Cognome Nome			Non scrivere qui
MATRICOLA	A		
Corso	MATEMATICA	FISICA	1 2 3 4
Unive	rsità di Parma	— Corsi di la	urea in Matematica e Fisica
	Analisi Mat	ematica 1 - Seco	nda Prova Parziale
	A.A. 20	015-2016 — PARM	A, 13 GIUGNO 2016
			28 giugno 2016
la risposta c	he lo svolgimento (o t	raccia dello svolgiment	nuti). Nell'apposito spazio, dovete riportare sia o). Al termine della prova riconsegnate questo foglio valutate (la "brutta copia") vanno barrate.
Esercizio 1	1. Determinare l'int	egrale generale dell	'equazione differenziale
		$y^{(4)}(x) + 16y(x)$	$=\cos(x).$
Dianos	<u></u>		
Rispos	ota.		

Esercizio 2. Sia data la funzione $f(x) = e^{\frac{1}{2x-1}} - e^{\frac{1}{2x+1}}$.

- a) Determinare, per $x \to +\infty$, l'ordine di infinitesimo di f(x).
- b) Determinare i valori di $\,\alpha>0\,$ per cui risulta convergente la serie

$$\sum_{n=1}^{+\infty} f(n^{\alpha}).$$

Risposta:

Esercizio 3. Al variare del parametro $k \in \mathbb{R}$ si consideri la funzione

$$f(x) = \frac{1}{x} + 5x + k.$$

- a) Tracciare, per k=0 e k=-1, un grafico approssimativo di f .
- b) Trovare i valori di k per cui la retta y=x è tangente al grafico di f_k .
- c) In corrispondenza ai valori trovati nel punto b), studiare il comportamento della successione

$$\begin{cases} a_0 = 1, \\ a_{n+1} = f(a_n) \end{cases} \quad n \in \mathbb{N}.$$

Risposta:

Esercizio 4. Sia data la funzione $F: \mathbb{R} \to \mathbb{R}$ definita da

$$F(x) := \int_0^x \frac{|t - 1|t}{1 + t^{12}} dt.$$

- a) Determinare i valori di x per cui la funzione è derivabile.
- b) Stabilire se esistono finiti i limiti $\lim_{x \to \pm \infty} F(x)$.
- c) Tracciare un grafico approssimativo di F(x) evidenziandone il segno, i massimi e minimi e gli intervalli di monotonia.

Risposta: