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Abstract. In this paper we present a decision procedure for Restricted
Intensional Sets (RIS), i.e. sets given by a property rather than by enu-
merating their elements, similar to set comprehensions available in speci-
fication languages such as B and Z. The proposed procedure is parametric
with respect to a first-order language and theory X, providing at least
equality and a decision procedure to check for satisfiability of X'-formulas.
We show how this framework can be applied when X is the theory of
hereditarily finite sets as that supported by the language CLP(SET).
We also present a working implementation of RIS as part of the {log}
tool and we show how it compares with a mainstream solver and how it
helps in the automatic verification of code fragments.

1 Introduction

Intensional sets, also called set comprehensions, are sets described by a prop-
erty whose elements must satisfy rather than by explicitly enumerating their
elements. Intensional sets are widely recognized as a key feature to describe
complex problems. Hence, having a decision procedure for an expressive class
of intensional sets should be of interest to different communities, such as SMT
solving, model finding and constraint programming.

In this paper we consider Restricted Intensional Sets (RIS). RIS have similar
syntax and semantics to the set comprehensions available in the formal specifi-
cation languages Z [24] and B [20], i.e. {z : D | F(z) @ P(x)}. We say that this
class of intensional sets is restricted because they denote finite sets. In effect,
given that the domain (D) of a RIS fixes the maximum number of elements
that the RIS can have and that it is necessarily finite, then RIS cannot have an
infinite number of elements. Nonetheless, RIS can be not completely specified.
In particular, as the domain can be a variable, RIS are finite but unbounded.

In this paper we define a constraint language, called Lrzs, which provides
both RIS and extensional sets, along with basic operations on them, as primitive
entities of the language. Lrzs is parametric with respect to an arbitrary theory
X, for which we assume a decision procedure for any admissible X-formula is
available. Elements of Lr7s sets are the objects provided by X, which can be ma-
nipulated through the primitive operators that X offers (at least, X-equality).



Hence, RIS in Lrzs represent untyped unbounded finite hybrid sets, i.e. un-
bounded finite sets whose elements are of any sort.

We provide a set of rewrite rules for rewriting RZS-formulas that are proved
to preserve satisfiability of the original formula. These rules are used to define
a decision procedure for Lrzs, called SATrzs, which is proved to be correct,
complete and terminating. SATrzs will be able to decide any propositional
combination of the admissible RZS-constraints and X-formulas. Furthermore,
for any satisfiable formula, SAT rzs returns a finite representation of all possible
solutions of the formula.

Lrzs has been implemented in Prolog, and integrated with {log} (pro-
nounced ‘setlog’), the freely available Prolog implementation of CLP(SET) [9].
This implementation is compared to ProB [16] w.r.t. intensional set manipula-
tion and an example using {log} to verify program correctness is also shown.

Section 2 introduces Lrzs informally through some examples. Section 3 de-
scribes the solver which is proved to be a decision procedure for Lrzs in Sect.
4. A discussion of some limitations of our approach is provided in Sect. 5. A
working implementation of this solver is shown in Sect. 6 and it is compared to
ProB and used as a verification tool in Sect. 6.2. Section 7 compares our results
with similar approaches. Our conclusions are given in Sect. 8. The appendices
contain technical information such as some rewrite rules and detailed proofs.

