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Abstract

We study the realization of the differential operator u 7→ ut − L(t)u in the space
of continuous time periodic functions, and in L2 with respect to its (unique) invariant
measure. Here L(t) is an Ornstein-Uhlenbeck operator in Rn, such that L(t+T ) = L(t)
for each t ∈ R.
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1 Introduction

Let {L(t)}t∈R be a time dependent family of Ornstein-Uhlenbeck operators,

L(t)ϕ(x) =
1
2

Tr [B(t)B∗(t)D2ϕ(x)] + 〈A(t)x+ f(t), Dϕ(x)〉, (1.1)

where the data A : R 7→ L(Rn), B : R 7→ L(Rn) and f : R 7→ Rn are continuous and
T -periodic, for some T > 0.

In this paper we study nonautonomous equations of the type
us(s, x) + L(s)u(s, x) = 0, s < t, x ∈ Rn,

u(t) = ϕ(x), x ∈ Rn,
(1.2)

and the associated differential operator G defined by

Gu(t, x) = Dtu(t, x) + L(t)u(t, ·)(x), t ∈ R, x ∈ Rn. (1.3)

Even if the contents of this paper is essentially analytic, it is motivated by probabilistic
problems that we describe below.
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Let us consider the stochastic differential equation in Rn
dX(t) = (A(t)X(t) + f(t))dt+B(t)dW (t),

X(s) = x,
(1.4)

where W (t) is a standard n-dimensional Brownian motion and x ∈ Rn. Problem (1.4) has
obviously a unique mild solution X(t, s, x) given by

X(t, s, x) = U(t, s)x+
∫ t

s
U(t, r)f(r)dr +

∫ t

s
U(t, r)B(r)dW (r),

where U(t, s) is the evolution operator in Rn associated to the family {A(t)}t∈R, that is the
solution of 

∂U(t, s)
∂t

= A(t)U(t, s), t, s ∈ R,

U(s, s) = I.

Consequently, the law of X(t, s, x) is the Gaussian measure Nm(t,s),Q(t,s) with mean and
covariance defined respectively by

m(t, s) := U(t, s)x+ g(t, s), Q(t, s) :=
∫ t

s
U(t, r)B(r)B∗(r)U∗(t, r)dr (1.5)

where

g(t, s) :=
∫ t

s
U(t, r)f(r)dr. (1.6)

The corresponding transition evolution operator is given by

Ps,tϕ(x) := E[ϕ(X(t, s, x))] =
∫

Rn

ϕ(y)Nm(t,s),Q(t,s)(dy), ϕ ∈ Cb(Rn), s ≤ t.

By Itô’s formula it follows that for all ϕ ∈ C2
b (Rn) the function

u(t, s, x) = Ps,tϕ(x), s ≤ t, x ∈ Rn,

is a strict solution of the Kolmogorov equation (1.2). In fact, it is its unique bounded
solution, and this can be proved by analytic arguments too, see section 2.

A big part of the paper is devoted to the asymptotic behaviour of Ps,tϕ(x) both for
s→ −∞, with fixed t, and for t→ +∞, with fixed s. As well known, in the autonomous case
a fundamental role in this problem is played by invariant measures. In the nonautonomous
case it is not natural to have a single invariant measure, but rather a family of Borel
probability measures {νt}t∈R such that for all −∞ < s < t < +∞ and ϕ ∈ Cb(Rn) we have∫

Rn

Ps,tϕ(x)νs(dx) =
∫

Rn

ϕ(x)νt(dx). (1.7)

Such a family is called an evolution system of measures, see [3]. Since the coefficients in
(1.1) are T -periodic, we require also that νt+T = νt for all t ∈ R.

2



Existence and uniqueness of a T -periodic evolution system of measures is proved in
section 3 under the natural stability assumption that there exist M , ω > 0 such that

‖U(t, s)‖ ≤Me−ω(t−s), −∞ < s ≤ t < +∞. (1.8)

In this case we have an explicit expression of νt,

νt = Ng(t,−∞),Q(t,−∞), t ∈ R. (1.9)

Concerning the asymptotic behaviour of Ps,tϕ we prove in section 6 that for each continuous
and bounded ϕ we have

lim
s→−∞

Ps,tϕ(x) =
∫

Rn

ϕ(y)νt(dy), t ∈ R, x ∈ Rn, (1.10)

and moreover

lim
t→+∞

[
Ps,tϕ(x)−

∫
Rn

ϕ(y)νt(dy)
]

= 0, s ∈ R, x ∈ Rn. (1.11)

Identity (1.11) means that, as t→ +∞, the orbit t→ Ps,tϕ approaches pointwise a periodic
function which is independent of s and x.

It is of much help to reduce (1.4) to an autonomous problem, namely
dZ(τ) = [A(y(τ))Z(τ) + f(y(τ))]dτ +B(y(τ))dW (τ),

dy(τ) = dτ,

Z(0) = x, y(0) = t,

(1.12)

whose solution (which is also explicit) we denote by (y(τ, t, x), Z(τ, t, x)). The corresponding
transition semigroup is set in the space C#

b (R1+n), consisting of the continuous and bounded
functions u : R1+n 7→ R such that u(t+ T, ·) = u(t, ·) for each t ∈ R, and it is defined by

Pτu(t, x) = E[u(y(τ, t, x), Z(τ, t, x))], τ > 0, (t, x) ∈ R1+n.

It is easy to see that Pτ is a Markov semigroup given by

Pτu(t, x) = (Pt,t+τu(t+ τ, ·))(x), u ∈ C#
b (R1+n), (t, x) ∈ R1+n. (1.13)

This procedure has a deterministic counterpart, which comes from the theory of the evo-
lution semigroups, see [2] and the references therein. Namely, given a strongly continuous
backward evolution operator P (s, t), s ≤ t, in a Banach space X, the semigroup Tτ defined
by

Tτu(t) = P (t, t+ τ)u(t+ τ), τ ≥ 0, t ∈ R,

is strongly continuous in C0(R;X) and in Lp(R;X) for p < ∞, and this fact gives the
possibility of studying several properties of P (s, t) such as exponential dichotomies, through
the general theory of semigroups. The above formula coincides with (1.13) if P (s, t) is
our Ps,t. However, we are not able to use any result from the general theory of evolution
semigroups, because Ps,t is not strongly continuous in Cb(Rn), and the same difficulty arises
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even if Cb(Rn) is replaced by the space BUC(Rn) of the bounded and uniformly continuous
functions.

We show that Pτ has a unique invariant measure ν given by

ν(I ×K) =
1
T

∫
I
νt(K)dt, I ∈ B(R), K ∈ B(Rn),

and then extended in a standard way to all Borel sets in R1+n. In section 5 we study the
realization of the semigroup Pτ in L2

#(Rn+1, ν), the space of the functions u : R1+n 7→ R
such that u(t+ T, ·) = u(t, ·) for a.e. t ∈ R and such that u|(0,T )×Rn belongs to L2((0, T )×
Rn, ν). We denote by G the infinitesimal generator of Pτ in L2

#(Rn+1, ν). It is convenient
to introduce the space E#(R1+n), the linear span of all real and imaginary parts of the
functions uφ,h of the form

uφ,h(t, x) = φ(t)ei〈x,h(t)〉, t ∈ R, x ∈ Rn,

where φ ∈ C1(R), h ∈ C1(R,Rn) are T -periodic. We show that E#(R1+n) is a core for G
and that, as expected,

Gu(t, x) = Gu(t, x) = ut(t, x) + L(t)u(t, x), u ∈ E#(R1+n).

