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Abstract

We consider a path of sectorial operators t — A(t) € C*(R,L(D, X)), 0 < a < 1,
in general Banach space X, with common domain D(A(t)) = D, and with hy-
perbolic limits at £oo. We prove that there exist exponential dichotomies in the
halflines (—oo, —T] and [T, +o0) for large T, and we study the operator (Lu)(t) =
u'(t) — A(t)u(t) in the space C*(R, D) N C**T(R, X). In particular, we give sufficient
conditions in order that £ is a Fredholm operator. In this case the index of £ is given
by an explicit formula, which coincides to the well known spectral flow formula in fi-
nite dimension. Such sufficient conditions are satisfied, for instance, if the embedding
D — X is compact.

1 Introduction

Let {A(t) : t € R} be a family of sectorial operators in a general Banach space X, with
common domain D(A(t)) = D. Under reasonable regularity assumptions (i.e. t — A(t) €
C*(R,L(D, X)), with @ > 0), forward Cauchy problems such as

u'(t) — At)u(t) = f(t), a<t<b,
u(a) = z,

are well understood ifa < b € R. See e.g. [16], [3, 4, 2], [11, ch. 6]. Problems in unbounded
time intervals, including backward Cauchy problems and problems on the whole real line,
are of different nature, and at present a satisfactory theory is available only in the case
where the associated evolution operator G(t, s) has an exponential dichotomy on R. This
has been worked out in the periodic case A(t +T') = A(t), see [9, §7.2], [11, ch. 6], [8].

In this paper we consider the asymptotically autonomous case, when there exist the
limits

lim A(t) = A4, lim A(t) = Ao,
t——00

t——4o00

in L(D, X), and such limits are hyperbolic, i.e.
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Then we study the operator £ defined by

L:D(L)=C"(R,X)NC*R, D) — C*R, X),
(1.1)
(Lu)(t) =u'(t) — A(t)u(t), t€R.

The operators A, and A_,, being limits of sectorial operators, are sectorial. Therefore
the sets 0(A1o0) N{ ReA > 0} and 0(A_«) N{ ReX > 0} are compact, and the relevant
spectral projections Py, P_ are well defined.

If X = D =R" it is well known that £ is a Fredholm operator, with index equal to

ind £ = dim P_oo(RY) — dim Pyoo(RY). (1.2)
This number may be written also as
dim (I = Pyog) (RY) — dim (I — P_og) (RY),

and as minus the spectral flow. The spectral flow is the sum of the algebraic multiplicities
of the eigenvalues of A(t) whose real part changes from negative to positive, minus the
sum of the algebraic multiplicities of the eigenvalues whose real part changes from positive
to negative, as ¢ increases. See [13, 14] for precise definitions and [7] for some applications.
Here we generalize one of these formulae, showing (corollary 3.13) that if P_(X) and
Py (X) are finite dimensional, then £ is a Fredholm operator and its index is equal to

ind L =dim P_(X) — dim Py (X). (1.3)

In its turn, the assumption that P_.(X) and P, (X) are finite dimensional is satisfied,
for instance, if D is compactly embedded in X. Note that in general the dimensions of
(I — P_o)(X) and of (I — Pyoo)(X) are infinite.

The literature on the subject deals mainly with the case where X is a Hilbert space,
and C*(R, X), C**(R, X)NC*(R, D) are replaced respectively by L?(R, X), H'(R, X)N
L?(R, D). In the paper [14], Robbin and Salamon considered a C' path of self-adjoint
operators, with common domain D compactly embedded in X. They proved that L :
D(L) = H'(R, X) N L?(R, D) ~ L?*(R, X) is a Fredholm operator with index given again
by a generalization of the spectral flow formula.

More recently, Abbondandolo and Majer in [1] considered a path of bounded, not
necessarily self-adjoint, operators in a Hilbert space, and studied £ as an operator from
H'(R,X) to L?>(R,X). Among other results, they proved that if (I — Py )(X) and
(I — P_»)(X) are finite dimensional, then £ is Fredholm with index equal the difference
of their dimensions. They considered also situations in which the subspaces P (X),
(I — Proo)(X), P_oo(X) and (I — P_)(X) are infinite dimensional and £ comes out to
be a Fredholm operator, and showed that in general the index of £ does not depend only
on the endpoints A_, and A;.. We note that in their case, since the operators A(t)
are bounded, the choice of the spaces is not essential, and H'(R, X), L?(R, X) could be
replaced as well by C}(R, X), Cp(R, X) or by C1T%(R, X), C%(R, X), respectively.

From the point of view of Cauchy problems, our assumptions are halfway between the
assumptions of [14] and those of [1]. Indeed, both forward and backward Cauchy problems
are ill posed in general under the assumptions of [14]; in our case forward Cauchy problems
are well posed but backward Cauchy problems are ill posed in general, and both forward
and backward Cauchy problems are well posed under the assumptions of [1]. In terms of
evolution operators, the evolution operator G(t,s) does not exist under the assumptions
of [14], it exists only for ¢ > s under our assumptions, and it exists for all £, s € R under
the assumptions of [1].

In the paper [14] the Hilbert space structure is essential. Some of the proofs of [1] may
be extended without important differences to a Banach space setting, but other ones work
only in Hilbert spaces.



Our main tool is the existence of exponential dichotomies in the halflines (—oo, —T]
and [T, 4o00) for T' large enough. Indeed, both A, and A_. are sectorial hyperbolic
operators, so that their evolution operators e(t=$)A+0 and e(t=5)4- have constant expo-
nential dichotomies on R. For ¢ large, A(t) is a small perturbation of A, so that G(¢, s),
t > s> T, is a small perturbation of e(t!=%)4+e: gimilarly, for ¢ small A(t) is a small per-
turbation of A_., so that G(t,s), s < t < —T, is a small perturbation of e(t=)4~e_ Then
we can prove existence of exponential dichotomies by perturbation arguments.

Exponential dichotomies for abstract parabolic evolution operators in general Banach
spaces have been recently studied by Schnaubelt in [15]. He considers a family of operators
A(t), t > 0, with possibly nonconstant but dense domains, such that A(t) goes to a
hyperbolic operator A, in a suitable sense as ¢ — +o00, and he proves the existence of
an exponential dichotomy in [T, +o0) for T large by a perturbation argument different
from ours. His method may be extended to get an exponential dichotomy in a halfline
(—o0, =T.

