
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS–SERIES B
Volume 6, Number 4, July 2006 pp. 751–760

MAXIMAL DISSIPATIVITY OF A CLASS OF ELLIPTIC
DEGENERATE OPERATORS IN WEIGHTED L2 SPACES

Giuseppe Da Prato

Scuola Normale Superiore
Piazza dei Cavalieri 7

56126 Pisa, Italy
daprato@sns.it

Alessandra Lunardi

Dipartimento di Matematica, Università di Parma
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Abstract. We consider a degenerate elliptic Kolmogorov–type operator aris-
ing from second order stochastic differential equations in Rn perturbed by
noise. We study a realization of such an operator in L2 spaces with respect to
an explicit invariant measure, and we prove that it is m-dissipative.

1. Introduction. We are concerned with a Kolmogorov operator in R2n = Rn
x ×

Rn
y ,

Kϕ(x, y) =
1
2

∆xϕ(x, y)− 〈My + x + DyU(y), Dxϕ(x, y)〉+ 〈x, Dyϕ(x, y)〉, (1)

where M is a symmetric positive definite matrix, and U ∈ C1(Rn,R) is a nonnega-
tive function satisfying suitable assumptions. We stress that U and its derivatives
may be unbounded, and even grow exponentially as |y| → +∞.

The operator K arises in the study of the second order stochastic initial value
problem in Rn, {

Y ′′(t) = −MY (t)− Y ′(t)−DU(Y (t)) + W ′(t),
Y (0) = y, Y ′(0) = x.

(2)

See [6] for a discussion and several developements. Setting Y ′(t) = X(t), problem
(2) is equivalent to the system




d

dt

(
X(t)
Y (t)

)
=

( −I −M
I 0

)(
X(t)
Y (t)

)
−

(
DU(Y (t))

0

)
+

(
W ′(t)

0

)
,

(
X(0)
Y (0)

)
=

(
x
y

)

(3)
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752 G. DA PRATO AND A. LUNARDI

and K is precisely the Kolmogorov operator in R2n associated to (3).
In the previous paper [4] we have studied a realization of K in L1(R2n, µ), where

µ is the infinitesimally invariant measure defined by

µ(dx, dy) = ρ(x, y)dxdy,

and

ρ(x, y) =
e−(〈My,y〉+|x|2)e−2U(y)

∫
R2n e−(〈My′,y′〉+|x′|2)e−2U(y′)dx′dy′

:= c e−(〈My,y〉+|x|2)e−2U(y).

Here we study a realization of K in L2(R2n, µ). The main result of this paper is that
K : C2

b (R2n) 7→ L2(R2n, µ) is closable, and its closure is m-dissipative. C2
b (R2n)

denotes the space of all bounded and twice continuously differentiable functions
from R2n to R with bounded first and second order derivatives.

Maximal dissipativity of Kolmogorov operators was studied in the last few years
by several authors, but most results concern nondegenerate elliptic operators. See
for instance the papers [9, 10, 11, 3], the books [5, 2] and the references therein.

Let us explain our method. Our assumptions imply that
∫
R2n |DU |2dµ < +∞,

so that Kϕ ∈ L2(R2n, µ) for every ϕ ∈ C2
b (R2n), and integrating by parts we obtain

∫

R2n

Kϕ ϕ dµ = −1
2

∫

R2n

|Dxϕ|2dµ, ϕ ∈ C2
b (R2n), (4)

so that K is dissipative in L2(R2n, µ). Consequently it is closable, and we denote
by K its closure. To prove that K is m-dissipative, we have to show that for each
λ > 0 the range of λI−K is dense in L2(R2n, µ), i.e. we have to solve the resolvent
equation

λϕ−Kϕ = f (5)
for every f in a dense set in L2(R2n, µ). This is not obvious, because K is a de-
generate elliptic operator with unbounded coefficients. If the coefficients of K were
smooth enough and had bounded derivatives, for smooth f (say, f ∈ C2

b (R2n)) a
solution u ∈ C2

b (R2n) would be easily obtained by the classical stochastic charac-
teristics method. Therefore, we assume that U has good bounded approximations
Uα ≤ U , α > 0, and for every α > 0 we solve

