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1 Introduction

The theory of nonlinear parabolic problems is so widely developed that it is
impossible to give an overview in a few pages. Therefore in this chapter we
consider only a specific class of equations and systems with a high degree of
nonlinearity, that are called fully nonlinear because the nonlinearities involve
the highest order derivatives of the unknowns appearing in the problems.
For instance, a simple significant example is the Cauchy problem for a second
order equation,

Ut(tax) = (I)(DQ’U,(t,LE)), t2> 07 T e ﬁ7

Y (Du(t,z)) =0, t >0, z € 09, (1.1)

u(0,z) = up(z), =€,

where the matrix 0®/9q;;(D?ug) is positive definite at each z € Q, and the
vector with components 00 /9p;(Duwyg) is nontangential at each z € 9. Q is
an open set in RY with sufficiently smooth boundary 02, D and D? denote
the gradient and the matrix of the second order derivatives with respect to
the space variables .

The theory of fully nonlinear parabolic equations and systems is not
new. After a few papers in the sixties and seventies dealing mainly with
local existence and uniqueness of regular solutions ([23, 38, 26, 27]), big
improvements came in the eighties with the papers of Krylov about a priori
estimates and existence in the large for second order equations (see e.g.
the book [25]), and of Da Prato and Grisvard who initiated the theory
of abstract fully nonlinear parabolic equations in Banach spaces, in [12].



This paper was followed by a series of works about geometric theory of fully
nonlinear parabolic equations, an account of which up to 1995 may be found
in chapters 8 and 9 of the book [33].

In the last years a further impulse to the general theory was given by
the study of multidimensional parabolic free boundary problems, that can be
transformed to fixed boundary ones by suitable changements of coordinates,
and the resulting final systems are fully nonlinear. See [6, 9, 7, 8, 10, 31, 16,
18, 19, 20].

Let us describe the contents of this chapter.

In section 2 we give an overview on the theory of fully nonlinear parabolic
equations in Banach spaces, including the discussion about stability, insta-
bility, and invariant manifolds of stationary solutions. Problems like (1.1)
with the nonlinear boundary condition ¥(Dw(t,z)) = 0 replaced by a linear
one, such as u = 0 or du/dv = 0, may be turned into evolution equations
in Banach spaces in a standard way. The function v is seen as a function of
the only variable ¢ with values in a Banach space X of functions defined in
Q, i.e. setting U(t) = u(t, ) we rewrite (1.1) as

U(0) = uo,

where F(U) = ®(D?U) is defined in (an open subset of) a Banach space
D C X, and the linear operator A = F'(ug) : D — X is the generator of
an analytic semigroup. The difference between the above problem and the
more popular semilinear problems treated for instance in [22] is that the
nonlinearity is defined in the domain of A and not in some intermediate
space between X and D(A). This gives several technical difficulties that
will be described in section 2.

In section 3 we see in details second order equations in smooth domains
of R with fully nonlinear boundary conditions such as (1.1) and its gener-
alizations, that cannot be treated as immediate applications of the abstract
theory. In section 4 we discuss the principle of linearized stability and the
construction of invariant manifolds near stationary solutions of these equa-
tions.

In section 5 we show how the general theory may be applied to different
parabolic free boundary problems. As model problems we consider the free



boundary heat equation, arising in combustion theory,

up = Au, t>0, x €y,
o (1.2)
u=0, —=-1, t>0, z€ I,
on
and Stefan type problems like the Hele-Shaw flow,
([ Au=0, t>0, z € Qy,
ou
u =0, V——%7 t>0, zely, (1.3)
Ou = b, t>0, x €J,
\ On

where the unknowns are the open sets €, C RY for ¢+ > 0 and the function
u(t,z) for t > 0, z € ;. In the boundary conditions, n = n(t,z) is the
exterior normal vector to 0§} at z € 0€;. In the case of problem (1.3)
we have N = 2 and the boundary of 2, is made by a fixed known interior
component J and a moving unknown exterior component I'y, V represents
the normal velocity of the free boundary I'y, in such a way that V' is positive
for expanding curves, and b > 0.

Our procedure is to reduce the free boundary problems to fixed boundary
ones by suitable changements of coordinates, and then to eliminate one of
the unknowns (either u or the free boundary), expressing it in terms of
the other unknown, to get a final problem for only one unknown. In both
cases the final problem will be fully nonlinear, and nonlocal. In the case
of problem (1.2) we eliminate the free boundary and the final problem is
studied with the methods of sections 3 and 4. In problem (1.3) we eliminate
u and the final problem is studied with the methods of parabolic evolution
equations in Banach spaces of section 2.

2 Abstract parabolic problems

Let D, X be Banach spaces with respective norms || - || p, || - ||, and such that
D is continuously embedded in X. We shall discuss the problem

W () = F(t,u(t)), >0,
(2.1)
U(O) = Uo,



where F : [0,T] x O — X is a sufficiently smooth function, T > 0, and O is
a neighborhood of the initial datum ug € D.

The abstract parabolicity assumption near ug is that the operator A :
D(A)=D — X, A= F,(0,up) is sectorial.

Definition 2.1 A linear operator A : D(A) — X is called sectorial if the re-
solvent set p(A) contains a sector X = {\ € C: A # w, larg(A—w)| < 0} with
w€eR, 0 € (n/2,7), and there is M > 0 such that | A—w)R(A, A)|lp(xy < M
for each A € X.

We recall that if A is sectorial, the analytic semigroup generated by A
is defined by

1
4 =1, t=_— / RN, A)dA, t >0, (2.2)
270 J gy

where r > 0, n € (7/2,0), and «y is the curve {A € C : |arg\| =7, || > r}
U {X e C: |argh| <7, |A| =r}, oriented counterclockwise. A summary of
the general theory of sectorial operators and analytic semigroups in Banach
spaces may be found in chapter 2 of [33].

It is easy to see that if A: D(A) = D — X is sectorial and B € L(D, X)
is small enough, then A+ B : D(A+ B) = D — X is still sectorial. So
we may assume without much loss of generality that F,(¢,z) : D — X is
sectorial for each t € [0,T] and z € O.

As a first step we look for a local solution u € C([0, a]; D) N C*([0, a]; X)
for some a € (0,7]. The most natural way to solve problem (2.1), at least
locally, is by linearization near ug. Setting G(¢,z) = F(t,z)— Az = F(t,z)—
F,(0,up)zx for t € [0,T], x € O, we rewrite problem (2.1) in the form

u'(t) = Au(t) + G(t,u(t)), t >0,
(2.3)
u(0) = wo,

and we try to solve it by a fixed point argument, i.e., we look at a solution
as a fixed point of the operator I' defined by I'u = v where v is the solution
to the linear problem

v'(t) = Av(t) + G(t,u(t)), 0<t<a,
(2.4)
v(0) = uyg.

The simplest space where to set the fixed point would be (a closed ball in)
C([0,a]; D). In this case, for every w in the ball the function f(¢) = G(¢,u(t))



is in C([0,a]; X), and unless X and D are special spaces, well known coun-
terexamples show that in general v does not belong to C([0,a]; D), and T’
cannot map a ball of C([0,a]; D) into itself. Therefore, we turn to Holder
spaces where optimal regularity results and estimates for linear problems
are available.

Such optimal regularity results, needed to solve locally (2.1) and to de-
scribe the properties of the solution, are stated in the next section.

Note that these difficulties do not arise in semilinear equations, i.e.,
equations of the type (2.4) where G is defined in [0,a] X Y, Y being an
intermediate space between X and D(A). This is because if f(t) = G(t, u(t))
is in C([0,a]; X), and ug € D, the solution v of (2.4) belongs to C([0,a];Y),
provided Y satisfies the interpolatory embedding property

lylly < C(llylx)' " *(llyllp)*, y €Y,

for some C' > 0, @ € (0,1). In this case we have in fact v € C'~%([0,a];Y),
see [33, Ch. 4].

2.1 Optimal regularity in linear problems

Let us consider the problem

u'(t) = Au(t) + f(t), 0<t<a,
(2.5)
u(0) = ug,

where A is a linear sectorial operator in general Banach space X and f :
[0,a] — X is (at least) continuous.

Definition 2.2 A classical solution to problem (2.5) is a function u €
C([0,a); X) N C((0,a); D(A)) N C*((0,a); X) that satisfies u'(t) = Au(t) +
f@) for 0 <t < a and u(0) = ug. A strict solution is a function u €
C([0,a); D) N CY([0,a]; X) that satisfies u'(t) = Au(t) + f(t) for 0 <t < a
and u(0) = ug.

It is well known that if problem (2.5) has a classical solution, then it is
unique and it is given by the variation of constants formula,

t
u(t) = eug +/ =4 1(5)ds, 0<t<a.
0

We state below two optimal regularity results in Holder spaces, whose
proofs are due to [32], [36] respectively, and may be found in [33, Ch. 4].



We need to introduce a class of real interpolation spaces between X
and D(A). For 0 < a < 1 the real interpolation space D4(a,00) :=
(X, D(A))a,c0 is characterized by

Da(a,00) ={zx € X : t v(t) = |[t'~*Ae!z| € L®(0,1)},
(2.6)
121D aceo0)y = 12l + [2]D 4 (@o0) = 1] + llv]]oo-

The weighted Hoélder space C§((a,b]; X) is defined as the set of all
bounded functions f : (a,b] — X such that t — (t—a)®f(t) is a-Holder con-

tinuous in (a, 5. The norm is || fllcs (o) = I llootl1(-=a)* £ ()lla ax)-

Theorem 2.3 Let 0 < a < 1, f € CS((0,T);X), uo € D(A). Then
problem (2.5) has a classical solution u such that u' and Au belong to
C&(0,T); X), t — t*/(t) is bounded with values in (X, D(A))ac0, and
there is C = C(T) > 0, increasing in T, such that

'l e 0,01:x) + 1A% o (0,7;x) + SUPo<rer 1828 (D (X,D(4)) 0o
(2.7)
< O fllee oixy + lluoll pay);

If in addition f € C([0,T); X), and Aug + f(0) € D(A), then u', Au €
C([0,T]; X), and u is a strict solution to problem (2.5).

Theorem 2.4 Let 0 < a < 1, f € C*([0,T],X), ug € D(A) be such that
Aug + f(0) € (X, D(A))a,00- Then both u' and Au belong to C*([0,T], X),
u' is bounded with values in (X, D(A))a,00, and there is C = C(T') > 0,
increasing in T, such that

lwllcaao,m,x) + [ Aullce oy, x) + SuPocrer 14" (Ol x,0(4))u o
(2.8)

< C(llfllea(om,x) + llwollpeay + [1Auo + FO)l(x,0(4))a00)-

We emphasize that we need Holder spaces because of the lack of op-
timal regularity in spaces of continuous functions, in the sense that if f :
[0,7] — X is continuous, in general it is not true that the v’ and Aw in (2.5)
are continuous with values in X. However, we have optimal regularity in
spaces of continuous functions if we replace X and D(A) by the continuous
interpolations spaces Ey = D a(«), F1 = D4(a + 1), respectively.



For 0 < a < 1, the space D4(a) := (X, D(A))q is defined as the closure
of D(A) in (X, D(A))a,0c- It may be characterized by

(X,D(A))a ={z € (X, D(A)) a0 : }i_{%t“met% =0},

and it is a Banach space under the norm of (X, D(A))q,00. The space D 4(a+
1) is the domain of the part of A in (X, D(A))q,:

Dy(a+1)={x € D(A): Az € Dy(a)},

and it is endowed with the graph norm [|z||p , (at1) = 1%l D s () AT D () -
The following is a well known result due to Da Prato and Grisvard ([12]).

Theorem 2.5 Let 0 < a < 1, and let f € C([0,T],Da(er)), uo € Da(cx +
1). Then the solution u of problem (2.5) belongs to C([0,T], Da(a+ 1)) N
CY[0,T], Da()), and there is C such that

HUIHC([O,T];DA(a,oo)) + ||AUHC([O,T};DA(a,oo)) + ||A“H(7a([o,T];X)
(2.9)

< Cllflleqo1;paa0)) + 1ol py(at1,00))-

2.2 The nonlinear problem

Here we collect several results about problem (2.1) that are proved using
Theorems 2.3 and 2.4 as main tools.

The minimal assumptions on F' : [0,T] x O — X, O being an open set
in D, are the following.

(H1) The function (¢t,u) — F(t,u) is continuous with respect to (¢, u) and
it is Fréchet differentiable with respect to u. There exists o € (0,1)
such that for all w € O there are R = R(u), L = L(u), K = K(u) > 0
verifying

[ Fu(t,v) = Fu(t, w)llp,x) < Lllv — wlp,
[1F(t,u) — F(s,u)ll + | Fult,u) — Fu(s, v}l Lp,x) < K[t — 5],
(2.10)
for allt, s € [0,T], u, v, w € B(u,R) C D.

(H2) Forevery t € [0,T] and v € O the Fréchet derivative F, (¢, v) is sectorial
in X and its graph norm is equivalent to the norm of D.



We now state the main local existence theorem.

Theorem 2.6 Let O C D be an open set. Let F : [0,T] x O — X satisfy
assumptions (H1) and (H2). Let ug € O be such that F(0,uy) € D. Then
there is a mazimal T = 7(ug) > 0 such that problem (2.1) has a solution
u € C([0,7); D) N CH([0,7); X) with the following properties.

(i) For every ¢ € (0,7), u € C¥(0,7 —¢]; D), v' € C((0,7 — €]; X) and
t*u/(t) is bounded in [0, T — €] with values in (X, D)q o0

(ii) u is the unique solution of (2.1) belonging to

U 50,7 —el: D)yn C([0, 7 —e]; D)
0<B<1

for each e € (0,7).

(iii) w depends continuously on ug, in the sense that for each w € O such
that F(0,u) € D, and for each 7 € (0,7(w)) there are € = e(u,7) > 0,
H = H(w,7) > 0 such that if

ug € O, F(0,up) € D, |lug —ullp <e,
then 7(ug) > 7 and
[u(:5u0) — u(5 @ llce(o,7;0) + llue(5u0) — w5 W) e (0,7:%)
+ sup{t®||us(t, uo) — ut (B0 (X, Dyace : 0 <t <7} < Hllug — ul|p-

(i) If in addition F(0,ug) € (X, D)a,c0, then u is more regular up to t =0,
precisely u € C*([0,7 — e]; D) N CYH([0,7 — €]; X) for each & € (0, 7).

