RY).

PROOF. Let A > 1+ k/2, where k is given by 5.4. For each u € C§°(RY) we have

1
/ u(Au — Au)dx = / <|Vu|2 + (A + zdiv F)|u|2)dx > / (|Vu|2 + |u|2> dz. (5.10)
RN RN 2 RN

Since C§°(RY) is dense in Ds, (5.10) is true for each u € Ds.
Let f € CP(RY), f #0, and set

v(t) = e MT (W) f]13, t > 0.

Since T'(t)f goes to f ast — 0, then v(¢) > 0 at least for ¢ in a right neighborhood I of 0.
Moreover v is differentiable, and

V(1) = 262N / T (A= NT(@)f)dz, >0,
RN

Since T'(t)f € Dy N L' for each t, we may apply estimate (5.10) and then estimate (5.8),
getting for £ € 1

V(1) < =20 M) flr 2y < —Cle MT@FIFH N e M) Y

Therefore, for each t € 1,

d _ 20, _ - _ -
SN = e MTFITY 2 Ot TN
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(We used (5.5) to get the last inequality). Integrating between 0 and ¢ we get
t
o(t) 2N > O fI7Y / AN g5 > Cot| £, te
0

provided A > k. This gives
IT@)f1l2 < CseMt M fllr, ¢ > 0. (5.11)

Thanks to Lemma 5.3, the same argument may be applied to T'(¢)*, and it yields for
g € CP(RY) and A > max{1 + k/2,0}

IT(t)*glla < Caet™N4||g|l1, > 0. (5.12)

Now we use a standard duality argument to get a bound for || T(¢) f||co. We have

ITOflo = sup / TW)fgde=  sup FT(t) g dr,
gEC(RN), ||g|l1=1 /RN geECE(RN), ||g]l1=1 /RN

and for each g € C§°(RY) with ||g||; = 1, inequality (5.12) yields

[ AT gds < IFIIT@) gl < 172 Cce 1, 4> 0
hence

IT () flloo < Cae™t= N4 flla, > 0. (5.13)

Since C§°(RY) is dense in L'(RY), inequalities (5.11) and (5.13) hold for every f € L}(RY)
and we get (5.9) using the semigroup law. Finally, let us show that T'(t) maps L'(RY) into
Co(RN). If f € CP(RY), then T(t)f € Co(RY), since (T'(t))¢>0 preserves Co(RY) (see
Proposition 5.1). The general case where f € L'(RM) follows by approximation, using
estimate (5.9). O

Now we turn to gradient estimates. We recall that inequalities like
IVT(@)flloo < 472 flloo, (5.14)

with f € Cy(RY), are valid under a dissipativity condition on the drift F, that is when
the quadratic form defined by the Jacobian matrix of F' is bounded from above. Clearly
this condition is satisfied in our case. We refer to [3] and to the references therein for a
discussion of inequalities of the type (5.14). The paper [3] deals with a general class of
second order elliptic operators with coefficients in C'-7%(R"). For this reason we assume

loc

for the moment that F € C\LT*(RY); this extra assumption will be removed later.

Corollary 5.5 Assume that F € Cllo"(;"‘(RN) for some o > 0. Then the semigroup
(T(t))e>0 satisfies

IVT(#) floo < Cet= N2 7)1, f € LYRY),
for suitable C > 0, w € R.

PROOF. Since |VF|o < oo, the assumptions of [3] are satisfied, and (5.14) holds for
each f € Cy(RY). The statement then follows using Proposition 5.4 and the semigroup
law. O
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Now we estimate the operator norm of VT'(t) from L'(RY) to (L'(R™))N. It will be
deduced from the analogous result for p = cc via the following lemma.
Lemma 5.6 Assume that F € CLT*(RN) for some o > 0. Then the operator VT (t) —
T(t)V may be extended to a bounded operator T'(t) from (Co(RN))Ninto itself, satisfying
IT#) flloo < Ce“'VE| flloo for suitable C >0, w € R.