λϕα −Kαϕα = f, (6)

where Kα : C2
b (R2n) 7→ L2(R2n, µ) is the operator

Kαϕ(x, y) =
1
2

∆xϕ(x, y)− 〈My + x + DyUα(y), Dxϕ(x, y)〉+ 〈x,Dyϕ(x, y)〉. (7)

Of course, (6) may be rewritten as

λϕα −Kϕα = f + 〈DyU −DyUα, Dxϕα〉,
and our aim is to prove that 〈DyU−DyUα, Dxϕα〉 goes to 0 in L2(R2n, µ) as α → 0.
The simplest way to reach this goal is to assume that |DyUα −DyU | goes to 0 in
L4(R2n, µ), and to prove that the derivatives Dxiuα are bounded in L4(R2n, µ) by
a constant independent of α. Since Uα ≤ U , it is enough to prove that∫

R2n

(Dxiϕα)4dµα ≤ C, i = 1, . . . , n, (8)

with a constant C independent of α. Here

µα(dx, dy) = ρα(x, y)dxdy, (9)
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ρα(x, y) =
e−(〈My,y〉+|x|2)e−2Uα(y)

∫
R2n e−(〈My′,y′〉+|x′|2)e−2Uα(y′)dx′dy′

:= cαe−(〈My,y〉+|x|2)e−2Uα(y).

(10)
Note that, even for n = 1, estimate (8) cannot follow from L2 estimates on the
second order x-derivatives of ϕα through Sobolev embedding, because our measures
µα are of Gaussian type, and no Sobolev embeddings are available.

The core of the paper is in fact the proof of estimate (8) for f ∈ C3
b (R2n),

which is dense in L2(R2n, µ). To this aim we need further assumptions on the
approximations Uα, that turn out to be assumptions on U . Such assumptions are
far from being optimal, however they are satisfied if U is any polynomial such
that lim|y|→∞ U(y) = +∞, or any positive smooth function such that U and its
derivatives up to the third order have polynomial (resp. exponential) growth as
|y| → +∞. See next section.

We note that proving m-dissipativity in L2(R2n, µ) instead of in L1(R2n, µ),
which is the setting considered in [4], is an important starting point for the study
of further properties, such as asymptotic behavior as t → +∞ of the semigroup
generated by K. This study will be the object of a future paper.

2. The approximating operators. We denote by Ck
b (R2n) the space of all bounded

and k times continuously differentiable functions from R2n to R with bounded
derivatives up to the order k. Moreover we shall use the following notation:

|Dxϕ|2 =
n∑

k=1

|Dxk
ϕ|2, |Dyϕ|2 =

n∑

k=1

|Dyk
ϕ|2,

|D2
xϕ|2 =

n∑

k,h=1

|Dxkxk
ϕ|2, |D2

yϕ|2 =
n∑

k,h=1

|Dykyh
ϕ|2,

|D3
xϕ|2 =

n∑

k,h,l=1

|Dxkxkxl
ϕ|2,

for functions ϕ that have the derivatives appearing in the formulas.
Throughout the paper we shall assume that the following conditions are satisfied.

Hypothesis 2.1. For each α > 0 there exists a function Uα ∈ C4(Rn,R) such that
(i) 0 ≤ Uα(y) ≤ U(y) for all y ∈ Rn,
(ii) DUα has bounded derivatives up to the order 3,

(iii) lim
α→0

∫

R2n

(Uα(y)− U(y))4dµ = 0,

(iv) there exists κ > 0 such that for each α > 0∫

R2n

(|D3
yUα|2 + |D2

yUα|2 |DyUα|2 + |D2
yUα|2(1 + |y|2)) dµα ≤ κ. (11)

Here µα is defined by (9) – (10).

