Kolmogorov operators of Hamiltonian systems perturbed by noise

Giuseppe Da Prato and Alessandra Lunardi

Abstract. We consider a second order elliptic operator K arising from Hamiltonian systems with friction in \mathbb{R}^{2n} perturbed by noise. An invariant measure for this operator is $\mu(dx, dy) = \exp(-2H(x, y))dx dy$, where H is the Hamiltonian. We study the realization $K : H^2(\mathbb{R}^{2n}, \mu) \mapsto L^2(\mathbb{R}^{2n}, \mu)$ of K in $L^2(\mathbb{R}^{2n},\mu)$, proving that it is m-dissipative and that it generates an analytic semigroup.

1. Introduction

We consider a Hamiltonian system perturbed by noise,

$$
\begin{cases}\n dX(t) = D_y H(X(t), Y(t))dt + \sqrt{\alpha} dW_1(t), \\
dY(t) = -D_x H(X(t), Y(t))dt + \sqrt{\beta} dW_2(t),\n\end{cases}
$$
\n(1.1)

where $H: \mathbb{R}^{2n} \to \mathbb{R}$ is the Hamiltonian which we assume to be regular, nonnegative but not necessarily Lipschitz continuous, W_1, W_2 are independent n-dimensional Brownian motions and α , β are positive constants. The Kolmogorov operator corresponding to (1.1) is

$$
\mathcal{K}\varphi = \frac{\alpha}{2} \Delta_x \varphi + \frac{\beta}{2} \Delta_y \varphi + \langle D_y H, D_x \varphi \rangle - \langle D_x H, D_y \varphi \rangle, \tag{1.2}
$$

where $\mathbb{R}^{2n} = \mathbb{R}_x^n \times \mathbb{R}_y^n$, and Δ_x , Δ_y , D_x , D_y are the Laplacian and the gradient with respect to the variables x, y only. It is easy to see that

$$
\int_{\mathbb{R}^{2n}} \mathcal{K}\varphi \,dx\,dy = 0
$$

for each test function φ , which means that the Lebesgue measure in \mathbb{R}^{2n} is invariant for K . It is well known that, in order that an invariant probability measure exists, some friction term must be added, see e.g. [5]. In this paper we want to consider the case that the probability measure has density (with respect to the Lebesgue measure) proportional to $e^{-2H(x,y)}$. So, we assume that

$$
Z := \int_{\mathbb{R}^{2n}} \exp(-2H) dx dy < +\infty
$$
 (1.3)

and we set

$$
\mu(dx, dy) = Z^{-1} e^{-2H(x, y)} dx dy.
$$

The simplest way to let μ be invariant is to consider the modified system

$$
\begin{cases}\n dX(t) = D_y H(X(t), Y(t))dt - \alpha D_x H(X(t), Y(t))dt + \sqrt{\alpha} dW_1(t), \\
dY(t) = -D_x H(X(t), Y(t))dt - \beta D_y H(X(t), Y(t))dt + \sqrt{\beta} dW_2(t).\n\end{cases}
$$
\n(1.4)

In this case the Kolmogorov operator is

$$
\mathcal{K}\varphi = \frac{\alpha}{2} \Delta_x \varphi + \frac{\beta}{2} \Delta_y \varphi + \langle D_y H - \alpha D_x H, D_x \varphi \rangle - \langle D_x H + \beta D_y H, D_y \varphi \rangle, \tag{1.5}
$$

and

$$
\int \mathcal{K}(\varphi e^{-2H(x,y)}) dxdy = 0
$$

a.

$$
\int_{\mathbb{R}^{2n}} \mathcal{K}\varphi \, e^{-2H(x,y)} dx dy = 0,
$$

for each test function φ . Therefore, the measure μ is invariant for \mathcal{K} .

Our aim is to study the realization K of X in $L^2(\mathbb{R}^{2n}, \mu)$. The main result is that if the second order derivatives of H are bounded, then

$$
K: D(K) = H^2(\mathbb{R}^{2n}, \mu) \mapsto L^2(\mathbb{R}^{2n}, \mu), \ \ K\varphi = \mathcal{K}\varphi
$$

is an m-dissipative operator. Therefore, it generates a strongly continuous contraction semigroup in $L^2(\mathbb{R}^{2n}, \mu)$.