PROOF. Let f € C{°(RYN). The function u(t,z) = T(t)f(z) is in Cl+a/2’3+a((0, o0) x RM),

loc
Moreover, Vu is bounded in [0,00) x RY and it satisfies Vu(t,z) — Vf(z) as t — 0, see

[3]. Set
v(t,) =VT@Et)f —TE)Vf, t>0.

Then v € Cl+a/2’2+a((0, o0) x RM) N L*®((0,00) x RY) and v is continuous up to ¢ = 0.

loc
A straightforward computation shows that v satisfies

Dy — Av = F,Vu, t>0, z€RN,
v(0,2) =0, z € RN,

where F, denotes the Jacobian matrix of F. Since F, is bounded, using estimates (5.14)
we get
|Dyv(t,z) — Av(t, )| < C1e”"t™ 2| flloo, t>0, 2 € RY.

Fori=1,..., N let w; = v;—2C1e“*/t|| f||oo. Then w; € CH2((0, T]xRN)NCy([0, T]xRN)
for every T < oo and it satisfies

Dyw; — Aw; <0, t>0, € RN,
w;(0,z) = 0, z € RV,

The maximum principle (in the form stated e.g. in [15, Exercise 8.1.22] for operators with
unbounded coefficients) yields w; < 0. The same argument applied to —w; eventually
gives

IVT(&)f =TV flloe = llo(t, ) loc < Coe” Vi flloo,

for f € CP(RN), hence for f € Co(RY), by density. Finally we show that T'(t) f € Co(RY).
If f € CP(RY) then T(t)f € D, C W2P(RY) for each p > 1, and taking p > N, we get
VT(t)f € Co(RN) by Sobolev embedding. Since T'(t)Vf also belongs to Co(RY) we
deduce that T'(t)f € Co(RY). The case f € Co(RY) easily follows by approximation,
using the continuity of I'(¢) with respect to the sup norm. U

Corollary 5.7 Assume that F € Cllo"(;"‘(RN) for some o > 0, and that F is Lipschitz
continuous. Then T(t)f € WHYRN) for every f € LY(RN), t > 0 and

IVT(®) Il < Ce't2||f|ly, >0, (5.15)
for suitable C > 0, w € R.
PrROOF. Let f,g € C°(RY). Then T'(t)f, T(t)g € D2 and therefore
—(VT ) f,9) = ([, T(#)"Vg) = (f,VT(t)'g) +{f.(T(t)"V = VT'()*)g).
Using estimate (5.14) and Lemma 5.6 we obtain
(VT ()£, 9)] < Ce (72 +£)] £l 9]l oo

and the statement follows for f € C§°(RY). By density, (5.15) holds for every f € L' (RY).
U
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Now we are ready to remove the extra regularity assumption on F' and to prove gradient
regularity for functions belonging to the domain D(A) of A in L*(RY).

Theorem 5.8 Assume that F is globally Lipschitz continuous in RN. Then the map
V: D(A) = LN/WN=1.00(RN RNY s bounded.

PROOF. As a first step, assume that F is in C.1*(RY) for some a > 0. Corollaries 5.5
and 5.7 show that (T'(¢));>o satisfies hypotheses (H1), (H3) of Section 4, and Theorem
4.1 yields the statement. The general case can be handled by perturbation. Let 0 < p €
CE°(RY), [on p =1 and define Fy = F * p. Set moreover

Ag=A+ (F(),V)

and let Dy be the domain of Ay in L'(RY). Since Fy is smooth and Lipschitz continuous,
for each u € C§°(RY) we have

IVl vy v-1),00 < C(llulli + | Aoullr) (5.16)
Since F' is globally Lipschitz continuous, F' — F{ is bounded and therefore
[Au — Agully = [(F — Fo, Vu)|l1 < C|[Vul;. (5.17)
Moreover, using Remark 4.4, for each € > 0 we have
9l < ell Aol + <l < el Aulls + Cell Ty + & s,
and, taking € small enough,
IVl < C(llully + | Aull). (5.18)
Using (5.16), (5.17), and (5.18) we get
IVullnyv—1),00 < Cllulls + [ Aoullr) < C(llully + IVully + | Aull) < Cllullpa)

for u € C§°(RY), and by density for u € D(A). O

6 Remarks and other examples

In this section we give further examples to show how Theorems 3.1, 4.1 and their corollaries
may be applied to a wide class of second order elliptic operators in L'().