We notice that Hypothesis 2.1 is fulfilled if U is a C4 nonnegative function having
polynomial or exponential growth together with his derivatives up to the order 3,
in the sense that there are m0, m1, c0, c1 > 0, such that for large |y| and for every
i, j, k = 1, . . . , n we have




U(y) ≥ c0|y|m0 ,

|DiU(y)|+ |DijU(y)|+ |DijkU(y)| ≤ c1|y|m1 ,
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or else 



U(y) ≥ c0 exp(m0|y|),

|DiU(y)|+ |DijU(y)|+ |DijkU(y)| ≤ c1 exp(m1|y|).
Indeed, in these cases the functions

Uα(y) :=
U(y)

1 + αU(y)m
, y ∈ Rn,

satisfy Hypothesis 2.1 if m is large enough.

We fix here α > 0 and consider the approximating equation (6), where λ > 0
and f ∈ C3

b (R2n) are given.

Proposition 2.2. Assume that Hypothesis 2.1 is fulfilled. Then for arbitrary λ > 0
and f ∈ C3

b (R2n) there exists a unique solution ϕα ∈ C3
b (R2n) of equation (6).

Moreover,

‖ϕα‖∞ ≤ 1
λ
‖f‖∞. (12)

Proof. To solve equation (6) we shall use the classical stochastic characteristics
method. It is based on the solution of the following system of stochastic differential
equations in R2n,




dXα(t) = −[MYα(t) + Xα(t) + DyUα(Yα(t))]dt + dW (t), t > 0,

dYα(t) = Xα(t)dt, t > 0,

Xα(0) = x, Yα(0) = y,

(13)

where x, y ∈ Rn and W (t) is a standard Brownian motion in Rn.
By Hypothesis 2.1–(ii), DyUα is Lipschitz continuous, so that problem (13) has a

unique global solution (Xα(·, x, y), Yα(·, x, y)). Moreover, since DyUα has bounded
derivatives up to the order 3, in view of a classical result on the dependence of the
solution of (13) upon initial data (see e.g. [7, Theorem 1, page 61], [1, Proposition
1.3.3]), it follows that (Xα(t, x, y), Yα(t, x, y)) is thrice continuously differentiable
with respect to (x, y), with bounded derivatives up to the third order.

By the Itô formula it follows that the parabolic problem ut = Ku, t > 0, u(0, ·) =
f , has uα(t, x, y) := E[f(Xα(t, x, y), Yα(t, x, y))] as a solution, and consequently
equation (6) has a solution ϕα ∈ C3

b (Rn), given by

ϕα(x, y) =
∫ ∞

0

e−λtE[f(Xα(t, x, y), Yα(t, x, y))]dt, (x, y) ∈ R2n. (14)

The classical maximum principle may be easily adapted to elliptic operators with
Lipschitz continuous coefficients; for a detailed proof see e.g. [4]. It implies estimate
(12) as well as uniqueness of the solution.

3. Integral estimates for the solutions of the approximating problems.
Here we fix α > 0 and we derive several estimates on the solutions of (6), which
will be used in the next section to prove that K is m–dissipative in L2(R2n, µ).

The starting point is that Hypothesis 2.1 implies that Kαϕ ∈ L2(R2n, µα) for
each ϕ ∈ C2

b (R2n), so that Kαϕ · ϕ ∈ L2(R2n, µα) and integrating by parts we get∫

R2n

Kαϕ · ϕdµα = −1
2

∫

R2n

|Dxϕ|2dµα. (15)
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Proposition 3.1. For each α > 0 we have
∫

R2n

ϕ2
αdµα ≤ 1

λ2

∫

R2n

f2dµα, (16)

∫

R2n

|Dxϕα|2dµα ≤ 2
λ

∫

R2n

f2dµα. (17)

Proof. Multiplying both sides of (6) by ϕα, integrating with respect to µα over R2n

and taking into account (15) yields

λ

∫

R2n

ϕ2
αdµα +

1
2

∫

R2n

|Dxϕα|2dµα =
∫

R2n

fϕαdµα. (18)

Consequently,

λ

∫

R2n

ϕ2
αdµα ≤

∫

R2n

fϕαdµα ≤
( ∫

R2n

f2dµα

)1/2( ∫

R2n

ϕ2
αdµα

)1/2

,

and (16) follows. Similarly, (18) and (16) imply

1
2

∫

R2n

|Dxϕα|2dµα ≤
( ∫

R2n

f2dµα

)1/2( ∫

R2n

ϕ2
αdµα

)1/2

≤ 1
λ

∫

R2n

f2dµα,

which yields (17).

