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Abstract. We consider the operator Au = 1
2
∆u− 〈DU, Du〉, where U is a convex real

function defined in a convex open set O ⊂ RN and lim|x|→∞ U(x) = lim|x|→∂O U(x) =

+∞. We study the realization of A in the spaces Cb(O), Cb(O) and Bb(O), and prove
several properties of the associated Markov semigroup. In contrast with the case of
bounded coefficients, elliptic equations and parabolic Cauchy problems such as (1.3) and
(1.4) below are uniquely solvable in reasonable classes of functions, without imposing
any boundary condition. We prove that the associated semigroup coincides with the
transition semigroup of a stochastic variational inequality on Cb(O).

1. Introduction

We consider the differential operator A defined by

(1.1) Au =
1
2
∆u− 〈DU,Du〉

in a convex open set O ⊂ RN , where U : O 7→ R is a convex function such that

(1.2) lim
x→∂O, x∈O

U(x) = +∞, lim
|x|→+∞, x∈O

U(x) = +∞.

No further regularity assumptions will be made, except in Proposition 3.5.
The aim of this note is the study of the realization of A and of the associated Markov

semigroup T (t) in spaces of bounded functions in O. Therefore, for λ > 0 and ϕ Borel
measurable and bounded we shall study the elliptic equation

(1.3) λf(x)− (Af)(x) = ϕ(x), x ∈ O,

and the parabolic Cauchy problem

(1.4)

 ut(t, x) = Au(t, x), t > 0, x ∈ O,

u(0, x) = ϕ(x), x ∈ O.

Solutions to (1.3) and (1.4) are readily constructed by classical methods. See e.g. [2, 3].
Uniqueness of the solution is not obvious. If the gradient DU were bounded, problems
(1.3) and (1.4) would have unique solutions in reasonable classes of functions satisfying
some prescribed boundary condition (Dirichlet, Neumann, or Robin boundary conditions,
see [13]). But since U blows up near the boundary ∂O, also |DU | does.

Appropriate settings for uniqueness are spaces of bounded functions with bounded first
order space derivatives. More precisely, we denote respectively by Bb(O), Cb(O), Cb(O)
the spaces of bounded and Borel measurable, continuous, continuous up to the boundary,
real valued functions, and we set

D(A∞) = {f ∈ C1
b (O)

⋂
p≥1W

2,p
loc (O) : Af ∈ Bb(O)},

D(ACb
) = {f ∈ C1

b (O)
⋂

p≥1W
2,p
loc (O) : Af ∈ Cb(O)},

D(AC) = {f ∈ C1
b (O)

⋂
p≥1W

2,p
loc (O) : Af ∈ Cb(O)}.
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We shall prove that for each λ > 0 and for each ϕ ∈ Bb(O) problem (1.3) has a unique
solution f ∈ D(A∞). Consequently, if ϕ ∈ Cb(O) (resp. ϕ ∈ Cb(O)) then problem (1.3)
has a unique solution f ∈ D(ACb

) (resp., f ∈ D(AC)). Moreover, the operator

ACb
: D(ACb

) 7→ Cb(O), Af = Af
is dissipative, and so it is m-dissipative. By the Crandall–Liggett Theorem, its part in the
closure D(ACb

) of D(ACb
) in Cb(O) is the infinitesimal generator of a strongly continuous

semigroup {T0(t) : t ≥ 0} in D(ACb
). However, D(ACb

) is strictly contained in Cb(O),
while we want to work in the whole space Cb(O), and in Bb(O). The same difficulty arises
in the space Cb(O) if O is unbounded: D(AC) is strictly contained in Cb(O).

Concerning problem (1.4), we shall prove that for any ϕ ∈ Bb(O) there exists a unique
solution of problem (1.4) in a large class of functions. Moreover the following assertions
hold.

(i) Setting
T (t)ϕ := u(t), t ≥ 0,

where u is the solution of (1.4), {T (t) : t ≥ 0} is a Markov semigroup in the space
Bb(O).

(ii) T (t) is an extension of T0(t). Moreover we have

R(λ,ABb
)ϕ(x) =

∫ ∞

0
e−λtT (t)ϕ(x)dt, λ > 0, f ∈ Bb(O), x ∈ O.

(iii) T (t) is irreducible, strong Feller and it has a unique invariant measure µ given by

(1.5) µ(dx) =
( ∫

O
e−2U(x)dx

)−1

e−2U(x)dx.

Moreover,

(1.6) lim
t→+∞

T (t)ϕ(x) =
∫
O
ϕ(y)µ(dy), ∀ x ∈ O, ϕ ∈ Bb(O).

(iv) T (t) maps Bb(O) into C1
b (O), and for each t > 0 we have

(1.7) ‖(T (t)ϕ)2 + t|DT (t)ϕ|2‖∞ ≤ ‖ϕ‖2
∞, ϕ ∈ Bb(O).

The above mentioned “large class” for uniqueness is the set of functions u : [0,+∞)×
O 7→ R such that t 7→ u(t, ·) belongs to C([0,+∞);L2(O, µ)) and t 7→ ut(t, ·), t 7→ Au(t, ·)
belong to C((0,+∞);L2(O, µ)).

Indeed, the proofs of our statements rely heavily on the results of [8] where we showed
that the realization A2 of A in L2(O, µ), with domain
(1.8)
D(A2) = {u ∈ H2(O, µ) : Au ∈ L2(O, µ)} = {u ∈ H2(O, µ) : 〈DU,Du〉 ∈ L2(O, µ)}

is a self-adjoint and dissipative operator, therefore it generates an analytic contraction
semigroup etA2 in L2(O, µ). Hence, in the language of the theory of evolution equations
in Banach spaces, we have uniqueness of the classical solution of the Cauchy problem
u′ = A2u, t > 0, u(0) = ϕ in the space L2(O, µ).

In the second part of this paper we study the connection of T (t) with the stochastic
variational inequality

(1.9)

 dX(t) + ∂U(X(t))dt 3 dW (t),

X(0) = x ∈ O,

where ∂U(x) = {x∗ ∈ RN : U(y) ≥ U(x) + 〈x∗, y − x〉 ∀y ∈ RN} denotes the subgradient
of U at x, and W (t) is a standard N -dimensional Wiener process in a probability space
(Ω,F ,P). The theory of [5] implies that problem (1.9) has a unique solution (for the
precise notion of solution see Sect. 3). Since the paper [5] treats a very general situation,
it is very complicated; here we give a simpler proof of existence and uniqueness in our
specific case, following the approach of [1].
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Then we consider the corresponding transition semigroup,

Ptϕ(x) = E[ϕ(X(t, x))],

and we prove that Ptϕ(x) = T (t)ϕ(x) for each ϕ ∈ Cb(O) and x ∈ O.

2. Analytical results

2.1. Preliminaries. We quote some results from [8] about the realization ofA in L2(O, µ),
where µ is the measure defined in (1.5). The domain D(A2) is defined in (1.8).

Theorem 2.1. The resolvent set of A2 contains (0,+∞). For every λ > 0 we have

(2.1)



(i) ‖R(λ,A2)f‖L2(O,µ) ≤
1
λ
‖f‖L2(O,µ),

(ii) ‖ |DR(λ,A2)f | ‖L2(O,µ) ≤
√

2
λ
‖f‖L2(O,µ),

(iii) ‖ |D2R(λ,A2)f | ‖L2(O,µ) ≤ 2
√

2 ‖f‖L2(O,µ).