Also in this L2 context we are not able to use any result from the general theory of evolution
semigroups, because in the genuinely nonautonomous case our space L2

#(Rn+1, ν) cannot be
identified with L2((0, T );X) for any Banach space X. Indeed, Ps,t maps Xt := L2(Rn, νt)
into Xs := L2(Rn, νs), and these spaces do not coincide in general for t 6= s.

Then we investigate further properties of the operator G. Since ν is the unique invariant
measure of Pτ , it follows that it is ergodic, and that the kernel of G consists of constant
functions. Moreover, since Pτ is a contraction semigroup, then G is an m-dissipative oper-
ator.

Another important property is the integration by parts formula proved in section 5,∫
(0,T )×Rn

Gu(t, x)u(t, x) dν = −1
2

∫
(0,T )×Rn

|B∗(t)Dxu(t, x)|2dν (1.14)

valid for any u ∈ E#(R1+n).
Note that if the determinant of B(t) is not zero, then L(t) is a uniformly elliptic differ-

ential operator, if det B(t) = 0 but B(t) does not vanish then L(t) is a degenerate elliptic
operator, if B(t) = 0 and A(t) or f(t) do not vanish then L(t) is a first order differential
operator. Consequently, G may be a uniformly parabolic operator, a degenerate parabolic
operator, or a first order operator. An interesting intermediate situation is when the de-
terminant of B(t) is zero for some t, and however the determinant of Q(t, s) is nonzero for
each t > s. This can be considered as a sort of hypoellipticity condition (in fact, in the
autonomous case it is equivalent to hypoellipticity in the sense of Hörmander), and in this
case the evolution operator Ps,t has nice smoothing properties, that will be studied in a
forthcoming paper.

In the uniformly elliptic case, that is when det B(t) 6= 0 for each t, it is natural that
Ps,t, Pτ and G have better properties. In particular, in sect. 5 we show that (1.14) holds
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for each u ∈ D(G), and we use it to prove generalizations of the classical Poincaré and
log-Sobolev inequalities, namely∫

(0,T )×Rn

(u(t, x)− ut)2dν ≤ const .
∫

(0,T )×Rn

|Dxu(t, x)|2dν,

∫
(0,T )×Rn

u2 log u2dν ≤ const .
∫

(0,T )×Rn

|Dxu|2dν +
1
T

∫ T

0
u2
s log u2

sds,

where vs :=
∫

Rn v(s, ·)dνs.
The Poincaré inequality gives further insight on the asymptotic behavior of Pτ and of

Ps,t, whereas is not clear at the moment whether the log-Sobolev inequality is connected
to some kind of hypercontractivity properties as in the autonomous case or not. This will
be the object of future investigations.

2 The evolution operator Ps,t

We are given a family of Kolmogorov operators,

L(t)ϕ(x) =
1
2

Tr [B(t)B∗(t)D2ϕ(x)] + 〈A(t)x+ f(t), Dϕ(x)〉, (2.1)

where t ∈ R, A : R → L(Rn), B : R → L(Rn) and f : R → Rn are continuous and T–
periodic, T > 0 is given.

We denote by U(t, s), t, s ∈ R, the evolution operator in Rn generated by A(·). We
recall that 

∂U(t, s)
∂t

= A(t)U(t, s), t, s ∈ R,

U(s, s) = I,

(2.2)

U(t, s)U(s, r) = U(t, r), s, r ∈ R, (2.3)

and
∂U(t, s)
∂s

= −U(t, s)A(s), t, s ∈ R. (2.4)

Moreover, since A(·) is T–periodic, then

U(t+ T, s+ T ) = U(t, s), t, s ∈ R. (2.5)

Let us introduce the Poincaré operator

V (t) := U(t+ T, t), −∞ < t < +∞. (2.6)

Then V (·) is T–periodic and the spectrum of V (t) is independent of t. Its elements are
called Floquet exponents of A. If all the Floquet exponents have modulus less than 1 there
exist M > 0, ω > 0 such that

‖U(t, s)‖ ≤Me−ω(t−s), −∞ < s ≤ t < +∞. (2.7)

In this case we say that the family A is stable. We assume that (2.7) holds from now on.
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We are here concerned with the problem
us(s, x) + L(s)u(s, x) = 0, s < t, x ∈ Rn,

u(t) = ϕ(x),
(2.8)

where t ∈ R is fixed. The representation formula for its solution involves an integral with
respect to a Gaussian measure. We recall that for each vector m ∈ Rn and for each
symmetric nonnegative definite matrix Q ∈ L(Rn), the Gaussian measure Nm,Q is the
unique probability measure in Rn whose Fourier transform is given by

N̂m,Q(h) = ei〈m,h〉−
1
2
〈Qh,h〉, h ∈ Rn. (2.9)

If Q is positive definite, then Nm,Q is absolutely continuous with respect to the Lebesgue
measure, and it is given by

Nm,Q(dx) =
1

(2π)n/2 detQ1/2
exp

(
−〈Q

−1(x−m), x−m〉
2

)
dx.

Proposition 2.1 Assume that ϕ ∈ C2
b (Rn) and fix t ∈ R. Then problem (2.8) has a unique

bounded classical solution u ∈ C1,2((−∞, t]× Rn), given by the formula

u(s, x) =
∫

Rn

ϕ(y)NU(t,s)x+g(t,s),Q(t,s)(dy), −∞ < s ≤ t < +∞, (2.10)

where g and Q are defined by (1.6) and (1.5), respectively.

Proof. — Setting
u(s, x) = v(s, U(t, s)x+ g(t, s)),

we have, recalling (2.4),

us(s, x) = vs(s, U(t, s)x+g(t, s))+ 〈(−U(t, s)A(s)x−U(t, s)f(s), Dxv(s, U(t, s)x+g(t, s))〉,

Dxu(s, x) = U∗(t, s)Dxv(s, U(t, s)x+ g(t, s)),

and
D2
xu(s, x) = U∗(t, s)D2

xv(s, U(t, s)x+ g(t, s))U(t, s).

Therefore, u is a solution to (2.8) if and only if v is a solution to
vs(s, x) +

1
2

Tr [U(t, s)B(s)B∗(s)U(t, s)∗D2
xv(s, x)] = 0, s ≤ t, x ∈ Rn,

v(t, t) = ϕ(x), x ∈ Rn.

(2.11)

(2.11) is a (possibly degenerate) parabolic Cauchy problem with coefficients depending only
on t. So, it can be easily solved. Its unique bounded solution is

v(s, x) =
∫

Rn

ϕ(y)Nx,Q(t,s)(dy). (2.12)

The conclusion follows. �
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Note that the right hand side of (2.10) is well defined for each measurable and bounded
ϕ. So, we define

Ps,tϕ(x) :=
∫

Rn

ϕ(y)NU(t,s)x+g(t,s),Q(t,s)(dy) =
∫

Rn

ϕ(U(t, s)x+ g(t, s) + y)N0,Q(t,s)(dy),

(2.13)
for each s ≤ t and ϕ ∈ L∞(Rn). Since Nx,0 is the Dirac measure at x, we have Pt,tϕ = ϕ
for each t.

