6 GIUGNO 2014 (12[^] settimana)

- Verifica di fine corso: simulazione della prova d'esame con 8 test
- Correzione e discussione della simulazione
- Correzione dei compiti assegnati a casa
- Esercizi di vario genere riepilogativi degli argomenti trattati
- Consulenza

TEST DI FINE CORSO

1) L'integrale $\int_{0}^{1} |1 - 2x^{2}| dx$ vale

A)
$$\frac{1}{3}(\sqrt{2}-1)$$

A)
$$\frac{1}{3}(\sqrt{2}-1)$$
 B) $\frac{1}{3}(2\sqrt{2}-1)$ C) $\frac{\sqrt{2}}{2}(1-\frac{1}{3})$

C)
$$\frac{\sqrt{2}}{2} \left(1 - \frac{1}{3} \right)$$

2) Sia $f(x) = x - e^x$. Allora l'immagine, tramite f, dell'intervallo [-1; 2] è :

A)
$$[2-e^2; -1]$$

B)
$$\left[2-e^2; -1-\frac{1}{e}\right]$$

C)
$$\left[-1 - \frac{1}{e}; -1\right]$$

A) $\left[2-e^2;-1\right]$ B) $\left[2-e^2;-1-\frac{1}{e}\right]$ C) $\left[-1-\frac{1}{e};-1\right]$ D) Nessuna delle precedenti

3) In un autobus vi sono 12 posti numerati; in quanti modi diversi, 5 persone possono occuparli?

- A) 12! B) 5! C) 7! D) 95040

4) L'integrale $\int_1^e \frac{arctan(logx)}{x} dx$ vale

A)
$$\frac{\pi}{4} + \frac{1}{e}$$

A)
$$\frac{\pi}{4} + \frac{1}{e}$$
 B) 2π C) $\frac{\arctan 1}{e}$ D) $\frac{\pi}{4} - \log \sqrt{2}$

5) il limite $\lim_{n\to+\infty} \frac{\left(\cos\frac{1}{n}\right)^{n^2}}{n \sin^2\frac{1}{n}}$ vale

A) ½ B) 1/e C) +
$$\infty$$
 D) $\frac{1}{2}e^{-1/2}$

6) Sia $\alpha \in \mathbb{R}$. Allora la serie $\sum_{n \geq 1} \frac{sin(\frac{1}{\sqrt{n}})}{n^{\alpha} + cos(\frac{1}{n})}$ converge

A) Per ogni $\alpha \in \mathbb{R}$ B) se e solo se $\alpha > 0$ C) se e solo se $\alpha > \frac{1}{2}$ D) se e solo se $\alpha > 1$

7) Sia $w = \frac{\overline{(iz^2)} - i|z|^2}{2i\bar{z} + 3z}$. Se z = 1 - 2i, quale tra le seguenti affermazioni è **falsa**?

- A) $\Re w > 0$ B) $\Re w < Iw$ C) $\Im w < -1$ D) $\Im w > 1$

8) Se $f(x) = 2x^3 + 3x^2 - 12x + 7$, allora

- A) f è concava su [-2;1] B) f è decrescente in [-1;2]
- C) f è limitata superiormente. D) $f \ge 0$ in un intorno del punto x = 1.