Proposition 3.2. There exists a constant c1 = c1(λ, ‖f‖∞, ‖ |Df | ‖∞, κ) such that
∫

R2n

|Dyϕα|2dµα ≤ c1. (19)

Proof. Denote by mij = 〈Mej , ei〉 = 〈Mei, ej〉 the entries of the matrix M , so that
〈My, Dxϕα〉 =

∑n
i,j=1 yimijDxj ϕα. Differentiating (6) with respect to yi yields

λDyiϕα −KαDyiϕα +
n∑

j=1

mijDxj ϕα + 〈DyiDyU(y), Dxϕα〉 = Dyif.

Multiplying both sides by Dyiϕα, integrating with respect to µα over R2n, taking
into account (15) and summing up yields

∫

R2n

〈Dyf, Dyϕα〉dµα = λ

∫

R2n

|Dyϕα|2dµα +
1
2

n∑

i,k=1

∫

R2n

(Dxkyiϕα)2dµα

+
∫

R2n

〈MDxϕα, Dyϕα〉dµα

+
∑n

i,k=1

∫
R2n(Dyiyk

Uα)(Dxk
ϕα)(Dyiϕα)dµα.

(20)
Fixed any i, k = 1, . . . n, let us estimate the integral

Iik :=
∫

R2n

(Dyiyk
Uα) (Dxk

ϕα) (Dyiϕα)dµα =
∫

R2n

(Dyiyk
Uα)(Dxk

ϕα)(Dyiϕα)ραdx dy.
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Integrating by parts with respect to yi, we obtain

Iik = −
∫

R2n

(Dyiyiyk
Uα) (Dxk

ϕα) ϕα ρα dx dy

−
∫

R2n

(Dyiyk
Uα) (Dyixk

ϕα) ϕα ρα dx dy

+
∫

R2n

(Dyiyk
Uα) (Dxk

ϕα)ϕα

(
2Dyi

Uα + 2
n∑

i,j=1

mijyj

)
ρα dx dy.

Taking into account (12) and using the Hölder inequality, we find

|Iik|
=

1
λ
‖f‖∞

( ∫

R2n

(Dyiyiyk
Uα)2dµα

)1/2 ( ∫

R2n

(Dxk
ϕα)2dµα

)1/2

+
1
λ
‖f‖∞

( ∫

R2n

(Dyiyk
Uα)2dµα

)1/2 ( ∫

R2n

(Dyixk
ϕα)2dµα

)1/2

+
2
λ
‖f‖∞

( ∫

R2n

(Dyiyk
Uα)2 (DyiUα)2dµα

)1/2( ∫

R2n

(Dxk
ϕα)2dµα

)1/2

+
2‖M‖L(Rn)

λ
‖f‖∞

( ∫

R2n

(Dyiyk
Uα)2 |y|2dµα

)1/2( ∫

R2n

(Dxk
ϕα)2dµα

)1/2

.

By Hypothesis 2.1 and Proposition 3.1 we get

|Iik| ≤ 3
√

2 + 2
√

2‖M‖L(Rn)

λ3/2
κ1/2‖f‖2∞

+
1
λ
‖f‖∞

(
1
2ε

κ +
ε

2

∫

R2n

(Dyixk
ϕα)2dµα

)
, (21)

for any ε > 0. Coming back to (20) we get

λ‖ |Dyϕα| ‖2L2(µα) +
1
2

n∑

i,k=1

∫

R2n

(Dyixk
ϕα)2dµα

≤ (‖ |Dyf | ‖L2(µα) + ‖ |MDxϕα| ‖L2(µα))‖ |Dyϕα| ‖L2(µα) +
∑n

i,k=1 |Iik|

≤ 1
2λ

(‖ |Dyf | ‖L2(µα) + ‖ |MDxϕα| ‖L2(µα))2

+λ
2 ‖ |Dyϕα| ‖2L2(µα) +

∑n
i,k=1 |Iik|,

and the statement follows using estimate (21) with ε = λ/(2‖f‖∞), if f 6≡ 0. If
f ≡ 0 then ϕα ≡ 0, and the statement is obvious.

