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Abstract

We study the realization of the differential operator u +— wu; — L(t)u in the space
of continuous time periodic functions, and in L? with respect to its (unique) invariant
measure. Here L(t) is an Ornstein-Uhlenbeck operator in R™, such that L(t+T) = L(¢)
for each t € R.
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1 Introduction
Let {L(t)}1er be a time dependent family of Ornstein-Uhlenbeck operators,
1 *
L(t)p(x) = 5 Tr [B()B* (1) D*¢(x)] + (A(t)a + f(t), De(w)), (1.1)

where the data A : R — L(R"), B : R — L(R") and f : R — R” are continuous and
T-periodic, for some T > 0.
In this paper we study nonautonomous equations of the type

us(s,x) + L(s)u(s,z) =0, s <t, z €R",

(1.2)
u(t) = ¢(x), x € R™,
and the associated differential operator G defined by
Gu(t,z) = Dyu(t,z) + L(t)u(t, )(z), t e R, z € R". (1.3)

Even if the contents of this paper is essentially analytic, it is motivated by probabilistic
problems that we describe below.



Let us consider the stochastic differential equation in R™

dX(t) = (AW X (t) + f(£))dt + B(t)dW (¢),
(1.4)

where W (t) is a standard n-dimensional Brownian motion and x € R™. Problem (1.4) has
obviously a unique mild solution X (¢, s, x) given by

X(t,s,z) =U(t, 8)33+/ U(t,r)f(r)d?“—i—/ U(t,r)B(r)dW (r),

where U (t, s) is the evolution operator in R™ associated to the family { A(t) }+cr, that is the

solution of
oU(t, s)

ot

= AU(t,s), t, s€R,

U(s,s)=1.

Consequently, the law of X(t,s,z) is the Gaussian measure Ny, q) Q(t,s) With mean and
covariance defined respectively by

m(t,s) :=U(t,s)x+g(t,s), Q(t,s):= / U(t,r)B(r)B*(r)U*(t,r)dr (1.5)

where
gm@:/ﬁmmvwm. (1.6)

The corresponding transition evolution operator is given by

n

Ps,t‘/’(m) = E[(p(X(t, 5737))] = / ‘p(y)Nm(t,s),Q(t,s) (dy)7 p e Cb(]Rn)? s < t.

By It6’s formula it follows that for all ¢ € CZ(R") the function
u(t,s,z) = Psyp(z), s<t, xeR",

is a strict solution of the Kolmogorov equation (1.2). In fact, it is its unique bounded
solution, and this can be proved by analytic arguments too, see section 2.

A big part of the paper is devoted to the asymptotic behaviour of P;p(x) both for
s — —oo, with fixed ¢, and for t — +o0, with fixed s. As well known, in the autonomous case
a fundamental role in this problem is played by invariant measures. In the nonautonomous
case it is not natural to have a single invariant measure, but rather a family of Borel
probability measures {1 }icr such that for all —co < s <t < 400 and ¢ € Cy(R™) we have

/]Rn P, p(x)vs(de) = /n o(z)v(dx). (1.7)

Such a family is called an evolution system of measures, see [3]. Since the coefficients in
(1.1) are T-periodic, we require also that vy = 14 for all ¢ € R.



Existence and uniqueness of a T-periodic evolution system of measures is proved in
section 3 under the natural stability assumption that there exist M, w > 0 such that

U (L, s)|| < Me™09),  —0o<s<t<+o0. (1.8)
In this case we have an explicit expression of 14,
vt = Ny(t,—00),Qt,—o0) t € R. (1.9)

Concerning the asymptotic behaviour of P; ;¢ we prove in section 6 that for each continuous
and bounded ¢ we have

lim P () —/ o(y)n(dy), teR, x € R, (1.10)
and moreover
tligl [P&tgo(ac) —/ gp(y)yt(dy)} =0, seR, zeR" (1.11)

Identity (1.11) means that, as t — +o00, the orbit t — Ps ;¢ approaches pointwise a periodic
function which is independent of s and .
It is of much help to reduce (1.4) to an autonomous problem, namely

dz(r) = [A(y(7))Z(7) + f(y(7)ldr + B(y(7))dW (7),
dy(t) = dr, (1.12)

Z(0) ==, y(0)=t,

whose solution (which is also explicit) we denote by (y(7,t,z), Z(7,t,z)). The corresponding
transition semigroup is set in the space Cf (R'*™), consisting of the continuous and bounded
functions u : R1*™ s R such that u(t + T\, -) = u(t,-) for each t € R, and it is defined by

Pru(t,x) = Blu(y(r,t,2), Z(1,t,z))], 7>0, (t,z) € R™
It is easy to see that P, is a Markov semigroup given by
_ # ml+n 1+n
Pru(t,x) = (Ppru(t +7,-))(x), weCF(R™), (t,x) e RTT. (1.13)

This procedure has a deterministic counterpart, which comes from the theory of the evo-
lution semigroups, see [2] and the references therein. Namely, given a strongly continuous
backward evolution operator P(s,t), s < t, in a Banach space X, the semigroup 7, defined
by

Tru(t) =Pt t+71)u(t+71), 7>0, teR,

is strongly continuous in Cy(R; X) and in LP(R; X) for p < oo, and this fact gives the
possibility of studying several properties of P(s,t) such as exponential dichotomies, through
the general theory of semigroups. The above formula coincides with (1.13) if P(s,t) is
our Ps;. However, we are not able to use any result from the general theory of evolution
semigroups, because P;; is not strongly continuous in Cy(R"™), and the same difficulty arises



even if Cp(R™) is replaced by the space BUC(R™) of the bounded and uniformly continuous
functions.
We show that P, has a unique invariant measure v given by

(I x K) = % /Iyt(K)dt, I €B[), K € BRY),

and then extended in a standard way to all Borel sets in R+, In section 5 we study the
realization of the semigroup P, in Li(R”H, v), the space of the functions u : R!*" — R
such that u(t +T,-) = u(t,) for a.e. t € R and such that | )xgn belongs to L*((0,T) X
R™ v). We denote by G the infinitesimal generator of P, in L%é (R**1 v). It is convenient
to introduce the space £7(R!*"), the linear span of all real and imaginary parts of the
functions ug j, of the form

ugp(t,z) = qb(t)ei<x’h(t)>, teR, r € R",

where ¢ € C*(R), h € C*(R,R") are T-periodic. We show that £#(R'*") is a core for G
and that, as expected,

Gu(t,z) = Gu(t,z) = w(t, x) + L(t)u(t,z), u € EF(RTM).