It is possible to obtain several further regularity results, as well as results
of dependence on parameters, stability of stationary solutions and of periodic
orbits. See [33, Ch. §].

The uniqueness part of the statement of Theorem 2.6 is not completely
satisfactory. In a sense it is natural, becuse we get uniqueness in the same
space where we prove existence of the solution. But a theorem of uniqueness
of the strict solution, i.c., uniqueness in C([0,a]; D) N C1([0,a]; D), is not
available (except in special cases, of course), and uniqueness of the strict
solution is still an open problem.

Applying Theorem 2.5 gives wellposedness results for fully nonlinear
problems in continuous interpolation spaces.

Let Ey C Ey C X be Banach spaces, let O be an open subset of Eq, and
let 0<8 <1, T>0. F:[0,T] x O~ Ejy is a nonlinear function such that



(H3) F and F, are continuous in [0,7] x O, for every (¢,@) € [0,T] x O the
operator F.(t,u) : E; — Ey is the part in Ey of a sectorial operator
L:D(L) C X — X, such that D;(6) = Ey, Dr(6 + 1) = E; with
equivalence of the respective norms.

Theorem 2.7 Let F satisfy assumption (H3), and let ug € O. Then there
is a mazimal T = T(ug) > 0 such that problem (2.1) has a unique solution
u € C([0,7); E1) N CH([0,7); Ep)-

The solution depends continuously on ug, in the sense that for eachw € O
and for each 7 € (0,7(w)) there are e = ¢(u,7) >0, H = H(u,7) > 0 such
that if

Uup € 07 ||U() - ﬁ||El S €,
then T(ug) > 7 and

Jut; o) — u(t; W) ey + llwe(tsu0) — we(t, W my < Hlluo — s, -

The original proof due to Da Prato and Grisvard was simplified and
written clearly in [5]. See also [33, Ch. §].

A geometric theory of fully nonlinear abstract evolution equations may
be developed, see [33, Ch. 9]. Here we quote the principle of linearized
stability and the construction of stable, unstable, and center manifolds of
stationary solutions made in [13], that will be used in the applications to
free boundary problems of section 5.

Without loss of generality, we assume that the stationary solution is 0.
In next Theorems 2.8, 2.9, 2.10, and 2.11 we shall assume that F' : O — Ej
satisfies (H3), O being a neighborhood of 0 in Fj, and that F(0) = 0.
Moreover we set

A= F'(0).
Theorem 2.8 The following statements hold true.

(i) If wa :=sup{ReX: X € 0(4)} <0, then for every w € (0,wp) there
are v, M such that if ||uo||g, < r then the solution u of (2.1) is defined
in [0, +00), and

lu(®)llz, + 1’ ()5, < M |lugllz,, > 0.



(i1) If wa >0 and inf{Re X : X € o(A), ReA > 0} > 0, then the null solu-
tion of v’ = F(u) is unstable in Ey. Specifically, there exist nontrivial
backward solutions of u' = F(u) going to 0 as t goes to —oo.

In the case where A is hyperbolic, i.c.,
o(A)NiR =0 (2.11)

a saddle point theorem may be shown. We denote by [’ the spectral projec-
tion associated to the subset o7 (A) of 0(A) with positive real part,

1
P=_— [ R(A A)dA,
2wt Jo
where C is any closed simple regular curve in {Re A > 0} surrounding
ot (A).

Theorem 2.9 Assume that (2.11) holds. Then there are positive numbers
ro, 71, such that

(i) There ezists Ry > 0 and a Lipschitz continuous function
@ : B(0,rg) C P(Ey) — (I — P)(Ey),

differentiable at 0 with ¢’'(0) = 0, such that for every ug belonging to the
graph of ¢ problem (2.1) has a unique backward solution v in C((—o0,0]; Ey),
such that

sup ||lv(®) ||z, < Ro. (2.12)
t<0

Moreover ||v(t)e ||, — 0 as t — —o0 for every w € (0,inf{ReX: X €
oH(A)).

Conversely, if problem (2.1) has a backward solution v which satisfies
(2.12) and ||Pv(0)||g, < 1o, then v(0) € graph .

(i1) There exist Ry, m1 > 0 and a Lipschitz continuous function
¥ B(0,m) C (I — P)(Ey) — P(Ep),

differentiable at 0 with '(0) = 0, such that for every ug belonging to the
graph of ¥ problem (2.1) has a unique solution u in C([0,+00); Eq) such
that

sup ||lu(t)|| g, < Ri. (2.13)
>0

10



Moreover, ||u(t)e“t||g, — 0 as t — +oo for every w € (0,~supo~(A)),
where 0~ (A) :={A € 6(4), Re A < 0}.

Conwversely, if problem (2.1) has a solution u which satisfies (2.13), and
(2 = PYu(0) [, 041.00) < 1. then u(0) € graph 1.
(ii) If in addition F € C*(O; Ey) and F®) is Lipschitz continuous for some
k € N, then v and ¢ are k times differentiable, with Lipschitz continuous
k-th order derivatives.

As in the case of ordinary differential equations, the construction of
center manifolds, or center-unstable manifolds, is more delicate. In addition
to (H3) and to F(0) = 0 we shall assume that the set {A € 0(A4) : Re A >
0} consists of a finite number of isolated eigenvalues with finite algebraic
multiplicity. We shall denote by P, the spectral projection associated to
it. The fact that the range of Py is finite dimensional is of fundamental
importance in the proofs.

Applying Py and I — Py we see that problem

is equivalent to the system

#'(t) = Aja(t) + P F(z(t) +y(t), t>0,
(2.14)
y'(t) = A_y(t) + (I — Po)F(z(t) +y(t), t>0,

with z(t) = Pyu(t), y(t) = (I — Ro)u(t), A+ = Ajpy(my) : Po(Eo) — Fo(Ed),
A = Ajr-pymy) + I — Ro)(Er) = (I — Po)(Ey).

We modify F' by introducing a smooth cutoff function p : Py(Ep) — R
such that

0< ple) <1, pla) =1 if flzllo < 1/2, plx) =0 if [|ofo > 1.

Since I%)(FEy) is finite dimensional, such a p does exist. For small » > 0 we
consider the system

2'(t) = Apx(t) + f(z(),y(¢), t >0,
(2.15)

y'(t) = A_y(t) + g(z(?),y(t)), t >0,

with initial data

z(0) = zo € Py(Ep), y(0) =yo € (I — F)(Ep), (2.16)

11



where

flz,y) = B F(p(z/r)z +y), g(z,y) =T — P)F(p(z/r)z +y).

System (2.15) coincides with (2.14) if ||z(¢)||z, < /2, and it is possible to
show that if r and the initial data are small enough, then the solution of
(2.15)-(2.16) exists in the large.

A finite dimensional invariant manifold M for system (2.15) with small r
may be constructed as the graph of a bounded, Lipschitz continuous function
v+ Po(Eo) = (I — Po)(Eh).

Theorem 2.10 Under the above assumptions, there exists r1 > 0 such that
forr <y there is a Lipschitz continuous function vy : Py(Ey) — (I—Fy)(E1)
such that the graph of v is invariant for system (2.15). If in addition F is k
times continuously differentiable, with k > 2, then there exists v, > 0 such
that if r < ry, then v € C*1, fy(k'l) 1s Lipschitz continuous, and

V(@) (Ae + [(2,7(x)) = Ayy(@) + g(a.7(z)), =€ Po(X).  (2.17)

Then it is possible to see that the graph M of v attracts exponentially
all the orbits which start from an initial datum sufficiently close to M.
Moreover each one of these orbits decays exponentially to an orbit in M, in
the sense specified by the next theorem.

Theorem 2.11 Let F be twice continuously differentiable. For every w > 0
such that w < —sup{Re A : X € o(A), Re A < 0} there are r(w), M(w)
such that if ||zollE, and ||lyo||E, are sufficiently small, then the solution of
(2.15)-(2.16) exists in the large and satisfies

ly(®) = v(z@)llE, < M(w)e™ llyo = v(zo) | my, 2 0. (2.18)

Moreover there is C(w) > 0 such that if ||zo|| g, and ||lyo||E, are small enough
there exists T € Py(Ey) such that
lz(8) = 2Ol + ly(8) = 7 Z@)llE, < Clw)e™ [lyo — (@)l 5, ¢ 20,

(2.19)

where Z(t) = z(t;y, T) is the solution of

Z=A 2+ fz+79(2); 2(0)=1. (2.20)

12



As a consequence, the problem of the stability of the null solution to
(2.1) in the critical case

sup{Re A: A € 0(4)} =0, (2.21)
is reduced to the stability of the null solution to a finite dimensional system.

Corollary 2.12 Let O be a neighborhood of 0 in Eq, and let F' : O — Ey
be a C? function satisfying (H3), with F(0) = 0. Assume that A = F'(0)
satisfies (2.21) and that o(A) NiR consists of a finite number of isolated
eigenvalues with finite algebraic multiplicity.

Then the null solution of (2.1) is stable (respectively, asymptotically sta-
ble, unstable) in F1 if and only if the null solution of the finite dimensional
system (2.20) is stable (respectively, asymptotically stable, unstable).

These stability results (precisely, Theorems 2.8, 2.9, 2.10, 2.11, and
Corollary 2.12) may be extended to the case where Ey and E; are real inter-

polation spaces D, (0, 00), D (6 + 1, 00) instead of continuous interpolation
spaces. See [33, Ch. 9].

2.3 Applications and drawbacks

Let us describe the applicability of the abstract theory in a simple significant
example, Q being a bounded open set in RY with regular boundary 9

ui(t, 2) = ®(D?u(t,z)), t>0, z €9,
Bu(t,z) =0, t>0, z € 09, (2.22)

u(0,z) = up(z), = €.

Here B is a first order differential operator with regular coefficients,

N
Bu = Z Bi(z)Diu(z) + v(z)u(z),
i=1

satisfying the nontangentiality condition

N

> Bilz)vi(z) #0, = €0, (2.23)

=1

13



where v(z) is the unit exterior normal vector to 052 at z. We may consider
also a Cauchy-Dirichlet problem,

ui(t, 2) = ®(D?u(t,z)), t>0, z€Q,
u(t,z) =0, t>0, z € 99, (2.24)

u(0,2) = up(z), = €.

The initial datum wug is a regular (at least, C2) function satisfying the
natural compatibility condition Buy = 0 at 952 for problem (2.22), or ug =0
at 0€ for problem (2.24). Moreover @ is a regular nonlinear function defined
in a neighborhood of the range of D%ug in RY 2, satisfying an ellipticity
assumption

N 59

s 2 9]
2 @(Q)&ﬁ] > vlg]®, z e, (2.25)

and the symmetry condition

*(Q) = &(Q) (2.26)

for every matrix @ with entrics close to the range of D%uy.
Let us see how we can apply Theorem 2.6 to problem (2.22). The choice
X =17(Q), D={peW>(Q): Bp =0 at 32} does not work, because

the function
F(p)(z) = ®(D*p(z)), =€, (2.27)

does not map D into X, unless ® has (not more than) linear growth. For
instance, if ® is a quadratic polynomial then F maps D into L/ 2(Q). Much
worse, even if ® has linear growth, F' is not differentiable unless @ is linear.

After LP and W?2P, the simplest choice for the spaces D and X seems
to be X = C(Q), the space of the continuous functions from € to R, and
D ={peC?Q): Bp=0at dN}. If & is smooth enough, assumption (H1)
is easily checked for the function F' defined in (2.27).

But assumption (H2) does not hold, unless N = 1. Indeed, F'(uy) is

the realization of the elliptic operator A in C(£2) with the above boundary
condition, where

AT S
(Ap)(z) =Y o (D7uo(z))Dip(z)Djp(z), = €Q (2.28)
ig=1 1
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which is sectorial in C(f2) thanks to the Stewart’s Theorems ([39, 40], [33,
Ch. 3]), but whose domain contains properly C2(€2). This is not due to the
lack of regularity of the coefficients, or to the boundary condition, but it is a
structural well known difficulty, shared by all the elliptic operators including
the Laplacian: if ¢ and A are continuous in some open set, ¢ is not
necessarily a C? function. Of course this difficulty disappears in dimension
1. So, we may apply Theorem 2.6 with X = C(Q) either in dimension N = 1,
or for special nonlinearities, for example F(u)(z) = ¥(Au(x)), where we can
take D as the domain of the Laplacian in X. For the details, see [33, Ch.
8].

If we replace C(Q) by its subspace C?(Q) of the bounded and uniformly
6-Holder continuous functions, and we take D = {¢ € C*t9(Q) : By =0 at
0N}, the function F' defined in (2.27) satisfies (H1) if ® is smooth enough,
and the classical Schauder type theorems plus generation theorems in Holder
spaces (see e.g. [33, Ch. 3]) show that also assumption (H2) is satisfied. So,
Theorem 2.6 may be applied, and if the compatibility condition F(uo) € D
holds, we get a local existence and uniqueness result. It is well known that
D is not dense in X, and that the closure of D in X is a set of little-Holder
continuous functions: D = h?(Q).

The space h?(Q0) may be characterized as the subset of C?t¢(Q) consist-
ing of the functions ¢ such that

lim sup lp(z) — oY)l _ 0,

h—=0 2 yeQ, 0<|z—y|<h |‘T - y|9
and it coincides with the closure of C*®(Q) in C?(Q) if 9Q is C*°. Similarly,
h*+%(Q) is the subset of C?*Y(Q) consisting of the functions with second
order derivatives in h%(Q), and it coincides with the closure of C*°(Q) in
C*(Q) if 99 is C™.

The assumption F(ug) € D holds provided ug € h?T9(Q2). This ex-
tra regularity assumption on the initial datum is preserved throughout the
evolution because Theorem 2.6 implies that u'(t) = F(u(t)) belongs to
(X,D)o0c C D for t > 0. Therefore, the choice of working in Holder
spaces leads naturally to little-Holder spaces, and we can choose X = h? (),
D = {p € h?*%Q) : By =0 at 90} from the very beginning. Indeed, a
Schauder type theorem and a generation of analytic semigroups theorem
hold in the space of the little-Hblder continuous functions, as follows (see
e.g. [33, Ch. 3]):



Theorem 2.13 Let 0 < 6 < 1 and let 9Q be of class h*1Y. Assume that
the coefficients a;;, b;, ¢ are in h®(Q) and satisfy the ellipticity condition

N

Zau( )fzfj >0, :L‘EQ

ij=1

and that the coefficients f3;, v are in ' (0Q) and satisfy the nontangen-
tiality condition (2.28). Let A, B be the differential operators defined by
A= Zi\,szl aZ](L)DL] + Zzlil b,D; +c¢, and B = Z_i\il BiD; + 7.