It follows immediately from the definition that each Ps,t maps Cb(Rn) into itself. More-
over, if detB(s) 6= 0 for each s, the differential operator in the left-hand side of (2.11), u 7→
Tr [U(t, s)B(s)B∗(s)U(t, s)∗D2

xu], is uniformly elliptic and even for ϕ ∈ Cb(Rn) formula
(2.12) gives a classical solution to (2.11), so that formula (2.10) gives a classical solution
to (2.8). The same is true in the case when detQ(t, s) 6= 0 for each t > s. But in general
Pt,s has no smoothing effect with respect to all variables. The worst situation is when
B ≡ 0, in which case v ≡ ϕ, and Pt,sϕ(x) = ϕ(U(t, s)x+ g(t, s)). In any case, the following
proposition holds.

Proposition 2.2 For each ϕ ∈ Cb(Rn), the function (s, t, x) 7→ Ps,tϕ(x) is continuous in
Λ := {(s, t, x) ∈ R2+n : s ≤ t}. Moreover for each t ∈ R and x ∈ Rn we have

lim
s→−∞

Ps,tϕ(x) =
∫

Rn

ϕ(y)Ng(t,−∞),Q(t,−∞)(dy), (2.14)

where g(t,−∞), Q(t,−∞) are defined by (1.6), (1.5) with s = −∞, i.e.

g(t,−∞) :=
∫ t

−∞
U(t, s)f(s)ds, Q(t,−∞) :=

∫ t

−∞
U(t, r)B(r)B∗(r)U∗(t, r)dr. (2.15)

Proof. — Let (sk, tk, xk) ∈ Λ go to (s, t, x) as k →∞. Then

Psk,tkϕ(xk)− Ps,tϕ(x) =∫
Rn

ϕ(y)NU(tk,sk)xk+g(tk,sk),Q(tk,sk)(dy)−
∫

Rn

ϕ(y)NU(t,s)x+g(t,s),Q(t,s)(dy).

Formula (2.9) implies that the Fourier transform N̂U(tk,sk)xk+g(tk,sk),Q(tk,sk) goes to the
Fourier transform N̂U(t,s)x+g(t,s),Q(t,s) pointwise as k → ∞. The statement follows now
from the Lévy Theorem, see e.g. [6, §9.8].

The same argument works for s = −∞, with a sequence (sk, tk, xk) → (−∞, t, x) as
k → +∞. �

We notice for further use that

g(t+ T, s+ T ) = g(t, s), Q(t+ T, s+ T ) = Q(t, s), −∞ < s ≤ t < +∞. (2.16)

It follows that for each t ∈ R we have

g(t+ T,−∞) = g(t,−∞), Q(t+ T,−∞) = Q(t,−∞), (2.17)
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i.e. g(·,−∞) and Q(·,−∞) are T -periodic. Moreover, for any t ≥ s ≥ r ≥ −∞,

g(t, s) =
∫ t

r
U(t, σ)f(σ)dσ −

∫ s

r
U(t, σ)f(σ)dσ = g(t, r)− U(t, s)

∫ s

r
U(s, σ)f(σ)dσ,

so that
g(t, s) = g(t, r)− U(t, s)g(s, r), t ≥ s ≥ r ≥ −∞. (2.18)

Arguing similarly we get

Q(t, s) = Q(t, r)− U(t, s)Q(s, r)U∗(t, s), t ≥ s ≥ r ≥ −∞. (2.19)

In particular, for any t ∈ R, taking r = −∞ we get
g(t+ T, t) = (I − V (t))g(t,−∞),

Q(t+ T, t) = Q(t,−∞)− V (t)Q(t,−∞)V ∗(t).
(2.20)

Since our operators Ps,t are defined through Gaussian measures, it is convenient to use
exponential functions. For any h ∈ Rn we define

ϕh(x) = ei〈x,h〉, x ∈ Rn.

We denote by E(Rn) the linear span of all real and imaginary parts of the functions ϕh.
The following result is well known.

Proposition 2.3 For all ϕ ∈ Cb(Rn), there exists a sequence {ϕk} ⊂ E(Rn) such that

(i) ‖ϕk‖∞ ≤ ‖ϕ‖∞,

(ii) lim
k→∞

ϕk(x) = ϕ(x), ∀ x ∈ Rn.

Now we are able to show that {Ps,t : s ≤ t} is a backward evolution operator in Cb(Rn).

Proposition 2.4 For each s ≤ s ≤ t ∈ R we have

Pr,sPs,t = Pr,t.

Proof. — By proposition 2.3, it is enough to show that Pr,sPs,tϕ = Pr,tϕ for ϕ = ϕh(x) =
ei〈h,x〉, where h ∈ Rn is arbitrary.

Recalling the Fourier transform of a Gaussian measure (2.9), we get, for each x ∈ Rn,

Ps,tϕh(x) = ei〈g(t,s),h〉−
1
2
〈Q(t,s)h,h〉ϕU∗(t,s)h(x),

and

Pr,sϕU∗(t,s)h(x) = ei〈g(s,r),U
∗(t,s)h〉− 1

2
〈Q(s,r)U∗(t,s)h,U∗(t,s)h〉ϕU∗(s,r)U∗(t,s)h(x)

= ei〈U(t,s)g(s,r),h〉− 1
2
〈U(t,s)Q(s,r)U∗(t,s)h,h〉ϕU∗(t,r)h(x).

(2.18) and (2.19) yield

Pr,sPs,tϕh(x) = ei〈g(t,r),h〉−
1
2
〈Q(t,r)h,h〉ϕU∗(t,r)h(x) = Pr,tϕh(x), x ∈ Rn,

and the statement holds. �
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3 T–periodic evolution systems of measures

In the autonomous case A(t) ≡ A, B(t) ≡ B, f(t) ≡ 0, we have U(t, s) = e(t−s)A, g(t, s) = 0,
Q(t, s) = R(t− s) where R(t) =

∫ t
0 e

rABB∗erA
∗
dr, and hence Ps,t = T (t− s) where T (t) is

the well known Ornstein-Uhlenbeck semigroup,

T (t)ϕ(x) =
∫

Rn

ϕ(etAx+ y)N0,R(t)(dy), t ≥ 0.

Our stability assumption (2.7) implies that the Gaussian measure N0,R(+∞) is the unique
invariant measure for T (t), i.e. the unique probability measure µ such that∫

Rn

(T (t)ϕ)(y)µ(dy) =
∫

Rn

ϕ(y)µ(dy), t ≥ 0,

for all continuous and bounded ϕ. See e.g. [4, Ch. 11]. In the genuine nonautonomous case
we cannot expect to have an invariant measure, but rather a family of Borel probability
measures νt, t ∈ R, such that∫

Rn

Ps,tϕ(x)νs(dx) =
∫

Rn

ϕ(x)νt(dx), s ≤ t, (3.1)

for all continuous and bounded ϕ. Such family is called evolution system of measures, see
[3]. An evolution system of measures {νt : t ∈ R}, is called T–periodic if νt+T = νt for all
t ∈ R. In this case we have∫

Rn

Pt,t+Tϕ(x)νt(dx) =
∫

Rn

ϕ(x)νt(dx), t ∈ R, (3.2)

for all ϕ continuous and bounded.