Note that K is not symmetric, but we can show that for all $\varphi \in H^2(\mathbb{R}^{2n}, \mu)$, $\psi \in H^1(\mathbb{R}^{2n}, \mu)$ we have

$$
\int_{\mathbb{R}^{2n}} K\varphi \,\psi \,d\mu = -\frac{1}{2} \int_{\mathbb{R}^{2n}} (\alpha \langle D_x \varphi, D_x \psi \rangle + \beta \langle D_y \varphi, D_y \psi \rangle) d\mu \n+ \frac{1}{2} \int_{\mathbb{R}^{2n}} (\langle 2H_y - \alpha H_x, D_x \varphi \rangle + \langle -2H_x + \beta H_y, D_y \varphi \rangle) \psi \,d\mu.
$$
\n(1.6)

However, taking $\psi = \varphi$ in (1.6) and manipulating the last integral (or else, integrating the equality $\mathcal{K}(\varphi^2) = 2\varphi\mathcal{K}\varphi + \alpha|D_x\varphi|^2 + \beta|D_y\varphi|^2$ with respect to μ and recalling that $\int_{\mathbb{R}^{2n}} \mathcal{K}(\varphi^2) d\mu = 0$, we get

$$
\int_{\mathbb{R}^{2n}} K\varphi \varphi d\mu = -\frac{1}{2} \int_{\mathbb{R}^{2n}} (\alpha |D_x \varphi|^2 + \beta |D_y \varphi|^2) d\mu \tag{1.7}
$$

which is a crucial formula for our analysis. It implies immediately that K is dissipative.

A typical procedure for showing m –dissipativity is to define a (dissipative) realization K_0 of $\mathcal K$ in $L^2(\mathbb{R}^{2n},\mu)$ with a small domain, say for instance $C_b^2(\mathbb{R}^{2n})$ (the space of the continuous bounded functions with continuous and bounded first and second order derivatives), and to prove that the range of λ I – K_0 is dense in

 $L^2(\mathbb{R}^{2n},\mu)$ for some $\lambda > 0$. Then by the Lumer–Phillips theorem the closure \overline{K}_0 of K_0 is an m-dissipative operator. But the problem of the characterization of the domain of \overline{K}_0 still remains open. So, we take the stick from the other side. We define the above realization K of X on $H^2(\mathbb{R}^{2n},\mu)$, and we show that K is mdissipative. Since the H^2 norm is equivalent to the graph norm of K, from general density results in weighted Sobolev spaces it follows that $C_b^2(\mathbb{R}^{2n})$ and $C_0^{\infty}(\mathbb{R}^{2n})$ are cores for K.

From the point of view of the theory of elliptic PDE's, we show that for each $\lambda > 0$ and $f \in L^2(\mathbb{R}^{2n}, \mu)$, the equation

$$
\lambda u - \mathcal{K}u = f
$$

has a unique solution $u \in H^2(\mathbb{R}^{2n}, \mu)$. So, we have a maximal regularity result in weighted L^2 spaces. In fact, we prove something more: if a function $u \in H^2_{loc}(\mathbb{R}^{2n})$ satisfies $\lambda u - \mathcal{K}u = f \in L^2(\mathbb{R}^{2n}, \mu)$, then $u \in H^2(\mathbb{R}^{2n}, \mu)$ and

$$
||u||_{L^2(\mathbb{R}^{2n},\mu)} \leq \frac{1}{\lambda} ||f||_{L^2(\mathbb{R}^{2n},\mu)},
$$

which is the dissipativity estimate, Z

$$
\int_{\mathbb{R}^{2n}} (\alpha |D_x \varphi|^2 + \beta |D_y \varphi|^2) d\mu \leq \frac{2}{\lambda} ||f||^2_{L^2(\mathbb{R}^{2n}, \mu)},
$$

which comes from (1.7),

$$
\int_{\mathbb{R}^{2n}} |D^2 \varphi|^2 d\mu \leq C \|f\|_{L^2(\mathbb{R}^{2n}, \mu)}^2,
$$

which is not obvious. Here C depends on λ and on the sup norm of the second derivatives of H.

After the elliptic regularity result we prove also some properties of the semigroup $T(t)$ generated by K. First, we show that it is an analytic semigroup. In general, elliptic operators with Lipschitz continuous unbounded coefficients do not generate analytic semigroups in L^2 spaces with respect to invariant measures. See a counterexample in [9]. In our case we can prove that the L^2 norm of the second order space derivatives of $T(t)\varphi$ blows up as $C_t^{-1} \|\varphi\|_{L^2(\mathbb{R}^{2n},\mu)}$, as $t \to 0$, and since the graph norm of K is equivalent to the H^2 norm, then $||tKT(t)\varphi||_{L^2(\mathbb{R}^{2n},\mu)}$ is bounded by *const.* $\|\varphi\|_{L^2(\mathbb{R}^{2n},\mu)}$ near $t = 0$.

Second, we address to asymptotic behavior of $T(t)$, proving that $T(t)\varphi$ weakly converges to the mean value $\overline{\varphi}$ as $t \to +\infty$ for each $\varphi \in L^2(\mathbb{R}^{2n}, \mu)$ (strongly mixing property).

2. m-dissipativity of K

Throughout this section we assume that $H: \mathbb{R}^{2n} \to \mathbb{R}$ is a nonnegative C^2 function with bounded second order derivatives, such that (1.3) holds.