2 An Informal Introduction to Lzrrs

In this section we introduce Lz zs in an informal, intuitive way, through a num-
ber of simple examples. Lzzs is parametric w.r.t. a first-order theory X. For the
sake of convenience, in this informal presentation, we assume that the language
of X, Ly, provides the constant, function and predicate symbols of the theories
of the integer numbers and ordered pairs. Formal syntax and semantics of Lgzs,
as well as two sample instances of the theory X', are presented in Appendix A
Lrzs provides the following set terms: a) the empty set, noted @; b) ex-
tensional sets, noted {x u A}, where x, called element part, is a X-term, and A,
called set part, is a Lrzs set term; and ¢) restricted intensional sets (RIS), noted
{c: D | F e P(c)}, where ¢, called control term, is a X-term; D, called domain,
is a Lrzs set term; F', called filter, is a X'-formula; and P, called pattern, is a
X-term containing ¢3. Both extensional sets and RIS can be partially specified
because elements and sets can be variables. A RIS term is a variable-RIS if its
domain is a variable or (recursively) a variable-RIS; otherwise it is a non-variable
RIS. As a notational convenience, we will write {t; u{tau---{t,ut}---}} (resp.,
{tivf{tou---{tnu®}---}}) as {t1,t2,...,tn ut} (vesp., {t1,t2,...,tn}). When
useful, the domain D can be represented also as an interval [m,n|, m and n
integer constants, which is intended as a shorthand for {m,m+1,...,n}.
RZS-literals are of the form A = B, A # B, e € Aor e ¢ A, where A
and B are set terms and e is a X-term. RZS-formulas (resp., X-formulas) are

3 The form of RIS terms is borrowed from the form of set comprehension expressions
available in Z and B.



conjunctions and disjunctions of RZS-literals (resp., X-literals). We denote by
IIs the set {=,€,#,¢} and by ITy the set {=x,...} of X-predicate symbols.

An extensional set {z u A} is interpreted as {z} U A. A RIS term {c¢: D |
FeP(c)} is interpreted as the set of all terms P such that ¢ is drawn from D and
satisfies F'; more formally, if 1,...,2, (n > 0) are all variables occurring in ¢,
then {c¢: D | F e P(c)} denotes the set {y : 3z1...z,(c € DAF ANy =x P(c))}.
Note that z1,...,x, are bound variables whose scope is the RIS itself. Also note
that equality between y and the pattern P requires equality of the theory X.

In order to precisely characterize the language for which we provide a decision
procedure, the control term ¢ and the pattern P in Lrzs are restricted to be
of specific forms. Namely, if z and y are variables ranging on the domain of X,
then ¢ can be either = or (z,y), while P can be either ¢ or (c,t) or (¢,c), where
t is any (uninterpreted/interpreted) X-term, possibly involving the variables in
c.

As it will be evident from the various examples in this and in the next
sections, in spite of these restrictions, Lrzs is still a very expressive language.
In particular, note that the restriction on patterns allows “plain” sets and partial
functions (see examples below) to lay inside the decision procedure. Relaxing this
assumption is feasible but it may compromise decidability (see Sect. 5).

Example 1. The following are admissible RZS-formulas involving RIS terms:
—{z:[-2,2]|zrmod2=0ezx} ={-2,0,2}
- By)e{z:D|x>0e(x,x*x)}, where D is a variable
- (5,0) € {(z,y) : {PuR} |y#0e(x,y)}, where P and R are variables. 0O

Free variables appearing in the formula where the RIS is participating in can
be part of F' and P. When the pattern is the control term and the filter is true,
they can be omitted (as in Z and B), although one must be present.

One interesting application of RIS is to represent restricted universal quan-
tifiers. That is, the formula Vo € D : F(x) can be easily represented by the
Lrzs equality D = {z : D | F(z)} (see Proposition 1 in Appendix D). Then,
as Lrzs is endowed with a decision procedure, it can decide a large fragment of
quantified formulas.

Example 2. The formula y € SAS = {z : S | y < x} states that y is the
minimum of a set of integers S. If, for instance, S = {2,4, 1,6}, then y is bound
to 1. a

Another important application of RIS is to define (partial) functions by giv-
ing their domains and the expressions that define them. In general, a RIS of the
form {z : D | Fe(x, f(x))}, where f is any Ly function symbol, defines a partial
function. Such a RIS contains ordered pairs whose first components belong to D
which cannot have duplicates (because it is a set). Then, if no two pairs share the
same first component, then the RIS is a function. Given that RIS are sets, then,
in Lrzs, functions are sets of ordered pairs as in Z and B. Therefore, through
standard set operators, functions can be evaluated, compared and point-wise
composed; and by means of constraint solving, the inverse of a function can also
be computed. The following examples illustrate these properties.