Once we have the powerful tool of exponential dichotomies at our disposal, we can
characterize the bounded solutions to forward Cauchy problems,

u'(t) — A()u(t) = f(t), t>s,

u(s) = x,
for s > T, and the bounded solutions to backward Cauchy problems,
w'(t) — A(t)u(t) = g(t), t<s,

u(s) =z,

for s < =T, for continuous bounded f and ¢g. By “solution” we mean, as usual, “mild
solution”, see e.g. [11, ch. 6]. In fact, here we meet one of the typical difficulties of
abstract parabolic equations: if f is continuous in some interval [a,b], in general there
is no u € C'([a,b], X) N C([a,b], D) such that v' — A(-)u = f, even in the autonomous
case A(t) = A. On the contrary, if f € C%([a,b],X) then the equation v’ — A(-)u = f
has classical solutions in [a,b], and the solutions belong to C'*%([a,b], X) N C*([a,b], D)
provided necessary compatibility conditions at ¢ = a hold. See next theorem 3.4.

This is why we work in Holder spaces rather than in spaces of continuous functions.
Another possible choice could be LP(R, D) N WP(R, X) with 1 < p < oo, but in such a
case we need further suitable assumptions on X and on the operators A(¢).

The paper is structured as follows. In section 2 we show that G(t,s) has exponential
dichotomies in (—oo, =T and in [T, +o0) for T large, and we use them for the study of
forward and backward Cauchy problems in halflines. In section 3 we define the stable
and unstable linear spaces of the associated system u'(t) = A(t)u(t) and we investigate
the connections between these spaces and the Fredholm properties of £, extending to our
situation some results of [1]. In section 4 we give some applications to paths of elliptic
operators in different Banach spaces.

2 Exponential dichotomies

We begin this section with some standard notation.

Let X be a Banach space with norm |- ||, and let I C R be any interval. If 0 < o < 1,
C*(1,X) is the space of all the bounded and a-uniformly Ho6lder continuous functions
from I to X, and C'*%(I, X) is the space of all the differentiable functions from I to X
with derivative in C*(I, X). B(I,X) is the space of the bounded functions from I to X.
Such spaces are endowed with the natural norms

lullB(r,x) = llullc = sup[lu(®)]],
tel



[|u(t) — u(s)]
lullca(r.x) = lulloo + [U]ce = l|ulloo + sup ———,
e wx) s +[u] 7 sstser (E—s)

luller+ar,x) = llloo + [1u'llos + [u'] e

Let D be another Banach space, continuously embedded in X, not necessarily dense
in X. In this section we shall establish exponential dichotomies in suitable halflines
(=00, =T, [T, +o0) for the evolution operator associated to a path of sectorial) op-
erators. Precisely, we assume that

(1) Jae(0,1): t— A(t) € C¥R, L(D, X)),
(2.1)
(1i) VteR, A(t) : D(A(t)) = D — X is a sectorial operator.

By the equality D(A(t)) = D we mean that the graph norm of A(¢) is equivalent to the
norm of D.

In any case (see [16] if D is dense, [11, ch. 6] if D is not dense) there exists an associated
evolution operator G(t, s). For all the properties of G(¢,s) we refer to [11, ch. 6].

We recall that a (not necessarily strongly continuous) evolution operator G(t,s) in a
Banach space X, is a family of bounded linear operators G(t, s), t > s € R, such that

G(t,t) =1, G(t,s)G(s,r)=G(t,r), t>s>r.

G(t, s) is associated to the family {A(¢)} if for each x € X the function ¢ — G(¢,s)z is in
C((s, +00), X) N C((s,+00), D) and

%G(t, s)r = A(t)G(t,s)x, z € X, t> s.

An evolution operator G(t,s) is said to have an exponential dichotomy with exponent
B > 0 and bound N > 0 in an interval I C R if there exists a family of projections
P(t) € L(X), t € I, such that

a) G(t,s)P(s) = P(t)G(t,s), Vs, tel, s<t,

b) G(t,s): P(s)(X) — P(t)(X) is invertible with inverse G(s,t), Vs,t €I, s <t,

¢) |G(t,s)(I = P(s))| < Ne PU=9) s tel, s <t,

)
)
)
d) ||G(s,t)P(t)|| < Ne Pt=9) Vs tel s<t.

Exponential dichotomies for evolution operators associated to families of sectorial op-
erators satisfying the assumption (2.1) are easily seen to enjoy some regularity properties.

Lemma 2.1 Let {A(t) : t € R} satisfy (2.1), and assume that the associated evolution
operator G(t,s) has an exponential dichotomy in I.

Then the function s +— P(s)z is continuous in I if x € D, it is locally 6-Hoélder
continuous if z € (X, D)y o0, it is locally Lipschitz continuous if z € D.

For each z € X, the function s — G(t,s)(I — P(s))x is locally a-Holder continuous
in{s€l: s<t}, and the function s — G(t,s)P(s)z is locally a-Hélder continuous in
{sel: s>t}

'We recall that a linear operator A : D(A) C X is said to be sectorial if the resolvent set of A contains
asector S ={A € C: X # w, |arg(A —w)| < 0} with w € R, § > /2, and there is M > 0 such that
JA =w)RA, A)|lLx) < M for each A € S.



Proof — The first statement follows from the argument used in [9, p. 227] and the
regularity properties of G(t, )z stated in corollary 6.1.10 of [11].

From [11, cor. 6.1.12] it follows that for each z € X and ¢ € I, the function s — G(t, s)z
is locally a-Holder continuous in {s € I : s < t}. Writing G(t,s + h)P(s + h)z —
G(t,s)P(s)x = P(t)(G(t,s +h)x — G(t,s)x) for s, s+ h € I, s, s+ h < t, we see that also
s+ G(t,s)(I — P(s))z is locally a-Holder continuous in {s € I : s < t}.

_ Fixnowt € I and T > 0 such that t +T € I. For s, s+ h € (t,t + T] we have
G(t,s+h)P(s+h)x—G(t,s)P(s)z = G(t,t+T)[G(t+T,s+h)P(s+h)r—G(t+T,s)P(s)z]
and from the local Holder continuity of G(t + T',-)P(-)z the last statement follows. W

The main assumption of this paper is that there exist the limits (in L(D, X))

lim A(t) = Ayoo, lim A(t) = A oo, (2.2)

t—4o00

and that they are hyperbolic, i.e.
0(Aioo) NIR = 0(A_) NiR = 0. (2.3)

To construct exponential dichotomies we shall argue by perturbation, using as a main tool
the following theorem from Henry’s book ([9, thm. 7.6.10]). Although it is stated for
strongly continuous evolution operators, its proof relies on discrete dichotomies and it is
independent of the density of D.

Theorem 2.2 Suppose that an evolution operator T(t,s) has an exponential dichotomy
on R with exponent B and bound M, and moreover

sup ||T(, s)||(x) < oo
0<t—s<1

If 0 < By < B and My > M, there exists K > 0 (depending only on B, f1, M, My, and
on supg<;_s<1 [|T'(t, )l 1(x)) such that any evolution operator S(t,s) satisfying

IT(t,s) = S(t,s)|lL(x) < K whenever 0<t—s<1,
has an exponential dichotomy on R with exponent 51 and bound M.