Proposition 3.1 The measures defined by

νt = Ng(t,−∞),Q(t,−∞), t ∈ R, (3.3)

are a T -periodic system of measures. Conversely, if a family {νt : t ∈ R} of Borel probability
measures on Rn, satisfies (3.2), then they are the measures defined by (3.3).

Proof. — Existence. Let t ∈ R be fixed and let νt be given by (3.3). We claim that
(3.1) holds. In view of proposition 2.3 it is enough to show that (3.1) is fulfilled for any
ϕh(x) = ei〈x,h〉 where h ∈ Rn. In this case by (2.9) we have∫

Rn

ϕh(x)νt(dx) = ei〈g(t,−∞),h〉− 1
2
〈Q(t,−∞)h,h〉, (3.4)

and
Ps,tϕh(x) = ei〈g(t,s),h〉−

1
2
〈Q(t.s)h,h〉ϕU∗(t.s)h(x).

Integrating and using once again (2.9) we get∫
Rn

Ps,tϕh(x)νs(dx) = ei〈g(t,s),h〉−
1
2
〈Q(t,s)h,h〉

× ei〈g(s,−∞),U∗(s,t)h〉− 1
2
〈Q(s,−∞)U∗(t,s)h,U∗(t,s)h〉,

(3.5)
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and the right hand side is equal to ei〈g(t,−∞),h〉− 1
2
〈Q(t,−∞)h,h〉 by formulae (2.18) and (2.19)

with r = −∞.
We notice finally that νt is T -periodic by (2.17).

Uniqueness. Let {νt : t ∈ R} be a family of Borel measures satisfying (3.2). Denote by
ν̂t(h) the Fourier transform of νt. Then we have∫

Rn

Pt,t+Tϕh(x)νt(dx) = ei〈g(t+T,t),h〉−
1
2
〈Q(t+T,t)h,h〉ν̂t(U∗(t+ T, t)h)

and ∫
Rn

ϕh(x)νt(dx) = ν̂t(h).

Consequently by (3.2) the following identity holds,

ν̂t(h) = ei〈g(t+T,t),h〉−
1
2
〈Q(t+T,t)h,h〉ν̂t(U∗(t+ T, t)h), h ∈ Rn.

Using (2.20) we get

ν̂t(h) = ei〈g(t,−∞)−V (t)g(t,−∞),h〉− 1
2
〈Q(t,−∞)−V (t)Q(t,−∞)V ∗(t)h,h〉ν̂t(V ∗(t)h)

= ei〈g(t,−∞),h〉− 1
2
〈Q(t,−∞)h,h〉e−i〈g(t,−∞),V ∗(t)h〉+ 1

2
〈Q(t,−∞)V ∗(t)h,V ∗(t)h〉ν̂t(V ∗(t)h)

so that, by (2.9),

ν̂t(h)

N̂g(t,−∞),Q(t,−∞)(h)
=

ν̂t(V ∗(t)h)

N̂g(t,−∞),Q(t,−∞)(V ∗(t)h)
, h ∈ Rn,

and iterating

ν̂t(h)

N̂g(t,−∞),Q(t,−∞)(h)
=

ν̂t((V ∗(t))kh)

N̂g(t,−∞),Q(t,−∞)((V ∗(t))kh))
, h ∈ Rn,

for each k ∈ N. The stability assumption (2.7) implies that (V ∗(t))kh → 0 as k → ∞, so
we get

ν̂t(h)

N̂g(t,−∞),Q(t,−∞)(h)
=

ν̂t(0)

N̂g(t,−∞),Q(t,−∞)(0)
= 1, h ∈ Rn.

Since the Fourier transform is injective, it follows that νt coincides with the Gaussian
measure Ng(t,−∞),Q(t,−∞). �

We define a function ν on the set R of all subsets of R × Rn of the type I ×K where
I ∈ B(R) and K ∈ B(Rn), setting

ν(I ×K) =
1
T

∫
I
νt(K)dt (3.6)

It is easy to check that ν is σ–additive on R. Moreover, by a standard argument ν can
be uniquely extended to a σ–additive function on the algebra of all measurable pluri–
rectangles. By the Caratheodory Theorem ν can be uniquely extended to a Borel measure
on B(R× Rn), that we still call ν.
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4 The evolution semigroup in spaces of continuous functions

Since our data are T -periodic in time, it is reasonable to work in spaces of functions that
are T -periodic in time. In this section we consider the space C#

b (R1+n), consisting of the
continuous and bounded functions u : R1+n 7→ R such that u(t + T, ·) = u(t, ·) for each
t ∈ R.

For any T -periodic φ ∈ C1(R), h ∈ C1(R; Rn) we consider the function

uφ,h(t, x) = φ(t)ei〈x,h(t)〉, t ∈ R, x ∈ Rn,

and we denote by E#(R1+n) the linear span of all real and imaginary parts of the functions
uφ,h.

The following lemma will be useful.

Lemma 4.1 For every u ∈ C#
b (R1+n) there is a sequence of functions uk ∈ E#(R1+n) that

converge pointwise to u and such that ‖uk‖∞ ≤ 2‖u‖∞ for each k.

Proof. — Let θ be a smooth function such that 0 ≤ θ(x) ≤ 1 for each x ∈ Rn, θ ≡ 1 in
B(0, 1), θ ≡ 0 outside B(0, 2). The functions (t, x) 7→ u(t, x)θ(x/R) converge pointwise to u
as R→∞ and their sup norms do not exceed the sup norm of u. In its turn, each of these
functions may be approximated in the sup norm by a sequence of functions that are linear
combinations of products ψ(t)ϕ(x), where ψ is T -periodic and continuously differentiable,
and ϕ has compact support. We can assume that the sup norm of the approaching functions
do not exceed 2‖u‖∞. The functions ψ(t)ϕk(x), where ϕk is given by proposition 2.3, belong
to E#(R1+n) converge pointwise to ψ(t)ϕ(x), and their sup norms do not exceed 2‖u‖∞.
�

We define a semigroup of linear operators Pτ in C#
b (R1+n) by

Pτu(t, x) := (Pt,t+τu(t+ τ, ·))(x)

=
∫

Rn

u(τ + t, U(t+ τ, t)x+ g(t+ τ, t) + y)N0,Q(t+τ,t)(dy)
(4.1)

(Pτ is a semigroup as an immediate consequence of proposition 2.4). This formula is
borrowed from the general theory of evolution semigroups, see e.g [2] and the references
quoted there. Such a theory has been developed for strongly continuous forward evolution
operators. Our evolution operator Ps,t is backward and not strongly continuous, even
if we replace Cb(Rn) by BUC(Rn), the space of the bounded and uniformly continuous
functions. While the extension of the general theory to backward evolution operators is
straightforward, its extension to not strongly continuous evolution operators is not obvious,
so that we are not able to use any result of the general theory.

By proposition 2.2, Pτ maps C#
b (R1+n) into itself. Since ‖Ps,tϕ‖∞ ≤ ‖ϕ‖∞ for each

s ≤ t and for each continuous bounded ϕ, then Pτ is a contraction semigroup in C#
b (R1+n).

But, since Ps,t is not strongly continuous in Cb(Rn), then Pτ is not strongly continuous in
C#
b (R1+n). However, the following proposition holds.