Also in this L? context we are not able to use any result from the general theory of evolution
semigroups, because in the genuinely nonautonomous case our space Li (R"*1, 1) cannot be
identified with L2((0,T); X) for any Banach space X. Indeed, Ps; maps X; := L?(R", ;)
into X, := L?(R", v,), and these spaces do not coincide in general for ¢ # s.

Then we investigate further properties of the operator G. Since v is the unique invariant
measure of P, it follows that it is ergodic, and that the kernel of G consists of constant
functions. Moreover, since P; is a contraction semigroup, then G is an m-dissipative oper-
ator.

Another important property is the integration by parts formula proved in section 5,

/ Gult, ) ult,z) dv = — / B*(t) Dyu(t, ) 2dv (1.14)
(0,T)xR" 2 Jo,r)xrn

valid for any u € 7 (R1+™).

Note that if the determinant of B(t) is not zero, then L(t) is a uniformly elliptic differ-
ential operator, if det B(t) = 0 but B(t) does not vanish then L(t) is a degenerate elliptic
operator, if B(t) = 0 and A(¢) or f(t) do not vanish then L(t) is a first order differential
operator. Consequently, G may be a uniformly parabolic operator, a degenerate parabolic
operator, or a first order operator. An interesting intermediate situation is when the de-
terminant of B(t) is zero for some ¢, and however the determinant of Q(¢, s) is nonzero for
each ¢t > s. This can be considered as a sort of hypoellipticity condition (in fact, in the
autonomous case it is equivalent to hypoellipticity in the sense of Hérmander), and in this
case the evolution operator Ps; has nice smoothing properties, that will be studied in a
forthcoming paper.

In the uniformly elliptic case, that is when det B(t) # 0 for each t, it is natural that
P+, P and G have better properties. In particular, in sect. 5 we show that (1.14) holds



for each v € D(G), and we use it to prove generalizations of the classical Poincaré and
log-Sobolev inequalities, namely

/ (u(t,z) — ) ?dv < const./ |Du(t, )| 2dv,
(0,T) xR™ (0,T)xR™

1 - =
/ u?loguldy < const./ |Dyul?dv + / u?glog u2gds,
(0,T)xR" (0.T)xR" T Jo

where 7, 1= f]R" v(s,-)dvs.

The Poincaré inequality gives further insight on the asymptotic behavior of P, and of
P, ;, whereas is not clear at the moment whether the log-Sobolev inequality is connected
to some kind of hypercontractivity properties as in the autonomous case or not. This will
be the object of future investigations.

2 The evolution operator P,

We are given a family of Kolmogorov operators,

1 *
L{t)p(z) = 5 Tr [B(t)B () D*p(x)] + (A(t)x + f(t), Dp()), (2.1)
where t € R, A: R — L(R"), B: R — L(R") and f: R — R™ are continuous and T—
periodic, T > 0 is given.
We denote by U(t,s), t, s € R, the evolution operator in R™ generated by A(-). We
recall that

W) _ syu(s,s), t scR
L) awutes), b seR, -
U(s,s) =1,
U(t,s)U(s,r)=Ul(t,r), s, reR, (2.3)
and
aU(;i’ ) U@, 9)A(s), t, sER. (2.4)

Moreover, since A(-) is T—periodic, then

Ut+T,s+T)=U(ts), t, seR (2.5)
Let us introduce the Poincaré operator

V(t)=U(lt+T,t), —oo<t<+o0. (2.6)

Then V(-) is T—periodic and the spectrum of V(¢) is independent of ¢. Its elements are
called Floquet exponents of A. If all the Floquet exponents have modulus less than 1 there
exist M > 0, w > 0 such that

U, s)|]| < Me %) —0o<s<t< +o0. (2.7)

In this case we say that the family A is stable. We assume that (2.7) holds from now on.



We are here concerned with the problem

us(s,z) + L(s)u(s,z) =0, s<t, x € R",
(2.8)

where t € R is fixed. The representation formula for its solution involves an integral with
respect to a Gaussian measure. We recall that for each vector m € R™ and for each
symmetric nonnegative definite matrix @ € L(R"), the Gaussian measure Ny, o is the
unique probability measure in R” whose Fourier transform is given by

~

Nimg(h) = efmm=z (@b p c g, (2.9)

If @ is positive definite, then N, ¢ is absolutely continuous with respect to the Lebesgue
measure, and it is given by

Nipo(dz) = ! exp (— Q7w —m),x m>> d.

(27)"/2 det Q1/2 2

Proposition 2.1 Assume that ¢ € CZ(R") and fixt € R. Then problem (2.8) has a unique
bounded classical solution u € C12((—oo,t] x R™), given by the formula

U(S,l‘) = / 80(y)NU(t,s);t+g(t,s),Q(t,s) (dy)7 —00 < 8 <t < oo, (210)
where g and @Q are defined by (1.6) and (1.5), respectively.

Proof. — Setting
U(S, .T}) = ’U(S, U(tv S).’B + g(tv 8))7

we have, recalling (2.4),
us(s,z) = vs(s,U(t, s)x+g(t,s))+ ((—=U(t,s)A(s)x —U(t, s) f(s), Dyv(s,U(t, s)x+g(t,s))),

Dyu(s,z) =U*(t,s8)Dyv(s, U(t, s)x + g(t, s)),

and
D2u(s,x) = U*(t, s)D2v(s,U(t, s)x + g(t,8))U(t, s).