The idea of the proof is simple. Since the operators Ao, and A_, are limits of
sectorial operators, they are sectorial. The evolution operators Ty (¢, s) := e(t=5)4+ and
T_(t,s) := e(t=9)4-= haye (constant) exponential dichotomies on R, because of assumption
(2.3). More precisely, elt=9)4% has the constant exponential dichotomy P(s) := Py,
where Pi., is the spectral projection associated to the spectral set o4 (+o0) := {z €
0(A+) : Rez > 0}, ie.

1

Pio = o L R(\, Asog)d, (2.4)

v being any counterclockwise oriented, regular in stretches, closed curve around o (400),
with index 1 with respect to o4 (£o00) and with range in { Re A > 0}.

Since A(t) — A4 ast — oo, and A(t) - A_ as t — —oo, G(t,s) is close to Ty (¢, s)
for t > s > T, and it is close to T_(t,s) for s < ¢t < —T if T is large enough. Then we
modify G(t, s) for s < T, in such a way that the modified evolution operator CNT'(t, s) is still
close to T (t, s) for all values of s and t € [s,s + 1], and we apply theorem 2.2 to get an
exponential dichotomy in [T, +00). We argue similarly to get an exponential dichotomy
in (—oo,—T].



Theorem 2.3 Let t — A(t) be a path of sectorial operators satisfying (2.1), (2.2), and
(2.3). Then there is T > 0 such that the corresponding evolution operator G(t,s) has
exponential dichotomies on [T, +00) and on (—oo, —T.

Proof — To begin with, we prove the existence of an exponential dichotomy in [T, +00)
for T large.

Fix T > 0, and let ¢ € C*°(R) be such that ||| < 1and ¢(t) = 1fort € (—o0,T—1],
P(t) =0 for ¢t € [T, +00). Define the family of operators

A(t) = p(t) Aoo + (1 — () A(t), tER.

If T is large enough, for each t € R A(t) is a small perturbation of A, in L(D, X), and
therefore it is a sectorial operator. Moreover, t — A(t) is in C*(R, L(D, X)). Therefore
there exists an evolution operator G ;(t, s) such that

e(t_s)A-FOO’ S

Galt,s) = { G(t,s), t>s

To use theorem 2.2, with T'(¢, s) = elt=9)4+ and S(t,s) = G ;(t,s), we need to know that
|G 5(t,s) — e(t=8)Atoo lL(x) is small for s <t < s+ 1.
Let 0 <e < (||A:Léo||L(X’D))_1, and let T' be such that such that || A} —A()||Lp,x) <

g, for every t > T — 1. Then g(t) is invertible for every ¢, and there exist three constants
w€R, 0 € (r/2r), M > 0, such that the resolvent sets of A(¢) contain a common sector
Y={2€C: z#w, |arg (z —w)| < 8}, and ||(A — w)R(\, A(t))|l(x) < M for X € &,

for all t € RU {—o00,+00}. Moreover the graph norms of D(A(t)), t € RU {—o0, +o0},
are uniformly equivalent to the D-norm, i.e. there exists ¢ > 0 such that ¢ !||z||p <
lA@)z| + ||z|lp < ¢||lz||p for every x € D and t € [—o0, +00].

For s <t < s+ 1 we have

|G 5(t, 8)z — ell =)Ao g|| ) <
- - (2.5)
< |G 5(t, s)z — et DA g|| o)+ [let=AE) g — (=)Ao || ).

To estimate the first addendum we recall the construction of the evolution operator
G ;(t,s) of [11, ch. 6]. We have G ;(t,s)r — et=5)A) ;. = W (t,s)z, where W (L, s)z is
the solution of the Cauchy problem

w'(t) = A(t)w(t) + (A(t) — A(s))e(t_s)g(s)x, t> s,

w(s) = 0.
Since

IA() — A(3) |l p(p,x) < { gﬁ}ca(RyL(D,X))(t —s)%,
for ¢ > s, then

~ ~ 1 1
A1) — A()|l(p,x) < (26)2([Alcaw,p,x)(t —8)*)2,  t>s,

so that N 1
HAHCC%/?(R,L(DJ()) < Kje2.

By theorem 6.1.4 of [11], replacing « by /2 we obtain that there exists a positive number
K>, depending only on the above constants w, 8, M, ¢, such that

W (-, 8)ellcarz s sin,x) < Koe'Plall, s € R,

6



It follows that
1G x(t,5) — A ) < Kpel?, s <t <s+1. (2.6)

The estimate of the second addendum in (2.5) is standard. Indeed, setting B(s) :=
A(s) — 2wl, Byoo := Ayoo — 2w, we have

||e”B(s) — g7 B+oo Il /eA”(R()\,B(s)) - R(/\,B+oo))d)‘H =
v

[ Cpe) R (Cni))

where v := {rexp(—if), r > 0} U {rexp(if), r > 0} and ¥ = o+ are oriented counter-
clockwise. Since the resolvent is an analytic function and + is homotopic to 7, we may
replace 4 by 7 in the last integral, and we estimate it by

[ (0Com0) ~r(Comm) T | < [ [0 (Co6) = (o) 115 <

e’| Mo
< [ )~ Bl < Ke
where K3 := sup{[|R(\, B(s))|lr(x,p) : larg A| = 6}. Tt follows

3

|z + ow|

”eUA(S)g; _ €JA+°°.’L‘||L(X) — eQw(f”eaB(s) _ 60B+oo||L(X) < eQwK4€

for each o € [0,1]. Taking into account (2.6) and (2.5), we get
1G 5(t,5) = el ) Ave0 lzx) < Koe'? + Kye®e, s<t<s+1

so that if T' is large enough then ||G (t,s) — e(t=9)Atoo lL(x) is small, and G ;(t, s) has an
exponential dichotomy in R thanks to theorem 2.2. But G ;(¢, s) coincides with G(t, s) for
t > s > T, and therefore G(t, s) has an exponential dichotomy in [T, +00).

The proof that G(t, s) has an exponential dichotomy in (—oo, —T7 for large 7' is similar;
of course the operators A(t) have to be defined now by

A(t) == p(t) Ao + (1 — (1)) A(t), tER,

where ¢ € C®(R), |l¢lloc < 1 and ¢(t) =1 for t € [-T + 1,400), p(t) = 0 for t €
(=00, —T]. N

Once one knows that there exist exponential dichotomies in suitable halflines, several
results for forward and backward Cauchy problems follow. We quote below some of the
results of [11, ch. 6] that will be used later. In fact, such results were proved under the
periodicity assumption A(t + T) = A(t), but they rely uniquement on the existence of
exponential dichotomies, as it is easy to check.