Example 6.1 Assume that the operator A in (1.4) is uniformly elliptic in RY with
bounded and Hoélder continuous coefficients. It is well-known that the realization of A
in LP(RY) generates an analytic semigroup T,(t), 1 < p < oo, which can be expressed
through a kernel G(t,-,-) independent of p, i.e.

(T ) () = [ G(t,z,y)f(y) dy. (6.1)

RN

Since
|G (t,z,y)| < Cett™ N2Vt UGt a,y)| < Cettm VIRt (6.9)

for suitable C,b > 0, w € R (see [9, Ch. 1, Sect. 6]), it is easy to see that T},(¢) may be
extended to a strongly continuous semigroup T'(t) in L'(R™) which satisfies (H1), (H3)
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with 3 = 1/2, 49 = (N + 1)/2. Denoting by D(A) the domain of the generator of T'(¢),
Corollary 4.2 then shows that Vu € LY (N=1:2 for every u € D(A).

Next we consider the case of a uniformly elliptic operator A in a bounded domain
1 with smooth boundary. We assume again that the coeflicients a;;, b;, ¢ are Holder
continuous. The realization of A in LP(€2) with Dirichlet boundary condition, with domain
W2P(Q) N WO1 P((2), generates an analytic semigroup T, (¢) represented as in (6.1). Using
[16, Theorem 16.3] we see that the kernel G satisfies (6.2), hence (H1), (H3) hold for the
extension T(t) to L'(Q) with 41 = 1/2, 79 = (N + 1)/2, and Corollary 4.2 implies that
Vu € LN IN=1:% for every u € D(A).

Let now v € C'(99, RY) be an outward pointing, nowhere tangent vector field and let
B € C1(09). We define the oblique derivative boundary operator

Buzg—i-ﬂu.

For 1 < p < oo, the realization of A in L?() with domain {u € W?2P?(Q) : Bu = 0 on 902}
generates an analytic semigroup 7)(¢) in LP(Q2), for which (6.1) and (6.2) hold, if the
coefficients a;;, b; belong to C*(Q2). See [27, Theorem 5.7]. Therefore T} (t) is extended to
a strongly continuous semigroup in L'(2) to which Corollary 4.2 may be applied, yielding
again Vu € LN/(N=1):%¢ for every u € D(A).

We remark that in the case of elliptic operators in the whole RY or in Q with Dirichlet
boundary condition, even the inclusion D(A) C BZ' can be proved. See [14, Theorem
1.7, Theorem 3.3]. For the oblique boundary condition our embedding result seems to be
new. For operators in divergence form with C' coefficients, Au = ZZJ-YJ—ZI D;(ai;jDju), we
mention also the paper [8] , where estimates (1.5)(i) were proved in the case of Dirichlet
boundary condition.

Example 6.2 Let us prove that Theorem 4.3 and Corollary 4.2 are sharp by showing
that, in general, Vu ¢ L{X(/:(N_l)’q(Q) for u € D(A) and g < oco. This implies also that
Vu ¢ LN/(N=1(q).

Let N > 3 and let A = A be the realization of the Laplace operator in L'(RY).
Suppose by contradiction that Vu € LN/(N=14 for every u € D(A) and some ¢ < oo.
From the closed graph theorem there is a positive constant C such that ||Vul|y/v_1),¢ <
C(|Jull1 +[|Aull1) , for every u € CP(RY). Let u(z) = |z|>~V be the fundamental solution
of the Laplace operator and let 1. be a smooth cut-off function such that 7.(z) = 1
if 2 < 2] < 1, me(z) = 0 if Jz| < e orfz| 2 2, [[Viellleo < c/e, |A7]le < ¢/
Define u, = n.u € C(RY). Clearly |juc|;y < K, with K independent of . Since
Au; = ulAn. + 2Vu - V., we get easily ||Auclly < K. A somewhat longer but still
elementary computation yields || [Vue| || x/(v_1) > C|loge['"/" and shows that D(A) is
not embedded in WHN/(N=1)(RN),