Therefore, u is a solution to (2.8) if and only if v is a solution to

vs(s,x) + % Tr [U(t,s)B(s)B*(s)U(t,s)*D3v(s,z)] =0, s <t, z € R",
(2.11)

v(t,t) = ¢(z), e R"™

(2.11) is a (possibly degenerate) parabolic Cauchy problem with coefficients depending only
on t. So, it can be easily solved. Its unique bounded solution is

os.) = [ )Mo (@), (212)

The conclusion follows. O



Note that the right hand side of (2.10) is well defined for each measurable and bounded
©. So, we define

Pupl@)i= [ oNuezsanaan (@) = [ oU2+a(t:5)+ Ao g (d).
(2.13)
for each s <t and ¢ € L*®(R"™). Since N ¢ is the Dirac measure at x, we have P, p = ¢
for each t.

It follows immediately from the definition that each Ps; maps C,(R™) into itself. More-
over, if det B(s) # 0 for each s, the differential operator in the left-hand side of (2.11), u
Tr [U(t,s)B(s)B*(s)U(t, s)*D2u], is uniformly elliptic and even for ¢ € Cy(R") formula
(2.12) gives a classical solution to (2.11), so that formula (2.10) gives a classical solution

0 (2.8). The same is true in the case when det Q(¢,s) # 0 for each ¢ > s. But in general
P, s has no smoothing effect with respect to all variables. The worst situation is when
B =0, in which case v = ¢, and P, sp(z) = p(U(t,s)z + g(t,s)). In any case, the following
proposition holds.

Proposition 2.2 For each ¢ € Cy,(R"), the function (s,t,x) — Psp(x) is continuous in
A= {(s,t,x) € R®™™: s < t}. Moreover for each t € R and x € R™ we have

lim Pyyp(z) = / )N, (0o (), (2.14)

S§——00

where g(t,—o0), Q(t, —o0) are defined by (1.6), (1.5) with s = —o0, i.e.

g(t, —00) ::/ U(t,s)f(s)ds, Q(t,—o0) ::/ U(t,r)B(r)B*(r)U*(t,r)dr. (2.15)

—00 — 00

Proof. — Let (sg,tx,xzx) € A go to (s,t,x) as k — co. Then

Psk,tkgp(‘rk) - PS,tQD(:E) =

/Rn (P(y)NU(tk,sk)xk—i-g(tk,sk),Q(tk,sk)(dy)_/ OYINUt,5)2-+9(t5),0(t,5) (AY)-

n

Formula (2.9) implies that the Fourier transform /VU(tk,Sk)szrg(tk,Sk),Q(tk,Sk) goes to the

Fourier transform /\A/U(t,s)ﬁg(t’s)@(t’s) pointwise as k — oo. The statement follows now
from the Lévy Theorem, see e.g. [6, §9.8].

The same argument works for s = —oo, with a sequence (sg,tg,xx) — (—o0,t,x) as
k— 4o0. O

‘We notice for further use that
gt+T,s+T)=g(ts), Qt+T,s+T)=0Q(ts), —oo<s<t<-+oo. (2.16)
It follows that for each ¢t € R we have

gt +T,—00) = g(t,—o0), Qt+T,—0)=Q(t,—00), (2.17)



ie. g(-,—o0) and Q(-, —o0) are T-periodic. Moreover, for any ¢t > s > r > —o0,

ot s) = / U(t, o) f(o)do — / Ut o) f(o)do = g(t,1) — U(t, 5) / " U(s,0)f(0)do,

so that

g(t,s) =g(t,r) = U(t,s)g(s,r), t>s>1r > —00. (2.18)
Arguing similarly we get
Qt,s) =Q(t,r) = U(t,s)Q(s,r)U*(t,s), t>s>r>—o0. (2.19)
In particular, for any ¢t € R, taking r = —oo we get
gt +T,t) = (I = V(t))g(t, —o0),
(2.20)

Qt+T,t)=Q(t,—o0) — V(t)Q(t, —o0)V*(1).

Since our operators P;; are defined through Gaussian measures, it is convenient to use
exponential functions. For any h € R" we define

on(z) = el g e R

We denote by £(R™) the linear span of all real and imaginary parts of the functions ¢y,.
The following result is well known.

Proposition 2.3 For all ¢ € C,(R™), there exists a sequence {¢r} C E(R™) such that
(1) llekllso < llelloo:
(i) lim ¢i(x) = p(z), VzeR"
k—o0
Now we are able to show that { P : s <t} is a backward evolution operator in Cy(R™).

Proposition 2.4 For each s < s <t € R we have
PT,sPs,t = Pr,t-

Proof. — By proposition 2.3, it is enough to show that P, Psp = P, for ¢ = @p(z) =
e{h) wwhere h € R" is arbitrary.
Recalling the Fourier transform of a Gaussian measure (2.9), we get, for each z € R,

( ) — ei<g(t’s)’h>_% <Q(t’s)h7h>

Ps,t‘ﬂh € @U*(t,s)h(x)v

and

€i<g(s,r),U* (t,s)h)—% (Q(s,r)U*(t,s)h,U*(t,s)h)

P sy spn(z) = U (s,r)U*(t,5)h(T)

— ei(U(t,s)g(s,r),h)—% (U(t,s)Q(s,r)U* (t,s)h,h)sOU* (t,r)h(x)°
(2.18) and (2.19) yield
Pr,sPs,tSOh($) = ei(g(t,r),h)—% <Q(t7r)h7h>@U*(t,T)h('r) = PT‘,tSOh(x)7 T € Rn’

and the statement holds. O



3 T—periodic evolution systems of measures

In the autonomous case A(t) = A, B(t) = B, f(t) =0, we have U(t, s) = e*=94, ¢(t,s) = 0,
Q(t,s) = R(t — s) where R(t) = fg e"ABB*e™"dr, and hence P,y = T(t — s) where T(t) is
the well known Ornstein-Uhlenbeck semigroup,

Ttola) = [ ple et )Nomoldy), 20,

Our stability assumption (2.7) implies that the Gaussian measure N R(+00) 18 the unique
invariant measure for T'(t), i.e. the unique probability measure p such that

[ awewntn = [ iy, 10

n

for all continuous and bounded ¢. See e.g. [4, Ch. 11]. In the genuine nonautonomous case
we cannot expect to have an invariant measure, but rather a family of Borel probability
measures 14, t € R, such that

/" P, p(x)vs(de) = /n o) (de), s <t, (3.1)

for all continuous and bounded ¢. Such family is called evolution system of measures, see
[3]. An evolution system of measures {v; : ¢t € R}, is called T—periodic if vi47 = 14 for all
t € R. In this case we have

| Psrelanian = [ c@mido). ter, (3.2)
for all ¢ continuous and bounded.
Proposition 3.1 The measures defined by
vt = Nyt —00),Q(t,—o0), L ER, (3.3)

are a T-periodic system of measures. Conversely, if a family {v; : t € R} of Borel probability
measures on R"™, satisfies (3.2), then they are the measures defined by (3.3).

