Cognome Nome					Scrivete qui le risposte	COMPITO
MATRICOLA						1
Corso	Gest	I.E.T.	Mec	AB	1 2 3 4 5 6 7	

Università di Parma— Corsi di laurea in Ingegneria

Esame scritto di Analisi matematica 1 - Prima parte

A.A. 2015-2016 — PARMA, 14 GENNAIO 2016

Riempite immediatamente questo foglio scrivendo IN STAMPATELLO cognome, nome e numero di matricola, e fate una barra sul Corso. Scrivete cognome e nome (in stampatello) su ogni foglio a quadretti.

Il tempo massimo per svolgere la prova è di un'ora. Non potete uscire se non dopo avere consegnato il compito, al termine della prova.

È obbligatorio consegnare sia il testo, sia tutti i fogli ricevuti; al momento della consegna, inserite tutti gli altri fogli, compreso quello con il testo, dentro uno dei fogli a quadretti.

Potete usare solo il materiale ricevuto e il vostro materiale di scrittura (in particolare è vietato usare appunti, calcolatrici, foglietti ecc.). Non usate il colore rosso.

Riportate le risposte ai quiz nelle apposite caselle in alto a destra (risposta esatta +3, risposta errata -1, risposta non data 0, sufficienza 10), e copiatele sul foglietto che vi sarà consegnato, per controllo; su questo foglietto copiate anche il numero del vostro compito (lo trovate nella casella grande in alto a destra).

- (1) In una classe di 30 studenti, 20 giocano a calcio, 18 giocano a basket e 3 non giocano né a calcio né a basket. Qual è la probabilità che uno studente giochi sia a calcio che a basket?
- (A) 14/30.

(C) 11/30.

(B) 5/27.

(D) 8/27.

- (2) Il valore di $\int_0^{\pi/4} \tan x \, dx$ è
- (A) $1 \sqrt{2}/2$.

(C) $1 + \log(\pi/4)$.

(B) 1.

- (D) $\log \sqrt{2}$.
- (3) Il limite $\lim_{x\to 0} \frac{\cos(\mathrm{e}^x-1)-1+x^2/2}{x^3}$ vale
- (A) 1/6.

(C) -1/4

(B) 1/2.

- (D) -1/2
- (4) Il limite $\lim_{n\to+\infty} \frac{1}{n} (n!e^{-2n} + 1)^{1/n}$ vale
- (A) $1/e^4$.

(C) e^{-2} .

(B) $+\infty$.

(D) $1/e^3$

(5) Sia $w=(3-\mathrm{i}\sqrt{3}\,)^{11}$. Allora

(A)
$$w = 12^{11/2} \left(\frac{\sqrt{3}}{2} + \frac{\mathrm{i}}{2} \right)$$
.

(B) $w = 12^5(\sqrt{3} + 3i)$.

(C) $w = 12^5(-\sqrt{3} + 3i)$. (D) $w = 12^{11/2}(\frac{1}{2} - i\frac{\sqrt{3}}{2})$.

(6) Sull'intervallo [-1,2], l'immagine di $f(x)=\mathrm{e}^{2+2|x|-x}$ è

(A) $[e^2, e^5]$.

(B) [f(-1), f(2)].

(7) I valori di $\alpha > 0$ per i quali converge la serie $\sum_{n} \frac{\operatorname{sen}(n^{-1} + n^{-2\alpha})}{n^{1/6}}$ sono

(A) $\alpha > 5/18$.

(C) $\alpha > 5/6$. (D) $\alpha > 5/12$.

(B) $\alpha > 5/3$.

Compito n. 1

1	2	3	4	5	6	7					
\mathbf{C}	D	D	D	\mathbf{A}	\mathbf{A}	D					