Ezample 3. The square of 5 can be calculated by: (5,y) € {z : D e (z,z x x)},
yielding y = 25. The same RIS calculates the square root of a given number:
(2,36) € {x : De(x, x*x)}, returning = 6 and z = —6. Set membership can also
be used for the point-wise composition of functions. The function f(z) = 2% +8
can be evaluated on 5 as follows: (5,y) € {z : De (x,zxx)} A (y,2) € {e:
E e (e,e + 8)} returning y = 25 and z = 33. O

Finally, note that we allow RIS terms to be the set part of extensional sets,
e.g. {zu{d: A|d#y}}, as well as to be the domain of other RIS. Lzzs also
defines two constraints that are mainly used internally by the solver, namely
set(t) and isX (t). Each one asserts that its parameter is of sort set and X,
respectively.

3 A Solver for Lrzs

In this section we present a decision procedure for Lrzs, called SATrzs. Ac-
tually, SAT rzs is a complete constraint solver which is able not only to decide
satisfiability of Lrzs formulas, but also to compute a concise representation of
all the concrete (or ground) solutions of the input formula. It is important to
note that decidability of RZS-formulas depends on the existence of a decision
procedure for X-formulas (i.e. formulas over Ly).

3.1 The solver

SATRzs is a rewriting system whose global organization is shown in Algorithm
1, where STEP is the core of the algorithm. sort_infer is used to automatically add
sort information to the input formula @ to force arguments of RZS-constraints to
be of the proper sort (see Remark 1 below). sort_infer is called twice in Algorithm
1: first, at the beginning of the Algorithm, and second, within the procedure
STEP for the constraints that are generated during constraint processing.

Algorithm 1 The SAT rzs solver. @ is the input formula.

& + sort_infer(P)
repeat
& — P
repeat
" — b
® + STEP(®)
until & = &”
@ « remove_neq(P)
until & = ¢’
P is s NDx
D+ Ps N SATx(é)()
return ¢




remove_neq deals with the elimination of #-constraints involving RIS do-
mains. For example, in D # QA {z : D | F e G} = (), remove_neq rewrites D # ()
asn € D, where n is a new fresh variable (i.e. implicitly existentially quantified).
In turn, n € D is rewritten as D = {nu N} for another new variable N. Finally,
the whole formula is rewritten as D = {nu N} A{z : {nuN} | FeG} = (), which
fires one of the rules given in Sect. 3.2. This rewriting chain is fired only because
D is the domain of a RIS; otherwise remove_neq does nothing with D # (). The
complete definition of remove_neq is in Appendix B.

STEP applies specialized rewriting procedures to the current formula ¢ and
returns the modified formula. Each rewriting procedure applies a few non-deter-
ministic rewrite rules which reduce the syntactic complexity of RZS-constraints
of one kind. The execution of STEP is iterated until a fixpoint is reached—i.e.
the formula cannot be simplified any further. STEP returns false whenever (at
least) one of the procedures in it rewrites @ to false. Moreover, STEP(false)
returns false. Some rewrite rules are described in detail in Sect. 3.2 and the rest
in Appendix B.

SAT y is the constraint solver for X-formulas. The formula @ can be written
as s A Py, where Ps (Px) is a conjunction of IIg- (IIx-)literals. SAT x is
applied only to the @y conjunct of @. Note that, conversely, STEP rewrites
only Ils-literals, while it leaves all other literals unchanged. Nonetheless, as the
rewrite rules show, SAT rzs generates X'-formulas that are conjoined to @y so
they are later solved by SAT .

Remark 1. Lrzs does not provide variable declarations. The sort of variables
are enforced by adding suitable sort constraints to the formula to be processed.
Sort constraints are automatically added by the solver. Specifically, a constraint
set(y) (resp., isX(y)) is added for each variable y which is required to be of
sort Set (resp., X). For example, given X = {y u A}, sort_infer conjoins the
sort constraints set(X), isX (y) and set(A). If the set of function and predicate
symbols of RZS and X are disjoint, each variable occurring in the formula has
a unique sort constraint.