Proposition 4.2 Let Pτ be the semigroup of linear operators in C#
b (R1+n) defined by (4.1),

and let ν be the probability measure defined by (3.6). Then Pτ is a Markov semigroup and
ν is its unique invariant measure.
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Proof. — The Markov property follows easily from the definition.
Let us prove that ν is invariant for Pτ , that is∫

(0,T )×Rn

Pτu(t, x)dν =
∫

(0,T )×Rn

u(t, x)dν, τ > 0, (4.2)

for all u ∈ C#
b (R1+n). This is a consequence of proposition 3.1. Indeed, using (3.1), for

each t ∈ R and τ > 0 we get∫
Rn

Pτu(t, x)νt(dx) =
∫

Rn

Pt,t+τu(t+ τ, ·)(x)νt(dx) =
∫

Rn

u(t+ τ, x)(x)νt+τ (dx)

so that, integrating with respect to t,∫
(0,T )×Rn

Pτu(t, x)dν =
1
T

∫ T

0

∫
Rn

u(t+ τ, x)(x)νt+τ (dx) dt

=
1
T

∫ T+τ

τ

∫
Rn

u(s, x)(x)νs(dx) ds,

which implies (4.2) by the periodicity of u and of νt.
It remains to show uniqueness of the invariant measure. Assume that ζ is a probability

measure in R1+n such that∫
(0,T )×Rn

Pτu(t, x)ζ(dt, dx) =
∫

(0,T )×Rn

u(t, x)ζ(dt, dx), (4.3)

for all u ∈ C#
b (R1+n).

Denote by ζ1 the marginal of ζ,

ζ1(I) = ζ(I × Rn), I ∈ B(R)

and let (ζt)t∈R be a disintegration of ζ (see e.g. [6, Theorem10.2.1]), so that∫
(0,T )×Rn

u(t, x)ζ(dt, dx) =
∫ T

0

[∫
Rn

u(t, x)ζt(dx)
]
ζ1(dt), (4.4)

for every u ∈ C#
b (R1+n).

Choose in particular u(t, x) = ρ(t) independent of x. Then

Pτu(t, x) = ρ(t+ τ), τ > 0, t ∈ R, x ∈ Rn,

so that (4.4) yields ∫ T

0
ρ(t+ τ)ζ1(dt) =

∫ T

0
ρ(t)ζ1(dt).

This means that the measure ζ1 is invariant by translation (modulus T ), so that it must
coincide with the Lebesgue measure dt. Therefore we have

ζ(dt, dx) = ζt(dx)dt.
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Now we prove that ζt(dx) = νt(dx) for each t. By assumption, for every ϕ ∈ Cb(Rn) and
for every T -periodic and continuous ρ we have∫ T

0
ρ(t+ τ)

∫
Rn

Pt,t+τϕ(x)ζt(dx)dt =
∫ T

0
ρ(t)

∫
Rn

ζt(dx)dt, τ > 0.

Choosing τ = T we get∫ T

0
ρ(t)

∫
Rn

Pt,t+Tϕ(x)ζt(dx)dt =
∫ T

0
ρ(t)

∫
Rn

ζt(dx)dt,

for each continuous and T -periodic ρ. Therefore,∫
Rn

Pt,t+Tϕ(x)ζt(dx) =
∫

Rn

ζt(dx),

for each continuos and bounded ϕ. By the uniqueness part of proposition 3.1, ζt = νt. �

The following technical lemma shows that Pτ enjoys some properties of the weakly
continuous semigroups and of the π-semigroups treated in [1, 8]. However, in general it does
not preserve uniform continuity, which is one of the assumptions of [1, 8]. For instance, if
B ≡ 0, f ≡ 0 we have Pτu(t, x) = u(t+τ, U(t+τ, t)x) which is not uniformly continuous for
each uniformly continuous and bounded u. Therefore we cannot use the theories of [1, 8].

Lemma 4.3 Let (uk) be a bounded sequence in C#
b (R1+n), that converges pointwise to

u ∈ C#
b (R1+n) as k →∞. Then:

(a) for each τ > 0, (Pτuk) converges pointwise to Pτu as k →∞;

(b) if uk → u uniformly on each compact set as k →∞, then for each compact set K ∈ Rn

we have

lim
k→∞

sup{|Pτ (uk − u)(t, x)| : τ > 0, 0 ≤ t ≤ T, x ∈ K} = 0.

Proof. — Statement (a) is an easy consequence of the dominated convergence theorem.
Let us prove (b). For every R > 0 we have

|Pτ (uk − u)(t, x)| =∣∣∣∣∫
Rn

(uk − u)(τ + t, U(t+ τ, t)x+ g(t+ τ, t) + y)N0,Q(t+τ,t)(dy)
∣∣∣∣

≤
∫

Rn\B(0,R)
‖uk − u‖∞N0,Q(t+τ,t)(dy)

+
∫
B(0,R)

|(uk − u)(τ + t, U(t+ τ, t)x+ g(t+ τ, t) + y)|N0,Q(t+τ,t)(dy) := I1 + I2.
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Note that for each t, s ∈ R we have∫
Rn\B(0,R)

N0,Q(t,s)(dy) ≤
1
R2

∫
Rn

|y|2N0,Q(t,s)(dy) =
1
R2

TrQ(t, s),

so that
I1 ≤

1
R2

(‖u‖∞ + ‖uk‖∞) sup
t,s∈R

TrQ(t, s) ≤ C1

R2
.

Fixed any compact set K ⊂ Rn, for each y ∈ B(0, R) and x ∈ K we have

|U(t+ τ, t)x+ g(t+ τ, t) + y| ≤M |x|+M‖f‖∞/ω +R ≤ C2 +R, t ∈ R, τ > 0.

Therefore,
I2 ≤ ‖uk − u‖L∞(R×B(0,C2+R)).

Choosing R large enough and then k large enough the statement follows. �

5 The evolution semigroup in L2
#(ν)

Fixed any p ∈ [1,+∞) we introduce the Banach space Lp#(ν), consisting of the Borel
measurable functions u such that u(t, x) = u(t + T, x) a.e. and u|(0,T )×Rn ∈ Lp((0, T ) ×
Rn, ν).

In this section we consider the realization of the semigroup Pτ defined in (4.1) in the
spaces Lp#(ν), with particular attention to the case p = 2.

Lemma 5.1 The space E#(R1+n) is dense in Lp#(ν) for each p ∈ [1,+∞).

Proof. — Every u ∈ Lp#(ν) may be approximated in Lp#(ν) by a sequence of functions

belonging to C#
b (R1+n). In its turn, by lemma 4.1 each v ∈ C#

b (R1+n) is the pointwise limit
of a sequence (vk) ⊂ E#(R1+n) that such that ‖vk‖∞ ≤ 2‖v‖∞ for each k. By dominated
convergence, vk → v in Lp#(ν) as k →∞, and the statement follows. �

Proposition 5.2 For each p ∈ [1,+∞), Pτ is a strongly continuous contraction semigroup
in Lp#(ν), that leaves E#(R1+n) invariant. Formula (4.2) holds for each u ∈ Lp#(ν).

