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Abstract. We consider a second order elliptic operator K arising from Hamil-
tonian systems with friction in R2n perturbed by noise. An invariant mea-
sure for this operator is µ(dx, dy) = exp(−2H(x, y))dxdy, where H is the
Hamiltonian. We study the realization K : H2(R2n, µ) 7→ L2(R2n, µ) of K in
L2(R2n, µ), proving that it is m-dissipative and that it generates an analytic
semigroup.

1. Introduction

We consider a Hamiltonian system perturbed by noise,




dX(t) = DyH(X(t), Y (t))dt +
√
α dW1(t),

dY (t) = −DxH(X(t), Y (t))dt+
√
β dW2(t),

(1.1)

where H : R2n → R is the Hamiltonian which we assume to be regular, nonnegative
but not necessarily Lipschitz continuous, W1, W2 are independent n–dimensional
Brownian motions and α, β are positive constants. The Kolmogorov operator
corresponding to (1.1) is

Kϕ =
α

2
∆xϕ+

β

2
∆yϕ+ 〈DyH,Dxϕ〉 − 〈DxH,Dyϕ〉, (1.2)

where R2n = Rnx × Rny , and ∆x, ∆y, Dx, Dy are the Laplacian and the gradient
with respect to the variables x, y only. It is easy to see that

∫

R2n

Kϕdx dy = 0

for each test function ϕ, which means that the Lebesgue measure in R2n is invariant
for K. It is well known that, in order that an invariant probability measure exists,
some friction term must be added, see e.g. [5]. In this paper we want to consider
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the case that the probability measure has density (with respect to the Lebesgue
measure) proportional to e−2H(x,y). So, we assume that

Z :=

∫

R2n

exp(−2H)dx dy < +∞ (1.3)

and we set

µ(dx, dy) = Z−1e−2H(x,y)dxdy.

The simplest way to let µ be invariant is to consider the modified system



dX(t) = DyH(X(t), Y (t))dt − αDxH(X(t), Y (t))dt +
√
α dW1(t),

dY (t) = −DxH(X(t), Y (t))dt− βDyH(X(t), Y (t))dt+
√
β dW2(t).

(1.4)

In this case the Kolmogorov operator is

Kϕ =
α

2
∆xϕ+

β

2
∆yϕ+ 〈DyH − αDxH,Dxϕ〉 − 〈DxH + βDyH,Dyϕ〉, (1.5)

and ∫

R2n

Kϕ e−2H(x,y)dxdy = 0,

for each test function ϕ. Therefore, the measure µ is invariant for K.
Our aim is to study the realization K of K in L2(R2n, µ). The main result is

that if the second order derivatives of H are bounded, then

K : D(K) = H2(R2n, µ) 7→ L2(R2n, µ), Kϕ = Kϕ

is an m-dissipative operator. Therefore, it generates a strongly continuous con-
traction semigroup in L2(R2n, µ).

Note that K is not symmetric, but we can show that for all ϕ ∈ H2(R2n, µ),
ψ ∈ H1(R2n, µ) we have
∫

R2n

Kϕψ dµ =− 1

2

∫

R2n

(α〈Dxϕ,Dxψ〉+ β〈Dyϕ,Dyψ〉)dµ

+
1

2

∫

R2n

(〈2Hy − αHx, Dxϕ〉+ 〈−2Hx + βHy, Dyϕ〉)ψ dµ.
(1.6)

However, taking ψ = ϕ in (1.6) and manipulating the last integral (or else, inte-
grating the equality K(ϕ2) = 2ϕKϕ + α|Dxϕ|2 + β|Dyϕ|2 with respect to µ and
recalling that

∫
R2n K(ϕ2)dµ = 0), we get
∫

R2n

Kϕϕdµ = −1

2

∫

R2n

(α|Dxϕ|2 + β|Dyϕ|2)dµ (1.7)

which is a crucial formula for our analysis. It implies immediately that K is dissi-
pative.