3.2 Rewrite rules

Lrzs can deal with set equality and membership and their negations. Set equal-
ity between extensional sets implements set unification [11]. One of the key
rewrite rules of set unification is the following (adapted from [9]):

{zruvA} ={yuB} —
r=xyNA=DB V z=xyA{zuA}=B \Y (1)
r=xyANA={yuB} VvV A={yuN}A{zuN}=B

where A and B are extensional sets, x and y are any X-terms, N is a new
variable (of sort Set), and =y is the equality provided by the theory X*. This

4 We will write = in place of =x whenever is clear from context.



means that every time Lzzs finds a literal such as the left-hand side of rule (1),
it attempts to find a solution for it in four different ways. In some cases one or
more will fail (i.e. they will be false) but in general Lzzs will compute all the
four solutions.

Dealing with set membership is governed by the following rewrite rules:

r€A—A={zuN} re{yuB} —x=yVzeB

where A is a variable, B is a set term, and N is a new variable (of sort Set).

Basically, Lrzs extends the rewrite rules for equality, membership and their
negations to allow them to deal with RIS terms. Figure 1 lists all the rewrite
rules applied by STEP to deal with constraints of the form R = U and R # U,
where R and U are Lrzs set terms and at least one of them is a RIS term.

The rules are given as ¢ — @ where ¢ is a RZS-literal and @ is a RZS-
formula in Disjunctive Normal Form. Each RZS-literal matching ¢ is non-
deterministically rewritten to one of the disjunct composing @. The following
notational conventions are used. F, G, P and Q are shorthands for F(z,v),
G(z,v), P(z,v) and Q(x,v), respectively, where v is a vector of free variables.
In all rules, variables appearing in the right-hand side but not in the left-hand
side are assumed to be new, fresh variables, implicitly existentially quantified
over each disjunct composing @. Finally, D and A represent any set terms, while
D represent a variable of sort Set.

In order to make the presentation more accessible: a) the rules are given for
RIS whose domain is not another RIS, in particular, the domain of a variable-
RIS is a single variable; b) the control term of RIS is variable x in all cases and it
is omitted to save space. The generalization to cases in which these restrictions
are removed is discussed in Appendix B.

Intuitively, the key idea behind the rules shown in Fig. 1 and Appendix B
is a sort of lazy partial evaluation of RIS. That is, a RIS term is treated as a
block until it is necessary to identify one of its elements. When that happens, the
RIS is transformed into an extensional set whose element part is the identified
element and whose set part is the rest of the RIS. More formally, if y is known
to be in {x : D | F'e P} then this RIS is rewritten as the extensional set {yu{z :
D’ | FeP}}, where {z : D' | F e P} is semantically equal to {z : D | Fe P}\ {y}.

Equality between a RIS and an extensional set is governed by rules (=;)-
(=4). In particular, rule (=2) deals with the case in which a RIS with a non-
empty domain must be equal to the empty set. It turns out that to force a RIS
{D | FoP} to be empty it is enough that the filter F is false for all elements in D,
i.e. Vo € D : =F(x,v). This (restricted) universal quantification is conveniently
implemented through recursion, by extracting one element d at a time from
the RIS domain. Rule (=4) deals with equality between a variable-RIS and an
extensional set. The intuition behind this rule is as follows. Given that {y u A}
is not empty, then D must be not empty in which case it is equal to {du C} for
some d and C'. Furthermore, d must satisfy F and P(d,v) must be equal to y.
As the first element of {yu A} belongs to the RIS, then the rest of the RIS must
be equal to A. It is not necessary to consider the case where —F(d, v), as in rule
(=3), because d is a new fresh variable.