Proof. — Let u = uφ,h ∈ E#(R1+n), that is u(t, x) = φ(t)ei〈x,h(t)〉 where h ∈ C1(R; Rn)
and φ ∈ C1(R) are T -periodic. For such u we have

Pτu(t, x) =
∫

Rn

φ(t+ τ)ei〈U(t+τ,t)x+g(t+τ,t)+y,h(t+τ)〉N0,Q(t+τ+t)(dy)

= φ(t+ τ)ei〈g(t+τ,t),h(t+τ)〉ei〈U(t+τ,t)x,h(t+τ)〉e−
1
2
〈Q(t+τ,t)h(t+τ),h(t+τ)〉

(5.1)

which can be written as uψ,k, with ψ(t) = φ(t+ τ)ei〈g(t+τ,t),h(t+τ)〉e−
1
2
〈Q(t+τ,t)h(t+τ),h(t+τ)〉,

and k(t) = U∗(t+ τ, t)h(t+ τ). Therefore, Pτ preserves E#(R1+n).
Formula (5.1) also implies that Pτ is a strongly continuous semigroup in E#(R1+n), with

respect to the Lp#(ν)-norm.
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Next, let us prove the estimate

‖Pτu‖Lp
#(ν) ≤ ‖u‖Lp

#(ν), τ > 0, u ∈ E#(R1+n). (5.2)

To this aim we use the inequality

|Pτu(t, x)|p ≤ (Pτ (|u|p))(t, x), τ > 0, t ∈ R, x ∈ Rn. (5.3)

For p = 1, (5.3) follows immediately from the definition of Pτ . For p > 1 we use the Hölder
inequality as follows,

|Pτu(t, x)|p =
∣∣∣∣ ∫

Rn

u(t+ τ, U(t+ τ, t)x+ y + g(t+ τ, t))N0,Q(t+τ,t)(dy)
∣∣∣∣p

≤
∫

Rn

|u(t+ τ, U(t+ τ, t)x+ y + g(t+ τ, t))|pN0,Q(t+τ,t)(dy) = (Pτ (|u|p))(t, x).

Integrating (5.3) with respect to ν over (0, T )×Rn and using (4.2) with u replaced by |u|p
we get, for each τ > 0,∫

(0,T )×Rn

|Pτu|pν(dt, dx) ≤
∫

(0,T )×Rn

Pτ (|u|p) ν(dt, dx) =
∫

(0,T )×Rn

|u|pν(dt, dx),

and (5.2) is proved. Since E#(R1+n) is dense in Lp#(ν), then Pτ is a strongly continuous
semigroup in Lp#(ν), and formulae (4.2) and (5.2) hold for each u ∈ Lp#(ν). �

Let us define the differential operator

Gu(t, x) = ut(t, x) +
1
2

Tr [B(t)B∗(t)D2
xu(t, x)] + 〈A(t)x+ f(t), Dxu(t, x)〉, (5.4)

and let us consider its realization in L2
#(ν) with domain E#(R1+n).

Lemma 5.3 For all u ∈ E#(R1+n) we have∫
(0,T )×Rn

Gu(t, x) ν(dt, dx) = 0, (5.5)

and ∫
(0,T )×Rn

Gu(t, x) u(t, x)ν(dt, dx) = −1
2

∫
(0,T )×Rn

|B∗(t)Dxu(t, x)|2ν(dt, dx). (5.6)

Proof. — Identity (5.5) follows from a direct verification. Moreover, since u2 ∈ E#(R1+n)
and

(Gu2)(t, x) = 2u(t, x)(Gu)(t, x) + |B∗(t)Dxu(t, x)|2,

integrating this identity over (0, T )× Rn and taking into account (5.5) yields (5.6). �

From lemma 5.3 it follows that (G, E#(R1+n)) is dissipative in L2
#(ν) and consequently it

is closable. Its closure is the infinitesimal generator of Pτ in L2
#(ν), as the next proposition

states.
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Proposition 5.4 The closure G of (G, E#(R1+n)) is the infinitesimal generator of the semi-
group Pτ in L2

#(ν). The space E#(R1+n) is a core for G. For each u ∈ D(G), the integral∫
(0,T )×Rn Gudν vanishes.

Proof. — The space E#(R1+n) is contained in the domain of the infinitesimal generator L
of Pτ , because for u = φ(t)ei〈x,h(t)〉 we have by (5.1)(

d

dτ
Pτu|τ=0

)
(t, x) = (φ′(t) + iφ(t)〈x, h′(t)〉)ei〈x,h(t)〉

+
[
−1

2 |B
∗(t)h|2 + i〈A(t)x+ f(t), h(t)〉

]
u(t, x),

= (Gu)(t, x).

Since E#(R1+n) is invariant under Pτ and dense in L2
#(ν), then it is a core for L, which

means that it is dense in D(L) for the graph norm. Then L is the closure of (G, E#(R1+n)),
and the last statement follows from (5.5). �

Some spectral properties of G are now easily available.

Corollary 5.5 For any z ∈ σ(G) and k ∈ Z, z + 2πki/T ∈ σ(G). Moreover 0 is a simple
eigenvalue of G.

Proof. — For every k ∈ Z let us consider the unitary operator Tk in L2
#(ν) defined by

Tku(t, x) = e2kπit/Tu(t, x). Since the spectrum ofG is equal to the spectrum of (Tk)−1GTk =
G+ (2kπi/T )I, the first statement follows.

Since the invariant measure for Pτ is unique, then it is ergodic, see [5, Thm. 3.2.6].
In its turn, ergodicity of ν is equivalent to the following property: for each u ∈ L2

#(ν)
such that Pτu = u ν-a.e. for every τ > 0, u is constant ν-a.e. See [5, Thm. 3.2.4]. The
functions u such that Pτu = u for every τ > 0 are just the elements of the kernel of G.
Therefore, the kernel of G is one-dimensional and it consists of constant functions. Let now
u ∈ KerG2. Then Gu ∈ Ker G, so that there is a constant c such that Gu ≡ c. Integrating
over (0, T )× Rn and recalling proposition 5.4 we get c = 0, so that u ∈ KerG. Therefore,
KerG2 = KerG, so that 0 is a simple eigenvalue. �

Besides E#(R1+n), other important subspaces of L2
#(ν) are invariant under Pτ for each

τ > 0. The first one is the space H0,1
# (ν), defined by

H0,1
# (ν) = {u ∈ L2

#(ν) : ∃Dxiu ∈ L2
#(ν), i = 1, . . . , n},

with norm

‖u‖
H0,1

# (ν)
=

∫
(0,T )×Rn

u2ν(dt, dx) +
∫

(0,T )×Rn

|Dxu|2ν(dt, dx).

Lemma 5.6 For each τ > 0, Pτ maps H0,1
# (ν) into itself, and

|DxPτu(t, x)|2 ≤M2e−2ωτPτ (|Dxu|2)(t, x), (t, x) ∈ R1+n, u ∈ H0,1
# (ν), (5.7)
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so that
‖ |DxPτu| ‖L2

#(ν) ≤Me−ωτ‖ |Dxu| ‖L2
#(ν). (5.8)

Here M , ω are the constants in assumption (1.8).