Proof. — Euistence. Let t € R be fixed and let 14 be given by (3.3). We claim that
(3.1) holds. In view of proposition 2.3 it is enough to show that (3.1) is fulfilled for any
on(x) = M where h € R™. In this case by (2.9) we have

/ on(2)1(dz) = e9(t:=0)h) =5 (Q(t.—o)h.h) (3.4)

and

<g(t’s)7h>7% <Q(t'5)h7h>

Psrop(z) =¢' U (t.5)h (T)-

Integrating and using once again (2.9) we get

/ Psop(z)vs(de) = oil9(t,5),h)—5 (Q(t,5)h,h)
" (3.5)

% ei(g(s,—oo),U* (s,t)h)—% (Q(s,—00)U*(t,s)h,U*(t,s)h) ,



and the right hand side is equal to gif(t—00).h) =3 (Q(t;—00)h.h) by formulae (2.18) and (2.19)
with r = —o0.
We notice finally that 14 is T-periodic by (2.17).

Uniqueness. Let {v; : t € R} be a family of Borel measures satisfying (3.2). Denote by
vy(h) the Fourier transform of v;. Then we have

1

/]R" P ivron(z)v(de) = 9T =3 QUATDRM T, (17 (¢ 4 T, t)h)
and
[ entami() =il
Consequently by (3.2) the following identity holds,
Dy(h) = el0UFT DR =5 QUATORI G, (11 (¢ 4 T, )h), h € R"
Using (2.20) we get

/V\t(h) = ei(g(t—oo)—V(t)g(t,—oo),h)—% <Q(t,—oo)—V(t)Q(t,—OO)V*(t)h,h)’l'/\t(v*(t)h)

= ei<g(t,—00),h>—% (Q(tv_oo)hvh>e_i<g(t7_oo)7V*(t)h>+% <Q(t7_OO)V*(t)h7V*(t)h>ﬁt<V* (t)h)

so that, by (2.9),

ah w0 -

Ng(t,—oo),Q(t,—oo) (h) Ng(t,—oo),Q(t,—oo) (V* (t)h)

and iterating

20 B (Ve 0) ) B

Ng(t,foo),Q(t,foo)(h) Ny(t,—00),Q(t,—00) (V*(t))Fh))

for each k € N. The stability assumption (2.7) implies that (V*(¢))*h — 0 as k — o0, so
we get

2 = 2(0) =1, heR"

Nyt —00).Q(t—00) (D) Nyt —o0).0(t,—00)(0)

Since the Fourier transform is injective, it follows that v4 coincides with the Gaussian
measure Ny —o0).0(t,—oc):

We define a function v on the set R of all subsets of R x R™ of the type I x K where
I € B(R) and K € B(R"), setting

v(I x K) = 1 /z/t(K)dt (3.6)
T Jr

It is easy to check that v is o-additive on R. Moreover, by a standard argument v can

be uniquely extended to a o—additive function on the algebra of all measurable pluri—

rectangles. By the Caratheodory Theorem v can be uniquely extended to a Borel measure

on B(R x R™), that we still call v.

10



4 The evolution semigroup in spaces of continuous functions

Since our data are T-periodic in time, it is reasonable to work in spaces of functions that
are T-periodic in time. In this section we consider the space Cf (R'*7), consisting of the
continuous and bounded functions u : R R such that u(t + T,-) = u(t,-) for each
teR

For any T-periodic ¢ € C1(R), h € C*(R;R") we consider the function

ugp(t,x) = Pt @)t e R,z e R,

and we denote by £ (R'™™) the linear span of all real and imaginary parts of the functions

u¢7h.
The following lemma will be useful.

Lemma 4.1 For every u € Cf(RH") there is a sequence of functions uy € Ex(RT™) that
converge pointwise to u and such that ||uk||co < 2||u||co for each k.

Proof. — Let 6 be a smooth function such that 0 < §(z) < 1 for each x € R", § = 1 in
B(0,1), 8 = 0 outside B(0,2). The functions (¢, z) — u(t, z)0(z/R) converge pointwise to u
as R — oo and their sup norms do not exceed the sup norm of . In its turn, each of these
functions may be approximated in the sup norm by a sequence of functions that are linear
combinations of products ¥ (t)¢(x), where 1) is T-periodic and continuously differentiable,
and ¢ has compact support. We can assume that the sup norm of the approaching functions
do not exceed 2||u||oo. The functions 1 (t)pg(x), where @y, is given by proposition 2.3, belong
to £4(R™) converge pointwise to 1(t)p(z), and their sup norms do not exceed 2||u|co.
U

We define a semigroup of linear operators P, in Cf (R by

Pru(t,x) = (Pgru(t+7,-))(x)
(4.1)
= [ ulr LU 0 g+ ) + 1) Nogpin (@)

(P- is a semigroup as an immediate consequence of proposition 2.4). This formula is
borrowed from the general theory of evolution semigroups, see e.g [2] and the references
quoted there. Such a theory has been developed for strongly continuous forward evolution
operators. Our evolution operator Ps; is backward and not strongly continuous, even
if we replace Cp(R™) by BUC(R"™), the space of the bounded and uniformly continuous
functions. While the extension of the general theory to backward evolution operators is
straightforward, its extension to not strongly continuous evolution operators is not obvious,
so that we are not able to use any result of the general theory.