If o € Nys1W2P(Q) is such that Ap € h?(Q), Bp = 0 at %, then
@ € h2T9(Q), and there exists C > 0, independent of ¢, such that

@ity < CUAL oy + [[@lloo)-

The same conclusion holds if the boundary operator B is replaced by the trace
operator.

Theorem 2.14 Let the assumptions of Theorem 2.13 hold. Then the real-
ization of the operator A in h%(Q), with domain {p € R*(Q): Bp =0 at
o0}, is sectorial in h?(Q).

The application of Theorem 2.6 gives the following result.

Theorem 2.15 Let 0 < 6 < 1. Assume that Q is of class h®tY, let the
coefficients 3;, v € R0 (00) satisfy the nontangentiality condition (2.23),
and let ug € h*1(Q) satisfy the compatibility condition

Zﬁy )Diug(x) +v(z)uo(r) =0, z € 0.

Let ® be a C? function defined in a neighborhood of the range of D?uy,
satisfying the ellipticity condition (2.25) and the symmetry condition (2.26).

Then there exists a mazimal T > 0 such that problem (2.22) has a solu-
tion u(t,z) such that t — u(t,z) belongs to C([0,1); h“o( )) N CY(0,7);
r?(Q)). For every e € (0,7) and B € (0,1), u(t,-) € Cﬁ((O,T —£]; A2T(Q))
and u(t,-) € Cg((O,T — ;9 (Q)). u is the unique solution to (2.22) with
such regularity properties. Moreover, it depends continuously on the initial
datum ug in the sense specified by statement (iv) of Theorem 2.6.
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A further difficulty arises if the boundary operator B is replaced by the
trace, i.e., if we consider problem (2.24) instead of (2.22). Simple coun-
terexamples in dimension 1 show that the realizations of second order ellip-
tic operators with smooth coefficients and Dirichlet boundary condition in
Hoélder and little-Holder spaces are not sectorial in general. The difficulty
is due to the Dirichlet boundary condition, and it may be avoided replacing
C?(Q) or () by their subspaces consisting of functions that vanish at
the boundary. See [33, Ch. 3] for a discussion. In the case of the choice
X = hY(QY) = {¢p € K¥(Q) : ¢ = 0 at 0N}, the domain of F’'(ug) is the
subset of h?t?(Q) consisting of the functions ¢ such that ¢ and F’(ug)e
vanish at 9€; in general it does not coincide with the domain of F'(u;) for
u1 # ug. Therefore we are not able to find a common domain D to apply
Theorem 2.6, unless ® is of a special type. For instance, if instead of a
function ® = ®(D?u) we have ® = ®(D?u, Du,u) and ®(q,p,0) = 0 for
each ¢ and p, we are done, and a theorem similar to (2.15) holds.

Now let us see how we can apply Theorem 2.7. The space E is still

C(), F'(ug) is the realization of the operator A defined in (2.28) with
homogeneous boundary condition, and

Dpr(ug) (@) = h**(90),
for o < 1/2,
Dy (@) = {pp € B**(Q) : By = 0 at 99},

for @ > 1/2. See [33, Ch. 3].
If up and 9 are smooth enough, that is 9Q € h?T2¢ 4y € h2H2%(Q),
Theorem 2.13 yields

Dproy(@+1) ={p € RAT24(Q) : By = 0 at 99},
for @ < 1/2,
Doyl +1)={p € RET24(Q) : By =0, B(F'(up)p) = 0 at 99},
for a > 1/2.
Fixed 6 € (0,1) we take a = 6/2 € (0,1/2) and we may apply Theorem
2.7, with Eq = h9(Q), By = {¢ € h*(Q) : By = 0 at 9Q}. Tt is easy to
see that the regularity assumption in (H3) is satisfied if ® is a C? function,

and the other assumptions in (H3) are satisfied thanks to Theorems 2.13
and 2.14. The final result is the following.
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Theorem 2.16 Let 0 < 6 < 1. Assume that O is of class h*t?, let the
coefficients 3;, v € R0 (00) satisfy the nontangentiality condition (2.23),
and let ug € h*+(Q) satisfy the compatibility condition

Zﬁz )Diu(z) + y(z)u(z) =0, = € 9.

Let ® be a C? function defined in a neighborhood of the range of D?ug,
satisfying the ellipticity condition (2.25) and the symmetry condition (2.26).

Then there exists a mazimal T > 0 such that problem (2.22) has a
unique solution u(t,z) such that t — wu(t,z) belongs to C([0,7); h**%(Q))
N CY[0,7); K8 (Q)). It depends continuously on the initial datum ug in the
sense specified in Theorem 2.7.

So, there is not much difference between this theorem and Theorem 2.15.
Here we do not get extra time regularity, but ® can be taken of class C?
instead of C3. Substantially, the applications of Theorems 2.6 and 2.7 to
problem (2.22) give the same results.

In any case, problems with nonlinear boundary condition of the type
G(Du(t,z)) = 0 for z € 99, with nonlinear smooth G, cannot be treated
by a direct application of Theorems 2.6 and 2.7, even in the case of linear
®. First, the boundary condition has to be incorporated in the domain D
(if we use Theorem 2.6) or in the domain F; (if we use Theorem 2.7), but
D and E; have to be linear spaces and the boundary condition is nonlinear.
Second, and more important, even if we rewrite the boundary condition as
a linear boundary condition plus a rest and then try to get rid of the rest
using suitable trace theorems, the domain of the linearized operator changes
with ug. Take for instance ®(D?u) = Au, X = h?(Q). Assuming that the
linearized operator

N
© > DiG(Dug(x))Dip(x), =€ I
=1

is nontangential, the realization of the Laplace operator in h¢(Q), with do-
main D = {p € h?(Q) : 27 1 DiG(Dug(z))D;p(x) = 0 at 02} is in fact
sectorial, but its domain strongly depends on wy.

For this type of problems, a direct approach in Hoélder spaces seems to
be simpler and more fruitful than applying abstract results. This approach
is described in next section.
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3 Equations and systems in Holder spaces

Throughout this section we shall consider an open set Q C RY with uni-
formly C?*? boundary, 0 < @ < 1. This means that there is » > 0 such
that for each zg € 9Q there is a C*1? diffeomorphism ¢ from the open ball
B(zg,r) centered at zo and radius r to the unit open ball in RY with the
property that p(Q N B(zg,7)) = {(z,y) € Rx RN="1: |(z,y)] < 1, z < 0};
moreover, the C2t% norm of the diffcomorphisms and of their inverses are
bounded by a constant independent of xy.

For k € N, CF(Q) denotes the space of the functions with continuous
bounded derivatives in €, and for ¥k € N, 0 < 6 < 1, C*t9(Q) denotes
the subspace of C(€2) consisting of the functions with uniformly 6-Holder
continuous k-th order derivatives.

We shall use the parabolic Holder spaces C?%/29(I x Q), C1/2+0/2.1+0(1 x
Q), C1H0/2240(1 % Q), T being a real interval, 0 < # < 1, with the usual
meanings and norms.

We recall that a function w belongs to C%2¢(I x Q) if and only if w is
bounded and moreover

[w]corao gy = suplw(s; £)]corz gy + suplw(t, )] com) < oo
zeQ) tel

In this case we set
||“)||(:9/2,0(1X§) = ||w||oo + [“’]CG/M([XQ)-

w € CY/2H0/2140(1 % Q) if and only if w and its first order space deriva-
tives D;w are bounded and moreover

N
[11)]Cl/z+6/2,1+6([><§) = SUE[’U](.’ fl;)](jl/2+9/2(1) + Z Sup[Diw(t, )]Ce(ﬁ) < 0.
zeQ i=1 tel
In this case we set
N
||7U||C1/2+6/2,1+0([><Q) = [lwlloc + Z [ Diwlloc + [“)]01/2+9/271+9(1x§)'
i=1

The space C1+9/2:2H0(T x Q) is defined similarly. w belongs to C1+9/2:2+0(]
xQ) if and only if w is bounded, there exist the derivatives wy, D;;w for 4,
j=1,...N, and they belong to C?/20(I x Q). It is easy to see that in this
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case w belongs also to C/2+0/2140(T x Q). The norm is
||w||c1+e/2,2+e(1><§) = ||’IU||(;1/2+9/2,1+0([XQ) + ||wt||ce/2,9(1><§)

N

=+ Z ||Dij'll)||cg/2’g(]><§).

ij=1
The spaces C%20(] x 9Q) and CV2H0/2140(1 % 9Q0) are defined sim-
ilarly, by means of a smooth (C?t%) atlas for Q. There exists Cy > 0
such that for every w € C?%29(I x Q) we have lwircaallcerzerxan) <

Collwll o261 <), and similarly for every w € CV/2H0/2140(T x Q) we have
||w|1xan||cl/2+9/2,1+9(1xas2) < Ce||w||cl/2+e/2,1+9(1X§)-
Let us come back to problem

us(t, z) = ®(D?u(t,z)), >0, z €,
U(Du(t,z)) =0, t >0, z € 09,

U(O,:l?) = U()(!l?), T e ﬁa

where wug is a regular function defined in €2, and ®, ¥ are regular functions
defined in a neighborhood of the range of D?ug and of Duyg, respectively.
We need also symmetry and ellipticity assumptions of the type (2.26), (2.25)
on @, as well as a nontangentiality assumption on W. Precisely, we assume
that there are open sets @; C RY 2, Oy C RY such that

N

> Si@)s@ >0, Qe 0, E€RY, (3.1)
ig=1 1"
Q) =2(Q"), Qe (3.2)
and
Z 8pz £) #£0, pe Oy, z €, (3.3)

where v(z) is the unit exterior normal vector to 99 at x.

Under these conditions, problem (1.1) is the simplest significant example
of a fully nonlinear parabolic problem with fully nonlinear boundary con-
dition. We give a complete proof of the local existence theorem for (1.1)
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because it exhibits the typical difficulties of fully nonlinear problems, but
the technical points are reduced to the minimum and it is easy to see to
which extent the proof itself may be generalized.

Also in this case we need an optimal regularity theorem for linear equa-
tions, the popular Ladyzhenskaja — Solonnikov — Ural’ceva Theorem ([28,
Ch. 4]). In next Theorem 3.1, A4 is a linear second order differential opera-
tor,

N N
(Av)( Z (O)Dijo() + Y _bi(&)Div(€) + c()v(¢), €€Q, (3.4)
j=1 i=1
satisfying the ellipticity condition
N J—
> aij©mny > vinl®, €€, neRY, (3.5)
ij=1

for some v > 0, and B is a linear first order differential operator,

N
(Bu)(&) = y(&v(&) + > _ Bi(&)Div(é), € € 99 (3.6)
=1

satisfying the nontangentiality condition
N
Y Bi(Oui(€) #£0, & €. (3.7)
i=1

Theorem 3.1 Fiz § € (0,1) and T > 0. Let Q be an open set in RY
with uniformly C?*% boundary. Let a;;, b, ¢ € C%(Q) satisfy (3.5), and
let Bi, v € CY/2H0/2140([0, T] x ON) satisfy (3.7). Define the operators A
and B by (3.4), (5.6), respectively. Then for every f € C%22([0,T] x Q),
g € CV2H0/2140(10, T] x0N) satisfying the compatibility condition

Buwy(0,-) = ¢(0,-) in 09, (3.8)

the problem

wy=Aw+ f, 0<t<T, £€Q,
Bw=g¢g, 0<t<T, &€, (3.9)

w(0, 1) = wy, £€Q,
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has a unique solution w € C'*0/22+0([0.T] x Q). Moreover there exists
C = C(T) > 0, increasing with respect to T, such that

leoll grorzavo o gy <
(3.10)

< ClIfllgorze o, ryxay + 9llcrrzrorsite o mxany T lwoll 2oy )-

Now we are ready for the proof of the local existence and uniqueness
theorem.

Theorem 3.2 Let ) be an open set in RY with uniformly C*T boundary,
0<0<1. Let ®: O1 > R be a C? function satisfying (3.2), (3.1), and let
U : Oy R be a C? function satisfying (3.3).

Then for each ug € C*T9(Q) such that the range of D*uq is contained
i Oy, the range of Dug is contained in Oo, and satisfying the compatibility
condition

U(Dug(z)) =0, x € I,

there exist T > 0 a unique u € C'H/2240((0,T] x Q) that solves (1.1) in
[0,T] x Q.

Proof — Let A and B be the operators defined by

o _
Ap(z) = 3 —(D?ug(z))Dyijp(x), =€,
ig=1 qij
N 0w _
By(z) = Z TP(DUO(@)DW@), r €Q
=1 ?

Moreover, set
Y = {ue 22400, T x Q) : u(0,-) = ug,

||u - u0||()1+9/212+0([0,ﬂ><§) < R}7

where the positive numbers T and R have to be chosen later.
The solution to (1.1) is sought as a fixed point of the operator I' defined
in Y by I'u = w, w being the solution of

we(t, v) = Aw(t,z) + ®(D?u(t,z)) — Ault,z), 0<t<T, €9,
Bw(t,z) = Bu(t,z) — V(Du(t,z)), 0<t<T, x € 9,

w(0,z) = up(x), = € Q.
(3.11)
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We have to choose T' and R in such a way that I" is well defined, it maps
Y into itself, it is a contraction with constant less than 1, and the unique
fixed point of I" in Y is in fact the unique solution to (1.1).

For T be well defined, for every u € Y the ranges of D?u(t,-) and of
Du(t,-) need to be contained in O7 and in Os. If O; contains the closure of
the neighborhood of the range of D?uy with radius 7, and Oy contains the
closure of the neighborhood of the range of Dug with radius r9, we take T,
R such that

T2R < r1/2, T'?H2R < ry)2. (3.12)

So, the compositions ®(D?u) and ¥(Du) are well defined for each u € Y, and
they belong to C?/29([0, T] xQ), and to C/2+0/2140(]0, T]x Q), respectively.
The compatibility condition (3.8) holds, and then by Theorem 3.1 problem
(3.11) has a unique solution w € C1+9/2:2+0([0, T] x Q).