Proof. — For each u ∈ H0,1
# (ν), the representation formulae (2.10) and (4.1) yield

(DxPτu)(t, x) = U∗(t+ τ, t)(Pτ (Dxu))(t, x), τ > 0, (t, x) ∈ R1+n, (5.9)

so that

|DxPτu(t, x)|2 ≤M2e−2ωτ |Pτ (Dxu)(t, x)|2

≤
( ∫

Rn

|Dxu(t+ τ, U(t+ τ, t)x+ g(t+ τ, t) + y)|N0,Q(t+τ,t)(dy)
)2 (5.10)

and (5.7) follows using the Hölder inequality. In its turn, (5.7) yields (5.8) integrating with
respect to ν and using the invariance of Pτ . �

In the elliptic case further information is available.

Proposition 5.7 Assume that detB(t) 6= 0 for each t. Then D(G) ⊂ H0,1
# (ν), and for

each u ∈ D(G) we have∫
(0,T )×Rn

Gu(t, x) u(t, x)ν(dt, dx) = −1
2

∫
(0,T )×Rn

|B∗(t)Dxu(t, x)|2ν(dt, dx). (5.11)

Proof. — For u ∈ D(G) let (uk) ⊂ E#(R1+n) be a sequence such that

lim
k→∞

uk = u, lim
k→∞

Guk = Gu in L2
#(ν).

By (5.6) it follows that for any m, k ∈ N,∫
R1+n

G(uk(t, x)− um(t, x)) (uk(t, x)− um(t, x))ν(dt, dx)

= −1
2

∫
Rn+1

|B∗(t)(Dxuk(t, x)−Dxum(t, x))|2ν(dt, dx).

Then the sequence (|B∗(t)Dxuk|) is a Cauchy sequence in L2
#(ν), and so is (|Dxuk|). Since

ν is locally equivalent to the product measure dt × dx, then for a.e. t ∈ R the function
u(t, ·) is in H1

loc(Rn, dx), and (5.11) follows. �

6 Asymptotic behaviour of Pτ and Ps,t

In this section we want to investigate the asymptotic behaviour of Ps,tϕ when t → +∞
and s is fixed. It will be deduced both directly, from the expression of Ps,t, and from the
asymptotic behavior of Pτu as τ → +∞, for u ∈ L2

#(ν), or u ∈ D(G).
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It is convenient to set

ut :=
∫

Rn

u(t, x)νt(dx), u ∈ L2
#(ν), t ∈ R. (6.1)

In particular, if u(t, x) = ϕ(x) is independent of time, we set

ϕt :=
∫

Rn

ϕ(x)νt(dx), t ∈ R.

An immediate consequence of uniqueness of the invariant measure for Pτu is in the next
proposition.

Proposition 6.1 Assume that ϕ : Rn 7→ R belongs to L2(Rn, νt) for each t ∈ R. Then we
have

lim
τ→+∞

1
τ

∫ τ

0
(Pt,t+σϕ)(x)dσ =

∫
(0,T )×Rn

ϕ(y)dν in L2
#(ν). (6.2)

Proof. — Since the measure ν is the unique invariant measure for Pτ , then it is ergodic,
see e.g. [5, Thm. 3.2.6]. Through the Von Neumann Theorem, ergodicity is also equivalent
to the fact that for any u ∈ L2

#(ν) we have

lim
τ→+∞

1
τ

∫ τ

0
(Pσu)(t, x)dσ =

∫
(0,T )×Rn

u(s, y)ν(ds, dy) in L2
#(ν). (6.3)

See e.g. [5, Thm. 3.2.4]. Setting in (6.3) u(t, x) = ϕ(x) and recalling (4.1) the conclusion
follows. �

The following proposition shows that Ps,tϕ(x) approaches, as t → +∞, a periodic
function in t which is independent both from x and from s.

Proposition 6.2 For every u ∈ C#
b (R1+n) and for each compact set K ⊂ Rn we have

lim
τ→+∞

sup{|(Pτu)(t, x)− ut+τ | : t ∈ R, x ∈ K} = 0. (6.4)

It follows that for every ϕ ∈ Cb(Rn) we have

lim
t→+∞

(Ps,tϕ)(x)−
∫

Rn

ϕ(y)νt(dy) = 0, ∀s ∈ R, x ∈ Rn, (6.5)

and the convergence is uniform when (s, x) varies in any compact set.

Proof. — As a first step, we show that (6.5) holds for functions u which are Lips-
chitz continuous in x, uniformly with respect to t. In that case, recalling that ut+τ =∫

Rn Pt,t+τu(t+ τ, ·)(y)νt(dy) by (3.1), and using (5.9), we get

|(Pτu)(t, x)− ut+τ | =
∣∣∣∣∫

Rn

(Pt,t+τu(t+ τ, ·)(x)− Pt,t+τu(t+ τ, ·)(y))νt(dy)
∣∣∣∣

≤ ‖ |DxPt,t+τu(t+ τ, ·)| ‖∞
∫

Rn

|x− y|νt(dy) ≤Me−ωτ sup
s∈R

‖ |Dxu(s, ·)| ‖∞
∫

Rn

|x− y|νt(dy).
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Since∫
Rn

|x− y|νt(dy) ≤
(∫

Rn

|x− y|2νt(dy)
)1/2

= (|x− g(t,−∞)|2 + TrQ(t,−∞))1/2,

and g(t,−∞), Q(t,−∞) are bounded by constants independent of t, (6.4) follows.
Fixed any u ∈ C#

b (R1+n), set

uk(t, x) =
1
kn

∫
Rn

u(t, y)ϕ
(
x− y

k

)
dy,

where ϕ is any mollifier. The functions uk belong to C#
b (R1+n), they are Lipschitz contin-

uous in x, uniformly with respect to t, and they converge to u uniformly on each compact
set. By lemma 4.3,

lim
k→∞

sup
τ>0

|Pτuk(t, x)− Pτu(t, x)| → 0.

The same argument used in the proof of lemma 4.3 shows also that uk t − ut goes to zero
as k →∞, uniformly in t. Splitting (Pτu)(t, x)− ut+τ in the sum

Pτ (u− uk)(t, x) + (Pτuk(t, x)− uk t+τ ) + (uk t+τ − ut+τ ),

(6.4) follows.
If u(t, x) = ϕ(x) is independent of time, (6.4) reduces to

lim
τ→+∞

(Pt,t+τϕ)(x)− ϕt+τ = 0,

uniformly in R×K. Setting t+ τ = ξ we get

lim
ξ→+∞

(Pt,ξϕ)(x)− ϕξ = 0,

uniformly for (t, x) in any compact set. �

It is important to know the speed of the convergence in (6.4). As in the autonomous case,
in the elliptic case important information may be obtained from the Poincaré inequality,
which is also interesting from its own.

Theorem 6.3 Assume that detB(t) 6= 0 for all t ∈ R. Then for any u ∈ D(G) we have∫
(0,T )×Rn

(u(t, x)− ut)2ν(dt, dx) ≤
M2C2

2ω

∫
(0,T )×Rn

|Dxu(t, x)|2ν(dt, dx), (6.6)

where ω, M are the constants in (2.7), and C = sup0≤t≤T ‖B(t)‖.

Proof. — It is enough to prove that (6.6) holds for each u ∈ E#(R1+n). Then the statement
will follow from propositions 5.4 and 5.7.

So, let u ∈ E#(R1+n). Using (5.6) and then (5.8) we obtain, for each τ > 0,

d

dτ

∫
(0,T )×Rn

(Pτu)2dν = −
∫

(0,T )×Rn

|B∗(t)DxPτu|2dν

≥ −C2

∫
(0,T )×Rn

|DxPτu|2dν ≥ −M2C2e−2ωτ

∫
(0,T )×Rn

|Dxu|2dν.