A typical procedure for showing m–dissipativity is to define a (dissipative)
realization K0 of K in L2(R2n, µ) with a small domain, say for instance C2

b (R2n)
(the space of the continuous bounded functions with continuous and bounded first
and second order derivatives), and to prove that the range of λI −K0 is dense in
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L2(R2n, µ) for some λ > 0. Then by the Lumer–Phillips theorem the closure K0

of K0 is an m-dissipative operator. But the problem of the characterization of the
domain of K0 still remains open. So, we take the stick from the other side. We
define the above realization K of K on H2(R2n, µ), and we show that K is m-
dissipative. Since the H2 norm is equivalent to the graph norm of K, from general
density results in weighted Sobolev spaces it follows that C2

b (R2n) and C∞0 (R2n)
are cores for K.

From the point of view of the theory of elliptic PDE’s, we show that for each
λ > 0 and f ∈ L2(R2n, µ), the equation

λu−Ku = f

has a unique solution u ∈ H2(R2n, µ). So, we have a maximal regularity result in
weighted L2 spaces. In fact, we prove something more: if a function u ∈ H2

loc(R2n)
satisfies λu−Ku = f ∈ L2(R2n, µ), then u ∈ H2(R2n, µ) and

‖u‖L2(R2n,µ) ≤
1

λ
‖f‖L2(R2n,µ),

which is the dissipativity estimate,
∫

R2n

(α|Dxϕ|2 + β|Dyϕ|2)dµ ≤ 2

λ
‖f‖2L2(R2n,µ),

which comes from (1.7),
∫

R2n

|D2ϕ|2dµ ≤ C‖f‖2L2(R2n,µ),

which is not obvious. Here C depends on λ and on the sup norm of the second
derivatives of H .

After the elliptic regularity result we prove also some properties of the semi-
group T (t) generated by K. First, we show that it is an analytic semigroup. In
general, elliptic operators with Lipschitz continuous unbounded coefficients do not
generate analytic semigroups in L2 spaces with respect to invariant measures. See
a counterexample in [9]. In our case we can prove that the L2 norm of the second
order space derivatives of T (t)ϕ blows up as Ct−1‖ϕ‖L2(R2n,µ), as t→ 0, and since

the graph norm of K is equivalent to the H2 norm, then ‖tKT (t)ϕ‖L2(R2n,µ) is
bounded by const. ‖ϕ‖L2(R2n,µ) near t = 0.

Second, we address to asymptotic behavior of T (t), proving that T (t)ϕ weakly
converges to the mean value ϕ as t→ +∞ for each ϕ ∈ L2(R2n, µ) (strongly mixing
property).

2. m-dissipativity of K

Throughout this section we assume that H : R2n 7→ R is a nonnegative C2 function
with bounded second order derivatives, such that (1.3) holds.

The Hilbert spaces H1(R2n, µ), H2(R2n, µ) are defined as the sets of all u ∈
H1
loc(R2n) (respectively, u ∈ H2

loc(R2n)), such that u and its first order derivatives
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(resp. u and its first and second order derivatives) belong to L2(R2n, µ). It is easy
to see that C∞0 (R2n), the space of the smooth functions with compact support, is
dense in L2(R2n, µ), in H1(R2n, µ), and in H2(R2n, µ). A proof is in [4, Lemma
2.1].

The main result of this paper is that

K : D(K) := H2(R2n, µ) 7→ L2(R2n, µ), Kϕ = Kϕ

is m-dissipative. To this aim we need an embedding lemma.

Lemma 2.1. For every ϕ ∈ H1(R2n, µ) and i = 1, . . . , n the functions ϕDxiH and
ϕDyiH belong to L2(R2n, µ). Moreover

∫

R2n

(ϕDxiH)2dµ ≤
∫

R2n

(‖DxixiH‖∞ϕ2 + (Dxiϕ)2)dµ,

∫

R2n

(ϕDyiH)2dµ ≤
∫

R2n

(‖DyiyiH‖∞ϕ2 + |Dyiϕ|2)dµ,

for all ϕ ∈ H1(R2n, µ).