{0| FeP}=0— true (=1)
{{duD} | FeP}=0— -F(d,v)AN{D|FeP}=10 (=2)

If B is any set term except 0:
{{duD} | FeP}=B— (=3)
F(d,v) N{P(d,v)u{D | FeP}}=BV-F(d,v)N{D|FeP}=B

{D|FeP}={yoA}—
D={duCYAF(d,v) Ny =x P(d,v)AN{C|FeP}=A

{D|FePt#A—=(ye{D|FePiAyd A)V(y¢{D|FePtAycA) (=)

Fig. 1. Rewrite rules for R =U and R # U; R or U RIS terms

Rules of Fig. 1 exhaust all, but three, of the possible combinations of equality
between a RIS and other Lzzs set terms. The cases not considered (equality
between a variable and a variable-RIS, between a variable-RIS and the empty
set, and between two variable-RIS) are dealt with as irreducible (Sect. 4.1).

4 Decidability of Lzzs Formulas

Decidability of the set theory fragment considered in this paper can be obtained
by showing a reduction of RZS-formulas to formulas of the V{ 5 language stud-
ied in [2]. Vf , is a two-sorted quantified fragment of set theory which allows re-
stricted quantifiers of the forms (Vo € A), (3z € A), (V(z,y) € R), 3(z,y) € R)
and literals of the forms x € A, (x,y) € R, A= B, R =S, where A and B are
set variables (i.e., variables ranging over sets) and R and S are relation variables
(i.e., variables ranging over binary relations). Semantics of this language is based
on the von Neumann standard cumulative hierarchy of sets, which is the class
containing all the pure sets.

The extensional finite sets and the primitive set-theoretical operators pro-
vided by Lrzs are easily mapped to the general sets and operators of V§ 5. The
same mapping can be provided also for RIS as follows (for simplicity the control
term is just a variable and the pattern is the control term itself—so it can be
omitted):

S={z:D|F(x)} =
Ve(x €S = z€ DAF(x))AVe(x e DAF(z) = z€5)

(6)

This formula can be immediately written as a V{ ,-formula.

(Vx € S)(x € DAF(x))AN(Vz € D)(F(z) = z€5)



Note that the fact that the control variable is restricted to range over a set (i.e.
the RIS domain) is crucial to allow both implications to be written as restricted
universal quantifiers, hence as V{ ,-formulas.

Since V(o has been shown to be a decidable fragment of set theory, the
availability of a complete mapping of Lrzs to V(o proves the decidability of
Lrzs as well. However, it is important to note that V{ 5 is mainly intended as a
language to study decidability rather than as an effective tool to solve formulas
of a constraint language, as Lrzs is instead designed for.

In this section we show that SAT zzs is indeed a decision procedure for RZS-
formulas. This is obtained by: (7) proving that formulas returned by SATxrzs,
other than false, are trivially satisfiable; (i) proving that the disjunction of
the returned formulas is equisatisfiable to the input formula; (ii7) proving that
SATrzs always terminates. Detailed proofs are given in Appendix D.

4.1 Satisfiability of solved form

As stated in the previous section, the formula @ handled by SATrzs can be
written as s A @ where all IIs-literals are in @g. Right before Algorithm 1
calls SAT x, @5 is in a particular form referred to as solved form. This fact can
be easily proved by analyzing the rewrite rules given in Sect 3.2 and Appendix
B.

Definition 1 (Solved form). Let $s be a RIS-formula based on predicate
symbols in Ig; let X be a variable of sort Set and t any term of sort X; let S be
any set term but not a RIS; and let D and E be either variables of sort Set or
variable-RIS. A literal m of @5 is in solved form if it has one of the following
forms:

true;

X =S8 or X ={D| FeP}, and X does not occur in S nor in &s \ {r};
X # S, and X does not occur in S nor as the domain of a RIS in ®s°;
t ¢ X and X does not occur int, ort ¢ {D | F e P};

set(X) or isX(X);

{D|FeP}=0;

{D|FeP}={E|GeQ}.

NS G Co o~

D5 is in solved form if all its literals are simultaneously in solved form.