Corollary 3.3. There exists a constant c2 = c2(λ, ‖f‖∞, ‖ |Df | ‖∞, κ) such that
∫

R2n

|D2
xϕα|2dµα ≤ c2. (22)
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Proof. Differentiating (6) with respect to xi yields

λDxiϕα −KαDxiϕα −Dyiϕα + Dxiϕα = Dxif.

Multiplying both sides by Dyi
ϕα, integrating with respect to µα over R2n, taking

into account (15) and summing up yields

(λ + 1)
∫

R2n

|Dxϕα|2dµα +
1
2

∫

R2n

|D2
xϕα|2dµα

=
∫

R2n

〈Dyϕα + Dxf, Dxϕα〉dµα. (23)

The conclusion follows using (19).

Proposition 3.4. There exists a constant c3 = c3(λ, ‖f‖∞, ‖ |Df | ‖∞, κ) such that
∫

R2n

|Dxϕα|4dµα ≤ c3. (24)

Proof. For i = 1, . . . , n let us estimate
∫

R2n

(Dxiϕα)4dµα =
∫

R2n

(Dxiϕα)3Dxiϕαdµα.

Integrating by parts with respect to xi yields
∫

R2n

(Dxiϕα)4dµα = −3
∫

R2n

ϕα(Dxiϕα)2Dxixiϕαdµα + 2
∫

R2n

ϕα(Dxiϕα)3xidµα

:= I1 + I2.

Now, using (12) and the Hölder inequality, we obtain

|I1| ≤ 3
λ
‖f‖∞

( ∫

R2n

(D2
xi

ϕα)4dµα

)1/2( ∫

R2n

(Dxixiϕα)2dµα

)1/2

and

|I2| ≤ 2
λ
‖f‖∞

( ∫

R2n

(Dxiϕα)4dµα

)3/4 ( ∫

R2n

x4
i dµα

)1/4

.

Consequently, setting

p : =
∫

R2n

(Dxiϕα)4dµα

and using (22) we obtain

p ≤ 1
λ
‖f‖∞

(
3p1/2c

1/2
2 + 2p3/4

( ∫

R2n

x4
i dµα

)1/4)
,

which yields ∫

R2n

(Dxiϕα)4dµα ≤ C (25)

where C = C(λ, ‖f‖∞, ‖ |Df | ‖∞, κ).
Now using the Hölder inequality we obtain, for all i 6= j, i, j = 1, ..., n,

∫

R2n

(Dxiϕα)2(Dxj ϕα)2dµα ≤ C, (26)

and the statement follows.
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4. m–dissipativity. We prove here the main result of the paper.

Theorem 4.1. Assume that Hypothesis (2.1) is fulfilled. Then the closure K of
the operator K : C2

b (R2n) 7→ L2(R2n, µ) is m–dissipative.

Proof. Let λ > 0, f ∈ C3
b (R2n) and let ϕα be the solution of (6). Then

λϕα −Kϕα = f + 〈DyU(y)−DyUα(y), Dxϕα〉.
We claim that

lim
α→0

〈DyU(y)−DyUα(y), Dxϕα〉 = 0 in L2(R2n, µ). (27)

In fact, taking into account Proposition 3.4 and using the Hölder inequality, we get
∫

R2n

〈DyU(y)−DyUα(y), Dxϕα〉2dµ

≤
( ∫

R2n |DyU(y)−DyUα(y)|4dµ

)1/2( ∫
R2n |Dxϕα|4dµ

)1/2

≤
( ∫

R2n |DyU(y)−DyUα(y)|4dµ

)1/2(
c

cα

∫
R2n |Dxϕα|4dµα

)1/2

≤
(

c c3
cα

)1/2 (∫
R2n |DyU(y)−DyUα(y)|4dµ

)1/2
.

Now the claim follows from Hypothesis 2.1–(iii), recalling that 1/cα is bounded by
a constant independent of α.