The Hilbert spaces $H^1(\mathbb{R}^{2n}, \mu)$, $H^2(\mathbb{R}^{2n}, \mu)$ are defined as the sets of all $u \in$ $H_{loc}^1(\mathbb{R}^{2n})$ (respectively, $u \in H_{loc}^2(\mathbb{R}^{2n})$), such that u and its first order derivatives

(resp. u and its first and second order derivatives) belong to $L^2(\mathbb{R}^{2n}, \mu)$. It is easy to see that $C_0^{\infty}(\mathbb{R}^{2n})$, the space of the smooth functions with compact support, is dense in $L^2(\mathbb{R}^{2n},\mu)$, in $H^1(\mathbb{R}^{2n},\mu)$, and in $H^2(\mathbb{R}^{2n},\mu)$. A proof is in [4, Lemma 2.1].

The main result of this paper is that

$$
K: D(K) := H^{2}(\mathbb{R}^{2n}, \mu) \mapsto L^{2}(\mathbb{R}^{2n}, \mu), \quad K\varphi = \mathcal{K}\varphi
$$

is m-dissipative. To this aim we need an embedding lemma.

Lemma 2.1. For every $\varphi \in H^1(\mathbb{R}^{2n}, \mu)$ and $i = 1, \ldots, n$ the functions $\varphi D_{x_i}H$ and $\varphi D_{y_i}H$ belong to $L^2(\mathbb{R}^{2n},\mu)$. Moreover

$$
\int_{\mathbb{R}^{2n}} (\varphi D_{x_i} H)^2 d\mu \le \int_{\mathbb{R}^{2n}} (\|D_{x_i x_i} H\|_{\infty} \varphi^2 + (D_{x_i} \varphi)^2) d\mu,
$$

$$
\int_{\mathbb{R}^{2n}} (\varphi D_{y_i} H)^2 d\mu \le \int_{\mathbb{R}^{2n}} (\|D_{y_i y_i} H\|_{\infty} \varphi^2 + |D_{y_i} \varphi|^2) d\mu,
$$

$$
\lim_{1 \le j \le n} \mu
$$

for all $\varphi \in H^1(\mathbb{R}^{2n}, \mu)$.

Proof. Let $\varphi \in C_0^{\infty}(\mathbb{R}^{2n})$. For every $i = 1, ..., n$ we have

$$
\begin{aligned} \int_{\mathbb{R}^{2n}} (\varphi D_{x_i} H)^2 d\mu &= \frac{1}{2Z} \int_{\mathbb{R}^{2n}} \varphi^2 D_{x_i} H(-D_{x_i} e^{-2H}) dx \, dy \\ &= \frac{1}{2Z} \int_{\mathbb{R}^{2n}} (\varphi^2 D_{x_i x_i} H + 2\varphi D_{x_i} \varphi D_{x_i} H) e^{-2H} dx \, dy \\ &\leq \frac{\|D_{x_i x_i} H\|_{\infty}}{2} \|\varphi\|_{L^2(\mathbb{R}^{2n}, \mu)}^2 + \|\varphi D_{x_i} H\|_{L^2(\mathbb{R}^{2n}, \mu)} \|D_{x_i} \varphi\|_{L^2(\mathbb{R}^{2n}, \mu)} \\ &\leq \frac{\|D_{x_i x_i} H\|_{\infty}}{2} \|\varphi\|_{L^2(\mathbb{R}^{2n}, \mu)}^2 + \frac{1}{2} \|\varphi D_{x_i} H\|_{L^2(\mathbb{R}^{2n}, \mu)}^2 + \frac{1}{2} \|D_{x_i} \varphi\|_{L^2(\mathbb{R}^{2n}, \mu)}^2 \end{aligned}
$$

so that

$$
\|\varphi D_{x_i}H\|_{L^2(\mathbb{R}^{2n},\mu)}^2 \leq \|D_{x_ix_i}H\|_{\infty}\|\varphi\|_{L^2(\mathbb{R}^{2n},\mu)}^2 + \|D_{x_i}\varphi\|_{L^2(\mathbb{R}^{2n},\mu)}^2.
$$

Similarly,

$$
\|\varphi D_{y_i} H\|_{L^2(\mathbb{R}^{2n}, \mu)}^2 \le \|D_{y_i y_i} H\|_{\infty} \|\varphi\|_{L^2(\mathbb{R}^{2n}, \mu)}^2 + \|D_{y_i} \varphi\|_{L^2(\mathbb{R}^{2n}, \mu)}^2,
$$

and $C^{\infty}(\mathbb{R}^{2n})$ is done in $H^1(\mathbb{R}^{2n}, \mu)$ the statement follows. \square

and since $C_0^{\infty}(\mathbb{R}^{2n})$ is dense in $H^1(\mathbb{R}^{2n}, \mu)$ the statement follows. \Box