Moreover, A2 is symmetric, R(λ,A2) preserves positivity, and R(λ,A2)1l = 1l/λ.

Therefore, A2 is a dissipative self-adjoint operator in the Hilbert space L2(O, µ), that
generates a contraction, analytic semigroup etA2 . Additional properties are stated in the
following proposition.

Proposition 2.2. The following statements hold.

(i) For each u ∈ D(A2) we have∫
O
A2u(x)µ(dx) = 0.

Consequently, for each f ∈ L2(O, µ) and t > 0 we have∫
O
etA2f(x)µ(dx) =

∫
O
f(x)µ(dx).

(ii) The space H1(O, µ) is the domain of (−A2)1/2.
(iii) Every function in D(A2) is the limit in H2(O, µ) of a sequence of functions in

H2(O, µ) that are restrictions to O of functions belonging to C2
b (RN ).

(iv) etA2 is a symmetric Markov semigroup in L2(O, µ), in the sense of [9, §1.3, 1.4].
(v) The kernel of A2 consists of constant functions.
(vi) For all f ∈ L2(O, µ) we have

lim
t→+∞

etA2f =
∫
O
f(y)µ(dy) in L2(O, µ).

By the general theory of semigroups, etA2 may be extended in a standard way to a
contraction semigroup etAp in Lp(O, µ) for each p ∈ [1,+∞]. See [9].

2.2. Further properties of etA2. We begin with local smoothing properties.

Proposition 2.3. etA2 maps L2(O, µ) into C(O) (in fact, into C1+α
loc (O) for any α ∈

(0, 1)) for each t > 0.

Proof. The proof follows from standard interior regularity properties of solutions to par-
abolic equations with locally bounded and measurable coefficients. We write a sketch
below, but it is really standard.

Let t0 > 0, x0 ∈ O. Let r > 0 be such that the closed ball B = B(x0, r) is contained in
O, and let θ ∈ C∞0 ((0,+∞)× B) be a cut off function, such that θ ≡ 1 in [t0/2, 3t0/2]×
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B(x0, r/2). The function u(t, x) = θ(t, x)etA2ϕ(x) satisfies
ut(t, x) = Au(t, x) + f(t, x), t ≥ 0, x ∈ B,

u(0, x) = 0, x ∈ B,

u(t, x) = 0, t ≥ 0, x ∈ ∂B,
with

f(t, ·) = etA2ϕ

(
θt −

1
2
∆θ + 〈Dθ,DU〉)

)
− 〈Dθ,DetAϕ〉.

Since etA2 is an analytic semigroup in L2(O, µ) and DU ∈ (L∞(B))N , t 7→ DetA2ϕ(t, ·) ∈
C∞((0,+∞); (H1(B))N ), then t 7→ f(t, ·) belongs to C∞0 ([0,+∞);L2∗(B)), where 2∗ is
the Sobolev exponent 2N/(N − 2) if N > 2, it is any number larger than 2 if N ≤ 2.
Setting the problem in the space L2∗(B), it follows that u ∈ C∞([0,+∞);W 2,2∗(B)). If
2∗ > N then Du ∈ C∞([0,+∞); (C(B))N ). If 2∗ ≤ N we iterate this procedure and in
a finite number of steps we arrive at Du ∈ C∞([0,+∞); (C(B))N ), for any dimension
N . So, t 7→ f(t, ·) is smooth with values in L∞(B). Then u is smooth with values in
the domain of the realization of A with Dirichlet boundary condition in L∞(B), which is
contained in C1+α(B) for each α ∈ (0, 1). �

etA2 is a semigroup in L2(O, µ), which is a space of equivalence classes of functions.
Let us denote by [·] the equivalence classes of functions in L2(O, µ). The statement of
Proposition 2.3 has to be understood as: for each [ϕ] ∈ L2(O, µ), in the equivalence class
[etA2 [ϕ]] there is a unique continuous (in fact, C1+α

loc ) function.
With this specification, we have the next corollary.

Corollary 2.4. etA2 is a strong Feller semigroup (i.e., etA2ϕ is continuous for each ϕ ∈
Bb(O) and t > 0).

Another feature of etA2 is the following.

Corollary 2.5. etA2 is irreducible.

Proof. Let ϕ be the characteristic function of a ball B ⊂⊂ O. We have to show that
etA2ϕ > 0 for each t > 0. This follows from local Harnack inequalities for parabolic
operators with locally bounded and measurable coefficients. �

In the papers [6, 8] we constructed the resolvent R(λ,A) for positive λ by approximation
with problems in the whole RN . But it is useful to approach R(λ,A) by resolvents of
operators defined in bounded regular sets On ⊂ O. We use the following lemma.

Lemma 2.6. There exists a nested sequence of convex bounded open sets On with smooth
boundary, whose union is O.

Proof. For each n ∈ N, n > minU , the set Kn := {x ∈ O : U(x) ≤ n} is non empty and
compact, therefore its distance from ∂O is positive.

We construct a convex open set On with smooth boundary, such that Kn−1 ⊂ On ⊂
Kn+2. The approximations Uε obtained by convolution with smooth mollifiers are well
defined in Kn+2 for ε small enough, and converge uniformly to U over Kn+2 as ε → 0.
Since U is convex, the functions Uε are convex too.

Let ε = ε(n) be so small that ‖Uε − U‖L∞(Kn+2) ≤ 1/2. Then Uε ≤ U + 1/2 ≤ n− 1/2
over Kn−1, Uε ≥ U − 1/2 ≥ n + 1/2 over Kn+2 \ Kn+1, so that the level line Uε = n
is contained in the interior of Kn+2 \ Kn−1. The gradient of Uε does not vanish at any
point of the level line, because it vanishes only at minimum points, and Uε(x) ≤ n− 1/2
in ∂Kn−1, so that in the level line there are no minimum points.

Therefore we can define On as On = {x ∈ K̊n+2 : Uε(x) < n}. �

Since On is smooth and bounded, the general theory of PDE’s yields that the realization
An of A with Neumann boundary conditions in L2(On, dx) = L2(On, µ) generates an
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analytic semigroup Tn(t). In the paper [7] we proved estimates quite similar to (2.1) for
the operators An. In particular,

‖R(1, An)ϕ‖L2(On,µ) ≤ ‖ϕ‖L2(On,µ),

‖ |DR(1, An)ϕ| ‖L2(On,µ) ≤
√

2‖ϕ‖L2(On,µ),

‖ |D2R(1, An)ϕ| ‖L2(On,µ) ≤ 2
√

2‖ϕ‖L2(On,µ),

for each ϕ ∈ L2(On;µ). Note that the constants are universal, i.e. they do not depend on
n. This implies that the domains of An are uniformly embedded in the spaces H2(On, µ),
i.e. there is C > 0 independent of n such that

(2.2) ‖u‖H2(On,µ) ≤ C(‖u‖L2(On,µ) + ‖Anu‖H2(On,µ)), u ∈ D(An).

Although in this paper we deal with real valued functions, in the next proposition we
need to consider complex valued functions to use the standard representation formula of
analytic semigroups through Dunford integrals. So, we consider the spaces L2(O, µ,C),
L2(On, µ,C), and the complexifications of the operators A, An (still denoted by A, An).

Proposition 2.7. For each λ /∈ (−∞, 0] and each ϕ ∈ L2(O, µ; C), R(λ,A)ϕ is the a.e.
pointwise limit of R(λ,An)ϕ|On

. For each t > 0, T (t)ϕ is the a.e. pointwise limit of
Tn(t))ϕ|On

.