Since C3
b (R2n) is dense in L2(R2n, µ), (27) implies that the range of λI − K

is dense in L2(R2n, µ) and the statement of the theorem follows from the Lumer–
Phillips Theorem.

5. Concluding remarks. First of all, formula (4) is easily extendable to the whole
domain of K.

Proposition 5.1. For every ϕ ∈ D(K) and i = 1, . . . , n there exist the weak
derivatives Dxiϕ ∈ L2(R2n, µ), and

∫

R2n

Kϕ ϕ dµ = −1
2

∫

R2n

|Dxϕ|2dµ. (28)

Proof. If ϕ ∈ C2
b (R2n), formula (28) coincides with (4). Now, let ϕ ∈ D(K). This

means that there is a sequence {ϕk} ⊂ C2
b (R2n) such that

ϕk → ϕ, Kϕk → Kϕ in L2(R2n, µ).

(4) implies that
∫

R2n

|Dx(ϕk − ϕh)|2dµ ≤ 2
∫

R2n

|K(ϕk − ϕh)| |ϕk − ϕh| dµ,

so that {Dxiϕk} is a Cauchy sequence in L2(R2n, µ), and the conclusion follows.
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Note that K is not symmetric: for any ϕ, ψ ∈ C2
b (R2n) we have∫

R2n

Kϕ ψ dµ = −1
2

∫

R2n

〈Dxϕ, Dxψ〉dµ

+
1
2

∫

R2n

(〈Dyϕ,Dxψ〉 − 〈Dxϕ,Dyψ〉)dµ

In particular, taking ψ ≡ 1 we obtain∫

R2n

Kϕ dµ = 0

for each ϕ ∈ C2
b (R2n), and since C2

b (R2n) is dense in the domain of K,∫

R2n

Kϕ dµ = 0, ϕ ∈ D(K).

In its turn, this implies that, denoting by T (t) the semigroup generated by K,∫

R2n

T (t)ϕdµ =
∫

R2n

ϕdµ, ϕ ∈ L2(R2n, µ), t > 0,

i.e. µ is an invariant measure for T (t).

Open problems. Several natural questions about K, T (t) and µ arise now. A
first one is about the regularity properties of the functions in D(K). Do their
second order derivatives Dxixj ϕ exist and belong to L2(R2n, µ)? A related question
is about the smoothing properties of T (t). In the case U ≡ 0 we have the nice
representation formula

(T (t)ϕ)(z) =
1

(2π)n/2(det Qt)1/2

∫

R2n

e−〈Q
−1
t ξ,ξ〉/2ϕ(etBz − ξ)dξ, t > 0, z ∈ R2n,

(29)
where Qt is the matrix

Qt =
∫ t

0

esBQesB∗ds, 0 < t < +∞, (30)

and

B =
( −I −M

I 0

)
, Q =

(
I 0
0 0

)
.

Using (29) it is not hard to see that T (t) maps L2(R2n, µ) into C∞(R2n) for t > 0.
But a similar formula is not available for general U .

A third interesting question is whether the kernel of K consist of constant func-
tions. As well known, this is equivalent to ergodicity of µ with respect to T (t). For-
mula (28) implies immediately that every ϕ in the kernel of K depends only on the
variables y. If ϕ were weakly differentiable, we would obtain that 〈x,Dyϕ(y)〉 = 0
for almost all x, y ∈ Rn, so that ϕ ≡ constant. But regularity of ϕ is not obvious,
and we cannot conclude.

Last, but not least: under which conditions the domain of K is compactly embed-
ded in L2(R2n, µ)? For nondegenerate Kolmogorov–type elliptic operators, under
reasonable assumptions the domain is continuously embedded in H1(R2n, µ), the
space of the weakly differentiable functions with derivatives in L2(R2n, µ), which is
compactly embedded in L2(R2n, µ) because logarithmic Sobolev inequalities hold.
See e.g. [3]. But in our case the embedding D(K) ⊂ H1(R2n, µ) is out of reach.

We hope to be able to answer (a part of) these questions in a future paper.
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