Let {P(s): s € (—oo,—=T|U[T,+0o0)} be any exponential dichotomy for G(t, s) in the
halflines I = (—o0, =T, I = [T, +00).

Theorem 2.4 Let tg > T, let f € C*([ty,+0),X), and x € X. Then the solution u of
u'(t) = A(t)u(t) + f(t), t>to; wulty) ==, (2.7)

is bounded in [tg, +00) if and only if

P(ty)r = — wé%@w@ﬁ@@, (2.8)

to



in which case u is given by

u(t) = G(t,to)(I — P(to))z -l-/

to

t

G(t,s)(I — P(s))f(s)ds — /tooé(t, s)P(s)f(s)ds. (2.9)

If in addition € D and A(to)z + f(to) € (X,D)ac0, then u € C1([tg, +00),X) N
C*([ty, +00), D), and u' € B([ty, +0), (X, D)a,c0). There is C > 0 such that

luller+a (ftg,400),x) F 1l (fto,400),0) F 1% | B([to,+00),(X,D)a.00)

(2.10)
< C(llzllp + [[A(o)z + f(to)l(x,0)a00 T I1f llca((to,+00),x))-
Theorem 2.5 Let tg < —T,y € X, g € C*((—o0,tg]; X). Then problem
v'(t) = A(t)v(t) +g(t), t <to; wlto) =y, (2.11)
has a bounded solution v in (—oo,tg] if and only if
to
(1= Pty = [ Gl )T - Po)gls)ds. (212)
—o0

in which case v is given by

t t

v(t) = G(t,to)Pto)y + | G(t, s)P(s)g(s)ds +/ G(t,s)(I — P(s))g(s)ds,  (2.13)
to —00

and belongs to C'H((—oo0,to], X) N CY((—o0,t]), D), while v' is bounded with values in

(X,D)a,00. There exists C > 0 such that

[Vl 1t (= o0,t0],x) T 10l o ((=o0,t01,0) F 11V B((=00,t0],(X,D)a.c0)
(2.14)

< Clllyll + llgllico ((=oosto],x))-

As a particular case of theorems 2.4 and 2.5 we may consider the autonomous case,
when A(t) is a constant hyperbolic operator. In fact in next proposition 2.7 we shall
use the result of theorem 2.5 with A(t) replaced by A_. In this case we have a trivial
exponential dichotomy on the whole R, with P(t) = P_, for each ¢, and the proofs (see
[11, thms. 4.4.3, 4.4.6 ]) are simpler.

Proposition 2.6 We have
dim P(t)(X) = dim P, (X), t>T,
dim P(t)(X) = dim P_(X), t < -T.

Proof — Since G(t,s) is an isomorphism between P(s)(X) and P(t)(X) for s > ¢t > T,
and between P(s)(X) and P(t)(X) for t <s < —T, then the dimensions of P(t)(X) for
t > T are constant, and the dimensions of P(t)(X) for t < —T are constant.

Set Xo := D. The parts of the operators G(t,s) in Xy still have exponential di-
chotomies in [T, +00) and in (—oo, T, given by the parts of P(s) in Xy. By [15, thm. 3.3],
dim P(T)(Xy) = dim Py (Xp). Since P(T)(D) = P(T)(X) and Py (D) = Pioo(X),
then P(T)(Xo) = P(T)(X) and Py (Xo) = Proo(X). Therefore, dim Py (¢)(X) = dim
P, (X), for every t > T.

A similar argument yields the second part of the statement. W

Now we give a better insight on the structure of the spaces P(t)(X), seen as graphs
of linear bounded operators over P_.(X) for t < —T. This extends to our situation the
analogous results of [1]. The fact that P(¢)(X) is a graph over P_,(X) gives also an
alternative proof of the second part of proposition 2.6.



Proposition 2.7 If T is big enough, for each tg < —T the space P(ty)(X) is the graph
of a linear bounded operator I'_ : P_(X) — (I — P_xo)(X).

Proof — Let tg < —T and let ug € P(ty)(X). By theorem 2.5 there exists a unique
bounded backward solution u of the Cauchy problem

u'(t) = A(t)u(t), t < to,
(2.15)
u(to) = uo,

and u € C*((—o0, 1], X). We rewrite the differential equation as a perturbation of u' =
A_sou, ie. u'(t) = A_cou(t) + f(u)(t), with f(u)(t) := A(t)u(t) — A_sou(t). Applying
theorem 2.5 with A(t) replaced by A_., P(t) replaced by P_, it follows that

t t
u(t) = elt7t0) Ao g 4 / et~ A~ p__ f(u)(s)ds + / =)Ao (1 — P_ ) f(u)(s)ds,

to —00

for some z € P_,,(X). Therefore, we fix z € P_o(X) and we consider the operator A,
defined on C®/2((—o0, —tg], D) by

(Agu)(t) := ett0)Aoo gy / t ell=A- P f(u)(s)ds+ / t et~ A~ (T P_ ) f(u)(s)ds.

to —0o0
We claim that A, is a 1/2-contraction if T' is big enough. Indeed, let ¢ > 0, and let
T be such that ||A_« — A(t)||(p,x) < &, for every t < —T. The same argument used
in the proof of theorem 2.3 yields [|A(-) — A—oo|lcar2((—oo,—11,L(0,x)) < K(€+ '/?), and
this implies || f(u1) — f(u2)llcor2((Cooto),x) < Cle+ ') |luy — 2| a2 ((—oo o), ) for €ach
couple of functions uy, us in C%?((—o0,tg], D). Estimate (2.14) with a replaced by

«/2 implies now that A, is a 1/2-contraction if € is small enough. In this case, there
is a unique fixed point of A,, which is the unique solution to (2.15) with final datum
up = @ + [ _ello=9) Ao (I — P_ ) f(u)(s)ds.

Defining

to
D= (I — P o)ulty) = / eto=)Amoe (1 _ Py F(u)(s)ds,

—00

where u is the unique fixed point of A,, we obtain that W"(¢g) is the graph of the operator
I'_, and the statement follows. W

Arguing as in proposition 2.7 and using [11, cor. 4.3.6, thm. 4.4.3] instead of theorem
2.4, one can prove that the spaces (I — P(t))(D) are graphs of linear bounded operators
Ty :(I—Pioo)(D) = Pyoo(D) for t > T. Tt follows that the dimension of (I — P(¢))(D)
is equal to the dimension of (I — Py )(D), but this is not of much interest for us because
in the most important applications such dimension is +oo.