By proposition 2.2, P, maps CZ#(RH”) into itself. Since || Ps1¢lloc < |l¢]loo for each
s <t and for each continuous bounded ¢, then P; is a contraction semigroup in C’f (R,
But, since P;; is not strongly continuous in Cp(R"™), then P- is not strongly continuous in

C’# (R'*7). However, the following proposition holds.

Proposition 4.2 Let P, be the semigroup of linear operators in CZ# (RY*7) defined by (4.1),
and let v be the probability measure defined by (3.6). Then P; is a Markov semigroup and
v 1s its unique invariant measure.

11



Proof. — The Markov property follows easily from the definition.
Let us prove that v is invariant for P, that is

/ Pru(t,z)dv = / u(t,z)dv, 1 >0, (4.2)
(0,T)xR"™ (0,T)xR™

for all u € C’f (R'*™). This is a consequence of proposition 3.1. Indeed, using (3.1), for
each t € R and 7 > 0 we get

Pru(t, 2)v(dz) = / Prrorult + 7, )(x)wp(dz) = / w(t + 7, 2)(2)vsn (d2)

n n

R’I’L

so that, integrating with respect to t,

T
| Pty =g [ [t @ () d
(0.T)xR" TJy Jre

_ % / o / us, ) (v (dr) ds,

which implies (4.2) by the periodicity of u and of v;.
It remains to show uniqueness of the invariant measure. Assume that ( is a probability
measure in R'™™ such that

/ Pru(t, z)((dt,dx) = / u(t, z)¢(dt, dx), (4.3)
(0,T) xR"

(0,T)xR"

for all u € Cff (RF7).
Denote by (1 the marginal of (,

Q) =<¢I xR"), IeBR)

and let ({;)ier be a disintegration of ¢ (see e.g. [6, Theorem10.2.1]), so that

/( . u(t, z)¢(dt, dz) = /OT [ / uft, x)Ct(dﬁf)} Ci(dt), (4.4)

for every u € CJf (RIF7).
Choose in particular u(t, x) = p(t) independent of x. Then

Pru(t,z) =p(t+71), 7>0,teR, zeR",
so that (4.4) yields
T T
| otesncian = [ poaa)

This means that the measure (; is invariant by translation (modulus T'), so that it must
coincide with the Lebesgue measure dt. Therefore we have

¢(dt,dz) = ((dz)dt.

12



Now we prove that (;(dz) = v(dx) for each t. By assumption, for every ¢ € Cp(R") and
for every T-periodic and continuous p we have

T T
/0 p(t+ 1) /R" P yiro(x)((de)dt = /0 p(t) G(dz)dt, T>0.

R

Choosing 7 =T we get

T T
/0 plt) [ Presriola)Gldo)it = /O ptt) [ Gldoyi.

for each continuous and T-periodic p. Therefore,

/ Prosro@)Cildr) = [ C(de),
R R™

for each continuos and bounded . By the uniqueness part of proposition 3.1, = 1,. U

The following technical lemma shows that Pr enjoys some properties of the weakly
continuous semigroups and of the 7m-semigroups treated in [1, 8]. However, in general it does
not preserve uniform continuity, which is one of the assumptions of [1, 8]. For instance, if
B =0, f =0 we have Pru(t,z) = u(t+7,U(t+7,t)x) which is not uniformly continuous for
each uniformly continuous and bounded u. Therefore we cannot use the theories of [1, 8].

Lemma 4.3 Let (ug) be a bounded sequence in C’f(RH”), that converges pointwise to
u € C’Z#(RH") as k — oo. Then:

(a) for each T >0, (Pruy) converges pointwise to Pru as k — oo;

(b) if ux — w uniformly on each compact set as k — oo, then for each compact set K € R™

we have
klim sup{|P-(ur —u)(t,z)|: 7>0,0<t<T, x€ K} =0.
—00
Proof. — Statement (a) is an easy consequence of the dominated convergence theorem.

Let us prove (b). For every R > 0 we have

|Pr(up — u)(t, x)| =

/ (g — W) (7 + £, Ut +7.8)2 + gt + 7. ) + 1) No.o(esra)(dy)
< / ok — wllooNo,orey ()
R\ B(0,R)

+ / o) |(up —uw)(T+t, Ut +T1,t)z+g(t+7,t) +y) |J\/'07Q(t+77t)(dy) =11 + Is.
B(O,R

13



Note that for each t, s € R we have

1 1
Ny or.s) (dy / YNy o (dy) = =TrQ(t, s),
Lo M@ = g [ 1PN @) = 7T Q9

so that 1 o
1
I 3 ([ulloo + l[ulloo) sup TrQ(t, 8) < 73

t,s€R

Fixed any compact set K C R", for each y € B(0, R) and x € K we have
Ut +7,t)x+ gt +7,t) +y| < Mlx|+ M| flloo/w+ R<Co+ R, teR, 7>0.

Therefore,
Iy < |lug — ul| oo (Rx B(0,Co+R))-

Choosing R large enough and then k large enough the statement follows. [J

5 The evolution semigroup in L% (v)

Fixed any p € [1,+00) we introduce the Banach space L;;(I/), consisting of the Borel
measurable functions u such that u(t,z) = u(t + T, z) a.e. and o )xre € LP((0,T) X
R™ v).

In this section we consider the realization of the semigroup P, defined in (4.1) in the
spaces Lf‘#(u), with particular attention to the case p = 2.

Lemma 5.1 The space Ex(R1™) is dense in L% (v) for each p € [1, +00).

Proof. — Every u € Li(u) may be approximated in L%(l/) by a sequence of functions

belonging to C’Zéé (R'*™). In its turn, by lemma 4.1 each v € C'Z%é (R'*7) is the pointwise limit
of a sequence (vg) C Ex(R™™) that such that ||vk/|ec < 2||v]|oo for each k. By dominated

convergence, vr — v in Li(y) as k — oo, and the statement follows. [

Proposition 5.2 For each p € [1,+00), P: is a strongly continuous contraction semigroup
in L;E(V), that leaves €4 (R™™) invariant. Formula (4.2) holds for each u € Li(v).