To proceed further and obtain the full counterexample for Lorentz spaces we must
estimate the decreasing rearrangement of f. := |Vu.|. Observe that f.(z) = |z|'~" for
2e <|z| < 1. Let 1 <6 < (2¢)'~N. Then

{If-] > 6} D {2e < |z| <6~ V(N-1y

and hence

[{If:] > 0} > en (6771 — (26)N).
Now we estimate fX(t) = inf{d : |{|f:] > 5}‘ <th I1<6< (2N and [{|f.] >

—N/(N-1)
§}| < t}, then the above inequality implies that § > (cNt + (2€)N> . This last
inequality obviously holds if 6 > (2¢)!~". Finally, if § < 1, then

[{If:] > 6} > |[{2e < |z < 1} = en(1 = (26)") > cn /2
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and

—N/(N-1)
for small e. It follows that, for small € and ¢ < ¢y /2, fX(t) > (cNt + (25)N>

then for ¢ < +o0
© Ny . cnN /2 tq%—l
190 vy = [ 15 20> [ i
’ 0 0 q
(cNt+(26)N>

goes to +00 as € — 0.

Example 6.3 Let us consider again the Ornstein-Uhlenbeck operator A as in Section 5,
replacing the positivity assumption on () by @ > 0 plus a hypoellipticity assumption,

detQ; >0, t>0,
(Q¢ is defined in (5.1)) which is equivalent to
Rank [Q/2, BQ'/?,... ,BN"1Q'/?] = N.

Then RY may be decomposed as the direct sum of subspaces naturally associated to the
operator A, as follows. Let k € {0,... ,N — 1} be the smallest integer such that

Rank [QY/2, BQ'Y?,... ,B*Q'/*] = N.

Set Vo = Range Q'/2, Vj, = Range Q'/? +Range BQ'/2+...+ Range B"Q'/2. We have
Vi, C Viy1 for every h, and Vi, = RN. Define the orthogonal projections P, as

Py = projection on Vj,

P,.1 = projection on (V3,)*in Vi1, h=1,... k—1.

Then RN = @i:o P,(RN). By possibly changing coordinates in RY we will consider an

orthogonal basis {e1,... ,eyx} consisting of generators of the subspaces P, (RY). For every
h=0,...,k we define I;, as the set of indices ¢ such that the vectors e; with 7 € I}, span
P, (RY). The number
k
d = "(h+ 1)dim(P,(R"))
h=0

is of relevance in our analysis. Indeed, it can be proved that
det Q1 < Ce¥tt™?, >0,
with C' > 0, w € R. Note that d > N, and d = N if and only if Det Q) # 0. Moreover,

C ewt
th

1Pye® Q2 < , >0, h=0,...,F.

See e.g. [26], [18, Lemma 3.1]. These estimates, used in the representation formula for

VT(t)f,

£71/2 det @,/
2(4m)N/2

give, for h=0,... , k,

VT(t)f - _ /RN etB*Qt—l/Q(eth _ Z)e_|eth_z|2/4f(Z)dz, f c LI(RN),

Cewt '
DT (8) f lloc < m”f”h i € I

On the other hand,
Cewt '
IDTOfll < sl i € T
We may apply Theorem 4.1 to the derivatives D; for ¢ € Iy and we get, for every u € D(A),

Diju € LY=)o (RrNY - ¢ I,
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Example 6.4 The most popular subelliptic operator is perhaps the Heisenberg Laplacian
in R3,
Af(@,9,2) = foo + fyy + 49 oz — 42 fye + 4 +4°) [z,

which can be seen as the sum of squares of vector fields, A = D2 + D;, where

0 0 0 0
= oo+ 2g, Dy= oo —2ao

D, .
oy 0z

It is well known that the realization of A in L'(R?) generates a strongly continuous semi-
group T'(t), see e.g. [10]. A nice representation formula for T'(¢) is in [11]. Estimates for
D,T(t)f and D,T(t)f may be found either using such a representation formula, or by
homogeneity arguments. Indeed, the operators D, and D, are homogeneous with degree
1 with respect to the family of dilations 8, defined by 6,(z,y, z) = (rz,ry,r%z), r > 0. It
follows that A is homogeneous with degree 2, and this implies easily that

T(t)f = (T(r*t)(f o 61y)) 0 6, fE€L'R?), r>0,¢>0.
Therefore,
D,T(t)f = rDy(T(r*t)(f 0 81),)) 0 6, DyT(t)f = rDy(T(r*t)(f © d1/,)) © br.