Proof. Since A and each An are self-adjoint and dissipative, their spectra are contained
in (−∞, 0] and the norms of their resolvent operators, in the spaces L2(O, µ; C) and
L2(On, µ; C) respectively, do not exceed (|λ| cos(θ/2))−1 for each λ 6∈ (−∞, 0], with θ =
arg(λ).

Fix λ /∈ (−∞, 0]. For each n ∈ N, the function un := R(λ,An)ϕ|On
is well defined

in Ok for n ≥ k, and since AnR(λ,An) = λR(λ,An) − I, by the obvious extension of
(2.2) to complex valued functions the sequence (un)n≥k is bounded in H2(Ok, µ; C) by a
constant independent of n. By the usual diagonal procedure, we can find a subsequence
unh

that converges weakly in each H2(Ok, µ; C) and pointwise a.e. in Ok to a function u ∈
H2(Ok, µ; C), for every k ∈ N. Since ‖u‖H2(Ok,µ;C) is bounded by a constant independent
of k, then u ∈ H2(O, µ; C). Moreover, the weak convergence implies that λu − Au = ϕ
in Ok. Since O is the union of the sets Ok, then u satisfies λu − Au = ϕ in O. It
follows that u = R(λ,A)ϕ. Since for any other converging subsequence the limit has to be
(R(λ,A)ϕ)|Ok

, then the sequence (un)n≥k (and not only a subsequence) converges weakly
in H2(Ok, µ; C) and pointwise a.e. in Ok to R(λ,A)ϕ, and this proves the first part of the
statement.

Representing T (t) and Tn(t) by Dunford integrals over the same contours, we get point-
wise convergence of Tn(t))ϕ|On

to T (t)ϕ. �

2.3. Definition and properties of T (t). We set

T (t)ϕ = etA2ϕ, t > 0, ϕ ∈ Bb(O),

or, to be more fastidious: T (t)ϕ is the unique continuous function in the equivalence class
of etA2ϕ.

Since the density e−2U of µ is positive in O, then L∞(O, µ) = L∞(O, dx). Therefore,
T (t)ϕ = etA2ϕ ∈ L∞(O, dx) for each ϕ ∈ Cb(O). So, T (t) is a contraction semigroup
in Bb(O) and in Cb(O). Since it is the restriction of etA2 to Bb(O), it inherits several
properties of etA2 . In particular, it is irreducible and strong Feller.

Proposition 2.8. T (t) maps Cb(O) into C1
b (O), and for each t > 0 we have

(2.3) ‖(T (t)ϕ)2 + t|DT (t)ϕ|2‖∞ ≤ ‖ϕ‖2
∞, ϕ ∈ Cb(O).

Proof. The idea is to approach T (t)ϕ by the solutions of Cauchy-Neumann problems in
bounded convex open sets On with smooth boundary, for which we get an estimate similar
to (2.3) in the usual way.

We consider the On’s constructed in Lemma 2.6.
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Fix p > N . From the general theory of PDE’s we know that the realization An of A in
Lp(On) with Neumann boundary condition generates an analytic semigroup Tn(t).

Let u(t, x) := Tn(t)ϕ|On
(x) be the solution of the problem

(2.4)



Dtu = Au = 1
2∆u− 〈DU,Du〉, t > 0, x ∈ On,

∂u

∂ν
= 0, t > 0, x ∈ ∂On,

u(0, x) = ϕ(x), x ∈ On.

The usual procedure to get estimate (2.3) for u needs C2 coefficients, so we approach again
U by the functions Uε used in Lemma 2.6, and consider the solutions uε of

(2.5)



Dtuε = 1
2∆uε − 〈DUε, Duε〉, t > 0, x ∈ On,

∂uε

∂ν
= 0, t > 0, x ∈ ∂On,

uε(0, x) = ϕ(x), x ∈ On.

The procedure of the paper [2] (i.e., using the maximum principle in the equation satisfied
by v(t, x) := |(uε(t, x))2 + t|Duε(t, x)|2|) gives

(2.6) |(uε(t, x))2 + t|Duε(t, x)|2| ≤ ‖ϕ‖2
∞, t > 0, x ∈ On.

The difference vε := u− uε satisfies

Dtvε = 1
2∆vε − 〈DU,Dvε〉+ 〈DUε −DU,Duε〉, t > 0, x ∈ On,

∂vε

∂ν
= 0, t > 0, x ∈ ∂On,

vε(0, x) = 0, x ∈ On,

so that

(u− uε)(t, ·) =
∫ t

0
Tn(t− s)gε(s) ds

where
gε(s) = 〈DUε −DU,Duε(s, ·)〉.

Since DU ∈ (L∞(On))N , then DUε −DU goes to 0 in (Lp(On))N . Since ‖Duε(s, ·)‖∞ ≤
C/
√
s by (2.6), then ‖s1/2gε(s)‖Lp goes to 0 as ε→ 0. It follows that (u−uε)(t, ·) goes to

0 in DAn(1/2, p) and hence in W 1,p(On). Since p > N (the space dimension), (u−uε)(t, ·)
goes to 0 in L∞(On). The convergence in the sup norm is enough to bound the Lipschitz
constant of u(t, ·). Therefore,

(2.7) ‖(Tn(t)ϕ|On
)2 + t|DTn(t)ϕ|On

|2‖∞ ≤ ‖ϕ‖2
∞.

On the other hand,for each t > 0 T (t)ϕ is the a.e. pointwise limit of Tn(t)ϕ|On
by

proposition 2.7. By estimates (2.7) and the Arzelà-Ascoli theorem, for each compact set
K ⊂ Ω a subsequence converges uniformly to T (t)ϕ on K. Therefore, for each x ∈ K,

|(T (t)ϕ)2(x) + t|DT (t)ϕ|2(x)| ≤ ‖ϕ‖2
∞,

and the statement follows. �

Corollary 2.9. T (t) maps Bb(O) into C1
b (O), and for each t > 0 estimate (2.3) holds for

each ϕ ∈ Bb(O).

Proof. Let t > 0, ε ∈ (0, t) and ϕ ∈ Bb(O). We know that T (ε)ϕ ∈ Cb(O), and (2.3)
applied with ϕ replaced by T (ε)ϕ and t replaced by t− ε gives

‖(T (t)ϕ)2 + (t− ε)|DT (t)ϕ|2‖∞ ≤ ‖T (ε)ϕ‖2
∞ ≤ ‖ϕ‖2

∞.

Letting ε→ 0 yields the statement. �
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As a corollary of the gradient estimate we obtain a nice convergence result as t→∞.

Corollary 2.10. For each ϕ ∈ Bb(O) we have

lim
t→+∞

T (t)ϕ(x) = m :=
∫
O
ϕ(y)µ(dy), ∀ x ∈ O,

and the convergence is uniform on each compact subset K ⊂⊂ O.

Proof. Since {T (t)ϕ : t ≥ 1} is bounded in C1
b (O), a sequence (T (tn)ϕ), with limn→∞ tn =

+∞, converges pointwise in O and uniformly on each compact subset of O. The limit is
the mean value m, because T (t)ϕ goes to m in L2(O, µ) as t → +∞. In fact, for every
sequence tn → +∞ a subsequence T (tk(n))ϕ converges pointwise in O, and this implies
that limt→+∞ T (t)ϕ(x) = m for each x ∈ O. The convergence is uniform on each compact
set because limt→+∞ ‖ |DT (t)ϕ| ‖∞ = 0 by Proposition 2.8. �

Another corollary is the following representation formula for T (t).