Proof. — Let u = ug4j € Ex(RT™), that is u(t,z) = ¢(t)e!@h®) where h € C1(R;R™)
and ¢ € C'(R) are T-periodic. For such u we have

PTu(t, 37) _ ) ¢<t + 7_) (U (t+7,t)x+g(t+T,t)+y,h(t+7)) NO Q(t+7’+t)(dy)
R (5.1)
_ d)(t + T)ei<g(t+r,t),h(t+7-))ei(U(t+T,t)m,h(t+r))ef% (QUt+T,t)h(t+7),h(t+T))

which can be written as wy j, with () = ¢(¢t + 7)edlg(t+ T () =5 (QUATDR(EHT) A(EHT))
and k(t) = U*(t + 7,t)h(t + 7). Therefore, P, preserves Ex(RT™).

Formula (5.1) also implies that P; is a strongly continuous semigroup in £ (R™), with
respect to the L%, (v)-norm.

14



Next, let us prove the estimate
IPrulling) < Nullig ) 730, ue E4®). (5:2)
To this aim we use the inequality
|Pru(t, )P < (Pr(Jul’))(t,x), 7>0,teR, xR (5.3)

For p =1, (5.3) follows immediately from the definition of P,. For p > 1 we use the Holder
inequality as follows,

P
|Pru(t, z)|P = ‘ / u(t + 7, Ut +7,0)x +y+ gt +7,6))No,o(t+r0) (dy)
< / lut +7, Ut +7,t)z +y+ gt +7,0)[PNogeesrp (dy) = (Pr([u’))(t, z).

Integrating (5.3) with respect to v over (0,7") x R" and using (4.2) with u replaced by |u|P
we get, for each 7 > 0,

/ PrulPu(dt, dz) < / P (ulP) v(dt, dz) — / uPu(dt, de),
(0,T)xRm™ (0,7)xR™ (0,7)xR™

and (5.2) is proved. Since £4(R'") is dense in LY, (v), then Py is a strongly continuous
semigroup in L% (v), and formulae (4.2) and (5.2) hold for each u € L, (v). O

Let us define the differential operator

1
Gu(t,z) = u(t,x) + 3 Tr [B(t)B*(t)D2u(t, )] + (A(t)z + f(t), Dyu(t, z)), (5.4)
and let us consider its realization in L;ﬁ(y) with domain Ex(RT7).

Lemma 5.3 For all u € E4(R™") we have

/ Gu(t,z) v(dt,dx) =0, (5.5)
(0,T)xR"
and
/ Gu(t, ) u(t, z)v(dt, dz) = — / B (1) Dyult, )2v(dt, dz).  (5.6)
(0,T)xR"™ 2 (0,T)xR™

Proof. — Identity (5.5) follows from a direct verification. Moreover, since u? € Ex(R™)
and
(Gu)(t,2) = 2u(t, ©)(Gu)(t, x) + | B*(t) Doult, ),

integrating this identity over (0,7) x R™ and taking into account (5.5) yields (5.6). O

From lemma 5.3 it follows that (G, £4(R'™™)) is dissipative in LQ#(U) and consequently it
is closable. Its closure is the infinitesimal generator of P, in Li(l/), as the next proposition
states.
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Proposition 5.4 The closure G of (G, Ex(RY™)) is the infinitesimal generator of the semi-
group Pr in Li(lj). The space E4(RT™) is a core for G. For each u € D(G), the integral
f(o T)xRn Gu dv vanishes.

Proof. — The space £4(R!™™) is contained in the domain of the infinitesimal generator L
of P, because for u = ¢(t)e" M%) we have by (5.1)

<ddT7’TuTo> (t,z) = (¢'(t) +ip(t)(x, W (t)))eH =)

+ [—3 1 B* (R + i{A()z + f(t), h(t)] u(t, z),
= (Gu)(t,z).

Since €4 (R*™) is invariant under P, and dense in L2#(1/), then it is a core for L, which
means that it is dense in D(L) for the graph norm. Then L is the closure of (G, E4(R1*™)),
and the last statement follows from (5.5). O

Some spectral properties of G are now easily available.

Corollary 5.5 For any z € o(G) and k € Z, z + 2rki/T € o(G). Moreover 0 is a simple
etgenvalue of G.

Proof. — For every k € Z let us consider the unitary operator 7} in Li(v) defined by
Tru(t,z) = e?7/Ty(t, x). Since the spectrum of G is equal to the spectrum of (Ty) " GTj =
G + (2kmi/T)I, the first statement follows.

Since the invariant measure for P, is unique, then it is ergodic, see [5, Thm. 3.2.6].
In its turn, ergodicity of v is equivalent to the following property: for each u € Li(u)
such that Pru = u v-a.e. for every 7 > 0, u is constant v-a.e. See [5, Thm. 3.2.4]. The
functions w such that Pru = u for every 7 > 0 are just the elements of the kernel of G.
Therefore, the kernel of G is one-dimensional and it consists of constant functions. Let now
u € Ker G2. Then Gu € Ker G, so that there is a constant ¢ such that Gu = c¢. Integrating
over (0,7) x R™ and recalling proposition 5.4 we get ¢ = 0, so that u € Ker G. Therefore,
Ker G? = Ker G, so that 0 is a simple eigenvalue. [

Besides 4 (R*™), other important subspaces of Li(y) are invariant under P, for each
7 > 0. The first one is the space Higl(u), defined by
0,1 ) -
Hy (v)={ue Li(y) : dDgu € Li(v), i=1,...,n},

with norm

||u||Ho,1(V) :/ w?v(dt, dz) +/ |Dyul?v(dt, dx).
# (0,T)xRn (0,T) xR

Lemma 5.6 For each 7 > 0, P; maps H%l(l/) into itself, and
D, Prult, x)|* < M2 P, (|Dyul?)(t,2), (t,2) € R we Hy'(v),  (5.7)
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so that
HDzPrul 12, ) < Me™T|[ | Dol [| 2, 1) (5.8)

Here M, w are the constants in assumption (1.8).