3 Properties of the operator L

Throughout this section {A(¢) : t € R} is a family of operators satisfying assumptions
(2.1), (2.2) and (2.3), G(t,s) is the associated evolution operator, and L is the operator
defined in (1.1).

It is convenient to introduce the notion of stable and unstable subspaces, as in [1].

Definition 3.1 Let tg € R. We define the stable space at tg by

W?(tg) :={z € X : t—léinoo G(t,to)r = 0},
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and the unstable space at ty by
Wu(ty) :={ z€ X : FJuec C((—o0,to); D) N C((—o0,tg]; X)
such that u/(t) = A(t)u(t), u(te) = z, limy_ o u(t) = 0}.
Some easy properties of W*(ty) and W(ty) follow.
Proposition 3.2 The following statements hold true:
(i) for each to > T, W4(tg) = (I — P(to))(X); for each to < =T, W"(ty) = P(to)(X);
(ii) for each to > T, Wé(ty) ={z € X : t = G(t,to)x € B([to, +00),X)};
(iii) for each tg < =T,
Wu(tg)={ z€D : Fuec C((—o0,tp); D) N CH((—00,ty]; X) N B((—o0,tg]; X)

such that u'(t) = A(t)u(t), u(ty) = z};

(iv) for each t, tg € R with t > to, G(t,to)W*(tg) C W*(t);
(v) for each t, tog € R with t > ty, G(t,to)W"(tg) = W"(t);
(vi) for each tg € R, W*(ty) is closed.

Proof — Statements (i), (ii), (iii) follow from theorems 2.4 and 2.5, taking f = 0 and
g = 0. Statement (iv) is an obvious consequence of the semigroup law G(s,tp)r =
G(s,t)G(t,tg)x for s >t > tg, z € X.

Let us prove (v). Let # € W¥%(tg), and let u € C((—o0,t]; D) N C*((—o0,to]; X) be
such that u(tg) = z and limy_, o u(t) = 0. Therefore, z € D and u'(tg) = A(to)z € D,
which implies that s — G(s,tg)z is in C([to,t]; D) N C'([to,t]; X) (see [11, cor. 6.1.9]),
and the function v defined by v(s) = u(s) for s < tg, v(s) = G(s,to)r for to < s < t
belongs to C((—oo,t]; D) N C'((—o0,t]; X) and goes to 0 as s goes to —oo. Therefore,
v(t) = G(t,to)x € W*(t). This shows the inclusion C. The other inclusion is obvious.

Let us prove (vi). If tg > T (risp. to < —T) then W*(ty) (risp. W¥(t)) is the range
of the projection I — P(tg) (risp. P(to)) and then it is obviously closed. If t; < T, let
{zp} C W*(ty) be such that z,, - = as n — 4o0o0. Then, for each t > to, G(t,to)rn, —
G(t,to)r as n — +oo, and by statement (iv), G(¢,t9)z, € W*(t). Taking ¢ = T and
recalling that W*(T') = (I — P(T))(X) is closed, we get G(T,t9)z € W*(T). Therefore,
G(t,to)r = G(t,T)G(T,to)x goes to 0 as ¢ goes to +oo. This means that x € W*(1y), so
that W#(tg) is closed. N

To study the operator £ it is useful to introduce the realizations of the operator
u > u' — A(-)u in Holder spaces on halflines.

Definition 3.3

£t :D(LY) = CHY([T, +00), X) N CY([T, +00), D) — C*([T, +0), X),
(3.1)
{ (LFu)(t) = u'(t) — A(t)u(t), t>T;
{ L~ :D(L7) = C*((—00,T], X) N C¥(—00,T],D) — C(—00,T], X),
(3.2)
(L7u)(t) =u'(t) — At)u(t), t <T.

10



Using theorems 2.4 and 2.5 it is possible to write down right inverses for £ and £:

+oo t
(RTh)(t) = - G(t, s)P(s)h(s)ds+/ G(t,s)(I — P(s))h(s)ds

t T (3.3)

~G(t,T)A(T) (I - P(T))MT), t>T, he C*(T,+),X),

p t t_
/_ G(t,s)(I — P(s))h(s)ds + /_TG(t,s)P(s)h(s)ds, t<-T,
(B=h)(t) = / Gt s) (I — P(s))h(s)ds + / " Glon(syas, -T<i<T, Y
—00 =T

| € C%((—00,T], X).

To prove that in fact R™ and R~ are right inverses of LT and £~, we shall need a
theorem due to Sinestrari about maximal Holder regularity for forward Cauchy problems
in bounded intervals, whose proof may be found in [11, ch. 6].

Theorem 3.4 Leta < b€ R, andlet f € C%([a,b], X), z € D be such that A(a)z+ f(a) €
(X, D)a,00- Then the solution u to problem

{ u'(t) = A(t)u(t), a <t <b,
u(a) = x,

belongs to C'T%([a,b], X) N C%([a,b], D), and there is C > 0, independent of f and z,
such that

lullcita (a,,x) + [ullca(ap,p) < CUfllca(ap,x) + 1zllp + [[A(@)z + f(a)ll(x,D)a.00)-
(3.5)

Proposition 3.5 The following statements hold.

(i) R" is a bounded operator from C*([T,+0), X) to D(L"), and we have LYTRYh = h
for each h € C*(|T,+0), X) .

(i) R~ is a bounded operator from C*((—o0,T],X) to D(L™), and we have LTR™h =h
for each h € C*((—o0,T], X).

Proof — (i) Let h € C%([T,+o0), X). Setting z = —A(T)~'(I — P(T))h(T), we have
A(T)z + h(T) = P(T)h(T) € D C (X,D)a00. By theorem 2.4, Rth € D(L") and
(RTh)(t) = A(t)RTh(t) +h(t) for t > T, i.e. LTRTh = h. From estimate (2.10) it follows
that R* € L(C%([T, +o0), X); D(L")).

(ii) Let now h € C*((—o0,T], X ). By theorem 2.4, the restriction of R™h to (—oo, =T is
in C1*((—o0, =T, X) N C*((—o00, =T, D), its norm does not exceed C||h|co ((—o0o,—17,x);
and (R™h)'(t) = A(t)Rh(t) + h(t) for t < —T. Moreover,

(R™h)'(=T) = A(=T)(R"h)(-T) + h(-T) € (X, D)a,c0;

I(R™R) (=T)l(x,D)an0 < CllAllcea((~o0,—17,%)-

Theorem 3.4 implies now that the restriction of R™h to [T, T] is in C**([-T,T],X) N
C*([-T,T], D), that its norm does not exceed

Cl[hllca—rm,x) + I(RTR) (=)D + [A(=T)(B"h)(=T) + h(=T)ll(x,D)a.0 )
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and that (R™h)'(t) = A(t) R h(t)+h(t) for =T < t < T. Patching together the restrictions
of R™h to (—oo, —T] and to [T, T] the statement follows. N

Now we prove a trace lemma that will be a key tool in the proofs of next theorems.