Lemma 2.11. For each t > 0, x ∈ O there exists a probability measure pt,x in O such
that

(2.8) (T (t)ϕ)(x) =
∫
O
ϕ(y)pt,x(dy), ϕ ∈ Cb(O),

Proof. Fix t > 0 and x ∈ O. Denoting by Cc(O) the space of real valued continuous
functions with compact support in O, the functional Cc(O) 7→ R, ϕ 7→ (T (t)ϕ)(x) is linear
and positive. Therefore (see e.g. [12, Thm. 2.14]) there exists a unique Borel measure pt,x

on O such that (2.8) holds for each ϕ ∈ Cc(O).
Let us show that pt,x(O) is finite. If {ϕn : n ∈ N} is an increasing sequence of functions

in Cc(O) that converges pointwise to 1l, for each n ∈ N we have∫
O
ϕnpt,x(dy) = T (t)ϕn(x) ≤ T (t)1l(x) = 1,

and the left hand side converges to pt,x(O), by the Monotone Convergence Theorem.
Let now ϕ ∈ Cb(O), and let {ϕn : n ∈ N} be a sequence of functions in Cc(O) that

converges pointwise to ϕ, and such that ‖ϕn‖∞ ≤ ‖ϕ‖∞. The functions T (t)ϕn are
equibounded and also equi-continuous, since ‖ |DT (t)ϕn| ‖∞ ≤ ‖ϕn‖∞/

√
t by Proposition

2.8. Consequently a subsequence T (t)ϕα(n) converges pointwise in O. The limit is T (t)ϕ,
because T (t)ϕn goes to T (t)ϕ in L2(O, µ). So, for each x ∈ O we have

(T (t)ϕ)(x) = lim
n→∞

(T (t)ϕα(n))(x) = lim
n→∞

∫
O
ϕα(n)(y)pt,x(dy) =

∫
O
ϕ(y)pt,x(dy)

by dominated convergence. Therefore, the representation formula (2.8) holds for all con-
tinuous and bounded functions.

As a last step, from T (t)1l = 1l we get pt,x(O) = 1. �

Now we can define the realizations of A in Bb(O), in Cb(O) and in Cb(O) through their
resolvent operators. Namely, we define A∞ as the unique linear operator in Bb(O) whose
resolvent for λ > 0 is given by

(2.9) R(λ,A∞)ϕ(x) =
∫ ∞

0
e−λt(T (t)ϕ)(x)dt, ϕ ∈ Bb(O).

In other words, R(λ,A∞) is the restriction of R(λ,A2) to Bb(O), that maps Bb(O) and its
subspaces Cb(O) and Cb(O) into Cb(O). Note that, since T (t) is a contraction semigroup,
then ‖R(λ,A∞)‖ ≤ 1/λ for each λ > 0 so that A∞ is a m-dissipative operator.

Proposition 2.12. D(A∞) = {u ∈ C1
b (O)

⋂
p≥1W

2,p
loc (O) : Au ∈ Bb(O)}.

Proof. Let u ∈ D(A∞). Then u = R(λ,A∞)ϕ for some λ > 0 and ϕ ∈ Bb(O), so that
u ∈ H2(O, µ) ∩ Bb(O), and A∞u = Au ∈ Bb(O) since A∞u = λu + ϕ. Moreover, the
representation formula (2.9) and Corollary 2.9 yield u ∈ C1

b (O).
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To prove that u ∈ W 2,p
loc (O) for each p ≥ 1 we use the same procedure of Proposition

2.3, adapted to the elliptic case which makes it easier. We rewrite it for convenience.
Let x0 ∈ O. Let r > 0 be such that the closed ball B = B(x0, r) is contained in O,

and let θ ∈ C∞0 (B) be a cut off function, such that θ ≡ 1 in B(x0, r/2). The function
v(x) = θ(x)u(x) belongs to D(A∞) and satisfies λv(x)−Av(x) = f(x), x ∈ B,

v(x) = 0, x ∈ ∂B,
with

f(x) = (Aθ)(x)u(x)− 〈Dθ(x), Du(x)〉.
Since the coefficients of A are in L∞(B) and u ∈ C1(B), then f ∈ L∞(B) and by the
general theory of elliptic PDE’s, v ∈ W 2,p(B) for every p ∈ [1,+∞). Since v coincides
with u in B(x0, r/2), then u ∈W 2,p(B(x0, r/2)) for every p ∈ [1,+∞).

Let now u ∈ C1
b (O)∩p≥1W

2,p
loc (O) be such that Au ∈ Cb(O). To prove that u ∈ D(A∞),

fix λ > 0 and set λu−Au = f . The function w = R(λ,A∞)f is in D(A∞) by definition,
and we have to show that it coincides with u. By the first part of the proof, we know
that it belongs to C1

b (O)∩p≥1W
2,p
loc (O), moreover it satisfies λw−Aw = f . Therefore the

difference v : u−w belongs to C1
b (O)∩p≥1W

2,p
loc (O) and satisfies λv−Av = 0. Multiplying

by v and integrating over the open sets Ok given by Lemma 2.6, we get

λ‖v‖2
L2(Ok,µ) +

1
2
‖ |Dv| ‖2

L2(Ok,µ) =
1
2

∫
∂Ok

∂v

∂n
ve−2Udσ.

The integral in the right hand side does not exceed ck‖ |Dv| ‖∞‖v‖∞, where

ck =
∫

∂Ok

e−2Udσ.

goes to 0 as k →∞ because e−2U(x) ≤ e−2(k−1) for each x ∈ ∂Ok, while the surface measure
of ∂Ok is either bounded (if O is bounded) or grows at most polynomially with k, if O is
unbounded. This is because Ok is a convex set contained in {x ∈ O : U(x) ≤ k+2} which
in its turn is contained in the ball B(0, (k + 2 + b)/a) where a > 0, b ∈ R are such that
U(x) ≥ a|x| − b for every x ∈ O. Therefore, the surface measure of ∂Ok does not exceed
the surface measure of the ball B(0, (k + 2 + b)/a).

Letting k →∞ we obtain λ‖v‖2
L2(O,µ) = 0 so that v = 0. �

2.4. Moreau-Yosida approximations. We extend U to the whole RN setting U(x) =
+∞ for x ∈ RN \ O. We introduce the Moreau-Yosida approximations of the extension
(still denoted by U),

(2.10) Uα(x) = inf
{
U(y) +

1
2α
|x− y|2 : y ∈ O

}
, x ∈ RN , α > 0.

As well known (see e.g. [4]) they enjoy the following properties:
(i) Uα(x) ≤ U(x), Uα(x) ↑ U(x) as α→ 0, for each x ∈ RN ;
(ii) Uα ∈ C1(RN ) and DUα is Lipschitz continuous for each α > 0;
(iii) DUα(x) → D0U(x) and |DUα(x)| ↑ |D0U(x)| as α→ 0, for each x ∈ dom ∂U = O.

Here we denote by D0U(x) the element of minimal norm in ∂U(x).
We consider the operators in the whole RN defined by

Aα : D(Aα) := H2(RN , µα) 7→ L2(RN , µα), Aα =
1
2
∆− 〈DUα, D· 〉,

µα(dx) =
( ∫

RN

e−2Uα(y)dy

)−1

e−2Uα(x)dx.