19



Integrating with respect to τ yields∫
(0,T )×Rn

(Pτu)2dν −
∫

(0,T )×Rn

u2dν ≥ −M2C2 1− e−2ωτ

2ω

∫
(0,T )×Rn

|Dxu|2dν. (6.7)

On the other hand, proposition 6.2 and the dominated convergence theorem imply that

lim
τ→+∞

∫
(0,T )×Rn

[(Pτu)2 − (ut+τ )2]dν = 0.

Since
∫
(0,T )×Rn(ut+τ )2dν =

∫
(0,T )×Rn(ut)2dν for each τ > 0, then

lim
τ→+∞

∫
(0,T )×Rn

[(Pτu)2 − (ut)2]dν = 0. (6.8)

Letting τ →∞ in (6.7) and using (6.8) we get∫
(0,T )×Rn

((ut)2 − u2)dν ≥ −M
2C2

2ω

∫
(0,T )×Rn

|Dxu|2dν.

Since the left hand side is just −
∫
(0,T )×Rn(u(t, x)− ut)2dν, the statement follows. �

Theorem 6.3 gives further information on the asymptotic behaviour of Pτu and of Ps,tϕ.
Set

C∗ = ( sup
0≤t≤T

‖(B(t))−1‖)−1.

Proposition 6.4 Assume that detB(t) 6= 0 for all t ∈ R. Then for any u ∈ L2
#(ν) and

τ > 0 we have ∫
(0,T )×Rn

(Pτ (u− ut))2dν ≤ e−c0τ
∫

(0,T )×Rn

(u− ut)2dν, (6.9)

where c0 = 2ωC∗2/M2C2.
Consequently, for every ϕ ∈ Cb(Rn) and τ > 0 we have∫

(0,T )×Rn

(Pt,t+τϕ− ϕt)
2dν ≤ e−c0τ

∫
(0,T )×Rn

ϕ2(x) dν. (6.10)

Proof. — If a function v = v(t) ∈ L2(0, T ) does not depend on x, then v ∈ L2
#(ν) and

also Pτv(t, x) = Pt,t+τv(t+ τ) is independent of x. In particular, for each u ∈ D(G), Pτut
is independent of x.

So, for each τ > 0 we have

d

dτ

∫
(0,T )×Rn

(Pτ (u− ut))2dν = −
∫

(0,T )×Rn

|B∗(t)DxPτ (u− ut)|2dν

≤ −C∗2
∫

(0,T )×Rn

|DxPτ (u− ut)|2dν = −C∗2
∫

(0,T )×Rn

|DxPτu|2dν.
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By the Poincaré inequality (6.6),

d

dτ

∫
(0,T )×Rn

(Pτ (u− ut))2dν ≤ −c0
∫

(0,T )×Rn

(Pτu− Pτut)2dν. (6.11)

Since {νt : t ∈ R} is an evolution system of measures, we have

Pτut =
∫

Rn

Pt,t+τu(t+ τ, x)dνt =
∫

Rn

u(t+ τ, x)dνt+τ ,

so that
Pτut = ut+τ = Pτut, ∀τ > 0.

Therefore, (6.11) reads as

d

dτ

∫
(0,T )×Rn

(Pτ (u− ut))2dν ≤ −c0
∫

(0,T )×Rn

(Pτ (u− ut))2dν, ∀τ > 0

and (6.9) follows. Since D(G) is dense in L2
#(ν), then (6.9) holds true for each u ∈ L2

#(ν).
�

We consider now the log-Sobolev inequality. We cannot expect to have an estimate
completely similar to the classical one (see [7]), because it would imply that Pτ is hyper-
contractive, which is obviously false because of the translation in time.

For its proof we need a lemma.

Lemma 6.5 For any u ∈ E#(R1+n) and γ ∈ C1(R) we have∫
(0,T )×Rn

γ(u)Gudν = −1
2

∫
(0,T )×Rn

γ′(u)|B∗(t)Dxu|2dν.

Proof. — Let Γ be a primitive of γ. Then the function Γ(u) belongs to D(G), and

G(Γ(u)) = 1/2 Γ′′(u)|B∗(t)Du|2 + Γ′(u)Gu.

Integrating with respect to ν and recalling proposition 5.4 the statement follows. �

Theorem 6.6 For any u ∈ E#(R1+n) we have∫
(0,T )×Rn

u2 log u2dν ≤ M2C2

ω

∫
(0,T )×Rn

|Dxu|2dν +
1
T

∫ T

0
u2
s log u2

sds, (6.12)

where ω, M are the constants in (2.7), and C = sup0≤t≤T ‖B(t)‖.

Proof. — Since ν is invariant for Pτ , then

d

dτ

∫
(0,T )×Rn

Pτu2 log(Pτu2) =
∫

(0,T )×Rn

(GPτu2 log(Pτu2) +GPτu2)dν

=
∫

(0,T )×Rn

Pτu2 log(Pτu2)dν.
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By lemma 6.5 applied to the function Pτu2 we get

d

dτ

∫
(0,T )×Rn

Pτu2 log(Pτu2)dν = −1
2

∫
(0,T )×Rn

1
Pτu2

|B∗(t)DxPτu2|2dν

≥ −C
2

2

∫
(0,T )×Rn

1
Pτu2

|DxPτu2|2dν.

(6.13)

Formula (5.10) yields

|DxPτu2|2 ≤M2e−2ωτ (Pτ (|Dxu
2|))2 = M2e−2ωτ (Pτ (2|u| |Dxu|))2

≤ 4M2e−2ωτPτu2 Pτ (|Dxu|2).

Substituting this inequality in (6.13) and using again the invariance of ν for Pτ we get

d

dτ

∫
(0,T )×Rn

Pτu2 log(Pτu2) ≥ −2C2M2e−2ωτ

∫
(0,T )×Rn

Pτ (|Dxu|2)dν

= −2C2M2e−2ωτ

∫
(0,T )×Rn

|Dxu|2dν, τ > 0.

Therefore, integrating with respect to τ ,∫
(0,T )×Rn

Pτu2 log(Pτu2)dν −
∫

(0,T )×Rn

u2 log(u2)dν

≥ −C
2M2

ω
(1− e−2ωτ )

∫
(0,T )×Rn

|Dxu|2dν.

Recalling that

lim
τ→+∞

∫
(0,T )×Rn

Pτu2 log(Pτu2)dν =
∫

(0,T )×Rn

u2
t log u2

tdν,

letting τ → +∞ we obtain∫
(0,T )×Rn

u2
t log u2

tdν −
∫

(0,T )×Rn

u2 log u2dν ≥ −C
2M2

ω

∫
(0,T )×Rn

|Dxu|2dν,

which coincides with (6.12). �

Using formula (6.12) for the function v = up/2, p ≥ 2, we get the following corollary.

Corollary 6.7 For any nonnegative u ∈ E#(R1+n) and p ≥ 2 we have∫
(0,T )×Rn

up log updν ≤ M2C2p2

4ω

∫
(0,T )×Rn

up−2|Dxu|2dν +
1
T

∫ T

0
ups log upsds. (6.14)
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