Lemma 3.6 For every wg € P(T)(X) there exists hg € D(L) such that (R hy)(T) = wy,
(R™ho)(T) = 0 and ||holp(cy < Kllwoll, where K is a nonnegative constant independent
of wy.
Proof — Let ¢ € C§°(R) be such that
+o0o
ol <1, 0lt) =0 V< T, [ pls)ds =1,
T

and set
ho(t) :== (t)G(t, T)wy, t>T, ho(t):=0, t<T.

Then there exists a nonnegative constant K such that ||ho|lpz) < Kllwoll. Moreover
Rtho(T) = wg, R™ho(T) = 0 and the statement follows. W

Now we can state a characterization of the kernel and of the range of £ in terms of
the stable and the unstable subspaces at T.

Proposition 3.7 (i) Ker LT = {h € C%([T,+o0), D) N C*T([T, +0),X) : K(t) =
A(t)h(t), M(T) € W*(T)},

(ii) Ker L= = {h € C%((—=c0,T], D) N C*%((—00, T}, X) : I(t) = A@)R(E), h(T) €
wH(T)},

(iii) Ker L= {h € C*R,D)NC* (R, X) : K (t) = A(t)h(t), h(T) € W*(T)NW"(T)},
() Range L ={h € C*(R,X) : RTh(T)— R h(T) € W(T) + W*(T)},

(v) Range L= {h € C*(R,X) : R™h(T) — R h(T) € W5(T) + W(T)}.

Proof — Statements (i), (ii) and (iii) follow from proposition 3.2.
Let us prove statement (iv). Let h € Range L, then the restrictions of h to [T, +00)
and to (—oo,T] belong to the ranges of LT and of £, respectively. If u is any solution to

Lu = h then
{ (R*R)(t) +v4(t), t > T,

(RRh)(t) +v_(t), t <T,

for some vy € Ker LT, v_ € Ker L. In particular, u(T) = RTh(T) + v (T) = v_(T) +
R h(T) and v_(T) € W*(T), vy (T) € W5(T). Then RTR(T) — R™h(T) = v (T) —
v_(T) € W5(T) + W*(T).

Let now h € C%(R, X) be such that RTh(T) — R™h(T) = vs + vy, € W5(T) + W%(T).
Let ug := RYh(T) — vs = R™h(T) + vy, and define the function

u(t) =

{ a(t) == G(t,T)(uo — RTh(T)) + RTh(t), t>T,
u(t) =

b(t) :=u(t) + R™h(t), t<T,
where u(t) is any backward solution of v’ (t) = A(t)v(t), t < T, with final datum u(T") = vy,
and going to 0 as ¢ goes to —oo. Note that, since (RTh)(T), (R™h)(T) are in D, and

A(T)(RTh)(T), A(T)(R™h)(T) are in (X, D)q,00, then also v € D, A(T)vs € (X, D)q,00-
Therefore, the function a is in C*([T,+o0), D) N C'T*([T,+00),X). Moreover b €
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C%((=00,T],D) N C**((—o0,T),X) and a(T) = ug = b(T), a'(T) = A(T)ug = b'(T).
Therefore u € D(L), and u/(t) — A(t)u(t) = h(t) for each t € R. It follows that h € Range
L.

To prove statement (v) we have only to check the inclusion O since the other one is
obvious. It is possible to follow an argument already used in [1]. Let h € C*(R, X) be such
that RTh(T) — R-h(T) € W*(T) + We(T), and let ¢ > 0. Since R*A(T) — R—h(T) €
Ws(T) + Wu(T) there exist vg = vo(e) € W3(T) + W¥T) and w = w(e), ||w|| < e,
such that RTh(T) — R™h(T) = vy + w. Let wy = P(T)w, then by lemma 3.6 there
exists hg € C1T*(R, X) N C*(R, D) such that (R*ho)(T) = wo, (R ho)(T) = 0 and
lhollce(r,x) < Kllwol|. We set h. := h — hg. he € Range L, indeed

Rthe(T) = R™he(T) = RW(T)—R™MT)— (R"ho(T) — R™ho(T))
= vot+w—wy=vy+ (I —P(T))w

e WH(T) + W(T).

Moreover ||he — hl[ca®,x) = l|hollca®,x) < Kllwol| = K||P(T)||r(x)e. Then h. — h as
e — 07 and the statement follows. W

We recall the definitions of semi-Fredholm and Fredholm operators, and of semi-
Fredholm and Fredholm couples of subspaces.

Definition 3.8 Let E and F be two Banach spaces. We say that a closed linear operator
T:D(T) C E — F is a semi-Fredholm operator if Range T is closed and if at least one of
the dimensions dim Ker T' < oo, codim Range T, is finite. If both dimensions are finite
we say that T is a Fredholm operator. If T is a semi-Fredholm operator the index of T is
defined as

ind T := dim Ker T — codim Range T.

Definition 3.9 Let V and W be two subspaces of a Banach space E. We say that (V,W)
is a semi-Fredholm couple if V+W is closed and if at least one of the dimensions dim (VN
W) < o0, codim (V + W), is finite. If both dimensions are finite we say that (V,W) is a
Fredohlm couple. If (V,W) is a semi-Fredholm couple the index of (V,W) is defined as

ind (V,W) :=dim (VNW) — codim (V + W).

Now we are able to describe the properties of £ in terms of properties of the subspaces
W#(T) and W*(T).

Theorem 3.10 (i) Range L is closed if and only if W5(T) + WY(T) is closed.
(11) L is onto if and only if W*(T) + W*(T) = X.
(ii) If L is one to one then W*(T) N W*(T') = {0}. Moreover if G(T,~T)|p—r)x) 15

one to one the converse is also true.

(iv) If L is invertible then W*(T) ® W*(T) = X. Moreover if G(T,=T)p(—1)(x) is one

to one the converse is also true.

(v) If L is a semi-Fredholm operator then (W*(T'),W*(T)) is a semi-Fredholm couple
and
ind (W*(T),W*(T)) < ind L.

If in addition the kernel of G(T,—=T) p(—r)(x) s finite dimensional, then

ind (W*(T), W(T)) = ind £ — dim Ker G(T, ~T)|p(_1)(x). (3.6)
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Conversely, if (W*(T),W*(T)) is a semi-Fredholm couple and the kernel of G(T,
=T)p(—1)(x) %8 finite dimensional, then L is a semi-Fredholm operator and (5.6)
holds.