The lemma has several important consequences. It implies that for every $\varphi \in H^2(\mathbb{R}^{2n},\mu)$ the drift $\langle D_yH, D_x\varphi \rangle - \langle D_xH, D_y\varphi \rangle$ belongs to $L^2(\mathbb{R}^{2n},\mu)$. It implies also (taking $\varphi \equiv 1$) that $|DH| \in L^2(\mathbb{R}^{2n}, \mu)$. Moreover, in the case that $|DH| \rightarrow +\infty$ as $|(x, y)| \rightarrow +\infty$, the estimate

$$
\int_{\mathbb{R}^{2n}} \varphi^2 |DH|^2 d\mu \leq C \|\varphi\|_{H^1(\mathbb{R}^{2n}, \mu)}, \ \ \varphi \in H^1(\mathbb{R}^{2n}, \mu),
$$

implies easily that $H^1(\mathbb{R}^{2n}, \mu)$ is compactly embedded in $L^2(\mathbb{R}^{2n}, \mu)$. See e.g. [7, Prop. 3.4].

The integration formula (1.7) implies immediately that K is dissipative. What is not trivial is m-dissipativity. To prove m-dissipativity we have to solve the resolvent equation

$$
\lambda \varphi - \mathcal{K} \varphi = f \tag{2.1}
$$

for each $f \in L^2(\mathbb{R}^{2n}, \mu)$ and $\lambda > 0$, and show that the solution φ belongs to $H^2(\mathbb{R}^{2n}, \mu)$. That is, we have to prove an existence and maximal regularity result for an elliptic equation with unbounded coefficients. Of course it is enough to prove that for each $f \in C_0^{\infty}(\mathbb{R}^{2n})$ the resolvent equation has a unique solution φ in $H^2(\mathbb{R}^{2n},\mu)$, and $\|\varphi\|_{H^2(\mathbb{R}^{2n},\mu)} \leq C \|f\|_{L^2(\mathbb{R}^{2n},\mu)}$.

Since the coefficients of K are regular enough, existence of a solution may be proved in several ways. For instance, the problem in the whole \mathbb{R}^{2n} may be approached by a sequence of Dirichlet problems in the balls $B(0, k)$, and using classical interior estimates for solutions of second order elliptic problems we arrive at a solution $\varphi \in H^2_{loc}(\mathbb{R}^{2n})$. See e.g. [8, Theorem 3.4]. Or else, we may use the stochastic characteristics method, that gives a solution to (2.1) as

$$
\varphi = \int_0^{+\infty} e^{-\lambda t} \mathbb{E}[f(X(t), Y(t))]dt
$$

where $(X(t), Y(t))$ is the solution to (1.4) with initial data $X(0) = x, Y(0) = y$. See e.g. [3, Thms. 1.2.5, 1.6.6]. The assumptions of [3] are satisfied because the second order derivatives of H are bounded, and consequently the first order derivatives of H have at most linear growth.

Uniqueness of the solution in $H^2(\mathbb{R}^{2n},\mu)$ follows immediately from dissipativity. Estimates for the second order derivatives in $L^2(\mathbb{R}^{2n}, \mu)$ are less obvious. They are proved in the next theorem.

Theorem 2.2. Let $\varphi \in H_{loc}^2(\mathbb{R}^{2n})$ satisfy (2.1), with $f \in L^2(\mathbb{R}^{2n}, \mu)$. Then

$$
\|\varphi\|_{L^{2}(\mathbb{R}^{2n},\mu)} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\mathbb{R}^{2n},\mu)}
$$
\n(2.2)

$$
\int_{\mathbb{R}^{2n}} (\alpha |D_x \varphi|^2 + \beta |D_y \varphi|^2) d\mu \le \frac{2}{\lambda} ||f||_{L^2(\mathbb{R}^{2n}, \mu)}^2 \tag{2.3}
$$

$$
\int_{\mathbb{R}^{2n}} |D^2 \varphi|^2 d\mu \le C \|f\|_{L^2(\mathbb{R}^{2n}, \mu)}^2
$$
\n(2.4)

where C does not depend on f and φ .

Proof. Without loss of generality we may assume that $f \in C_0^{\infty}(\mathbb{R}^{2n})$. Then $\varphi \in C_0^{\infty}(\mathbb{R}^{2n})$. $H_{loc}^3(\mathbb{R}^{2n})$, by local elliptic regularity. Moreover by the Schauder estimates of [6], φ and its first and second order derivatives are bounded and Hölder continuous. In particular, $\varphi \in H^2(\mathbb{R}^{2n}, \mu)$.