Note that for every g € L' we have ||g o 6,||;1 = r~%||g||z:. Choosing r = 1/v/t we get, for
>0,

IDT@)f Il + 1Dy T @) f 11 =t 2(IDT W)l ey + 1Py T W) e 1 f 1

and

IDoT(#) flloo + IDyT () flloo = ¢ 2(IDT (W 211,10y + 1Dy Tl ezt o)) 1 11

The fact that D,T(1) and D,T(1) are bounded operators from L! to itself and to L™ is
a consequence of hypoellipticity and homogeneity, see [10, Cor. 3.5, 3.6]. Therefore we
may apply Theorem 4.1, with the usual derivatives replaced by D, D,, and y; = 1/2,
vo = 5/2. We get, for every u € D(A),

Dyu, Dyu € LY>*°(R3).

Let us consider now a more general situation. We refer to [30] for notation, definitions
and references. Let G be a simply connected nilpotent Lie group. By L' we mean now
L'(G,dx), where dz is the right invariant Haar measure of G. Let X = {X1,... , X} be
a Hormander system of vector fields on G, and let d, D be the local dimension of (G, X)
and its dimension at infinity, respectively. We have always d < D, and they do coincide if
and only if G is stratified and X spans the first slice of the stratification. For instance, in
the case of the Heisenberg group we have X = {D,, D,}, where D, and D, are the above
vector fields, and d = D = 4. We denote by A the associated sublaplacian,

k
A=Y"X7,
i=1
and we define the gradient by
Vf = (X1f7 7ka)

The realization of A in L', with a suitable domain, generates a semigroup T'(¢) which is
usually called “heat semigroup”. It may be represented as

T(t)f (x) = /G Fh(ty o) dy,
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where the “heat kernel” h satisfies ([30, Thm. IV.4.2])
| X;h(t,z)| < Ct 2V (Vi) exp(—cp?(z)/t), t>0, z € G,

p(x) is the distance associated to X, V(¢) is the volume (Haar measure) of the ball B(z,t)
for every x € G, C, ¢ are positive constants. Therefore,

INT0)f ey < COVPVIVO I e IVTOf lee < OV VDI e

for every f € L' and ¢t > 0. Lemma 2.2(i) still holds in L'(G), with the derivatives D;
replaced by the vector fields X;. Since V(t) > Ct? for t small, say 0 < ¢t < 1, V(t) > CtP
for ¢ large ([30, Prop. IV.5.6]), we may apply Theorem 4.1 with 3 = 1/2, v9 = (1 +d)/2,
and we get, for every u € D(A),

Xiu € LYD2(G), || Xgull pasia-1.oo(y) < Cllull ey + 1Al i), i=1,... k.

Example 6.5 Suppose that (T'(t));>o is a semigroup in Cy(RY), the space of the bounded
continuous functions on RV, that has an invariant measure y, i.e. a finite positive Borel
measure on RY such that

[ r0rau= [t

R

for every t > 0 and f € Cy(RY). It is well-known that (7'(t))¢>o has a natural extension to
a strongly continuous semigroup in L'(RY, ); let A : D(A) — L'(RY, 1) be its generator.
If we replace L'(RY) by L'(RY, ), assumptions (H1), (H2), (H3) are not satisfied in
general, and the conclusions of Theorems 3.1 and 4.1 do not hold in general. Let us
consider, for instance, the Ornstein-Uhlenbeck operator considered at the beginning of
Section 5, with Q = B = I, that is A = A — z - V. In this case the invariant measure p is
the Gaussian measure

du(z) = e 1712 4y

and even the inclusion of D(A) in Wh1(RY, ;1) fails. In fact it can be proved that the in-
clusion of WHH(RY | 1) into L*(RY, 1) is compact whereas the operator A has not compact
resolvent in L'(u), see [23].
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