Each of them is the (self-adjoint) infinitesimal generator of a contraction semigroup Tα(t)
in L2(RN , µα), and we have

(Tα(t)f)(x) = E(f(Xα(t, x)))
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for each f ∈ Cb(RN ), where Xα(t, x) is the unique solution to

(2.11)

 dX(t, x) = −DUα(X(t, x))dt+ dW (t), t ≥ 0,

X(0, x) = x,

and W (t) is a standard N -dimensional Brownian motion.
Moreover, we have ([2])

(2.12) ‖ |DTα(t)f | | ‖∞ ≤ 1√
t
‖f‖∞, f ∈ Cb(RN ), t > 0,

and for λ > 0 we have ([7])

(2.13)



(i) ‖R(λ,Aα)f‖L2(RN ,µα) ≤
1
λ
‖f‖L2(RN ,µα),

(ii) ‖ |DR(λ,Aα)f | ‖L2(RN ,µα) ≤
2√
λ
‖f‖L2(RN ,µα),

(iii) ‖ |D2R(λ,Aα)f | ‖L2(RN ,µα) ≤ 2
√

2 ‖f‖L2(RN ,µα).

Estimates (2.13) yield estimates on Tα(t).

Corollary 2.13. There is C > 0 such that

(2.14) ‖tAαTα(t)‖L(L2(RN ,µα)) + ‖Tα(t)‖L(H2(RN ,µα)) ≤ C, α > 0, t > 0.

Proof. For each self-adjoint dissipative operator A in a Hilbert space H, the resolvent set
of A contains C \ (−∞, 0] and we have

‖R(λ,A)‖L(H) ≤
1

|λ| cos(θ/2)
, λ ∈ C \ (−∞, 0],

with θ = arg λ. Denoting by S(t) the analytic semigroup generated by A and representing
it by the usual Dunford integral, we get

(2.15) ‖tS(t)‖L(H,D(A)) + ‖S(t)‖L(D(A)) ≤ C1, t > 0,

with C1 independent of A.
Let us take H = L2(RN , µα) and A = Aα. By estimates (2.13), the graph norm of Aα

is equivalent to the norm of H2(RN , µα), with equivalence constants independent of α.
Therefore, (2.15) yields (2.14). �

Theorem 2.14. Let f ∈ Cb(O), and let f̃ be any extension of f belonging to Cb(RN ).
Then we have

lim
α→0

Tα(t)f̃(x) = T (t)f(x), t > 0, x ∈ O.

Proof. The extension f̃ belongs to L2(RN , µα) for each α > 0. By estimates (2.14), (t, x) 7→
uα(t, x) := Tα(t)f̃(x) is bounded in L2((ε,+∞);H2(RN , µα)) ∩ H1((ε,+∞);L2(RN , µα))
(because d/dt uα = Aαuα) for each ε > 0, and by estimate (2.12) it is bounded in
Cb((ε,+∞);C1

b (RN )) for each ε > 0.
Since Uα(x) goes to U(x) monotonically as α → 0, then e−2Uα(x) goes to e−2U(x)

monotonically, and (
∫

RN e
−2Uα(x)dx)−1 goes to (

∫
O e

−2U(x)dx)−1. Therefore for each ψ ∈
L2(RN , µα0) for some α0, the restriction ψ|O belongs to L2(O, µ) and ‖ψ‖L2(O,µα) goes to
‖ψ‖L2(O,µ) as α→ 0.

It follows that the restrictions of uα to (ε,+∞)×O are bounded in L2((ε,+∞);H2(O, µ))
∩ H1((ε,+∞);L2(O, µ)) by a constant independent of α.

A sequence (uαn) converges weakly in L2((ε,+∞);H2(O, µ)) ∩ H1((ε,+∞);L2(O, µ))
to a function v ∈ L2((ε,+∞);H2(O, µ)) ∩ H1((ε,+∞);L2(O, µ)), for each ε > 0. More-
over, for each t > 0 and for each compact set K ⊂ RN the convergence is uniform on
K ∩ O. Since

d

dt
uαn −

1
2
∆xuαn + 〈DUαn , Dxuαn〉 = 0,
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for each w ∈ C∞c ((0,+∞)×O) we have∫ ∞

0

∫
O

(d/dt uαn −
1
2
∆xuαn + 〈DUαn , Dxuαn〉)w dt µ(dx) = 0

and letting n → ∞ (recalling that DUαn goes to DU in L2(K, dx) for each compact set
K ⊂ O), we get ∫ ∞

0

∫
O

(ut −
1
2
∆xu+ 〈DU,Dxu〉)w dt µ(dx) = 0

and since w is arbitrary,

ut(t, x)−
1
2
∆xu(t, x) + 〈DU(x), Dxu(t, x)〉 = 0, t > 0, x ∈ O a.e.

If we prove that u is continuous in [0,+∞) with values in L2(O, µ) and u(0) = f we
are done: indeed, in this case u ∈ C([0,+∞);L2(O, µ)) ∩ L2((ε,+∞);H2(O, µ)) ∩
H1((ε,+∞);L2(O, µ)) for each ε > 0, it satisfies ut−A2u = 0, u(0) = f , and it follows that
u(t) = etA2f . By uniqueness we obtain that Tα(t)f(x) converges to etA2f(x) = T (t)f(x)
(not only a sequence Tαn(t)f(x)).

To prove that u is continuous, the first step is boundedness. Set

Mα :=
( ∫

RN

e−2Uα(x)dx

)1/2

, α > 0, M0 :=
( ∫

RN

e−2U(x)dx

)1/2

.

Since Mα is increasing, then

M0 ≤Mα ≤M1, 0 < α < 1.

Since H1((ε,+∞);L2(O, µ)) is continuously embedded in Cb((ε,+∞);L2(O, µ)), then
for each t > 0 the sequence uαn(t) converges weakly to u(t) in L2(O, µ). It follows that
for each t > 0

(2.16)

‖u(t)‖L2(O,µ) ≤ lim sup
n→∞

‖uαn(t)‖L2(O,µ) ≤ lim sup
n→∞

Mαn

M0
‖uαn(t)‖L2(O,µαn )

≤ lim sup
n→∞

Mαn

M0
‖f‖L2(O,µαn ) = ‖f‖L2(O,µ).

As a second step, we prove that the functions uα, α ∈ (0, 1], are equi-uniformly contin-
uous from [a,+∞) to L2(O, µ) for each a > 0.

For t > s > 0 we have

(2.17)

‖uαn(t)− uαn(s)‖L2(O,µ) ≤
Mαn

M0
‖uαn(t)− uαn(s)‖L2(O,µαn )

≤ Mαn

M0

∫ t

s
‖AαnTαn(r)f‖L2(RN ,µαn )dr ≤

CM1|t− s|
M0s

‖f‖L2(O,µαn ),

where C is the constant in (2.14).
Equi-continuity up to t = 0 is a bit more delicate; in fact we prove a weaker estimate

that however implies that u is continuous. Precisely, we prove that for each ε > 0 there
are α0 > 0, t0 > 0 such that

(2.18) ‖uα(t)− f‖L2(O,µ) ≤ ε, 0 < α ≤ α0, 0 < t ≤ t0.