Let us prove that I' is a 1/2-contraction, for suitable T' and R. The
constants C(T') given by Theorem 3.1 increase with T'. So we take

T<1. (3.13)
For each u, v € Y, T'u — T'v is the solution to (3.9) with wy = 0 and

ft,e) = (Dult,)) — D(D(tz)) — Alu — v)(t,2)
_ /0 " DB((0D?ult.x) + (1 — 0)D(t,2)) — DB(Duo(z)).
D?u(t,z) — D?v(t,z))do,
g(t,z) = Blu—nv)(t,x) — U(Du(t,z)) + T(Dolt,))
_ ‘/[;I(D\P(Duo(w)) _ DU(eDult, ) + (1 — o) Du(t, z),

Du(t,z) — Dv(t, x))do.

Theorem 3.1 gives now,

||FU. — F17||01+9/2,2+6([07T}><ﬁ) S

< C(Hf”(;e/z,e([o,ﬂxﬁ) + ||9||cl/2+€/2,1+9([0,:r]Xﬁ))a

where C = C(1).
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Let us estimate ||f||C9/279([0 T]xo)- Since u(0,-) = v(0,-) = uyg, for each
t € [0,T] we have

ID*u(t, ) — D*ugl| o) < TR, [|D*0(t,-) — D*ugllpe(e) < TY*R,
and
1Du(t, ) = D*o(t, ooy < Tt = vl crsoressnozycay:
Therefore, for ¢, s € [0,T] and z € Q we have

fltz) = f(s,2) =
- /0 DB Dt )+ (1 — 0)D?u(t,2)) — DB(D?un(x)).
D2u(t,x) — D*v(t, z))do
—/01 (D®(oD2u(s,z) + (1 — 0)D?v(s, z)) — D®(D2uy(z)),
D?u(s,z) — D?v(s, z))do
= /01 (D®(oD?u(t, =) + (1 — o) D?v(t, z))
—D®(0cD?u(s,z) + (1 — 0)D?v(s, 7)), D*u(t,x) — D*v(t,z))do
+/01 (D®(0D?u(s,z) + (1 — 0)Dv(s, z)) — DB(D?ug(z)),

D?u(t,x) — D?v(t, z) — D?u(s, z) + D?v(s,z))do

Let Ly be the supremum of | D?®| in the neighborhood of the range of D?ug
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with radius r;. Then we have

[f(t,2) — f(s,2)] <

1
< [ Lifott =577 (1= o) = ) DPu(t,) ~ D20(t, ) ey
J0

1
+ /L1(0T9/2R+(1—U)T9/23)da(t—s)9/2-
0

[D?%u(-, z) — DQU(-,w)Hc@/?([O,T])

<20 TPR(t = )2 |u = vl prro2ato o 170

Recalling that f(0,z) = 0, so that ||f(-,2)[lc < T0/2[f('a$)]c9/2([O,T])’ we
get for each z € Q

1 @lleorqory < 2L1(T" +T7) Bl = vl crsoreavogoy cay:
To evaluate [f(%,-)]co(q) we recall that

[Plco @y < llellcolloomy + [Ples @) |9 lloo-
Therefore
[f(t7 )]09(5) <
1
< [ IDBDult, ) + (1 - )Du(t, ) ~ DE(D uo)oudr
0
'[D2u(ta ) - D2’U(t, )]C’e(ﬁ)
1
+ / [D@(0D?u(t, ) + (1 = 0)D?v(t,-)) — DB(D?ug)] e gy do
J0

'HDQu(tv ) - D2’l)(t7 )Hoo

1
< / Ll(ata/QR +(1- U)ta/QR)dUHU - U||cl+€/2,2+€([o,T]x§)
0

1
+/ L (O'R + (1 - U)R)d(f TH/QHU - 7)”01+9/2’2+5([0,T}><§)
0

< 2L\ T2R||u — U||Cl+€/2’2+9([O,T]X§)'
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Summing up,
11l o2 o ey < L1(AT% + 2T°) Rl|u — vl cavorzavo oy (3-14)

Let us estimate [|gl|c1/2+0/2,140 (0 11 x00)- We recall that there exists Cy >
0 such that ||9”Cl/2+9/2’1+9([0,T]xBQ) < Ce||g||C1/2+9/2,1+e([0,T]><§)-

Let Ly, L3 be the suprema of [D?¥|, |D3¥| in the neighborhood of the
range of Dug with radius r3. For each x € Q, the estimate for the seminorm
lg(-, )| crr240/2(10,77) 18 obtained as the estimate for || f (-, z)llcesz (o 17)- We
get

lgCs@)lerrzsaraqory < 2L2(T202 4 T Rllu = vll oo o,y
To estimate ||g(%, )|l o140 (@) we write down the first order derivatives of g:
Dig =

1 N
/0 Z(Dk\II(Duo) — Dy ¥ ((ocDu(t,x) + (1 — 0)Dv)(Djxu — Dyv)do
X k=1

1 N
—/ S (Diy (0 Du+ (1 — 0)Dv) Dyifou + (1 — o))
0 k=1
—ij‘IJ(DU[))DjiU(]) (Dku - Dki))d()’
= hz(t7x) + mi(ta T)
The functions h; are estimated like f, and we get

1hilloo < NL, TR ||lu — 1)||Cl+e/2,2+0([07ﬂx§)7

[hi]C"(ﬁ) < 2NL2(T0/2 + T1/2+0/2)R ||U, - ’U||Cl+€/2,2+9([0,T]X§)-

Concerning the functions m;, we recall that
1/246/2
||Dku - Dk'UHoo < T /2+0/ ||u - ’U||Cl+e/2,2+6([07ﬂ><§)7

and from the inequality

[eleo @y < Kllellss® 1 Dol
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we get
[Dku(ta ) - Dk’”(tv )HC‘)(Q)

< K|[|Du(t, ) — Do(t, ) |li *IlD*u(t, ) — D*u(t, )%

< KTI/QIIU - U||cl+€/2,2+€([0,T]x§)'
Since

[ Dgj V(o Du+ (1 — 0)Dv)Dji(ou + (1 — o)v) — Dy ¥ (Duo) Djiuoll o iy

< C(L37 R7 ||u0||C2+9(§))7
with C increasing in all its arguments, we get

||mz'||ce(§) < KC(Ls, R, ||“0”(;2+9(§))T1/2||U - U||cl+€/2,2+9([o,T]x§)-

Summing up, we get

g1l /2vo /2,040 (o iy <
(3.15)
T%?K(Ly, L3, T, R, [[uoll 2o )l — vl crsorz.240 10 17550

with K (Lo, L3, T, R, ||ug|| 246 (ﬁ)) positive and increasing with respect to all
its arguments.

Taking into account (3.14) and (3.15) we obtain that I' is a 1/2-contrac-
tion provided

1
C L1(4T9/2 + 2T0)R+T9/2K(L2,L3,T, R, ||U0||02+9(§)) < 2 (316)

Now we check that I' maps Y into itself if T', R are suitably chosen. For
each u € Y, we write I'u = I'(u — ug) + T'up. We already know that if (3.12),
(3.13), (3.16) hold then

R
[|u — u0”01+9/2,2+€([0,T]><ﬁ) < 3

N —

| (w — U())HC1+9/2,2+6([0’T]X§) <

Therefore, I' maps Y into itself provided ||[T'uo —uoll 1672240 g 17m0) < B/2-
The function w = T'(ug) — ug is the solution to (3.9) with f = ®(D?%uy),
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g = —U(Dug), wo = 0, and its C'*+9/22+9([0, T] x Q) norm is not small in
general if T' is small. We only have, by estimate (3.10),

[Tuo — woll grtor2.240 o 17xm) <

< C([|®(D%uo)

cor28([0,1)xq) T | ¥ (Duo) HCl/2+9/271+9([0,T]><69))

= C(|®(D*uo) | oy + T (Duo) [l crve o1 x00))»
with C = C(1). Then I maps Y into itself if
R > 2C(||9(D*uo)ll oo @) + 1% (Duo)llcr+ojo,71x00))- (3.17)

In conclusion, if (3.12), (3.13), (3.16), (3.17) hold, I" is a 1/2-contraction
that maps Y into itself, so that it has a unique fixed point « in Y.

To finish the proof we have to show that u is the unique solution to (1.1)
in C149/2240([0, T] x Q). This is done in a standard way.

If (1.1) has two solutions u and v, set ¢y = sup{t € [0,7] : u = v in
[0,£] x Q}. If tg = T then u = v in the whole [0,7] x © and the proof is
finished; if £y < T we consider the initial-boundary value problem

wi(t, z) = ®(D?w(t, ), t>ty, x €,

U(Dw(t,x)) =0, t>ty, x € I, (3.18)

w(ty, z) = wo(z), = € L,

where wo(z) = u(to, z) = v(to,z). The above proof shows that (3.18) has a
unique solution in the set Y’ = {w € C'9/22H0 ([t to + T']x Q) = w(ty, ) =
wo, [|w — woll izt to-17xm) < B’} provided R is large enough and
T' is small enough. Taking R’ larger than |ju — u(to, Mer+or2.240 (1, 1150
and than ||v — v(to, ')||C1+g/272+9([t0771}><§) we get u = v in [tg, to + 1] X Q, and
this contradicts the definition of #y. Therefore, tg =T and v =v. O

With a little extra effort it is possible to prove that the solution depends
continuously on the initial datum.

Corollary 3.3 Under the assumptions of Theorem 8.2, fix any ug € C*10(Q)
such that the range of D?uq is contained in Oy, the range of Dug is con-
tained in Oy, and VU (Duy(z)) = 0 at 0. Then there exist r > 0, K > 0
such that for each vy € C*(Q) with |Jvg — u0||02+9(§) < r and satisfying
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the compatibility conditions U(Duvg(z)) = 0 at 09, the solution v(t,z) of
problem (1.1) with initial datum vg is defined in [0,T] x Q, where T > 0 is
given by Theorem 3.2, and

llu— U||Cl+9/2»2+9([0,T]x§) < Kllug - UOHCz+9(§)-

Proof — We follow the notation of the proof of Theorem 3.2. If we take
r <ri/2,r <re/2 and we define

Yi = {ue 022490, 7] x Q) : u(0,:) = vy,

Hu - ’UUHCI+9/2,2+9([O,T]X§) < R},

with 7" and R chosen as in the proof of Theorem 3.2, then for cach u € Y] the
ranges of D?u and of Du are contained in the neighborhoods of the ranges of
D2uq and of Dug with radii ry, ro, respectively, thanks to (3.12). Since v —v
is a solution to problem (3.9) with f(¢,z) = ®(D?u(t,z)) — ®(D?*v(t,z)) —
Alu — v)(t,x), g(t,z) = B(u —v)(t,z) — U (Du(t,z)) + V(Dv(t, z)), wy =
uo—vg, combining estimate (3.10) with the estimates of the proof of Theorem
3.2 we get

1
Hu_UHCH"/Z?M([O,T}XQ) S C <2 Hu_U“C’1+9/2v2+9([0,T]><ﬁ)+ ||U()—'U0||02+9(Q)> s

and the statement follows with K = 2C. O

Reading the proofs of Theorem 3.2 and of its corollary we can realize
that they may be extended to more general situations.

First of all, we may allow more general nonlinearities, such as ® =
®(t, z,u, Du, D*u) and ¥ = U(t, z,u, Du). Sec c.g. [33, Ch. 8]. The nonlin-
ear boundary condition may be replaced by a Dirichlet boundary condition,
u(t,z) = g(t,z) with g € C'H9/22+9([0, T] x 9€Q), and the proof comes out
to be shorter.

Second, the nonlinearities may be also nonlocal: the essential property
of ® that we used in the proof was just that the function F(u) = ®(D?u) —
Au is differentiable near ug, with locally Lipschitz continuous (null at wug)
derivative, as a function from CZ(Q) to Cy(Q?), and from C?*(Q) to C4(Q),
and moreover that

| F )l oy <

||F/(“)||1,(c§(§),cb(ﬁ))HUH()HG(Q) + ||FI(U)||L(02+9(§),09(§))||U||cg(ﬁ)-

29



Third, the proof is not confined to a single second order equation but
it works as well for higher order equations and systems. This is because
optimal regularity theorems in parabolic Holder spaces similar to Theorem
3.1 are available for higher order equations and systems ([37, 34]). A detailed
proof for a general class of second order systems with Dirichlet boundary
condition is in the paper [1].

A completely different approach is in the paper [24].

4 Existence in the large and stability

Existence in the large for arbitrary initial data is a hard task in the fully
nonlinear case. The results available up to now concern only second order
equations. The difficulty is due to the fact that we need a priori estimates
in a very high norm, substantially in a C1+9/220 norm to get existence in
the large; therefore the nonlinearities have to satisfy severe restrictions. See
the books [25, 30] for further detailed discussion and comments.

On the other hand, existence in the large and stability for initial data
close to stationary solutions or more generally to established given solutions,
is a quite developed subject.

For initial data close to stationary solutions, the proof of the local exis-
tence Theorem 3.2 is easier, and it can be extended to a very general class
of perturbations. We quote a result from [7], concerning problem

u(t,€) = Au+ F(u(t,))(€), €9,

Bu = G(u(t,-)) (&), &€ 09, (4.1)

u(0,8) = up(§), €€Q.

Here the stationary solution is v = 0. In [7] a bounded Q is taken into
consideration, but the proofs are easily extended to unbounded open sets.
The assumptions on F' and G are the following.

(H4) F: B(0,R) C CZ(2) — C,(Q) is continuously differentiable with Lip-
schitz continuous derivative, F(0) = 0, F'(0) = 0 and the restriction
of F to B(0,R) C C?**%(Q) has values in C%(Q) and is continuously
differentiable; G : B(0,R) C C}HQ) — Cy(09) is continuously differ-
entiable with Lipschitz continuous derivative, G(0) = 0, G'(0) = 0 and
the restriction of G to B(0, R) C C?*9(Q) has values in C'*9(9Q) and
is continuously differentiable.
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Theorem 4.1 Let Q and the operators A, B defined in (3.4), (3.6), satisfy
the assumptions of Theorem 3.1. If (H}) holds, for every T > 0 there
are 7, p > 0 such that (4.1) has a solution v € C/2240([0,T] x Q)
provided ||u0H(,2+g @ < p- Moreover u is the unique solution in B(0,r) C

Cl+0/2 2+0([0 T] % Q)
Proof — Let 0 < r < R, and set
K (r) = sup{[|[F' ()l (c2+0@),c0@) © P € B(0,1) C e (D)3

H(r) = sup{||G' ()l (C2+6(),c1+0(00)) * P € B(0,7) C C*T(Q)}.