Proof. Let ϕ ∈ C∞0 (R2n). For every i = 1, . . . , n we have
∫

R2n

(ϕDxiH)2dµ =
1

2Z

∫

R2n

ϕ2DxiH(−Dxie
−2H)dx dy

=
1

2Z

∫

R2n

(ϕ2DxixiH + 2ϕDxiϕDxiH)e−2Hdx dy

≤ ‖DxixiH‖∞
2

‖ϕ‖2L2(R2n,µ) + ‖ϕDxiH‖L2(R2n,µ)‖Dxiϕ‖L2(R2n,µ)

≤ ‖DxixiH‖∞
2

‖ϕ‖2L2(R2n,µ) +
1

2
‖ϕDxiH‖2L2(R2n,µ) +

1

2
‖Dxiϕ‖2L2(R2n,µ)

so that

‖ϕDxiH‖2L2(R2n,µ) ≤ ‖DxixiH‖∞‖ϕ‖2L2(R2n,µ) + ‖Dxiϕ‖2L2(R2n,µ).

Similarly,

‖ϕDyiH‖2L2(R2n,µ) ≤ ‖DyiyiH‖∞‖ϕ‖2L2(R2n,µ) + ‖Dyiϕ‖2L2(R2n,µ),

and since C∞0 (R2n) is dense in H1(R2n, µ) the statement follows. �

The lemma has several important consequences. It implies that for every
ϕ ∈ H2(R2n, µ) the drift 〈DyH,Dxϕ〉 − 〈DxH,Dyϕ〉 belongs to L2(R2n, µ). It
implies also (taking ϕ ≡ 1) that |DH | ∈ L2(R2n, µ). Moreover, in the case that
|DH | → +∞ as |(x, y)| → +∞, the estimate

∫

R2n

ϕ2|DH |2dµ ≤ C‖ϕ‖H1(R2n,µ), ϕ ∈ H1(R2n, µ),

implies easily that H1(R2n, µ) is compactly embedded in L2(R2n, µ). See e.g. [7,
Prop. 3.4].
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The integration formula (1.7) implies immediately thatK is dissipative. What
is not trivial is m-dissipativity. To prove m-dissipativity we have to solve the
resolvent equation

λϕ−Kϕ = f (2.1)

for each f ∈ L2(R2n, µ) and λ > 0, and show that the solution ϕ belongs to
H2(R2n, µ). That is, we have to prove an existence and maximal regularity result
for an elliptic equation with unbounded coefficients. Of course it is enough to
prove that for each f ∈ C∞0 (R2n) the resolvent equation has a unique solution ϕ
in H2(R2n, µ), and ‖ϕ‖H2(R2n,µ) ≤ C‖f‖L2(R2n,µ).

Since the coefficients of K are regular enough, existence of a solution may
be proved in several ways. For instance, the problem in the whole R2n may be
approached by a sequence of Dirichlet problems in the balls B(0, k), and using
classical interior estimates for solutions of second order elliptic problems we arrive
at a solution ϕ ∈ H2

loc(R2n). See e.g. [8, Theorem 3.4]. Or else, we may use the
stochastic characteristics method, that gives a solution to (2.1) as

ϕ =

∫ +∞

0

e−λtE[f(X(t), Y (t))]dt

where (X(t), Y (t)) is the solution to (1.4) with initial dataX(0) = x, Y (0) = y. See
e.g. [3, Thms. 1.2.5, 1.6.6]. The assumptions of [3] are satisfied because the second
order derivatives of H are bounded, and consequently the first order derivatives
of H have at most linear growth.

Uniqueness of the solution in H2(R2n, µ) follows immediately from dissipa-
tivity. Estimates for the second order derivatives in L2(R2n, µ) are less obvious.
They are proved in the next theorem.

Theorem 2.2. Let ϕ ∈ H2
loc(R2n) satisfy (2.1), with f ∈ L2(R2n, µ). Then

‖ϕ‖L2(R2n,µ) ≤
1

λ
‖f‖L2(R2n,µ) (2.2)

∫

R2n

(α|Dxϕ|2 + β|Dyϕ|2)dµ ≤ 2

λ
‖f‖2L2(R2n,µ) (2.3)

∫

R2n

|D2ϕ|2dµ ≤ C‖f‖2L2(R2n,µ) (2.4)

where C does not depend on f and ϕ.

Proof. Without loss of generality we may assume that f ∈ C∞0 (R2n). Then ϕ ∈
H3
loc(R2n), by local elliptic regularity. Moreover by the Schauder estimates of [6],

ϕ and its first and second order derivatives are bounded and Hölder continuous.
In particular, ϕ ∈ H2(R2n, µ).