Estimates (2.2) and (2.3) follow in a standard way, multiplying both sides of (2.1) by φ and using the integration formula (1.7). To get (2.4) we differentiate (2.1) with respect to x_i and y_i , obtaining

$$
\lambda D_{x_i}\varphi - KD_{x_i}\varphi - \sum_{k=1}^n (D_{x_iy_k}H - \alpha D_{x_ix_k}H)D_{x_k}\varphi
$$

+
$$
\sum_{k=1}^n (D_{x_ix_k}H + \beta D_{x_iy_k}H)D_{y_k}\varphi = D_{x_i}f,
$$

$$
\lambda D_{y_i}\varphi - KD_{y_i}\varphi - \sum_{k=1}^n (D_{y_iy_k}H - \alpha D_{y_ix_k}H)D_{x_k}\varphi
$$

+
$$
\sum_{k=1}^n (D_{y_ix_k}H + \beta D_{y_iy_k}H)D_{y_k}\varphi = D_{y_i}f.
$$

Replacing the expressions of the derivatives of f in the equality

$$
\int_{\mathbb{R}^{2n}} K\varphi f d\mu = -\frac{1}{2} \int_{\mathbb{R}^{2n}} (\alpha \langle D_x \varphi, D_x f \rangle + \beta \langle D_y \varphi, D_y f \rangle) d\mu \n+ \int_{\mathbb{R}^{2n}} (\langle D_y H, D_x \varphi \rangle - \langle D_x H, D_y \varphi \rangle) f d\mu
$$

that follows from (1.6), we obtain

$$
\int_{\mathbb{R}^{2n}} K\varphi f d\mu = \int_{\mathbb{R}^{2n}} (\lambda \varphi - f) f d\mu
$$

\n
$$
= \int_{\mathbb{R}^{2n}} -\frac{\lambda}{2} (\alpha |D_x \varphi|^2 + \beta |D_y \varphi|^2)
$$

\n
$$
+ \frac{1}{2} \sum_{i=1}^n (\alpha D_{x_i} \varphi K D_{x_i} \varphi + \beta D_{y_i} \varphi K D_{y_i} \varphi) d\mu
$$

\n
$$
+ \frac{1}{2} \int_{\mathbb{R}^{2n}} -\langle SD\varphi, D\varphi \rangle + (\langle D_y H, D_x \varphi \rangle - \langle D_x H, D_y \varphi \rangle) f d\mu,
$$

where the $2n \times 2n$ matrix S has entries

$$
S_{i,k} = -\frac{\alpha}{2}(D_{x_i y_k}H - \alpha D_{x_i x_k}H),
$$

\n
$$
S_{i,n+k} = S_{n+i,k} = \frac{\alpha}{2}D_{x_i x_k}H - \frac{\beta}{2}D_{y_i y_k}H + \alpha\beta D_{x_i y_k}H,
$$

\n
$$
S_{n+i,n+k} = \frac{\beta}{2}(D_{y_i x_k}H + \beta D_{y_i y_k}H),
$$

for $i, k = 1, ..., n$.

Using formula (1.6) in the integrals $\int_{\mathbb{R}^{2n}} K\varphi f d\mu$, $\int_{\mathbb{R}^{2n}} D_{x_i} \varphi K D_{x_i} \varphi d\mu$, and $\int_{\mathbb{R}^{2n}} D_{y_i} \varphi K D_{y_i} \varphi \, d\mu$ we get

$$
\lambda \int_{\mathbb{R}^{2n}} (\alpha |D_x \varphi|^2 + \beta |D_y \varphi|^2) d\mu \n+ \int_{\mathbb{R}^{2n}} (\alpha^2 \sum_{i,k} (D_{x_i x_k} \varphi)^2 + 2\alpha \beta \sum_{i,k} (D_{x_i y_k} \varphi)^2 + \beta^2 \sum_{i,k} (D_{y_i y_k} \varphi)^2) d\mu \n+ \int_{\mathbb{R}^{2n}} (\langle SD\varphi, D\varphi \rangle + 2(\langle D_y H, D_x \varphi \rangle - \langle D_x H, D_y \varphi \rangle) f d\mu \n= 2 \int_{\mathbb{R}^{2n}} (f - \lambda \varphi) f d\mu \le 4 ||f||^2.
$$

(We have used (2.2) in the last inequality). Since the second order derivatives of H are bounded, there is $c > 0$ such that

$$
\bigg|\int_{\mathbb{R}^{2n}}\langle SD\varphi, D\varphi\rangle d\mu\bigg|\leq c\int_{\mathbb{R}^{2n}}|D\varphi|^2 d\mu\leq \frac{2c}{\lambda}\, \|f\|^2.
$$