Since F'(0) =0 and G'(0) =0, K(r) and H(r) goto 0 as r — 0. Let L >0
be such that, for all ¢, 1 € B(0,r) C CZ(Q) with small r,

IF () = F' W)z @).co@) < Ll = ¥llez@)

IG" () = G (D)l e @.c00)) < Llle = blloy @)

For every 0 < s <t < T and for every w € B(0,r) C C1H0/22+0([0,T] x Q)
with 7 so small that K(r), H(r) < oo, we have

[E(w(t, Nieoy < K wt, Mearogy,  I1F(wlts-) = Flw(s, )lle,m) <

Lrfjw(t,-) = w(s, ez < Lrlt = sI2lwll crvoazro o,y

and similarly
1G(w(t, Dllereaay < HE)llwt, Mooy < Hr)llwllcrvo200 0,140,
1G(w(t, ) — G(w(s, - )lle,o0) <

Lrllw(t, ) = w(s, ez ) < Lrjt = s|PH02 wl| prso 2040 g0 173

Therefore, (t,£) — F(w(t,-))(&) belongs to C%29([0,T] x Q), (t,¢) —
G(w(t,-))(€) belongs to C1/2H0/2140([0, T] x 8Q) and

{ IE ()l gorzoo,rxay < (K () + Lr)l[wl] corairarz (0,11 x5):

1G(w)

c1ee/2146 (0 T xo0) < (2H (1) + LT)Hw”Cl+9/272+9([0,’1"]x§)'
(4.2)
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So, if ||wo || c2+e (@) is small enough, we define a nonlinear map
I : {weB(0,r)c C"/2249([0, T] x Q) : w(-,0) = we}

N Cl+9/2’2+0([0,T] % 6)7
by I'w = v, where v is the solution of

vi(z,t) = Av + F(w(t,))(z), 0<t<T, z €,
By = G(w(t,"))(z), 0<t<T, €0,

v(0,x) = wo(zx).

Actually, thanks to the compatibility condition Bwy = G(wg) and the regu-
larity of F(w) and G/(w), the range of I" is contained in C1+¢/2:2+0([0, T|x Q).
Moreover, Theorem 3.1 gives the estimate

||U||cl+9/2,2+e([o,T]X§) <
Clwoll oo 3y + IF (@)l oz o210 + G l/asarzaro o o)
with C = C(T), so that
IT(w)ll 14072210 (0 1wy <
Clllwoll gz+e gy + (K (r) + 2Lr + 2H (r))|wll crvos2.240 (o 1751 )-
Therefore, if r is so small that
C(K(r) +2Lr +2H(r)) < 1/2, (4.3)
and wg is so small that
||w0||02+9(§) <Cr/2,
I’ maps the ball B(0,r) into itself. Let us check that I' is a 1/2-contraction.
Let wy, we € B(0,1), w;(-,0) = wo. Writing w;(t,) = w;(¢), i = 1,2, we

have
[Twy = Twal crver2.240 0 1y i) <

CUIF(w1) = F(w2)llcor2o o 155

+||G(wr) — G(ws)

Cl/2+9/2a1+9([0,’l’}Xé’Q))’
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and, arguing as above, for 0 <¢ < T,

IF(wi(t,)) = Plwa(t. Do <
K ()i (t,-) = walt, )| oy < K@) ot — sl grsornasogo e,
|G (wi(t, ) = Glus(t,)llerony <

H(r)llwi(t, ) — walt, ) 2oy < H(r)llwi — wallcreorz.24e (o 17400
whilefor 0 < s<¢t<T

[E(wi(t,-)) — Fwa(t, ) — Fwi(s, ) — Fwa(s, )l g, @ =

1
/O Fown(t,) + (1 — 0)wa(t, ) (wi (£, ) — wa(t, )

—F'(owi(s,) + (1 — o)wa(s, ) (wi(s, ) — wa(s,-))do

Cy()
1
< [P omn e+ (1= ot ) = Floun(s.)+ (1 = ahun(s. )
(wr(t, ) — wa(t, ))dol o,
1
[ (5. 102 = () = 15, + w5, D ey

<

no|

(Jwr(t,-) —wi(s; Moz + lwa(ts ) = w2 (s, M2 @)
Twr(6,) = ws(t, ) e
+LTle(t, ) - ’11)2(t, ) - Wi (57 ) + w2(37 ))”Cl?(ﬁ)

< 2Lr(t = 5)2|lwi — wall gareszave(po 7y
and similarly

1G(wi(t;-)) = Glwa(t, ) — Glwils, ) — Glwal:8))llc, 00

< 2Lr(t — )22 lwy — wall g1 2.a4e 0 1)
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Therefore,

ITwy — F'U)QHC1+9/272+9([07T]X§)

IN

C(K(T‘) + 2Lr -+ ZH(’I”))H’U)l - 11)2||Cl+9/212+0([0,T]X§)

1
< §||UJ1 - w2||01+9/2,2+e([0,T]X§)7

the last inequality being a consequence of (4.3). The statement follows. [

In our example (4.1), assumption (H4) is satisfied with F(¢) = ®(D?¢)—
Ap, G(¢p) = U(D¢) — Bo, if &, U satisfy the assumptions of Theorem 3.2,
where 01, Oy are neighborhoods of 0 in RY 2, RY respectively, ®(0) = 0,
U (0) =0, and A, B are the operators

oo _
Ap(z) = T(O)Di]’@(w)v z €1,
ig=1 Y
N
ov _
By(z) = Z T(O) ip(z), T€Q
= Pi

Theorem 4.1 says that if 0 is a stationary solution then the solution
to (4.1) is defined in an arbitrary large time interval provided the initial
datum is small enough. The next natural question is now the stability of
the null solution. We shall see that the principle of linearized stability holds,
and that in the hyperbolic case local stable and unstable manifolds may be
constructed, just like in the case of ordinary differential equations. To do
this we shall see again our nonlinear problem as a perturbation of a linear
one, and the main tools will be optimal regularity / asymptotic behavior
results for the linear case, stated in the next section.

4.1 Asymptotic behavior in linear problems

Let us consider again the operators A and B defined in (3.4), (3.6). The

realization A of A with homogeneous boundary conditions in X = C(Q),
i.e., the operator with domain

D(A) = {p € Cp(Q) Nps1 WEP(Q) = Ap € Cb(Q), Bep(x) =0, = € IQ}

Ap = Ap, € D(A),
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is a sectorial operator in Cy(£2) thanks to [40]. We define
o (A)={r€c(Ad): ReA< 0}, 0T (4) ={A€0c(4): Re >0}
We shall consider the assumptions

(i) sup{ReA: A€o (A)} <0,
(4.4)
(i) inf{ReX: A€o (4)} >0,

which are always true if () is bounded, because in this case the domain of
A is compactly embedded in C(f2), the resolvent operators (Al — A)~! are
compact, and the spectrum consists of a sequence of eigenvalues.

If (4.4)(ii) holds, o (A) is closed. We denote by P the spectral projec-
tion associated to ot (A4), i.e.,

_ 1

Pt =
271

/ R(\, A)d),
o

where C is any closed simple regular curve in {Re A > 0} surrounding
ot (A).

If (4.4)(i) holds, 0~ (A) is closed, and we denote by P~ the spectral
projection associated to ot (4), i.e.,

P~ =I-P PZL/R(A,A)(M,
271 C

where now C is any closed simple regular curve surrounding o(A4) \ 07 (4)
with index 0 with respect to all points in 0~ (A). If the spectrum of A does
not intersect the imaginary axis, then P~ = — P+,

We also need a deeper insight into the solution to (3.9). We shall con-
sider a representation formula for w, that is an extension of the well known
Balakrishnan formula (see e.g. [33, p.200]):

"t

w(t,) = e(wy— Ng(0,)) + / AL f(s,) + ANg(s, ))ds

J0

A [ AN ) = Ng(0. ds + Ng(0.)
(4.5)
t
= ey + /0 W=D f(s,) + AN g(s,-)]ds

¢
—A/ =N g(s,)ds, 0<t<T.
0
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Here N is any lifting operator such that

N € L(C*(89),C*1(Q)), 0<a<+1,
(4.6)
BNg =g, g€ Cy(09).

For instance, we can take as A the operator given in Theorem 0.3.2 of [33].
Later we will need an explicit expression of N, so we give some details above.

Lemma 4.2 Let Q be an open set in RY with uniformly C*t? boundary,
and let B satisfy the assumptions of Theorem 3.1. Then there exists a lifting
operator satisfying (4.6).

Proof —— As a first step we construct A for Q = RY = {(z,9): 2 <0,y €
RY=1}. Fix a function ¢ € C®(RY~!), with compact support, and such
that [rv_1 @(§)dé = 1. Fix moreover § > 0 and n € C*°((—00,0]) such that
n=0forx<-20,p=1for -6 <z <0.

For each k € N and g € L®(RV 1) set

No(eoy) =onfe) [ el€)gly+en)ds, w0,y RV @)
Then N € L(C*(RN~1); C'+e(RY)), for each k € N, o > 0, and for every
y € RV~1 it holds

Ng(0,y) =0,
5 (4.8)
aNg(O, y) = p(y).

If B is the normal derivative, we are done. If Bv = §(y)9d/0x plus derivatives
with respect to y, we define (Mg)(z,y) = (Ng)(z,y)/8(y).

The case of a general open set with uniformly C?*? boundary is reduced
to this one in a standard way, by locally stretching the boundary and using
partitions of unity. See for instance [34], where more general lifting operators
were constructed for systems of m boundary conditions. [J

The following theorems were proved in [7].

Theorem 4.3 Let assumption (4.4)(i) hold, and fix w > 0 such that w <
—max{ReX: XA €0 (A)}. Let f be such that (t,&) — et f(t,&) € C¥2([0,
00) xQ), let g be such that (t,€&) — e¥g(t, &) € C1HO1/240/2([0, 00) x IQ) and
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let wo € C?T9(Q) satisfy the compatibility condition (3.8). Then v(t,&) =
e“tw(t, &) is bounded in [0, +00) x Q if and only if

+o0
(I—P )wy = _/ AL — P7)[f(s,7) + ANg(s, )]ds
’ (4.9)
+L/ e NI — P7)Ng(s, )ds.
0
In this case, w s given by
w(t, ) = e P uyy
t t
+/ et=IAP=[f(s,-) + ANg(s,-)]ds — A/ et=)A P~ Ng(s,-)ds
0 0
(4.10)

+o0
- / I — P)[f(s, ) + ANg(s, )ds

t
+o0
+A/ =4I — PN g(s,-)ds,
t

and the function v = e*tw belongs to C'H/2249([0, 00) x ), with the esti-
mate

||77||cl+9/2,2+6([0,oo)xﬁ) <

< Clllwollga+omy + lle*' f

/20 (10,00) ) T 1€ gl 124012140 [0,00) x00))-

Theorem 4.3 has an important corollary in the stable case, when o(A4) =
o (A).

Corollary 4.4 Assume that wa = sup{ReX : X € d(4)} < 0, and fix
w € (0,wy). Let f be such that (t,€) — et f(t,€) € CV29([0,00) x Q), let
g be such that (t,&) — e¥g(t, &) € C'01/2H0/2([0, 00) x AN) and let wy €
C*0(Q) satisfy the compatibility condition (3.8). Then v(t, &) = e“tw(t, &)
belongs to C1H0/2249([0, 00) x Q) and

||77||cl+9/2,2+6([0,oo) %)

< Cllwollczvoqy + e fllcorzao,o0)xa) + 16 gllcr/zrrzareo,c0 cany)-
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Let us now consider the backward problem
Wy :A’U/+f(t,€), t< 07 6667

Bu=g(t,&), t<0, £€ 09, (4.11)

’U)(O,f) = w0(§)7 §€ Q.

Theorem 4.5 Let assumption (4.4)(i1) hold, with o7 (A) # @, and fix w >
0 such that w < min{ReX : X\ € oT(A)}. Let f be such that (t,£) —
e~ Wt f(t,€) € C¥29((—00,0]x Q) and let g be such that (t,&) — e “tg(t,€) €
CV/240/2140 ((_00, 0] x AR, ug € C2H(Q).

Then problem (4.11) has a solution w such that v(t,&) = e “tw(t, &) is
bounded in (—oc,0] X Q if and only if

0
(I Py = / AL — PHY[f(s,) + ANg(s, )lds

-0

(4.12)
0
—A/ eI — PHNg(s,-)ds.
o =00
In this case, w s given by
t
w(t,) = eAPtug+ / eIUPH[f(s,) + AN g(s, )]s
0
t
—A/ et Pt Ng(s,-)ds
0
(4.13)

+/ﬁl/ AL = PH)[f(s,7) + AN g(s,))ds

t
——A/ NI — PHNg(s,)ds, t<O0.

— X

Moreover, v = e~“'w belongs to C'+/22+9((—00,0] x Q) and
[0ll cror2.240 (—oo,0yxmy < Clllwoll e

Hle™ fll o260 ((—oo0pxr) T 1€ gl crr240/2040 (oo 01 x802))-
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4.2 Principle of linearized stability and local invariant man-
ifolds

With the aid of Theorems 4.3, 4.5, and Corollary 4.4 we may show similar
behaviors for the solutions to fully nonlinear problems with initial data close
to stationary solutions, provided the linearized operator near the stationary
solution under consideration satisfies assumption (4.4)(i) or (4.4)(ii). For
the proofs see [7].

Theorem 4.6 Let ) be an open set in RY with uniformly C*T boundary,
0 < 8 <1, let the operators A and B satisfy the assumptions of Theorem
3.1, and let F, G, satisfy assumption (Hj).

(i) If sup{ReX : X € o(A)} < 0 then the stationary solution u = 0
of problem (4.1) is stable with respect to the C*T9(Q) norm. More
precisely, for every w € (0,—sup{Re) : X € o(A4)}), there are C,
7 > 0 such that for every ug satisfying (3.8) and ||u0||02+9(§) <r, the
solution of (4.1) with initial datum ug exists in the large and satisfies

lalt, Moy < Ce fuollgaroy, 0.

(i1) If o(A) contains elements with positive real part and (4.4)(ii) holds,
then u = 0 is unstable in C*+9(Q).

We recall that if € is bounded then (4.4)(ii) is satisfied, and Theorem 4.6
looks like the usual principle of linearized stability for ordinary differential
equations. If © is unbounded, it may happen that (4.4)(ii) is not satisfied.
However, it is still possible to give an instability result, relying on the next
theorem taken from Henry’s book [22].