Proof. — For each u € Hgé’l(u), the representation formulae (2.10) and (4.1) yield

(DaPru)(t, ) = U*(t + 7,t)(Pr(Dyu))(t, ), >0, (t,z) € R, (5.9)
so that
|D,Pru(t, z)|? < M2?e 2T |P.(D,u)(t, x)|?
) (5.10)
< ([ 1Daute+ m UG ) g0+ 720) + 0)No g )
and (5.7) follows using the Holder inequality. In its turn, (5.7) yields (5.8) integrating with
respect to v and using the invariance of P,. 0O

In the elliptic case further information is available.

Proposition 5.7 Assume that det B(t) # 0 for each t. Then D(G) C Hg?gl(y), and for
each u € D(G) we have

1
/ Gu(t, z) u(t, 2)v(dt, dz) = — - / B (1) Doult, o) Pu(dt, dz).  (5.11)
(0,T)xR" 2 Jo,r)xrn

Proof. — For u € D(G) let (ug) C E4(R™) be a sequence such that

li =u, lim Gup=Gu in L%4(v).
Hm u =u, - lim Guy, u in Ly (v)

By (5.6) it follows that for any m,k € N,

G(up(t,x) — um(t, z)) (ur(t,z) — um(t, z))v(dt, dz)

Rl+n

1

=5 /Rn+1 | B*(t)(Dyug(t, ©) — Dy (t, 2))2v(dt, dz).

Then the sequence (|B*(t)Dyuy|) is a Cauchy sequence in Li(u), and so is (|Dyugl|). Since
v is locally equivalent to the product measure dt x dx, then for a.e. ¢ € R the function
u(t,-) is in H} (R" dx), and (5.11) follows. O

loc

6 Asymptotic behaviour of P, and P,

In this section we want to investigate the asymptotic behaviour of Ps;p when ¢t — 400
and s is fixed. It will be deduced both directly, from the expression of P, ;, and from the
asymptotic behavior of Pru as 7 — 400, for u € Li(y), oru € D(G).
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It is convenient to set
Uy = / u(t, ) (dx), u e L?#(l/)7 teR. (6.1)

In particular, if u(t, x) = ¢(x) is independent of time, we set

Oy 1= /n (P(x)l/t(dx), t e R.

An immediate consequence of uniqueness of the invariant measure for P, is in the next
proposition.

Proposition 6.1 Assume that o : R" — R belongs to L*(R™, ;) for each t € R. Then we

have ) .
lim — / (Pritop)(x)do = / o(y)dv in Li(y). (6.2)
Tt T Jo (0,T)xR™
Proof. — Since the measure v is the unique invariant measure for P,, then it is ergodic,

see e.g. [5, Thm. 3.2.6]. Through the Von Neumann Theorem, ergodicity is also equivalent
to the fact that for any u € Li(l/) we have

T—400 T

m L = u(s,y)v(ds in L2 (v
hmAﬂWW@M—AWW(WHW@) ). (63)

See e.g. [5, Thm. 3.2.4]. Setting in (6.3) u(t,z) = p(x) and recalling (4.1) the conclusion
follows. [

The following proposition shows that Ps:p(x) approaches, as t — 400, a periodic
function in ¢ which is independent both from z and from s.

Proposition 6.2 For every u € Cf(]RH”) and for each compact set K C R™ we have
liI_il_l sup{|(Pru)(t,x) —TUps-|: t€R, z € K} =0. (6.4)
T—T00

It follows that for every ¢ € Cyp(R™) we have

tliin (Ps 1) () — / ey (dy) =0, Vs eR, z € R", (6.5)
— 400 n
and the convergence is uniform when (s,x) varies in any compact set.

Proof. — As a first step, we show that (6.5) holds for functions u which are Lips-
chitz continuous in z, uniformly with respect to ¢t. In that case, recalling that u; . =
Jn Pragrut +7,-)(y)vi(dy) by (3.1), and using (5.9), we get

|(Pru)(t, @) = pir| =

[ Prairtt 4 19(@) = Puagru + 7))t

guuuaww@+nowm/'u—mwmwSAhﬂ”wgmuw@»mm/ & — yl(dy).
Rn SE R™
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Since

1/2
Lttt < ([ o =aPutan) - = (o - gt ~o0) P + T Qe ~o0) 2

and g(t, —o00), Q(t, —oo) are bounded by constants independent of ¢, (6.4) follows.
Fixed any u € Cf(RH”), set

1 €T —
ug(t, ) = T /R u(t,y)e (,ﬂ) dy,

where ¢ is any mollifier. The functions uy belong to Cf (RY*™), they are Lipschitz contin-
uous in z, uniformly with respect to ¢, and they converge to u uniformly on each compact
set. By lemma 4.3,

lim sup |Prug(t, z) — Pru(t,z)| — 0.
k—o0 70

The same argument used in the proof of lemma 4.3 shows also that @y ; — U goes to zero
as k — oo, uniformly in ¢. Splitting (Pru)(t,z) — U+ in the sum

PT(U - uk)(t7 x) + (PTuk(t7 $) - Tkt-ﬂ’) + (ZTk t+7 ﬂt-‘r‘F)’

(6.4) follows.
If u(t, z) = p(z) is independent of time, (6.4) reduces to

TETOO(PLHTSD) () = Pryr =0,
uniformly in R x K. Setting ¢t + 7 = & we get

lim (P, ~ e =0,
Jim (Pree)(w) - Pe

uniformly for (¢, x) in any compact set. [

It is important to know the speed of the convergence in (6.4). As in the autonomous case,
in the elliptic case important information may be obtained from the Poincaré inequality,
which is also interesting from its own.