By lemma 2.1, the function $\langle D_y H, D_x \varphi \rangle - \langle D_x H, D_y \varphi \rangle$ belongs to $L^2(\mathbb{R}^{2n}, \mu)$, and its norm does not exceed $(C||D\varphi|^2||^2 + ||D^2\varphi||^2)^{1/2}$. Therefore,

$$
\left| \int_{\mathbb{R}^{2n}} (\langle D_y H, D_x \varphi \rangle - \langle D_x H, D_y \varphi \rangle) f \, d\mu \right| \le (C || |D\varphi|^2 ||^2 + || |D^2 \varphi||^2)^{1/2} ||f||
$$

$$
\le \frac{\varepsilon}{2} (C || |D\varphi|^2 ||^2 + || |D^2 \varphi||^2) + \frac{1}{2\varepsilon} ||f||^2,
$$

for every $\varepsilon > 0$ (we have used (2.3) in the last inequality). Choosing ε small enough, in such a way that

$$
\varepsilon \| |D^2 \varphi| \|^2 \leq \int_{\mathbb{R}^{2n}} (\alpha^2 \sum_{i,k} (D_{x_i x_k} \varphi)^2 + 2 \alpha \beta \sum_{i,k} (D_{x_i y_k} \varphi)^2 + \beta^2 \sum_{i,k} (D_{y_i y_k} \varphi)^2) d\mu
$$

estimate (2.4) follows. \square

Remark 2.3. In the estimate of the second order derivatives of φ we have not used the full assumption that H has bounded second order derivatives, but only its consequence $\langle S\xi, \xi \rangle \ge \kappa |\xi|^2$, for some $\kappa \in \mathbb{R}$ and all $\xi \in \mathbb{R}^{2n}$. This shows that the assumption that all the second order derivatives of H could be weakened if we only want to prove that the domain of K is contained in $H^2(\mathbb{R}^{2n}, \mu)$.

3. Further properties of K and $T(t)$

The operator K belongs to a class of elliptic operators with unbounded coefficients recently studied in [1, 2],

$$
\varphi \mapsto \text{Tr}(QD^2\varphi) + \langle F, D\varphi \rangle.
$$

In our case the coefficients of the matrix Q are constant, and the derivatives of every component of F are bounded. Therefore, the assumptions of [1, Prop. 4.3] are satisfied, and it yields pointwise estimates of the space derivatives of $T(t)\varphi$. Precisely,

$$
|DT(t)\varphi(x,y)|^2 \le \frac{\sigma}{2\nu(1-e^{-\sigma t})} \left(T(t)\varphi^2\right)(x,y), \quad \varphi \in L^2(\mathbb{R}^{2n},\mu), \ t > 0,
$$

where $\sigma = 2 \sup_{\xi \in \mathbb{R}^{2n} \setminus \{0\}} \langle DF \cdot \xi, \xi \rangle / |\xi|^2$, DF being the Jacobian matrix of F, and ν is the ellipticity constant which is the minimum between $\alpha/2$ and $\beta/2$ in our case. Integrating over \mathbb{R}^{2n} we get, for each $t > 0$,

$$
\| |DT(t)\varphi| \|_{L^2(\mathbb{R}^{2n},\mu)}^2 \le \frac{\sigma}{2\nu(1-e^{-\sigma t})} \int_{\mathbb{R}^{2n}} T(t)\varphi^2 d\mu = \frac{\sigma}{2\nu(1-e^{-\sigma t})} \|\varphi\|_{L^2(\mathbb{R}^{2n},\mu)}^2, \tag{3.1}
$$

which implies

(i)
$$
||DT(t)\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)} \leq \frac{C}{\sqrt{t}} ||\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)}, \quad 0 < t \leq 1,
$$

\n(ii) $||DT(t)\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)} \leq C ||\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)}, \quad t \geq 1.$ (3.2)

An important consequence of the gradient estimates (3.2) and of lemma 2.1 is analyticity of $T(t)$.

Proposition 3.1. $T(t)$ maps $L^2(\mathbb{R}^{2n}, \mu)$ into $H^2(\mathbb{R}^{2n}, \mu)$ for every $t > 0$, and there is $C > 0$ such that

$$
||KT(t)\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)} \leq \frac{C}{t}||\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)}, \quad 0 < t \leq 1, \ \varphi \in L^{2}(\mathbb{R}^{2n},\mu).
$$

Proof. Let $\varphi \in H^2(\mathbb{R}^{2n}, \mu)$. Then $u(t, \cdot) := T(t)\varphi$ satisfies $u_t = \mathcal{K}u$ for $t \geq 0$. By general regularity results for parabolic equations, u_t and the second order space derivatives of u have first order space derivatives in $L^2_{loc}(\mathbb{R}^{2n})$, and for $i = 1, ..., n$,

$$
D_{x_i}u_t = D_tD_{x_i}u = \mathcal{K}D_{x_i}u + \langle D_yD_{x_i}H, D_xu \rangle - \langle D_xD_{x_i}H, D_yu \rangle,
$$

\n
$$
D_{y_i}u_t = D_tD_{y_i}u = \mathcal{K}D_{y_i}u + \langle D_yD_{y_i}H, D_xu \rangle - \langle D_xD_{y_i}H, D_yu \rangle.
$$