Estimates (2.2) and (2.3) follow in a standard way, multiplying both sides of
(2.1) by ϕ and using the integration formula (1.7). To get (2.4) we differentiate
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(2.1) with respect to xi and yi, obtaining

λDxiϕ−KDxiϕ−
n∑

k=1

(DxiykH − αDxixkH)Dxkϕ

+

n∑

k=1

(DxixkH + βDxiykH)Dykϕ = Dxif,

λDyiϕ−KDyiϕ−
n∑

k=1

(DyiykH − αDyixkH)Dxkϕ

+

n∑

k=1

(DyixkH + βDyiykH)Dykϕ = Dyif.

Replacing the expressions of the derivatives of f in the equality

∫

R2n

Kϕf dµ =− 1

2

∫

R2n

(α〈Dxϕ,Dxf〉+ β〈Dyϕ,Dyf〉)dµ

+

∫

R2n

(〈DyH,Dxϕ〉 − 〈DxH,Dyϕ〉)f dµ

that follows from (1.6), we obtain

∫

R2n

Kϕf dµ =

∫

R2n

(λϕ− f)fdµ

=

∫

R2n

−λ
2

(α|Dxϕ|2 + β|Dyϕ|2)

+
1

2

n∑

i=1

(αDxiϕKDxiϕ+ βDyiϕKDyiϕ)dµ

+
1

2

∫

R2n

−〈SDϕ,Dϕ〉+ (〈DyH,Dxϕ〉 − 〈DxH,Dyϕ〉)f dµ,

where the 2n× 2n matrix S has entries

Si,k = −α
2

(DxiykH − αDxixkH),

Si,n+k = Sn+i,k =
α

2
DxixkH −

β

2
DyiykH + αβDxiykH,

Sn+i,n+k =
β

2
(DyixkH + βDyiykH),

for i, k = 1, . . . , n.
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Using formula (1.6) in the integrals
∫
R2n Kϕf dµ,

∫
R2n DxiϕKDxiϕdµ, and∫

R2n DyiϕKDyiϕdµ we get

λ

∫

R2n

(α|Dxϕ|2 + β|Dyϕ|2)dµ

+

∫

R2n

(α2
∑

i,k

(Dxixkϕ)2 + 2αβ
∑

i,k

(Dxiykϕ)2 + β2
∑

i,k

(Dyiykϕ)2)dµ

+

∫

R2n

(〈SDϕ,Dϕ〉 + 2(〈DyH,Dxϕ〉 − 〈DxH,Dyϕ〉)f dµ

= 2

∫

R2n

(f − λϕ)fdµ ≤ 4‖f‖2.

(We have used (2.2) in the last inequality). Since the second order derivatives of
H are bounded, there is c > 0 such that

∣∣∣∣
∫

R2n

〈SDϕ,Dϕ〉dµ
∣∣∣∣ ≤ c

∫

R2n

|Dϕ|2dµ ≤ 2c

λ
‖f‖2.

By lemma 2.1, the function 〈DyH,Dxϕ〉−〈DxH,Dyϕ〉 belongs to L2(R2n, µ), and

its norm does not exceed (C‖ |Dϕ|2 ‖2 + ‖ |D2ϕ| ‖2)1/2. Therefore,
∣∣∣∣
∫

R2n

(〈DyH,Dxϕ〉 − 〈DxH,Dyϕ〉)f dµ
∣∣∣∣ ≤ (C‖ |Dϕ|2 ‖2 + ‖ |D2ϕ| ‖2)1/2‖f‖

≤ ε

2
(C‖ |Dϕ|2 ‖2 + ‖ |D2ϕ| ‖2) +

1

2ε
‖f‖2,

for every ε > 0 (we have used (2.3) in the last inequality). Choosing ε small enough,
in such a way that

ε‖ |D2ϕ| ‖2 ≤
∫

R2n

(α2
∑

i,k

(Dxixkϕ)2 + 2αβ
∑

i,k

(Dxiykϕ)2 + β2
∑

i,k

(Dyiykϕ)2)dµ

estimate (2.4) follows. �

Remark 2.3. In the estimate of the second order derivatives of ϕ we have not used
the full assumption that H has bounded second order derivatives, but only its
consequence 〈Sξ, ξ〉 ≥ κ|ξ|2, for some κ ∈ R and all ξ ∈ R2n. This shows that the
assumption that all the second order derivatives of H could be weakened if we
only want to prove that the domain of K is contained in H2(R2n, µ).