We prove (2.18) in two steps: first, for f ∈ C∞c (O), and then for any f ∈ Cb(O).
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If f ∈ C∞c (O), equi-continuity at s = 0 can be proved as at any s. Indeed, since
f ∈ D(Aα) for each α ∈ (0, 1], for t > 0 we have

(2.19)

‖uα(t)− f‖L2(O,µ) ≤
Mα

M0
‖uα(t)− f‖L2(O,µα)

≤ Mα

M0

∫ t

0
‖Tα(r)Aαf‖L2(RN ,µα)dr ≤ t

Mα

M0
‖Aαf‖L2(O,µα)

≤ t
M1

M0

(
1
2
‖∆f‖∞ + ‖ |DU | ‖L∞(supp f)‖ |Df | ‖∞

)
|supp f |1/2,

where | · | denotes the Lebesgue measure.
If f is just continuous and bounded, it belongs to L2(O, µα) for each α. Taking α = 1,

there is a sequence (fk)k∈N of smooth compactly supported functions that converge to f
in L2(O, µ1) and hence in L2(O, µα) for every α ∈ (0, 1), and also in L2(O, µ). We have,
for 0 < α ≤ 1,

(2.20) ‖uα(t)−f‖L2(O,µ) ≤ ‖Tα(t)(f̃−fk)‖L2(O,µ)+‖Tα(t)fk−fk‖L2(O,µ)+‖fk−f‖L2(O,µ),

where

‖Tα(t)(f̃ − fk)‖L2(O,µ) ≤
Mα

M0
‖Tα(t)(f̃ − fk)‖L2(O,µα) ≤

Mα

M0
‖Tα(t)(f̃ − fk)‖L2(RN ,µα)

≤ Mα

M0
‖f̃ − fk‖L2(RN ,µα) ≤

Mα

M0
(‖f̃‖L2(RN\O,µα) + ‖f̃ − fk‖L2(O,µα))

≤ M1

M0
(‖f̃‖∞ (µα(RN \ O))1/2 + ‖f − fk‖L2(O,µ1)).

Similarly, ‖fk − f‖L2(O,µ) ≤ M1/M0‖f − fk‖L2(O,µ1).
Given any ε > 0, let us fix k large enough such that

2
M1

M0
‖f − fk‖L2(O,µ1) ≤

ε

3
.

Letting α0 be so small that
M1

M0
‖f̃‖∞ (µα(RN \ O))1/2 ≤ ε

3
, 0 < α ≤ α0,

and using estimate (2.19) for fk, we obtain (2.18). It follows that for each ε > 0 there is
t0 > 0 such that

(2.21) ‖uα(t)− uα(s)‖L2(O,µ) ≤ 2ε, 0 < α ≤ α0, 0 < t, s ≤ t0.

Together with (2.17), this estimate implies that u is uniformly continuous with values in
L2(O, µ); indeed for t ≥ s ≥ 0 we have

‖u(t)− u(s)‖2
L2(O,µ) = limn→∞〈uαn(t)− uαn(s), u(t)− u(s)〉L2(O,µ)

≤ lim supn→∞ ‖uαn(t)− uαn(s)‖L2(O,µ) 2‖f‖L2(O,µ),

by (2.16), and using (2.17) and (2.21) we are done. �

3. A stochastic differential inclusion

In this section we consider the stochastic differential inclusion

(3.1)

 dX(t) + ∂U(X(t))dt 3 dW (t),

X(0) = x ∈ O,

where W (t) is an RN -valued Brownian motion in a probability space (Ω,F ,P), with con-
tinuous trajectories.
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Definition 3.1. Let T > 0. A pair (X, η) is called a solution of (3.1) in [0, T ] if

(i) X : [0, T ]×Ω → RN is a continuous (that is such that X(·, ω) ∈ C([0, T ]; RN ) for
almost all ω ∈ Ω) adapted process and X(s, ω) ∈ O, P-a.s. for each s ∈ [0, T ];

(ii) η : [0, T ] × Ω → RN is an adapted process such that η(·, ω) ∈ BV ([0, T ]; RN ) for
almost all ω ∈ Ω and

X(t) + η(t) = x+W (t), t ∈ [0, T ].

(iii) For each v ∈ C([0, T ];O) we have

(3.2)
∫ T

0
〈dη(s)−D0U(v(s))ds,X(s)− v(s)〉 ≥ 0,

where dη is the measure defined by the Stieltjes integral

dη([a, b]) = η(b)− η(a), 0 ≤ a ≤ b ≤ T.

Any solution enjoys further properties, stated in the next proposition.

Proposition 3.2. Let (X, η) be a solution of (3.1) in [0, T ]. Then for each v ∈ C([0, T ];O)
we have

(3.3)
∫ T

0
〈dη(s), X(s)− v(s)〉 ≥

∫ T

0
(U(X(s))− U(v(s)))ds, P− a.s.

It follows that s 7→ U(X(s)) belongs to L1(0, T ) and X(s) ∈ O for almost all s ∈ (0, T ),
P-a.s.

Proof. Fix ω such that X(·, ω) is continuous. For 0 < ε < 1 set

vε(s) = εv(s) + (1− ε)X(s), s ∈ [0, T ].

Then vε(s) ∈ O for each s ∈ [0, T ]. Using (3.2) with v = vε we get∫ T

0
〈dη(s), X(s)− vε(s)〉 ≥

∫ T

0
〈D0U(vε(s)), X(s)− vε(s)〉ds.

Since X − vε = ε(X − v), we obtain∫ T

0
〈dη(s), X(s)− v(s)〉 ≥

∫ T

0
〈D0U(vε(s)), X(s)− v(s)〉ds.

Since 〈D0U(vε(s)), vε(s)− y〉 ≥ U(vε(s))− U(y) for each y ∈ RN , then

〈D0U(vε(s)), X(s)− v(s))〉 = 〈D0U(vε(s)), vε(s)− (vε(s) + v(s)−X(s))〉

≥ U(vε(s))− U(vε(s) + v(s)−X(s))

= U(vε(s))− U [v(s) + ε(v(s)−X(s))].

Consequently,∫ T

0
〈dη(s), X(s)− v(s)〉 ≥

∫ T

0
{U(vε(s))− U [v(s) + ε(v(s)−X(s))]}ds,

so that, letting ε→ 0,∫ T

0
〈dη(s), X(s)− v(s)〉 ≥ lim inf

ε→0

∫ T

0
{U(vε(s))− U [v(s) + ε(v(s)−X(s))]}ds

≥
∫ T

0
(U(X(s))− U(v(s)))ds.

�
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We shall solve problem (3.1) by approximation, considering

(3.4)

 dXα(t) +DUα(Xα(t))dt = dW (t),

Xα(0) = x ∈ RN ,

whose solution we denote by Xα(t). Here Uα are the Moreau-Yosida approximations of
U defined in (2.10). We recall that Uα is differentiable in RN with Lipschitz continuous
gradient.

We shall find some a priori estimates on the solution Xα to (3.4) which will allow us to
find a solution of (3.1) letting α→ 0. First we need a lemma.

Lemma 3.3. There exist ρ > 0, k > 0 and x0 ∈ O such that

(3.5) 〈DUα(x), x〉 ≥ ρ|DUα(x)|+ 〈DUα(x), x0〉 − k(1 + |x|), x ∈ RN .

Proof. Let x0 ∈ O and ρ > 0 be such that the closed ball centered at x0 with radius ρ is
contained in O. By the monotonicity of DUα it follows that for each z ∈ RN with |z| = 1
we have

〈DUα(x)−DUα(x0 + ρz), x− (x0 + ρz)〉 ≥ 0, x ∈ RN .