Therefore, denoting by z_i either x_i or y_i , we have

$$
D_t(D_{z_i}u - T(t)D_{z_i}\varphi) = \mathcal{K}(D_{z_i}u - T(t)D_{z_i}\varphi) + \langle D_yD_{z_i}H, D_xu \rangle - \langle D_xD_{z_i}H, D_yu \rangle
$$

so that

$$
D_{z_i}T(t)\varphi - T(t)D_{z_i}\varphi
$$

= $\int_0^t T(t-s)\langle D_y D_{z_i}H, D_xT(s)\varphi \rangle - \langle D_x D_{z_i}H, D_yT(s)\varphi \rangle ds := J_{z_i}\varphi(t).$

Let C be the constant in (3.2) , and let C_1 be the maximum of the sup norm of all the second order derivatives of H. Then for $0 < t \leq 1$ we have

$$
||J_{z_i}\varphi(t)||_{L^2(\mathbb{R}^{2n},\mu)} \leq C_1 \int_0^t \frac{C}{\sqrt{s}} ds \, ||\varphi||_{L^2(\mathbb{R}^{2n},\mu)} = 2C_1C\sqrt{t} ||\varphi||_{L^2(\mathbb{R}^{2n},\mu)},
$$

and, more important,

$$
\| |DJ_{z_i}\varphi(t)| \|_{L^2(\mathbb{R}^{2n},\mu)} \leq C_1 \int_0^t \frac{C}{\sqrt{t-s}} \frac{C}{\sqrt{s}} ds \|\varphi\|_{L^2(\mathbb{R}^{2n},\mu)},
$$

\n
$$
= C_1 C^2 \int_0^1 \frac{1}{(1-\sigma)^{1/2}\sigma^{1/2}} d\sigma \|\varphi\|_{L^2(\mathbb{R}^{2n},\mu)} := C_2 \|\varphi\|_{L^2(\mathbb{R}^{2n},\mu)}.
$$
\n(3.3)

\nThe equality

From t .

$$
D_{z_j z_i} T(t) \varphi = D_{z_j} D_{z_i} T(t/2) T(t/2) \varphi
$$

=
$$
D_{z_j} T(t/2) D_{z_i} T(t/2) \varphi + D_{z_j} J_{z_i} (T(t/2) \varphi)(t/2)
$$

we get, using $(3.2)(i)$ and (3.3) ,

$$
||D_{z_j z_i} T(t)\varphi||_{L^2(\mathbb{R}^{2n},\mu)} \leq \left(\frac{C}{\sqrt{t/2}}\right)^2 ||\varphi||_{L^2(\mathbb{R}^{2n},\mu)} + C_2 ||\varphi||_{L^2(\mathbb{R}^{2n},\mu)}.
$$

This estimate and lemma 2.1 yield

$$
||KT(t)\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)} \leq \frac{C}{t} ||\varphi||_{L^{2}(\mathbb{R}^{2n},\mu)}, \ \ 0 < t \leq 1.
$$

Since $H^2(\mathbb{R}^{2n}, \mu)$ is dense in $L^2(\mathbb{R}^{2n}, \mu)$, the statement follows. \Box

We can improve estimate (3.2)(ii), showing that $||D T(t) \varphi||_{L^2(\mathbb{R}^{2n},\mu)}$ goes to 0 as $t \to +\infty$.

Lemma 3.2. For all $\varphi \in L^2(\mathbb{R}^{2n}, \mu)$, $\lim_{t \to +\infty} |||DT(t)\varphi||_{L^2(\mathbb{R}^{2n}, \mu)} = 0$.

Proof. Let $\varphi \in H^2(\mathbb{R}^{2n}, \mu)$. From the equality

$$
\frac{d}{dt}\|T(t)\varphi\|^2=2\int_{\mathbb{R}^{2n}}T(t)\varphi\,KT(t)\varphi\,d\mu
$$

we obtain

$$
||T(t)\varphi||^2 - ||\varphi||^2 = 2\int_0^t \int_{\mathbb{R}^{2n}} T(s)\varphi \, KT(s)\varphi \, d\mu \, ds
$$

and using (1.7) we get

$$
||T(t)\varphi||^2 + \int_0^t \int_{\mathbb{R}^{2n}} (\alpha |D_x T(s)\varphi|^2 + \beta |D_y T(s)\varphi|^2) d\mu \, ds = ||\varphi||^2, \ \ t > 0. \tag{3.4}
$$