Theorem 4.7 Let X be a real Banach space. Let T be a map from a neigh-
borhood of the origin in X with T(0) = 0, let M be a bounded linear operator
on X with spectral radius v greater than 1, and

T(z) = Mz + O(||z||?), asz — 0,

for some constant p > 1. Then the origin is unstable for the iterates of T', i.e.
there exists a constant C' > 0 and there exists xg arbitrarily close to 0 such
that if 11 = T(zy) = T (29) for n € N then for some N (depending on
xo), the sequence 1, x2,... ,xn 15 well defined and ||xn]|| > C.

39



If G = 0 in problem (4.1), we can apply Theorem 4.7 with X = {ug €
C*0(Q) : Bug = 0 at 99}, T(ug) = u(l;ug) is the solution of (4.1) with
initial datum wug, evaluated at time ¢ = 1 (the lifetime of the solution is
bigger than 1 provided ||u0HCQ+g(§) is small enough, thanks to Theorem
4.1). Then T™uy = u(n;ug), M = e*, p = 2, and the spectral radius of M
is equal to exp(wa) where wyq = sup{ ReX: X € 0(A4)} because the spectral
mapping theorem holds for analytic semigroups. So, if w > 0 Theorem 4.7
implies that the null solution of (4.1) is unstable in C?+9(Q2).

For a nonvanishing function G the set Z of admissible initial data for
problem (4.1), T = {ug € C?*T9(Q)) : ||u0HCQ+g(§) <r, Bug = G(ug)} is not
a neighborhood of 0 in a linear space. However, we shall see in next Lemma
4.8 that it is the graph of a regular function defined in a neighborhood of 0
in D(Ay), where D(Ay) is the domain of the part of A in C?T9(0Q):

D(Ag) = {up € C**(Q) : Bug =0}.

The already mentioned lifting operator A is a right inverse of the func-
tion C?H0(Q) — C19(09), u — Bu, so that C?*t9(Q) is the direct sum
D(A4y) ® (I —I)(C?**%(Q)), where I is the projection on D(44) = Ker B
given by

Mu = u — N Bu.

Lemma 4.8 There is a neighborhood O of 0 in C*(Q) such that TN O is
the graph of a smooth function

H: B(0,p) € D(4g) > (I~ T(C(@)
with p > 0. Moreover H'(0) = 0.
Proof — Define J : B(0,r) C C?H(Q) — C'19(0Q),
J(p) = By — G(y),
with 7 < R, see assumption (H4). Then J is smooth and J'(0) = B is an
isomorphism from (I — IT)(C?t9(Q2)) to C1+9(89). Moreover Bipagy = 0.

It is sufficient now to apply the Implicit Function Theorem. [J

Corollary 4.9 Under the assumptions of Theorem 4.6, if 0(A) contains
elements with positive real part then the origin is unstable in C*+9(Q).
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Proof — Theorem 4.7 is applied to the map
T : B(0,p) C D(Ag) = D(Ag), T(zo) =IL(u(l;z0 + H(x0))),

where p is given by Theorem 4.1 with 7' = 1, u(1, o + H(x¢)) is the solution
of (4.1) with initial condition u(0) = z¢ + H (xq).

We shall show that the derivative of T at zo = 0 is M = e 1D(Ag)» and
that

I7(20) — ™ aoll oy < CllzolPase (4.14)

so that the assumptions of Theorem 4.7 are satisfied with p = 2 and r = e¥4.
Applying Theorem 4.7 gives immediately instability of the null solution to
(4.1).

Estimate (4.14) is a consequence of the construction of the solution to
(4.1), as a fixed point of the operator I'; see Theorem 4.1. Indeed, from the
representation formula (4.5) and estimates (4.2) it follows that

1,
Ty — etA(UO - NG(UO))||cl+9/2,2+9([0,1}xﬁ) < E||u||é1+9/2,2+0([071}X§)7
(4.15)
for every ug € Z N B(0, p) with p small enough, which implies for the fixed

point

||“Hcl+9/2’2+0([O,T}xﬁ) < CH“UHCH"(Q)'

Replacing in (4.15) and then taking £ = 1 we obtain
Ju(1,-) — e (o — NGluo)llgaog@) < ClhuollZ ey
which implies, for ug = 29 + H(zy),

(1, ) — ezl cro gy < Cllwo + H (w0) < C"l7olI o,

2
”02-4-9 (ﬁ) 5)7

and (4.14) follows. O

Corollary 4.9 improves part (ii) of Theorem 4.6; however it is not com-
pletely satisfactory because the C?*?(Q) norm is very strong and conse-
quently the instability result is rather weak. We can improve the instability
result using a refinement of Theorem 4.7 whose proof is in [9].

Theorem 4.10 Let the conditions of Theorem 4.7 be satisfied, and assume
in addition that the spectral radius r of M is an eigenvalue. Let @ € X be an
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eigenfunction and ' € X' (the space of all linear continuous functions from
X to R) be such that 2'(u) # 0. Then there are C' > 0 and initial data xg
arbitrarily close to 0 such that if z,1 = T(z,) = T" Y (z0) for n € N then
for some N (depending on xq), the sequence 1, x2,... ,zN is well defined,
2’ (xn) has the same sign of «'(w), and |z'(zn)| > C".

Corollary 4.11 Under the assumptions of Theorem 4.6, suppose moreover
that w4 is an eigenvalue of A, and let T be an eigenvector. If 2’ € (C*T9(Q))’
is such that 2’ (@) # 0, then there is C' > 0 such that for every § > 0 there are
ug € T with norm less or equal to §, and N € N such that the corresponding
solution uw of (4.1) is defined at T = N and |z'(Ilu(N,-))| > C".

The element 2’ € (C?T9(Q)) may be, for instance, the evaluation of
@ or of some first or second order derivative of ¢ at some point. In this
case Corollary 4.11 gives pointwise instability. Let us show this in a simple
example.

Example 4.12 Consider the problem
ug(t, z) = Au(t,z) + au(t, ) + F(D?u(t,z)), t>0, 1 €,

gZ(t,x) = G(Du(t,x)), t>0, z € 09, (4.16)

U(O,:l?) = U()(!l?), T e ﬁ?

where € is either a bounded open set with C?*? boundary, or a halfplane,
F, G are smooth functions defined in a neighborhood of 0 in RY 2, RY,
respectively, vanishing at 0 with all their first order derivatives, and a > 0.

Then waqa = a > 0, and Corollary 4.9 implies that the null solution is
unstable in C?¢(Q)).

We get a much better instability result using Corollary 4.11. wy4 is an
eigenvalue of A with constant cigenfunctions. Therefore for each zy € Q the
mapping ¢ — ¢(zg) is an element of (C?(Q)) that does not vanish on the
cigenfunction 1. Corollary 4.11 implies that there is C' > 0 such that for
every ¢ > 0 there are ug € Z with norm less or equal to 4, and N € N such
that the solution u of (4.1) is defined at T' = N and |(ITu(N, -))(zo)| > C'.
Since Ilu = u — N Bu, if N satisfies (Mg)(xg) = 0 for each g, we have
(ITu(N, ))(zo) = u(N, zp), and hence

|u(N, zo)| > C". (4.17)
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From the construction of A" in Lemma 4.2 we know that A'g vanishes at 92
for every g. If zg € Q, taking § small enough in the proof of Lemma 4.2 we
may let (Ng)(zo) = 0 for each g, and (4.17) follows.

Now we go further in the description of the behavior of the solutions
for small initial data, showing the existence of the local stable and unstable
invariant manifolds. The following results were proved in [7].

Theorem 4.13 Let the assumptions of Theorem 4.6 hold.

(1) Assume that o (A) # @ has positive distance from the imaginary azis,
and fir w € (0,min{ReX: X € 61(A)}). Then there exist Ry, ro > 0 and a
Lipschitz continuous function

@ : B(0,79) C PH(Cy(Q)) = PT(D(Ag)) — (I - PT)(C*H(%)),

differentiable at 0 with ¢’'(0) = 0, such that for every ug belonging to the
graph of ¢, problem (4.1) has a unique backward solution v such that ¥ de-
fined by 6(t,&) = e~“tu(t, £), belongs to C1H0/22H0((—0o, 0] x Q) and satisfies

||5||Cl+9/2,2+€((_00’0]Xﬁ) < Ryp. (4.18)

Moreover, for every w' € (0,min{ReX : X\ € o1 (A)}) we have (t,§) —
e y(t,&) € C10/2240((—00,0] x Q). Conversely, if problem (4.1) has
a backward solution v which satisfies (4.18) and |Ptv(0,-)|| < ro, then
v(0,-) € graph .

(ii) Assume that o~ (A) has positive distance from the imaginary axis, and
fir w € (0,—max{ReX : A € 07 (A)}). Then there exist R1, 11 > 0 and a
Lipschitz continuous function

¥ B(0,r1) C P (D(Ag)) — (I — P7)(C?Y(9Q)),

differentiable at 0 with '(0) = 0, such that for every ug belonging to the
graph of v, problem (4.1) has a unique solution w such that w defined by
W(t, &) = e“tw(t, &) belongs to C1H/2249([0, 00) x Q) and

||15||cl+9/2,2+9([0,w)xﬁ) < R;. (4.19)
Moreover, for every o' € (0, max{ReX: XA € 07 (A4)}) we have (t,&) —

e“tw(t, &) € CV0/2240(]0, 00) x Q). Conversely, if problem (4.1) has a
forward solution w which satisfies (4.19) and || P~ w(0, -)HCQH(Q) <y, then

w(0,-) € graph 1.
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The graph of ¢ is called local unstable manifold. The graph of 1) is called
local stable manifold.

In the case where the operator A is hyperbolic, i.e. (2.11) holds, both the
local stable manifold and the local unstable manifold do exist, and Theorem
4.13 is a saddle point theorem.

What is missing up to now is a center manifold theory for problems
with fully nonlinear boundary condition. Boundary conditions of the type
Bu = G(u) with nonlinear G may be treated, see [35]. But existence of a
center manifold in the case where G depends nonlinearly on the gradient is
still an open problem.

5 The fully nonlinear approach to free boundary
problems

A class of free boundary problems of parabolic type may be reduced to
abstract evolution equations of the type treated in section 2, or to evolution
equations in Holder spaces of the type treated in sections 3 and 4.

The prototypes of these problems are (1.2) and (1.3). The different
physical nature of these problems is reflected in their different mathemat-
ical nature. (1.3) is a Stefan type problem, where the velocity of the free
boundary is explicit, while in (1.2) it is implicit.

However, the initial step to reduce the free boundary problems to fixed
boundary ones by natural changements of coordinates that involve one of
the unknowns is the same for both models. After that, the procedures are
different: we eliminate the free boundary and arrive at a final problem of
the type (4.1) for (1.2), we eliminate u and we arrive at a final problem for
the free boundary of the type (2.1) for (1.3).

(1.2) and (1.3) are the simplest significant examples of a wide class
of parabolic free boundary problems, that can be studied with the same
methods. We mention the papers [19, 20, 14, 15] for problems of the
type (1.3), arising in several fields, such as flow of viscous fluids through
porous media, the injection moulding process, diblock copolymer melts; and
[6, 9, 7, 8, 10, 31] for problems of the type (1.2), arising in combustion
theory.

5.1 Hele-Shaw models

Let © C RY be a bounded open set with smooth boundary, consisting of
two disjoint nonempty parts J and I'. For each ¢, the free boundary I'; will
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be sought as the range of an unknown function s(¢,-) € h?T*(I'; RY) with

small C' norm, in such a way that the mapping & — £ +s(t, &)v(¢) is a h2+®

diffeomorphism between I' and I'y, and I'; and J are disjoint. Here and in

what follows we denote by v = v(£) the exterior normal vector to 9§ at

& € 99, Q, will be the open set diffeomorphic to  with boundary J U I';.
Problem (1.3) is associated with an initial condition,

5(076) = 50(6)7 el (51)

Now we transform the free boundary problem (1.3) into a fixed boundary
one.
For a > 0 we define a map

X:I'x[-a,0a] = RY, X, ,r)=¢ +rv(E). (5.2)

If a is sufficiently small, then (5.2) is a diffeomorphism to a compact
neighborhood R of I'. In R every £ can be written in a unique way as
E=X(¢,r) with ¢ €T and r € [—a,a]. So, & = £'(£) is the nearest point
to £ in I, and r = r(£) is the signed distance from & to T

We will look for ©; close to € in some time interval I in the sense that
its free boundary I'y will be given by

Dy ={z=¢+s(t,&)Ww(E), ¢ eT}, (5.3)

where s: I' x I — [—a, a] is a smooth function which is one of the unknowns
of the problem. In other words, I'; is the zero level set of the function

R=R, &= N(t,§) =r(6) —s(t,£(€))-

It follows that the exterior normal vector at I'; is given by v = DN/|DN]|,
and the normal velocity V at z € I’y is
0/0tN(t,z) 0s(t,&(x))/0t N(t,x)

Vo) = —pNGo) DN(t,2)

I
The equation V = _a_u in (1.3) may be rewritten as
v

Ni(t,z) = (Du(t,x), DN(t,x)), t >0, z € T';.

It will be convenient to extend the vector field

(b(t?f) = $(t7§)y(€)7 el (5'4)
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to the whole of RY, by sctting

a(r)s(t, &v(E) fEeR,
B(t,&) = (5.5)

0 otherwise ,

where r = r(£), £ =¢£'(¢), and o : R~ [0,1] is a smooth mollifier which is
equal to 1 near 0 and has compact support in (~a, a).

The extension ® is used now to transform (1.3) to a problem on the fixed
domain 2. We define the coordinate transformation

=0(,&) =+ P(t,€). (5.6)

Note that ©(t,-) differs from the identity only in a small neighborhood of
I', and it maps 2 onto 4.

Denoting by w the unknown u in the new variables, i.e. u(¢,&) = u(t, £+
®(t,€)), the couple (s, u) satisfies (1.3)-(5.1) if and only if (s, w) satisfies

(AU =0, t>0, £€q,

u=0, s +Bu=0, t>0, €T,

9 (5.7)
—u=b, t>0, e,

ov

3(0,-) = sq, el

\

where A is the Laplacian expressed in the new variables, i.e.,, setting Z(z) =

G)(ta ')_l(x)a

N

8HJ auh 9=,
A=) 5 )5, (0(4:9) ng SHO9)D;,  (538)
1,5,h= 1 1,7=1 i

and B is the normal derivative expressed in the new variables. Since

(I +'D®)~'1(¢)
(I +D®)~1w(¢)|

n(t, &+ ®) =
and
Du(t, & + ®) = (I +'D®)~'Du(t,¢),
we get

(I +'D®)~ v, (I +'D®)~ ' Dv)

B = (I +'D®)~1v]

(5.9)
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Note that A = A(s), B = B(s) depend on s through ®.