Proof — The “if” part of statement (i) follows immediately from (iv) and (v) of propo-
sition 3.7. Now suppose that Range L is closed and let vg € W$(T)+ W«(T). We
shall show that wg := P(T)vy € W5(T) + W¥(T) so that vg = (I — P(T))vg + P(T)vg €
W*(T)+W¥(T). By lemma 3.6 there exists h € D(L) such that RTh(T) = wy, R~ h(T) =
0. Since RTh(T) — R™h(T) = wy € W5(T)+ Wu(T), then by proposition 3.7 (v)
h € Range L = Range L. Therefore there exists u € D(L) such that Lu = h. By
the construction of h we get that | ) € Ker L~ and ujr o) — RTh € Ker L. Then,
by proposition 3.7 (ii) and (i), w(T) € W¥(T) and uw(T) — RTh(T) € W*(T). Hence
wo = RTW(T) = (RTI(T) — u(T)) +u(T) € W5(T) + W¥(T).

The “if” part of statement (ii) is an easy consequence of statement (iv) of proposition
3.7. To prove the converse, suppose that £ is onto, let v9 € X and argue like in statement
(i).

Let us prove statement (iii). Let £ be one to one, and let x € W*(T) N W*(T'). Then
we can find a function v € D(L) such that v(T) = z and v'(t) = A(t)v(t), t € R. Therefore
v € Ker £ = {0}, hence v = 0, thus z = v(T") = 0.

Conversely, suppose that G(T, —=T) p(—r)(x) is one to one and W*(T) N W*(T) = {0}.
Let u € Ker £, then u(T) € W*(T) N W*(T) = {0} and z := u(-T) € W"(-T) =
P(-T)(X). Therefore u(t) = G(t,—T)z for t < —T and 0 = uw(T) = G(T,—T)z. Then
G(T,—T)x =0 so that z = 0 and u = 0.

The proof of statement (iv) follows immediately from (ii) and (iii).

To prove (v), first of all we recall that Range L is closed if and only if W*(T') + W*(T)
is closed. In this case we proceed in three steps.

Step 1: codim Range L = codim (W*(T) + W*(T)).
Indeed, if we define

(R, X X
J'C(, )

" Range L - Ws(T) + Wu(T)’ Jh] = [RTh(T) — R™h(T)],

it is easy to prove that J is an isomorphism. Indeed, J is one to one thanks to statement
(iv) of proposition 3.7, and J is onto because by lemma 3.6 for every x € X there is
h € C*(R, X) such that RTh(T) — R~ h(T) = P(T)x, and P(T)z is equivalent to x in the
quotient space X/(W*(T) + W*(T)).
Step 2: dim Ker £ = dim (W*(T) N W*(T)) + dim Ker G(T, =T)|p(—1)(x)-

Define A := {u € Ker(£) : u(t) = 0Vt > T}. Then u € A iff u(-T) € P(-T)(X),
G(T,-T)u(-T) =0, and u(t) = G(t, —T)u(-T) for t < —-T, u(t) = G(t,—T)u(-T) for
t > —T. Therefore, the dimension of A is equal to the dimension of Ker G(T', =T |p(—7)(x)-

The mapping
Ker L

A

is well defined and bijective, and the statement follows.

Step 3: conclusion.
Steps (i) and (ii) imply that if £ is a semi-Fredholm operator then either the codimension
of (W*(T)+W*(T)) or both dimensions of W*(T)NW"(T) and of Ker G(T, —=T) p(—1)(x)
are finite. It follows that (W*(T), W*(T)) is a semi-Fredholm couple with index < ind L;
if in addition the kernel of G(T', —=T)p(—1)(x) is finite dimensional then (3.6) holds.

Conversely, if Ker G(T, —T)p(—)(x) is finite dimensional and (W*(T), W*(T)) is
semi-Fredholm couple then £ is a semi-Fredholm operator with index satisfying (3.6).

FE:

S WS(T)NWHT), Elu] := u(T)

a
|
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Remark 3.11 In general, a parabolic evolution operator G(t, s) is not one to one. See
e.g. [12]. However, several sufficient conditions for backward uniqueness are known. We
mention here the papers [5, 6] for abstract evolution operators in Hilbert spaces, and [17]
for evolution operators associated to specific parabolic partial differential operators.

To prove next corollary 3.13, which is one of the main results of the paper, we shall
use the following simple lemma.

Lemma 3.12 Let X be a topological vector space and let V., W be two subspaces of X
with dim V < oco. Then

i) if W is closed then V + W is closed,
i) if codim W < oo then dim V — codim W = dim (V NW) — codim (V + W).

Corollary 3.13 If dim Pio(X) < o0 and dim P_(X) < oo then L is Fredholm with
index

ind £ = dim P_o(X) — dim Py (X).

Proof — Since dim P(—T)(X) = dim P_(X) < oo then dim Ker G(T, —=T)|p—7)x) <
oo. Hence we have only to show that (W#(T), W"(T)) is a Fredholm pair. Since W*(T') =
G(T,-T)YW*(-T) = G(T,-T)P(—T)(X) we have

dim W*(T) = dim P(—T)(X) — dim Ker G(T, —T)|p(_T)(X) =

= dim P_(X) — dim Ker G(T, =T )|p(—1)(x) < 0©.

Moreover codim W*(T') = dim P(T)(X) = dim Py (X) < oco. Using lemma 3.12 with
W :=W?$(T) and V := W¥(T) we get the statement. W

Corollary 3.14 If the embedding D — X is compact then L is a Fredholm operator.

Proof — Since the embedding is compact then R(\, A1), R(\, A_) are compact op-
erators, and (see e.g. [10, p. 187]) the spectra of A, and of A_, consist of isolated
eigenvalues with finite algebraic multiplicity. Since the dimension of P, (X) (respectively,
P_ (X)) is the sum of the dimensions of the generalized eigenspaces of A (respectively,
A_ ) corresponding to eigenvalues with positive real part, then they are finite, and the
statement follows. W

4 Examples

If the dimension of X is finite we have immediately that £ is a Fredholm operator. But
in infinite dimensions this is not true in general, as the following example (taken from [1])
shows.

Example 4.1 Let V and W be two closed subspaces of a Hilbert space H. Then there
exists an asymptotically hyperbolic path of operators t — A(t) € C*°(R, L(H)), such that
each A(t) is self-adjoint and
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Since, in this case, every A(t) is a bounded operator, then G(t,s) is well defined and
invertible for each ¢ and s, so that dim Ker G(T,—T)p(—r)(x) = 0. This example and
theorem 3.10 provide us an easy way to build examples of families of operators satisfying
our assumptions such that £ has closed or not closed range, it is invertible or not invertible,
it is or it is not a Fredholm operator.

Another example in [1] shows that, if £ is a Fredholm operator, its index could be
every m € 7 and it does not depend only on the endpoints A4 .