Therefore, the function

$$
\chi_{\varphi}(s) := \int_{\mathbb{R}^{2n}} (\alpha |D_x T(s) \varphi|^2 + \beta |D_y T(s) \varphi|^2) d\mu, \ \ s \ge 0,
$$

is in $L^1(0, +\infty)$, and its L^1 norm does not exceed $\|\varphi\|^2$. Its derivative is

$$
\chi_{\varphi}'(s)=\int_{\mathbb{R}^{2n}}(2\alpha\langle D_xT(s)\varphi,D_xT(s)K\varphi\rangle+2\beta\langle D_yT(s)\varphi,D_yT(s)K\varphi\rangle)d\mu
$$

so that

$$
|\chi_{\varphi}'(s)| \leq 2 \bigg(\int_{\mathbb{R}^{2n}} \alpha |D_x T(s)\varphi|^2 d\mu \bigg)^{1/2} \bigg(\int_{\mathbb{R}^{2n}} \alpha |D_x T(s) K\varphi|^2 d\mu \bigg)^{1/2} + 2 \bigg(\int_{\mathbb{R}^{2n}} \beta |D_y T(s)\varphi|^2 d\mu \bigg)^{1/2} \bigg(\int_{\mathbb{R}^{2n}} \beta |D_y T(s) K\varphi|^2 d\mu \bigg)^{1/2} \leq \chi_{\varphi}(s) + \chi_{K\varphi}(s).
$$

Therefore, also χ'_{φ} is in $L^1(0, +\infty)$. This implies that $\lim_{s\to+\infty}\chi_{\varphi}(s)=0$, and the statement holds for every $\varphi \in H^2(\mathbb{R}^{2n}, \mu)$. For general $\varphi \in L^2(\mathbb{R}^{2n}, \mu)$ the statement follows approaching φ by a sequence of functions in $H^2(\mathbb{R}^{2n},\mu)$ and using estimate $(3.2)(ii)$. \Box

The lemma has some interesting consequences.

First, the kernel of K consists of constant functions. This is because if $\varphi \in$ Ker K then $T(t)\varphi = \varphi$ for each $t > 0$, so that $D\varphi = DT(t)\varphi$ goes to 0 as t goes to $+\infty$, hence $D\varphi = 0$ and φ is constant. So, we have a sort of Liouville theorem for K.

Second, for each $\varphi \in L^2(\mathbb{R}^{2n}, \mu)$, $T(t)\varphi$ converges weakly to the mean value $\overline{\varphi}$ of φ as $t \to +\infty$. This is because $T(t)\varphi$ is bounded, hence there is a sequence $t_n \to +\infty$ such that $T(t_n)\varphi$ converges weakly to some limit $g \in L^2(\mathbb{R}^{2n}, \mu)$, each derivative $D_{z_i}T(t_n)\varphi$ converges strongly to 0, and since the derivatives are closed with respect to the weak topology too, then $D_{z_i}g = 0$ and g is constant. The constant has to be equal to the mean value of φ because μ is invariant, and hence

$$
g = \int_{\mathbb{R}^{2n}} g d\mu = \lim_{n \to \infty} \int_{\mathbb{R}^{2n}} T(t_n) \varphi d\mu = \lim_{n \to \infty} \int_{\mathbb{R}^{2n}} \varphi d\mu = \overline{\varphi}.
$$

Strong convergence is not obvious in general. Of course if 0 is isolated in the spectrum of K (for instance, if $H^2(\mathbb{R}^{2n}, \mu)$ is compactly embedded in $L^2(\mathbb{R}^{2n}, \mu)$) then $T(t)\varphi$ converges exponentially to the spectral projection of φ on the kernel of K, which is just $\overline{\varphi}$.

References

- [1] M. Bertoldi, S. Fornaro, Gradient estimates in parabolic problems with unbounded coefficients, Studia Math. 165 (2004), 221–254.
- [2] M. Bertoldi, L. Lorenzi, Analytic methods for Markov semigroups, preprint Dipart. Mat. Univ. Parma (2005).
- [3] S. Cerrai, Second order PDE's in finite and infinite dimensions. A probabilistic approach, Lecture Notes in Mathematics 1762, Springer-Verlag, Berlin (2001).
- [4] G. Da Prato, A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Diff. Eqns. 198 (2004), 35–52.
- [5] M. Freidlin, Some remarks on the Smoluchowski-Kramers approximation, Journal of Statistical Physics (to appear).
- [6] A. Lunardi, Schauder theorems for elliptic and parabolic problems with unbounded coefficients in \mathbb{R}^n , Studia Math. 128 (1998), 171-198.
- [7] A. Lunardi, G. Metafune, D. Pallara, Dirichlet boundary conditions for elliptic operators with unbounded drift, Proc. Amer. Math. Soc. (to appear).
- [8] G. Metafune, D. Pallara, M. Wacker, Feller Semigroups on \mathbb{R}^n , Sem. Forum 65 (2002), 159–205.
- [9] G. Metafune, E. Priola, Some classes of non-analytic Markov semigroups, J. Math. Anal. Appl. 294 (2004), 596–613.

Giuseppe Da Prato Scuola Normale Superiore Piazza dei Cavalieri 7, 56126 Pisa,Italy e-mail: daprato@sns.it

Alessandra Lunardi Dipartimento di Matematica, Universit`a di Parma Parco Area delle Scienze 53, 43100 Parma, Italy e-mail: lunardi@unipr.it