Now we are able to decouple the system (5.7), expressing u in terms of
s.

If the function b is smooth enough (b € h'**(I")), for each o € h2T*(T")
with small C! norm there is a unique v € h?t*(Q) such that

Ale)v =0, £€Q,

v(§) =0, €T, (5.10)
aa—yv = b, (el

This is because A(o) is a second order elliptic operator with A® coefficients
and without zero order terms.
We denote by F the function

F(o) = B(o)v (5.11)

where v is the solution to (5.10), and we rewrite (5.7) as a final problem for
8,

s¢(t,€) + F(s(t,))(t,€) =0, £>0, €T,
(5.12)
s(0,§) = s0(§), €.

This problem will be seen as an evolution equation in the space Ey =
h*@(T), for which the assumptions of Theorem 2.7 are satisfied. Indeed,
the following statements have been proved in [18].

Theorem 5.1 If a > 0 is small enough, for each B € (0,1) the function
F Vg :={s € h*A(I): IAllcrry < a} R'TB(TY, is smooth.

Assume that b(x) > 0 for each x € J, and that b Z 0. Then for each
s € Vg, the operator Ag = —F'(s) : h**P(T) — A'P(T) is a sectorial
operator in h'TH(T).

Theorem 5.1 allows to apply the theory of section 2.
We recall that the little-Holder spaces h®(I') are stable by continuous
interpolation, in the sense that for nonintegers 31 < 2 we have

(hﬂl (I), B2 (T))p = h[31+9([32-/51)(r)
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for each 6 € (0, 1) such that 81 4+ 6(82 — 1) is not integer. In particular, for
0 < B < a<1 we have

R = (R (T), P () (5.13)

with 6 = o — f.
We fix 0 < 8 < a < 1 and we set Ey = A7), E; = h?t*('). By
Theorem 5.1, the function F' = —F is defined and smooth in an open set

O =V, C E; with values in Ey, for each s € O, F'(s) = A, is sectorial, and
it may be seen as the part in Ey of the sectorial operator Ag : h2T7(T)
h1TP(T). By (5.13) we have Dy, (0) = h'**(I') = Ey, and by Theorem 5.1
we have D4, (6 + 1) = Eq, provided § = o — 3. Therefore, assumption (H3)
is satisfied and Theorem 2.7 is applicable. We arrive at a final wellposedness
theorem, see [18].

Theorem 5.2 Let Q@ C RY be a bounded smooth domain with boundary
JUT, J # @ interior to T and with positive distance from T'. Letb € h?T<(J)
(0 < o < 1) be such that b(x) > 0 for each x € J, and b # 0.

Then for each sq € h*™*(T) with small C* norm there are T > 0 and a
classical solution (s,u) of (1.3)-(5.1) in [0,T]. The function s is such that
Ers s(t, ) ds in C(0, T]; h(T) N ([0, T A+ (D)), and |ls(t, )l cagry <
a. Denoting by  the bounded open set with boundary J U Range s(t,-), u
is continuous in {(t,z): 0 <t <T, x € Q} and u(t,-) belongs to h*+*(€Y;)
for each t € [0,T]. The couple (s,u) is the unique solution to (1.8)-(5.1)
enjoying these regularity properties.

Problem (1.3) is the simplest example of a class of free boundary prob-
lemns that can be treated similarly. Among them we quote one- and two-
phase Hele-Shaw models with surface tension, also called Mullins-Sekerka
models. See [18, 19, 20, 15, 14].

Let us describe the two-phase problem. (2 is again a bounded open set
in RY with smooth boundary Q. For ¢ > 0, T'; is a compact connected
hypersurface which is the boundary of an open set ; C . The normal
velocity of I'; and its mean curvature are denoted by V(t,-) and k(t,-),
respectively. Again, V' is taken to be positive for expanding hypersurfaces,
and moreover k is positive for uniformly convex hypersurfaces. Qq(¢) and
Qy(t) are the open subset of €2 separated by I'y, ©Q1(¢) being the interior
region; n(t,-) is the unit exterior normal vector to 0§ (¢). We consider the
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system

( Au =0, t >0, x € Q(t) UNat),
ou
U = R, V:—[%]7 t>0, xGI‘t, (514)
?—U:O, t>0, zedf,
\ On

where the brackets denote the jump across the free boundary: [Ju/dn] =
Ou1/0n — Qug/On, u; being the restrictions of u to Q;(t). As before, the
unknowns are the free boundary I'; for ¢ > 0 and the function w(¢,z) for
t > 0, z € Q, while the initial hypersurface I'q is given.

The procedure described for the Hele-Shaw flow gives local existence and
uniqueness of a regular solution to (5.14) for each regular (precisely: h2*®)
initial hypersurface I'y.

Fixed any smooth hypersurface I' C €, for initial data close to I' we
look for I'y as the graph of an unknown function s(¢,-) defined on I', and we
proceed as before. We eliminate the unknown u, expressing it in terms of s.
More precisely, u(t, ) has to be the solution v to

Al@)w =0, £€Q U,

v(§) = K(o), €T, (5.15)
aayv =0, & e 09,

with o = s(t,-), the fixed open sets ©; and €2y are the images €;(¢) and
Q2(t) under the change of coordinates, and K (o) is the transformed mean
curvature operator after the change of coordinates. The jump condition
V = —[0u/0n] is transformed to s; + B(s)v = 0, where now B(s) is the
transformed jump of the normal derivative across I';. So we arrive at a final
equation for s of the type (5.12), where now F is a third order nonlocal
operator with quasilinear structure. This is because the curvature depends
on s through its derivatives up to the second order, in a quasilinear way
since it depends linearly on the second order derivatives of s. The character
of (5.12) is still parabolic and F is still smooth; more precisely it was proved
in [19] that if @ > 0 is small enough, for each 8 € (0,1) the function F :
Us == {s € B*T(T) : |h sy < af e RA(T), is C™, and the operator
Ag = =F'(s) : K3*3(T') = BP(T) is a sectorial operator in A'72(T).
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So, as far as local existence, uniqueness and regularity are concerned,
we are not forced to use Theorem 2.7 but we can use other theories of
abstract quasilinear evolution equations in Banach spaces, that allow less
regular initial data. In the paper [19] the theory developed in [2, 3] was
used to arrive at a final result of existence and uniqueness of a solution
to (5.12), s € C°((0,T] x T'), such that ¢ — s(¢,-) € C([0,T]; h>T8(T)) N
C((0,T); A3T8(I)), for each initial datum sg € h2HF+5(T"), € > 0, with small
C' norm. The number T > 0 depends on sqg. If in addition so € A3T4(T),
then t — s(t,-) € C([0,T]; R*7#(T')). (The last statement comes by applying
Theorem 2.7 with Ey = h4(T), E; = h3T8(T).)

Coming back to (5.14) we get a unique regular local solution (I';, u).

It is easy to see that (5.14) admits spheres as stationary solutions, and
it is of interest to study their stability. Fixed any sphere S C 2, we need
to know some spectral properties of the linearized operator A = —F'(0) :
R3H8(S) — AP(S). Tt was proved in [20] that the spectrum of A consists of
a sequence of negative eigenvalues plus the semisimple isolated eigenvalue
0, with multiplicity N + 1. Therefore, this is a critical case of stability. The
center manifold theory of section 2, with Ey = h#(T'), E; = 38 (T), may be
applied, and it gives the existence of a (N + 1)-dimensional locally invariant
manifold M C h3t#(S) which attracts all the small orbits. Going further
in the analysis, in [20] it was proved that the center manifold itself consists
of spheres, and for each small initial datum the solution exists in the large
and converges to one of these spheres exponentially fast as ¢ — oco. The
convergence is in the A3#(S) norm, even for initial data in h2t8+%(S). See
[20] for the details.

5.2 Models from combustion theory

Perhaps surprisingly, wellposedness of the Cauchy problem for (1.2) is still
an open problem in dimension N > 2. The Cauchy problem cousists of (1.2)
supplemented by an initial condition,

u(0,z) = up(z), z € Qo, (5.16)

where Qg is a given open set in R". There are results of existence of weak
solutions without uniqueness ([11]), of existence and uniqueness of regular
classical solutions with loss of regularity with respect to the inital data
([6]), of local wellposedness for initial data close to special solutions such
as travelling waves or selfsimilar solutions ([7]) and for special geometries
([4, 21, 29]). But none of them can be considered a standard wellposedness
result.
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We describe here the approach leading to the fully nonlinear evolution
equations discussed in section 3. The change of coordinats used here is the
same of the previous subsection, taking as reference set {2 the initial set ().
Let us assume that Qg is a nonempty open set in RY with C3+¢ boundary I".
The boundary I'y of € is sought again as the range of an unknown function
s(t,-) : T+ RY. The coordinate transformation (5.6) transforms €, into
the fixed domain Qy and it leads to a Cauchy problem for the couple (s, u)
where u(t,¢) = u(t,z) is again the function « in the new coordinates:

( uy — (Du, (I +'D®)~1d,) = A(s)u, t >0, x € Qy,
u=0, B(s)u=—1, t >0, x €y,
(5.17)
3(07') =0, ’17(0,) = UQ, x € Iy,
\ 711(0, ) = Uug, T e 507

where, as before, A(s) is the Laplacian in the new coordinates, and B(s) is
the normal derivative in the new coordinates, see formulas (5.8), (5.9).

System (5.17) still has to be decoupled. Instead of proceeding like in
problem (1.3), we introduce a new unknown w by splitting @ as

u(t, &) = uo(§) + (Duo(£), (¢, €)) + w(t, §). (5.18)
At £ = 0 we have u(0,¢) = up(€), ©(0,-) =0, so that
w(0,6) =0, &€ Q. (5.19)

(5.18) allows to get s in terms of w thanks to the boundary condition v = 0
at I'y, which gives

S(t,f) = ’LU(t,f), t> 07 £ € F07 (520)
so that
D(t,&) = w(t, &), t>0, &€, (5.21)

where /(&) is the extension of the normal vector field in formula (5.5): 7(§) =
alr)v(¢') if € € R, v(€) = 0 otherwise. Replacing (5.21) in (5.17) we get

wy = F1 (€, w, Dw, D*w) + Fa (¢, w, Dw)sy, t >0, & € Oy, (5.22)
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where Fi, F5 are obtained respectively from
A(s)(uo + (Dug, @) + w) (5.23)
and from
—(Dug — (I + D®)"'D(ug + (Dug, ®) + w), v), (5.24)

replacing ® = w(t, ' )v(€).

Equation (5.22) still contains s;, that we eliminate using again the iden-
tity s = w at the boundary which gives s; = w;. Replacing in (5.22) for
£ el we get

5¢(1 — Folé,w, Dw)) = F(€,w, Dw, D*w), t>0, £ €T,

At t =0 we have w = 0, and F» vanishes at (£,0,0), so that, at least for ¢
small, 7o (-, w(t, ), Dw(t,-)) is different from 1 and we get s; in terms of w,

fl(gywaDw7D2w)
st = F3(&,w, Dw, D*w) = 1 — Fo(é,w, Dw) ’

t>0, €Ty, (5.25)

which, replaced in (5.22), gives the final equation for w,
wy = F(w)(€), t>0, &€ Qy, (5.26)
where
F(w)(€) = Fi(€, w, Dw, D*w) + Fo (&, w, Dw)F3(¢, w, Dw, D*w). (5.27)

Note that F(0)(¢) = Aug(¢), and F(w) (&) = Aw + Aug(€) if £ is far from
the boundary T'.

The function F(v) is defined for v € C?(€)y) with small C'! norm; pre-
cisely, it is defined for v € C2(€) such that 1 — Fo(-,v(-), Dv(-)) # 0. From
formulas (5.20), (5.23), (5.24), (5.25) we see that F(v)(¢£) depends smoothly
on v, Dv, D?v and their traces at the boundary; therefore the function v
F(v) is continuously differentiable from O = {v € C%(Qy) : [ollcr gy <7}
to C (), and from O, = {v € C*T¥(Qy) : [vllcr gy S 7} to C(Qy) if ris
small.

The boundary condition for w comes from the boundary condition du/dn
= —1in (1.2). Using (5.9) we get

(I +'D®) v, (I +'D®) "' D(ug + (Dug, ®) + w) + |(I +'D®)"'v| =0,
(5.28)
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which gives
g(gaw(t7€)7Dw(t7§)) =0, t>0, £ €Ty, (529)

when we replace ® = w(t, £')v(€) in (5.28). The function G(&, u, p) is smooth
with respect to u and p;, i = 1,... , N, and its derivatives are continuous in
(¢,u,p) and CV/2+%/2 in ¢ Tt follows that v — G(-,v, Dv) is smooth from
a neighborhood of 0 in C'(£2y) to C(Tg), and from a neighborhood of 0 in
C%(Q) to C*(Ty). Moreover G(£,0,0) = 0.

Concerning the linear parts of F and G near 0, the following lemma was
proved in [6].

Lemma 5.3 F,(0) is the sum of the Laplacian plus a nonlocal differential
operator of order 1. Moreover,

ow 82u0
Ow=Bw:=——+ —=
Go(O)w Y + a2
The final problem for the only unknown w may be rewritten in the form
discussed in section 3, as

wt:A’UJ-i-F(’(U), t>0, 66607
Bw = G(w), t>0, £eTy, (5.30)

’U)(O,') =0, ¢€ ﬁO-

The difference between (5.30) and (1.1) is that the linear operator A
and the nonlinearities F', G contain nonlocal terms. The nonlocal part of
A concerns only first order derivatives, so that it may be considered as a
non important perturbation. F' depends nonlocally also on the second order
derivatives of w, but it is (at least) quadratic near w = 0. The arguments
used in the proof of Theorem 3.2 work also for (5.30), and give a local
existence and uniqueness result for w. Precisely, there is Ry > 0 such that
for every R > Ry and for every sufficiently small 7' > 0 problem (5.30) has
a unique solution in the ball B(0,R) C C't%/22+e([0,T] x Qp). For the
details of the proof see [6].

Note that we cannot use Theorem 4.1 to get local existence for w because
F(0) #0.