Consequently

〈DUα(x), x〉 ≥ ρ〈DUα(x), z〉+ 〈DUα(x), x0〉+ 〈DUα(x0 + ρz), x− (x0 + ρz)〉

≥ ρ〈DUα(x), z〉+ 〈DUα(x), x0〉 − k(1 + |x|),
for a suitable k, since DU is bounded in the ball B(x0, ρ) and |DUα(x)| ≤ |D0U(x)|.

The conclusion follows choosing

z =
DUα(x)
|DUα(x)|

.

�

Theorem 3.4. For any α > 0 problem (3.4) has a unique continuous solution Xα. For
each x ∈ O there exist the limits

(3.6) lim
α→0

Xα(t) =: X(t) in C([0, T ]; RN ), P-a.s.,

and

(3.7) lim
α→0

∫ t

0
DUα(Xα(s))ds =: η(t) ∈ ∂U(X(t)), ∀ t ∈ [0, T ].

Moreover, X is the unique solution to problem (3.1).

Proof. We set Yα(t) = Xα(t) −W (t). Then equation (3.4) is equivalent to the ordinary
differential equation with random coefficients

(3.8)


d

dt
Yα(t) +DUα(Yα(t) +W (t)) = 0,

Yα(0) = x,

which has a unique C1 solution Yα for P-a.e. ω, because DUα is Lipschitz continuous. We
need three estimates.

First estimate. There exists C = C(ω, x) such that

(3.9) |Yα(t)|2 +
∫ t

0
|DUα(Xα(s))|ds ≤ C.

Multiplying scalarly both sides of equation in (3.8) by Yα(t) yields

(3.10) 1
2
d

dt
|Yα(t)|2 + 〈DUα(Xα(t)), Xα(t)〉 = 〈DUα(Xα(t)),W (t)〉.
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By (3.10) and (3.5) it follows that

1
2
d

dt
|Yα(t)|2 + ρ|DUα(Xα(t))| ≤ 〈DUα(Xα(t)),W (t)− x0〉+ k(1 + |Xα(t)|).

Integrating with respect to t we get
(3.11)

|Yα(t)|2 + 2ρ
∫ t

0
|DUα(Xα(s))|ds

≤ |x|2 + 2
∫ t

0
〈DUα(Xα(s)),W (s)− x0〉ds+ 2k

∫ t

0
(1 + |Xα(s)|)ds

≤ |x|2 + 2
∫ t

0
〈DUα(Xα(s)),W (s)− x0〉ds+ 2k

∫ t

0
|Yα(s)|ds+ 2kT (1 + ‖W‖∞).

Now we estimate the first integral in the right hand side of (3.11).
We fix ω ∈ Ω and consider δ = δ(ω) > 0 such that

s, t ∈ [0, T ], |t− s| ≤ δ ⇒ |W (t)−W (s)| ≤ 1
4
ρ.

Then we take a decomposition {0 = t0 < t1 < tn = t} of [0, t] with t ≤ T such that
max1≤i≤n |ti − ti−1| ≤ δ. We have∣∣∣∣∫ t

0
(DUα(Xα(s)),W (s)− x0)ds

∣∣∣∣ ≤ n∑
k=1

∣∣∣∣∣
∫ tk

tk−1

(DUα(Xα(s)),W (s)−W (tk−1))ds

∣∣∣∣∣
+

n∑
k=1

∣∣∣∣∣
∫ tk

tk−1

(DUα(Xα(s)),W (tk−1)− x0)ds

∣∣∣∣∣
≤ 1

4
ρ

∫ t

0
|DUα(Xα(s))|ds+

n∑
k=1

∣∣∣∣∣
∫ tk

tk−1

(Y ′α(s),W (tk−1)− x0)ds

∣∣∣∣∣
≤ 1

4
ρ

∫ t

0
|DUα(Xα(s))|ds+ 2nC sup

s∈[0,t]
|Yα(s)|,

with C = sups∈[0,T ] |W (s)− x0|. Using this estimate in (3.11) gives

|Yα(t)|2 +
3
2
ρ

∫ t

0
|DUα(Xα(s))|ds ≤ |x|2 + (4nC + 2kT ) sup

s∈[0,t]
|Yα(s)|+ 2kT (1 + ‖W‖∞).

Therefore,

sup
s∈[0,T ]

|Yα(s)|2 ≤ |x|2 + (4nC + 2kT ) sup
s∈[0,T ]

|Yα(s)|+ 2kT (1 + ‖W‖∞)

and (3.9) follows.

Second estimate. There is C = C(ω, x) such that for any h ∈ [0, T ] we have

(3.12) |Yα(h)− x|2 ≤ C

(
h+ sup

s∈[0,h]
|W (s)|

)
.

Multiplying scalarly by (Yα(t)− x) both sides of the equality

d

dt
(Yα(t)− x) +DUα(Xα(t)) = 0

yields
1
2
d

dt
|Yα(t)− x|2 + 〈DUα(Xα(t)), Yα(t)− x〉 = 0,
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which is equivalent to
1
2
d

dt
|Yα(t)− x|2 + 〈DUα(Xα(t))−DUα(x), Xα(t)− x〉

= 〈DUα(Xα(t)),W (t)〉 − 〈DUα(x), Xα(t)− x〉.
Taking into account the monotonicity of DUα we get

1
2
d

dt
|Yα(t)− x|2 ≤ 〈DUα(Xα(t)),W (t)〉+ |DU(x)| |Xα(t)− x|.

By (3.9) the functions Xα are bounded in [0, T ] by a constant independent of α. Hence,
there is C > 0 such that

1
2
d

dt
|Yα(t)− x|2 ≤ C + sup

s∈[0,t]
|W (s)| |DUα(Xα(t))|.

Integrating with respect to t and using again (3.9) we arrive at (3.12).

Third estimate. There is C = C(ω, x) such that for any t ∈ [0, T ] and h ∈ [0, T − t] we
have

(3.13) |Yα(t+ h)− Yα(t)|2 ≤ C

(
h+ sup

s∈[0,h]
|W (s)|

)
+ C sup

s∈[0,t]
|W (s+ h)−W (s)|.

Write for h > 0
d

dt
(Yα(t+ h)− Yα(t)) +DUα(Xα(t+ h))−DUα(Xα(t)) = 0.

Multiplying scalarly both sides by Yα(t+ h)− Yα(t) yields
1
2
d

dt
|Yα(t+ h)− Yα(t)|2 + 〈DUα(Xα(t+ h))−DUα(Xα(t)), Yα(t+ h)− Yα(t)〉 = 0,

which can be rewritten as
1
2
d

dt
|Yα(t+ h)− Yα(t)|2 + 〈DUα(Xα(t+ h))−DUα(Xα(t)), Xα(t+ h)−Xα(t)〉

= 〈DUα(Xα(t+ h))−DUα(Xα(t)),W (t+ h)−W (t)〉.
By the monotonicity of DUα we get

1
2
d

dt
|Yα(t+ h)− Yα(t)|2 ≤ 〈DUα(Xα(t+ h))−DUα(Xα(t)),W (t+ h)−W (t)〉

≤ (|DUα(Xα(t+ h))|+ |DUα(Xα(t))|)|W (t+ h)−W (t)|.
Integrating with respect to t yields

1
2
|Yα(t+ h)− Yα(t)|2 ≤ 1

2
|Yα(h)− x|2

+
∫ t

0
(|DUα(Xα(s+ h))|+ |DUα(Xα(s))|)ds sup

s∈[0,t]
|W (s+ h)−W (s)|.