Theorem 6.3 Assume that det B(t) # 0 for allt € R. Then for any u € D(G) we have

M2 02
w

/ (u(t, ) — @) ?v(dt,dz) < / |Du(t, z)*v(dt, dz), (6.6)
(0,T)xR"™ (0,7)xR™

where w, M are the constants in (2.7), and C = supg<,<7 || B(1)]-

Proof. — It is enough to prove that (6.6) holds for each u € £4(R*"). Then the statement
will follow from propositions 5.4 and 5.7.
So, let u € E4(R™). Using (5.6) and then (5.8) we obtain, for each 7 > 0,

d

4 (Prufidy =~ [ B @D Prufdy

At J(o,r)xRn (0,T)xR"

> —02/ | D, Prul>dy > —MQCze_Q‘”/ |Dyul?dv.
(0,T)xR™ (0,T)xR™
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Integrating with respect to 7 yields

1— —2wT
/ (Pru)’dy —/ uldy > —M2C26/ | Dul?dv. (6.7)
(0,T)xRn (0,T)xRn 2w (0,T)xRn

On the other hand, proposition 6.2 and the dominated convergence theorem imply that

lim [(Pru)? — (Tpyr)?]dv = 0.
T+ J(0,T)xR"

Since [ 7yxpn (Wyir )2dv = Joryxgn (w;)%dv for each 7 > 0, then

lim [(Pru)? — (@)% dv = 0. (6.8)
T—=+00 J(0,1)xR"
Letting 7 — oo in (6.7) and using (6.8) we get
M2 2
/ ((T)* — u?)dv > — ¢ / |Dul?dv.
(0,T)xR" 2w Jor)xrn

Since the left hand side is just — f(o T)xR" (u(t,z) — u;)?dv, the statement follows. [

Theorem 6.3 gives further information on the asymptotic behaviour of Pru and of Ps ;.
Set
C* = (sup [[(B()H)~
0<t<T
Proposition 6.4 Assume that det B(t) # 0 for all t € R. Then for any u € Li(y) and
7> 0 we have

/ (Pr(u — 1)) %dv < =07 / (u — ) dv, (6.9)
(0,T)xRn (0,T)xR™
where co = 2wC*? /M?C?.

Consequently, for every ¢ € Cy(R™) and 7 > 0 we have

/ (Pritrp — @) dv < 6_007/ ©?(z) dv. (6.10)
(0,T)xR" (0,T)xR"

Proof. — If a function v = v(t) € L?(0,T) does not depend on x, then v € Li(u) and
also Pru(t,z) = Pit+-v(t + 7) is independent of x. In particular, for each v € D(G), P u;
is independent of z.

So, for each 7 > 0 we have

d

i Jom (Pr(u — ) 2dv = _/ |B*(t) Dy Pr(u — ) |2dv
0,7)xR™

(0,T)xR"

< —0*2/ | D, Pr(u — ) |Pdv = —0*2/ | Dy Pruldy.
(0,T)xR™ (0,T)xR™

20



By the Poincaré inequality (6.6),
d

B o Pl = 0P < o [ Pa-Pape. )
0,7) xRm™

(0,T)xR™

Since {v; : t € R} is an evolution system of measures, we have

Prug = / P yiru(t +7,2)dy = / u(t + 7, 2)dvisr,

so that

PT’LLt = ﬁt_H— = PTﬂt’ vr > 0.
Therefore, (6.11) reads as

d

& Jon (Pr(u — 1)) *dv < —Co/ (Pr(u —Ty))?dv, Y1 >0
0,T) xR"

(0,T)xR"

aDnd (6.9) follows. Since D(G) is dense in Li(u), then (6.9) holds true for each u € Li(u).

We consider now the log-Sobolev inequality. We cannot expect to have an estimate
completely similar to the classical one (see [7]), because it would imply that P, is hyper-
contractive, which is obviously false because of the translation in time.

For its proof we need a lemma.

Lemma 6.5 For any u € E4(R'™) and v € C1(R) we have
1
/ () Gudy = — / o/ ()| B (8) Dy .
(0,T) xR (0,T) xR

Proof. — Let I' be a primitive of 7. Then the function I'(u) belongs to D(G), and
G(T'(u)) = 1/2T"(u)|B*(t)Dul* + T’ (u)Gu.

Integrating with respect to v and recalling proposition 5.4 the statement follows. [

Theorem 6.6 For any u € Ex(R™™) we have

/ u? log uldy <
(0,T)xR"

where w, M are the constants in (2.7), and C = supg<,<7 || B(1)]-

M?2(C?

) Y AN —
/ |Dyul?dy + T/ u2slogu?ds, (6.12)
(0,7)xR™ 0

Proof. — Since v is invariant for P, then
d
— Pru® log(Pru?) —/ (GPru? log(Pru?) + GPru?)dy
dr (0,T)xR™ (0,T)xRn

= / Pou? log(Pru?)dy.
(0,T)xR"
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By lemma 6.5 applied to the function P,u? we get

d 1 1
— Pru? log(Pru?)dy = —= / B*(t)Dy Pru?|*dv
dr Jo,1)xrn ( ) 2 Joryxrn Pru? IB7(t) |
6.13
C? 1 (049)
P p— — |D,P-u?|dv.

2 Jo,r)xrn Pru?

Formula (5.10) yields
| DaPru’? < MPe™7(P-(| Dou?|))? = M2e™*7(Pr(2]ul | Dyul))®
< AM%e 2P u? Py (| Dyul?).

Substituting this inequality in (6.13) and using again the invariance of v for P, we get

d
— Pru? log(Pru?) > —2C2M262‘"/ P (| Dyul?)dv
drJ(or)xrn (0,7) xR™
= —2C2M262m/ |Dyul?dv, 7> 0.
(0,7)xR™
Therefore, integrating with respect to 7,
/ Pou? log(Pru?)dy —/ u? log(u?)dv
(0,T)xR™ (0,T)xR™
2M2
> ¢ (1— 62‘”)/ |Dul?dv.
w (0,T)xR™
Recalling that
lim Pru? log(Pru?)dy :/ w2y log u2dv,
T=F00 J(0,T) xR (0,T)xR"
letting 7 — 400 we obtain
C2M2

/ w2y log u2ydy — / u?log udy > — / | Dul?dv,
(0,T)xRn (0,T)xRn w (0,T)xRn

which coincides with (6.12). O

Using formula (6.12) for the function v = uP/?, p > 2, we get the following corollary.

Corollary 6.7 For any nonnegative u € Ex(RY™) and p > 2 we have

M2C?p? I
/ uP log uPdr < p/ P2 Dyul?dv + / uPgloguPsds.  (6.14)
(0,T)xR" 4w (0,T)xRn T Jo
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