Example 4.2 For each k € 7 there exists a family {Ax(t)} of asymptotically hyperbolic
paths of bounded operators in a Hilbert space having identical end-points at +00, such that
Ly, 1is a Fredholm operator of index k.

Note that in the case of example 4.2 either dim P_.(X) or dim Pi.(X) has to be
infinite, otherwise corollary 3.13 would imply that the index of L4, is independent of k.
Now let us see an example where we can apply our results.

Example 4.3 Let Q be an open bounded subset of R” with C? boundary, and let aij,
bi, ¢ : R x Q + R be continuous functions satisfying a Holder condition in time with
O<a<l,

[f(t,z) = f(s,2)| SClt 5| t, s €R, €,
for f = a;j;, b;, ¢, and satisfying the ellipticity condition

n

Z ai&ié; > plef?, teR, zeq.
5,j=1

We denote by v(z) the exterior normal vector to 9 at x € 9. We consider the realiza-
tions of the differential operators
n n
A(t,z, D) = Z a;j(z,t)Di; + Zb,-(z,t)Di +e(z, )T, z€ teR,
i,j=1 i=1
with Neumann boundary condition in three different Banach spaces:
X1 =LP(Q), 1 < p < oo, with common domain

ou

D, := {ue W2P(Q) : o

0}, (A1 (t)u)(z) :== A(t,xz, D)u, u € Dq;

Xy = C(Q), in the case a;j(z,t) = ¢i;(z)1p(t,z), so that we have the common domain

u 0}’
(Ax(t)u)(x) :== A(t,z, D)u, u € Do;

X3 = Co(ﬁ), provided the boundary of  is C?*? and the coefficients aij, b;, c are also
uniformly #-Holder continuous with respect to the space variables; in this case the common
domain is

Q

Dy = {u € ﬂ W2’p(Q) : Z (pij(m)Diju(x) € C(ﬁ),

p>1 i,j=1

¥l

— 0
D5 := {u e C* Q) - 8—1: = 0}, (As(t)u)(z) := A(t,z,D)u, u € Ds.
The operators A;(t), j = 1,2, 3, are sectorial for every ¢ € R. In addition, t — A;(t) €
C*(R, L(Dj, X;)) for j = 1,2, and if the coefficients are more regular (for instance, if they

are in C?%?(R x Q) in the case , § < 1/2) this is true also for ; = 3. We need that there
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exist limy—, 400 Aj(t) =: Aj4 and limy—,_o Aj(t) =: A;—, j = 1,2,3 in L(D;, X;). This is
true if there exist lim; 400 a;5(t) =: afj, limy 1 o0 bi(8) =: bli and limy 400 ¢(t) =: ¢ in
L>®(Q) for j = 1,2 and in C%(Q) for j = 3. Moreover we need that the limits, A, and
Aj_, 7 =1,2,3, are hyperbolic. Under our assumptions, the spectra of A;; and of A;_
are independent of p, and they do coincide with the spectra of A;; and of 4;_, 7 = 2,3,
respectively. Therefore, A;4 and A;_, j = 1,2, 3, are hyperbolic provided A;, and of A;_
are hyperbolic for p = 2.

Under these assumptions we can use corollary 3.14 since the embeddings D; — X,
J = 1,2,3, are compact. Hence we obtain that £;, 7 = 1,2,3, are Fredholm operators
with index equal to the difference between the sum of the algebraic dimensions of the
eigenspaces of A;_ corresponding to eigenvalues with positive real part and the sum of the
algebraic dimensions of the eigenspaces of A; corresponding to eigenvalues with positive
real part.

References

[1] A. ABBONDANDOLO, P. MAJER: Ordinary differential operators in Hilbert spaces and
Fredholm pairs, Math. Z. 243 (2003), 525-562.

[2] P. ACQUISTAPACE: Fwolution operators and strong solutions of abstract linear
parabolic equations, Diff. Int. Eqns. 1 (1988), 433-457.

[3] P. ACQUISTAPACE, B. TERRENIL: Some ezxistence and regularity results for abstract
non-autonomous parabolic equations, J. Math. Anal. Appl. 99 (1984), 9-64.

[4] P. ACQUISTAPACE, B. TERRENL: A wunified approach to abstract linear non-
autonomous parabolic equations, Rend. Sem. Mat. Univ. Padova 78 (1987), 47-107.

[5] C. BARDOS, L. TARTAR: Sur l'unicité rétrograde des equations paraboliques et quelques
questiones voisines, Arch. Rat. Mech. Anal. 50 (1973), 10-25.

[6] P. CANNARSA, F. Gozzi: On the smoothness of the value function along optimal
trajectories, in: “Boundary Control and Boundary Variation” (J.P.Zolesio ed.), Lecture
Notes in Control and Information Sciences n. 178, Springer-Verlag : Berlin (1992), 60—
81.

[7] P. FITZPATRICK, J. PEJSACHOWICZ, L. RECHT: Spectral Flow and Bifurcation of
Critical Points of Strongly-Indefinite Functionals, J. Funct. Anal. 162 (1999), 52-95.

[8] M. FUHRMAN: Bounded solutions for abstract time-periodic parabolic equations with
nonconstant domains, Diff. Int. Eqns. 4 (1991), 493-518.

[9] D. HENRY: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in
Mathematics 840, New York : Springer-Verlag, 1981.

[10] T. KATO: Perturbation Theory for Linear operators, Berlin : Springer-Verlag, 1980.

[11] A. LUNARDI: Analytic Semigroups and Optimal Regularity in Parabolic Problems,
Basel : Birkhauser, 1995.

[12] K. MILLER: Nonunique Continuation for Uniformly Parabolic and Elliptic Equa-
tions in Self-Adjoint Divergence Form with Holder Continuous Coefficients, Arch. Rat.
Mech. Anal. 54 (1974), 105-117.

[13] J. PHILLIPS: Self-Adjoint Fredholm Operators and Spectral Flow, Canad. Math. Bull.
39 (1996), 460-467.

17



[14] J. RoBBIN, D. SALAMON: The spectral flow and the Maslov indezx, Bull. London
Math. Soc. 27 (1995), 1-33.

[15] R. SCHNAUBELT: Asymptotically autonomous parabolic evolution equations, Journal
of Evolution Equations 1 (2001), 19-37.

[16] P.E. SOBOLEVSKIL: Equations of parabolic type in a Banach space, Trudy Moskow
Math. Obsc. 10 (1961), 297-350 (Russian). English transl.: Amer. Math. Soc. Transl.
49 (1964), 1-62.

[17] K. WATANABE: Sur l'unicité rétrograde dans les problémes mixtes paraboliques: cas
de dimension 1. J. Math. Soc. Japan 42 (1990), 337-386.

18