3. Further properties of K and T (t)

The operator K belongs to a class of elliptic operators with unbounded coefficients
recently studied in [1, 2],

ϕ 7→ Tr(QD2ϕ) + 〈F,Dϕ〉.
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In our case the coefficients of the matrix Q are constant, and the derivatives of
every component of F are bounded. Therefore, the assumptions of [1, Prop. 4.3]
are satisfied, and it yields pointwise estimates of the space derivatives of T (t)ϕ.
Precisely,

|DT (t)ϕ(x, y)|2 ≤ σ

2ν(1− e−σt) (T (t)ϕ2)(x, y), ϕ ∈ L2(R2n, µ), t > 0,

where σ = 2 supξ∈R2n\{0}〈DF · ξ, ξ〉/|ξ|2, DF being the Jacobian matrix of F , and

ν is the ellipticity constant which is the minimum between α/2 and β/2 in our
case. Integrating over R2n we get, for each t > 0,

‖ |DT (t)ϕ| ‖2L2(R2n,µ) ≤
σ

2ν(1− e−σt)

∫

R2n

T (t)ϕ2dµ =
σ

2ν(1− e−σt)‖ϕ‖
2
L2(R2n,µ),

(3.1)
which implies

(i) ‖ |DT (t)ϕ| ‖L2(R2n,µ) ≤
C√
t
‖ϕ‖L2(R2n,µ), 0 < t ≤ 1,

(ii) ‖ |DT (t)ϕ| ‖L2(R2n,µ) ≤ C‖ϕ‖L2(R2n,µ), t ≥ 1.

(3.2)

An important consequence of the gradient estimates (3.2) and of lemma 2.1
is analyticity of T (t).

Proposition 3.1. T (t) maps L2(R2n, µ) into H2(R2n, µ) for every t > 0, and there
is C > 0 such that

‖KT (t)ϕ‖L2(R2n,µ) ≤
C

t
‖ϕ‖L2(R2n,µ), 0 < t ≤ 1, ϕ ∈ L2(R2n, µ).

Proof. Let ϕ ∈ H2(R2n, µ). Then u(t, ·) := T (t)ϕ satisfies ut = Ku for t ≥ 0. By
general regularity results for parabolic equations, ut and the second order space
derivatives of u have first order space derivatives in L2

loc(R2n), and for i = 1, . . . , n,

Dxiut = DtDxiu = KDxiu+ 〈DyDxiH,Dxu〉 − 〈DxDxiH,Dyu〉,
Dyiut = DtDyiu = KDyiu+ 〈DyDyiH,Dxu〉 − 〈DxDyiH,Dyu〉.

Therefore, denoting by zi either xi or yi, we have

Dt(Dziu−T (t)Dziϕ) = K(Dziu−T (t)Dziϕ) + 〈DyDziH,Dxu〉− 〈DxDziH,Dyu〉
so that

DziT (t)ϕ− T (t)Dziϕ

=

∫ t

0

T (t− s)〈DyDziH,DxT (s)ϕ〉 − 〈DxDziH,DyT (s)ϕ〉ds := Jziϕ(t).

Let C be the constant in (3.2), and let C1 be the maximum of the sup norm of all
the second order derivatives of H . Then for 0 < t ≤ 1 we have

‖Jziϕ(t)‖L2(R2n,µ) ≤ C1

∫ t

0

C√
s
ds ‖ϕ‖L2(R2n,µ) = 2C1C

√
t‖ϕ‖L2(R2n,µ),
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and, more important,

‖ |DJziϕ(t)| ‖L2(R2n,µ) ≤ C1

∫ t

0

C√
t− s

C√
s
ds ‖ϕ‖L2(R2n,µ),

= C1C
2

∫ 1

0

1

(1− σ)1/2σ1/2
dσ ‖ϕ‖L2(R2n,µ) := C2‖ϕ‖L2(R2n,µ).