(3.13) follows now from (3.9) and (3.12).

Limit as α→ 0. Since W is continuous in [0, T ], by (3.13) it follows that {Yα} is equicon-
tinuous. By the Arzelà-Ascoli Theorem there is a sequence (αn) such that

Yαn(t) → Y (t), uniformly on [0, T ]

and so
Xαn(t) → X(t), uniformly on [0, T ].

On the other hand by (3.9) the sequence (ηαn) defined by

ηαn(t) =
∫ t

0
DUαn(Xαn(s))ds, t ∈ [0, T ],
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satisfies the estimate

(3.14)
∫ t

0
|η′αn

(s)|ds ≤ C, t ∈ [0, T ].

It follows that (ηαn) has uniformly bounded variation in [0, T ], i.e.,

|ηαn |BV ([0,T ];RN ) ≤ C, n ∈ N.

Then by Helly’s Theorem (see e.g. [10, Thm.4 p.370, Thm.5 p.372]) there is a subsequence,
again denoted by (ηαn), such that

(3.15) ηαn(t) → η(t), ∀ t ∈ [0, T ],

and

(3.16)
∫ T

0
〈dηαn(t), z(t)〉 →

∫ T

0
〈dη(t), z(t)〉, ∀ z ∈ C([0, T ]; RN ),

where
∫ T
0 〈dηαn(t), z(t)〉 and

∫ T
0 〈dη(t), z(t)〉 are the corresponding Stieltjes integrals.

Letting n→∞ in the identity

Xαn(t) + ηαn(t) = x+W (t),

we obtain that (X(t), η(t)) satisfies

(3.17) X(t) + η(t) = x+W (t), ∀ t ∈ [0, T ].

Moreover, taking into account that∫ T

0
〈DUαn(Xαn(t))−DUαn(z(t)), Xα(t)− z(t)〉dt ≥ 0, ∀ z ∈ C([0, T ];O),

we obtain by (3.16) that (X(t), η(t)) satisfies (3.2).

Proof that X(t) ∈ O, P-a.e. Set

Jα(y) = (1 + α∂U)−1(y), α > 0, y ∈ RN .

Then Jα(y) ∈ dom ∂U = O, and

(3.18) |Jα(y)− y| ≤ α|DUα(y)|, ∀ y ∈ RN .

Therefore,
∫ T
0 |Xα(s) − Jα(Xα(s))|ds ≤ α

∫ T
0 |DUα(Xα(s))|ds, and by estimate (3.9) it

follows that

(3.19)
∫ T

0
|Xα(s)− Jα(Xα(s))|ds ≤ Cα,

which implies that
lim
α→0

Xα(s)− Jα(Xα(s)) = 0, a.e.

SinceXα(s) → X(s) for each s and Jα(Xα(s)) ∈ O, thenX(s) ∈ O for almost all s ∈ [0, T ].
Since X is continuous, then X(s) ∈ O for all s ∈ [0, T ].

Uniqueness. Assume that there are two solutions (X1, η1), (X2, η2). Fix any x0 ∈ O and
set, for 0 < ε < 1,

Xε
1(s) = (1− ε)X1(s) + εx0, X

ε
2(s) = (1− ε)X2(s) + εx0, 0 ≤ s ≤ T.

Then Xε
1 and Xε

2 have values in O, and (3.3) implies∫ T

0
〈dη1(s), X1(s)−Xε

2(s)〉 ≥
∫ T

0
[U(X1(s)− U(Xε

2(s))]ds,

∫ T

0
〈dη2(s), X2(s)−Xε

1(s)〉 ≥
∫ T

0
[U(X2(s)− U(Xε

1(s))]ds.
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Summing up, ∫ T

0
〈dη1(s)− dη2(s), X1(s)−X2(s)〉

+ε
∫ T

0
〈dη1(s), X2(s)− x0〉+ ε

∫ T

0
〈dη2(s), X1(s)− x0〉

≥
∫ T

0
[U(X1(s))− U(Xε

1(s))]ds+
∫ T

0
[U(X2(s))− U(Xε

2(s))]ds.

Letting ε → 0, both integrals in the right hand side go to 0: indeed, for almost all s
Xi(s) ∈ O so that U(Xε

i (s)) → U(Xi(s)), moreover U(Xε
i (s)) ≤ (1−ε)U(X1(s))+εU(x0),

so that

ε(U(Xi(s))− U(x0)) ≤ U(Xi(s))− U(Xε
i (s)) ≤ U(Xi(s))−minU,

and U(Xi(·)) ∈ L1(0, T ) by Proposition 3.2, for i = 1, 2. Therefore, recalling that X1 −
X2 = −(η1 − η2),∫ T

0
〈dη1(s)− dη2(s), X1(s)−X2(s)〉 = −

∫ T

0
〈dη1(s)− dη2(s), η1(s)− η2(s)〉 ≥ 0.

It follows that ∫ T

0
d(|η1(t)− η2(t)|2) ≤ 0

and since η1 − η2 is continuous, this implies η1 = η2 and X1 = X2.

So, we have proved the statement, with convergence in (3.6) and in (3.7) for a sequence
(αn). But uniqueness implies that (Xα, ηα) converges. �

Proposition 3.5. Let (X, η) be the solution of (3.1). If U ∈ C1(O), then dη(t) =
DU(X(t))dt for all t ∈ [0, T ] such that X(t) ∈ O.

Proof. By Proposition 3.2 we know that X(t) ∈ O for almost all t ∈ [0, T ]. Let t0 ∈ [0, T ]
be such that X(t0) ∈ O. Then there exist 0 ≤ a < b ≤ T such that a ≤ t0 ≤ b and

X(s) ∈ O, ∀ s ∈ [a, b].

Next we choose v of the form

v(s) = X(s)± εφ, φ ∈ C∞c (a, b),

with ε small enough such that v(s) ∈ O for each s ∈ [a, b]. We substitute in (3.3) and we
get

∓
∫ b

a
〈dη(s), φ(s)〉 ≥ ∓

∫ b

a
〈DU(X(s)± εφ(s)), φ(s)〉ds.

Letting ε→ 0 we get

∓
∫ b

a
〈dη(s), φ(s)〉 ≥ ∓

∫ b

a
〈DU(X(s)), φ(s)〉ds.

Hence,

dη(s) = DU(X(s))ds ∀ s ∈ [a, b].

�
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3.1. Identification of T (t) with the transition semigroup. Let f ∈ Cb(O) and let f̃
be any extension of f belonging to Cb(RN ).

Define the transition semigroup of (3.1) by

Ptf(x) = E(f(X(t))), t > 0, f ∈ Cb(O), x ∈ O,
where X is the first component of the solution (X, η) of (3.1). By (3.6), f(X(t)) =
f̃(X(t)) = limα→0 f̃(Xα(t)), P-a.s. Hence,

Ptf(x) = lim
α→0

E(f̃(Xα(t))), t > 0, x ∈ O.

On the other hand, E(f̃(Xα(t))) = Tα(t)f̃(x). By Theorem 2.14, for each t > 0 Tα(t)f̃(x)
converges to T (t)f(x) as α→ 0. Therefore, T (t)f(x) = Ptf(x) for each x ∈ O.
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