Now we come back to the original problem (1.2). Recalling that s(¢,£) =
w(t, &) for each t € [0,T], € € 02, we can define I';. Of course s has the same
regularity of w, i.c. it is in C1+%/22+([0, T]xy). Then we define % through
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(5.18), where & is given by (5.5). Again, u has the same regularity of w. As
a last step we define u through the change of coordinates, u(t,z) = u(t, &)
where x = & + ®(¢,£). This leads to loss of regularity: starting with initial
data in C31® we get a local solution with C?T® space regularity. The final
result (see [6]) is the following.

Theorem 5.4 Let Qg C RY be a nonempty bounded open set with C3+2
boundary Tg, and let ug € C3Y*(Qq) satisfy the compatibility conditions
ug = 0, dug/On = —1 at Ty. Then there is T > 0 such that problem
(1.2) has a solution (Q,u) such that the (N + 1)-dimensional hypersurface
S={(t,z): 0<t<T, zeTy} and each T, = 8y are of class C1+/22+e
and the function u: {(t,z); 0 <t <6, z € Y} — R is of class C11e/22+e,

If in addition Ty and ug are in C*1%, and the further compatibility con-
dition B(Aug) = 0 at Ty holds, then S and each Ty are of class C3/2Fe/23+e
and the function u is of class C3/2T¥/23+  Moreover, the couple (Q,u) is
the unique solution with such regularity properties.

If the initial data are close to the initial datum (Q,U) of a given regular
solution, the same method gives existence and uniqueness of a local classi-
cal solution without loss of regularity. Moreover we can go further in the
investigation of the stability properties of the established solution.

The free boundary problem is transformed into a fixed boundary problem
in © by the changement of coordinates (5.6), so that the unknown s is the
signed distance from I' = 9. The splitting (5.18) is replaced by

u(t, &) = U(§) +(DU(§), ®(t,€)) + w(t,§), £€Q. (5.31)

This gives again s(t,£) = w(t,&) for &€ € T'. The final problem for w has
initial datum wg = up — U — (DU, ®(0,¢)) which does not vanish, but it is
small.

Let us show how to apply the results of section 4. The simplest situation
would be to have initial data close to stationary solutions, but (1.2) has no
bounded stationary solutions.

So we consider the case where (€, ug) is close to the initial datum of a
self-similar solution. Existence and properties of sclf-similar solutions have
been discussed in [11]; they are solutions of the type (4, u) where

ut,x) = (T =)l /(T = t)), u={lz| <r(T-)°}, 0<t<T,

with T, o, B, 7 > 0.
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It is easy to see that there exist self-similar solutions only for o = 8 =
1/2, and that the function g(z) = f(]z|) has to be an cigenfunction of an
Ornstein-Uhlenbeck type operator in the ball B(0,r),

1 1
Ag - §<$,Dg($)> + ig =0,
with two boundary conditions, g = 0, dg/dv = —1. In other words, f has
to solve

F'(n) + 22 () + 5F () = gnf' () for 0 <n <,
(5.32)

which looks overdetermined, but it is not, because also r is an unknown. In
[11] it is proved that there exist a unique » > 0 and a unique C? function
f :[0,7] — R satisfying (5.32) and such that f(n) > 0 for 0 < 5 < r.
Moreover f is analytic.

It is convenient now to transform the problem to selfsimilar variables

g=—"  i=—log(T —t), (5.33)
(T —1)2
and to set
(i, f) = =D O ={i: ze). (5.34)
(T —1)2

Omitting the hats, we arrive at

1 1
up = Au — g(x,Du)—lr 5 Us t>0, z€Qy,

(5.35)
0
wu=0, 2 _1 t>0, zeo.
on
The selfsimilar solution is transformed by (5.33)—(5.34) into a stationary
solution

Ux) = f(lz]), Q={z e RN : |z] < r}, (5.36)

of (5.35). From now on we proceed as before: we change variables through
the isomorphism (5.6), we set u(t,&) = u(t,z) — U(x), we define w by the
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splitting (5.19) and we arrive at a final equation for w in the fixed domain
Q = B(0,7),

;

1 _
wy = Aw — (¢, Dw) + % + ¢(w, Dw, D*w), >0, €€,

Ow (N_l —f>w:¢(w,Dw), t>0, £ €00, (5.37)
ov r 2

\ w(07§) = ’UJ()(f), € € ﬁa

where ¢ and 1) are smooth and quadratic near w = 0.

This problem fits into the theory discussed in section 4. Theorem 4.1
implies that for every 7' > 0 and « € (0,1) there are R, p > 0 such that
(5.37) has a solution w € C'%/2249([0, T] x Q) provided [[woll ooy < p
and dwy/Ov + (N — 1)/r) — (r/2))wy = ¥ (wp, Dwy). Moreover u is the
unique solution in B(0, R)  C'*0/22+0([0, T] x Q).

To go on in the analysis, we define the operator A by

D(A) = {v € Ny WH(Q) : Ave C(Q), Bu=0 on 00}, Av= Av,

where ) )
Av = Av — i(x,Dv) + 30,

B _871)_’_ N-1 r
YT o0 r 2"

It has been proved in [7] that the spectrum of A consists of the semisimple
eigenvalues 1, 1/2 plus a sequence of negative eigenvalues; moreover, the
eigenspace with eigenvalue 1 is one-dimensional, the eigenspace wih eigen-
value 1/2 has dimension N.

The principle of linearized stability as stated in Theorem 4.6(ii) shows
that the null solution of (5.37) is unstable in C?79(Q), and therefore the
selfsimilar solution of the original problem (1.2) is unstable. This is not
surprising, because the original problem is invariant under translations in
z and t; if we apply a small shift to (5.36), we obtain another selfsimilar
solution which is transformed by (5.33)—(5.34) into a solution which starts
close to (5.36) but moves far from it. Therefore, the local unstable manifold
of (5.36) given by Theorem 4.13(i) must contain the images under (5.33) of
shifts in space and time of (5.36), that are given by

1t
o T —ee?
V14 ege U(_ et +1)° (5.38)
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with ¢; € RV and e2 € R. Since the local unstable manifold has to be
(N + 1)-dimensional, then it consists only of the images of (5.38) under the
transformation (5.33). However, all the orbits in the unstable manifold have
the same selfsimilar profile, so that the equilibrium (5.36) looks stable even
if it unstable. Roughly speaking, the profile itself is stable.

The above discussion is taken from [7]. A study of the stability of the
(planar) travelling wave solutions to (1.2) is in the paper [8]. Stability ques-
tions for more complicated multidimensional free boundary equations and
systems arising in combustion theory have been studied by these methods
in the papers [9, 10, 31] and in the papers quoted therein.

References

[1] P. ACQUISTAPACE, B. TERRENL Fully nonlinear parabolic systems,
in “Recent Advances in Nonlinear Elliptic and Parabolic Problems”,
Nancy 1988, Ph. Bénilan, M. Chipot, L. Evans, M. Pierre Eds. Pitman
Res. Notes in Math. Series 208, 97-111, Longman, Harlow (1989).

[2] H. AMANN: Nonhomogeneous linear and quasilinear elliptic and
parabolic boundary value problems, in: “Function Spaces, Differential
Operators and Nonlinear Analysis”, H.J. Schmeisser, H. Triebel Eds.,
Teubner, Stuttgart (1993), 9-126.

[3] H. AMANN: Linear and Quasilinear Parabolic Problems, Vol. 1,
Birkh&user-Verlag, Basel (1995). Vol. 2, 3, in preparation.

[4] D. ANDREUCCI, R. GIANNI: Classical solutions to a multidimensional

free boundary problem arising in combustion theory, Comm. P.D.F’s 19
(1994), 803-826.

[6] S. ANGENENT: Nonlinear Analytic Semiflows, Proc. Royal Soc. Edinb.
115A (1990), 91-107.

[6] O. BACONNEAU, A. LUNARDIL: Smooth solutions to a class of free
boundary parabolic problems, to appear in TAMS.

[7] C.-M. BRAUNER, J. HULSHOF, A. LUNARDI: A general approach to
stability in free boundary problems, J. Diff. Eqns. 164 (2000), 16-48.

[8] C.M. BRAUNER, J. HULSHOF, A. LUNARDI: A critical case of stability
in a free boundary problem, J. Evol. Eqns. 1 (2001), 85-113.

o7



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

C.-M. BRAUNER, A. LUNARDI: Instabilities in a two-dimensional com-
bustion model with free boundary, Arch. Rational Mech. Anal. 154
(2000), 157-182.

C.M. BRAUNER, A. LUNARDI, CL. SCHMIDT-LAINE: Stability analysis

in a multidimensional interface problem, Nonlinear Analysis T.M.A. 44
(2001), 263-280.

L.A. CAFFARELLI, J.L. VAZQUEZ: A free boundary problem for the
heat equation arising in flame propagation, T.A.M.S. 347 (1995), 411-
441.

G. Da PraTto, P. GRISVARD: Fquations d’évolution absiraites non
linéaires de type parabolique, Ann. Mat. Pura Appl. (IV) 120 (1979),
329-396.

G. DA PrATO, A. LUNARDI: Stability, Instability, and Center Mani-

fold Theorem for Fully Nonlinear Autonomous Parabolic Equations in
Banach Space, Arch. Rat. Mech. Anal. 101 (1988), 115-141.

J. EscHER, U.F. MAYER: Loss of convexity for a modified Mullins-
Sekerka model arising in diblock copolymer melts, Arch. Math. 77
(2001), 434-448.

J. ESCHER, Y. NISHIURA: Classical solutions for a modified Mullins-
Sekerka model arising in diblock copolymer melts, Hokkaido Math. J.
31 (2002), 137-149.

J. ESCHER, G. SIMONETT: Mazimal regularity for a free boundary
problem, Nonlin. Diff. Eqns. and Appl. 2 (1995), 463-510.

J. ESCHER, G. SIMONETT: Analyticity of the interface in a free bound-
ary problem, Math. Ann. 305 (1996), 439-459.

J. ESCHER, G. SIMONETT: Classical solutions of multidimensional
Hele-Shaw models, SIAM J. Math. Anal. 28 (1997), 1028-1047.

J. EsCHER, G. SIMONETT: Classical solutions for Hele-Shaw models
with surface tension, Adv. Diff. Eqns. 2 (1997), 619-642.

J. ESCHER, G. SIMONETT: A center manifold analysis for the Mullins-
Sekerka model, J. Diff. Eqns. 143 (1998), 267-292.

o8



[21]

[27]

[29]

[30]

[31]

V.A. GavakTioNov, J. HuLsHOF, J.L.. VAZQUEZ: FEztinction and

focusing behaviour of spherical and annular flames described by a free
boundary problem, J. Math. Pures Appl. 76 (1997), 563-608.

D. HENRY: Geometric theory of parabolic equations, Lect. Notes in
Math. 840, Springer, Berlin (1980).

S.I. Hupiagv: The First Boundary Value Problem for Non-Linear
Parabolic Equations, Dokl. Akad. Nauk SSSR 149 (1963), 535-538
(Russian). English transl.: Soviet Math. Dokl. 4 (1963), 441-445.

A.G. KARTSATOS, 1.V. SKRYPNIK: A global approach to fully nonlin-
ear parabolic problems, TAMS 352 (2000), 4603-4640.

N.V. KryLov: Nonlinear Elliptic and Parabolic Equations of the Sec-
ond Order, Nauka, Moscow (1985). English transl.: D. Reidel Publish-
ing Co., “Mathematics and Its Applications”, Dordrecht (1987).

S.N. KruzHKOV, A. CASTRO, M. LOPES: Schauder type estimates
and theorems on the existence of the solution of fundamental problem
for linear and nonlinear parabolic equations, Dokl. Akad. Nauk SSSR
20 (1975), 277- 280 (Russian). English transl.: Soviet Math. Dokl. 16
(1975), 60-64.

S.N. KruzHKOV, A. CASTRO, M. LOPES: Mayoraciones de Schauder
y teorema de existencia de las soluciones del problema de Cauchy para
ecuaciones parabolicas lineales y no lineales, (I) Ciencias Mateméaticas

1 (1980), 55-76; (IT) Ciencias Mateméticas 3 (1982), 37-56.

O.A. LADYZHENSKAJA, V.A. SOLONNIKOV, N.N. URAL’CEVA: Linear
and quasilinear equations of parabolic type, Nauka, Moskow 1967 (Rus-
sian). English transl.: Transl. Math. Monographs, AMS, Providence
(1968).

C. LEDERMAN, J.L. VAzQUEZ, N. WOLANSKI: Uniqueness of solution
to a free boundary problem from combustion, TAMS 353 (2001), 655-
692.

G.M. LIEBERMAN: Second order parabolic differential equations,
World Scientific, Singapore (1996).

L. LORENZIL: A free boundary problem stemmed from combustion theory,
Part 1: Existence, uniqueness and regularity results, J. Math. Anal.

99



[38]

[39]

[40]

Appl. 274 (2002), 505-535; Part 2: Stability, instability and bifurcation
results, J. Math. Anal. Appl. 275 (2002), 131-160.

A. LUNARDIL: On the local dynamical system associated to a fully non-

linear parabolic equation, in : “Nonlinear Analysis and Applications”,
V. Lakshmikantham Ed., Marcel Dekker Publ., 1987, 319-326.

A. LUNARDI: Analytic semigroups and optimal regularity in parabolic
problems, Birkhauser-Verlag, Basel (1995).

A. LuNARDI, E. SINESTRARI, W. VON WAHL: A semigroup approach
to the time-dependent parabolic initial boundary value problem, Diff. Int.
Eqns. 5 (1992), 1275-1306.

G. SIMONETT: Center manifolds for quasilinear reaction-diffusion sys-
tems, Diff. Int. Eqns. 8, 753-796.

E. SINESTRARI: On the abstract Cauchy problem in spaces of continu-
ous functions, J. Math. Anal. Appl. 107 (1985), 16-66.

V.A. SOLONNIKOV: On the boundary walue problems for linear
parabolic systems of differential equations of general form, Proc. Steklov
Inst. Math. 83 (1965), O. A. Ladyzenskaja Ed., Amer. Math. Soc.
(1967).

N.N. Soporov: The first boundary wvalue problem for nonlinear
parabolic equations of arbitrary order, C. R. Acad. Bulgare Sci. 23
(1970), 899-902 (Russian).

H.B. STEWART: Generation of analytic semigroups by strongly elliptic
operators, TAMS 199 (1974), 141-162.

H.B. STEWART: Generation of analytic semigroups by strongly elliptic
operators under general boundary conditions, TAMS 259 (1980), 299-
310.

60