(3.3)

From the equality

DzjziT (t)ϕ = DzjDziT (t/2)T (t/2)ϕ

= DzjT (t/2)DziT (t/2)ϕ+DzjJzi(T (t/2)ϕ)(t/2)

we get, using (3.2)(i) and (3.3),

‖DzjziT (t)ϕ‖L2(R2n,µ) ≤
(

C√
t/2

)2

‖ϕ‖L2(R2n,µ) + C2‖ϕ‖L2(R2n,µ).

This estimate and lemma 2.1 yield

‖KT (t)ϕ‖L2(R2n,µ) ≤
C

t
‖ϕ‖L2(R2n,µ), 0 < t ≤ 1.

Since H2(R2n, µ) is dense in L2(R2n, µ), the statement follows. �

We can improve estimate (3.2)(ii), showing that ‖ |DT (t)ϕ| ‖L2(R2n,µ) goes to
0 as t→ +∞.

Lemma 3.2. For all ϕ ∈ L2(R2n, µ), limt→+∞ ‖ |DT (t)ϕ| ‖L2(R2n,µ) = 0.

Proof. Let ϕ ∈ H2(R2n, µ). From the equality

d

dt
‖T (t)ϕ‖2 = 2

∫

R2n

T (t)ϕKT (t)ϕdµ

we obtain

‖T (t)ϕ‖2 − ‖ϕ‖2 = 2

∫ t

0

∫

R2n

T (s)ϕKT (s)ϕdµ ds

and using (1.7) we get

‖T (t)ϕ‖2 +

∫ t

0

∫

R2n

(α|DxT (s)ϕ|2 + β|DyT (s)ϕ|2)dµ ds = ‖ϕ‖2, t > 0. (3.4)

Therefore, the function

χϕ(s) :=

∫

R2n

(α|DxT (s)ϕ|2 + β|DyT (s)ϕ|2)dµ, s ≥ 0,

is in L1(0,+∞), and its L1 norm does not exceed ‖ϕ‖2. Its derivative is

χ′ϕ(s) =

∫

R2n

(2α〈DxT (s)ϕ,DxT (s)Kϕ〉+ 2β〈DyT (s)ϕ,DyT (s)Kϕ〉)dµ
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so that

|χ′ϕ(s)| ≤ 2

(∫

R2n

α|DxT (s)ϕ|2dµ
)1/2(∫

R2n

α|DxT (s)Kϕ|2dµ
)1/2

+ 2

(∫

R2n

β|DyT (s)ϕ|2)dµ

)1/2(∫

R2n

β|DyT (s)Kϕ|2)dµ

)1/2

≤ χϕ(s) + χKϕ(s).

Therefore, also χ′ϕ is in L1(0,+∞). This implies that lims→+∞ χϕ(s) = 0, and

the statement holds for every ϕ ∈ H2(R2n, µ). For general ϕ ∈ L2(R2n, µ) the
statement follows approaching ϕ by a sequence of functions in H2(R2n, µ) and
using estimate (3.2)(ii). �

The lemma has some interesting consequences.
First, the kernel of K consists of constant functions. This is because if ϕ ∈

Ker K then T (t)ϕ = ϕ for each t > 0, so that Dϕ = DT (t)ϕ goes to 0 as t goes
to +∞, hence Dϕ = 0 and ϕ is constant. So, we have a sort of Liouville theorem
for K.

Second, for each ϕ ∈ L2(R2n, µ), T (t)ϕ converges weakly to the mean value
ϕ of ϕ as t → +∞. This is because T (t)ϕ is bounded, hence there is a sequence
tn → +∞ such that T (tn)ϕ converges weakly to some limit g ∈ L2(R2n, µ), each
derivative DziT (tn)ϕ converges strongly to 0, and since the derivatives are closed
with respect to the weak topology too, then Dzig = 0 and g is constant. The
constant has to be equal to the mean value of ϕ because µ is invariant, and hence

g =

∫

R2n

g dµ = lim
n→∞

∫

R2n

T (tn)ϕdµ = lim
n→∞

∫

R2n

ϕdµ = ϕ.

Strong convergence is not obvious in general. Of course if 0 is isolated in the
spectrum of K (for instance, if H2(R2n, µ) is compactly embedded in L2(R2n, µ))
then T (t)ϕ converges exponentially to the spectral projection of ϕ on the kernel
of K, which is just ϕ.
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