Ezample 4. The following are L zs literals in solved form (X and D; variables;
X does not occur elsewhere in the given RZS-formula):

— X={z:D]|z#0} (X and D may be the same variable)
—1¢{z:D|x+#0}
—{z:Dy|rxmod2=0e(z,2)} ={z:Dy|xz>0e(x,x+2)} O

® This is guaranteed by procedure remove_neq (see Sect. 3).



Right before Algorithm 1 calls SAT y, ®s is either false or it is in solved
form, but in this case it is satisfiable.

Theorem 1 (Satisfiability of solved form). Any RZIS-formula in solved
form is satisfiable w.r.t. the interpretation structure of Lrzs-

Therefore, if @5 is not false, the satisfiability of @ depends only on @ 4.

Theorem 2 (Satisfiability of &s APy). Let D be s A Py right before Algo-
rithm 1 calls SAT x. Then either ®s is false or the satisfiability of ¢ depends
only on the satisfiability of @y .

4.2 Termination and equisatisfiability
Termination of SAT rzs is stated by the following theorem.

Theorem 3 (Termination). The SATrzs procedure can be implemented in
such a way it terminates for every input RZS-formula .

The termination of SAT rzs and the finiteness of the number of non-determi-
nistic choices generated during its computation guarantee the finiteness of the
number of RZS-formulas non-deterministically returned by SAT rzs. Therefore,
SATrzs applied to a RZS-formula @ always terminates, returning either false
or a finite collection of satisfiable RZS-formulas in solved form.

In order to prove that Algorithm 1 is a decision procedure for RZS-formulas,
we still need to prove that it is correct and complete in the sense that it preserves
the set of solutions of the input formula.

Theorem 4 (Equisatisfiability). Let @ be a RZS-formula and {¢;}?_, be the
collection of RIS-formulas returned by SATrzs(P). \/i_, ¢i is equisatisfiable
to @, that is, every possible solution® of ® is a solution of one of {¢;}"_, and,
vice versa, every solution of one of these formulas is a solution for &.

Thanks to Theorems 1-4 we can conclude that, given a RZS-formula @, ¢
is satisfiable with respect to the intended interpretation structure if and only if
there is a non-deterministic choice in SATrzs(®) that returns a RZS-formula
in solved form—i.e. different from false. Hence, SAT rzs is a decision procedure
for testing satisfiability of RZS-formulas.

It is worth noting that the set of variables ranging on RZS-terms and the
set of variables ranging on X-terms are assumed to be disjoint sets. This fact
prevents us from creating recursively defined RIS, which could compromise the
finiteness property of the sets we are dealing with. In fact, a formula such as
X ={D | F(X) e P}, where F(X) means that F' contains the variable X, is
not an admissible RZS-constraint, since the outer and the inner X must be of
different sorts according to the definition of RIS (recall that the filter is a X-
formula). Note that, on the contrary, a formula such as X = {D(X) | FeP} is an
admissible RZS-constraint, and it is suitably handled by our decision procedure.

5 More precisely, each solution of & expanded to the variables occurring in ¢; but not
in @, so to account for the possible fresh variables introduced into ¢;.



5 Discussion

The filter and pattern of a (general) intensional set may depend on existentially
quantified variables, declared inside the set. For example, if R is a set of ordered
pairs and D is a set, then the subset of R where all the first components belong
to D can be denoted by {p : 3z,y(x € DA (z,y) € RAp = (z,y))}. We will
refer to these existentially quantified variables as parameters.

However, allowing parameters in RIS rises major problems when RIS have
to be manipulated through the rewrite rules considered in the previous section.
In fact, if 72 is the vector of parameters possibly occurring in a RIS, then literals
of the form —F(d,v), occurring in the rules, should be replaced with the more
complex universally quantified formula Vn(—F(d,n,v)). This, in turn, would
require that the theory X is equipped with a solver able to deal with such kind
of formulas. To avoid relying on such a solver, RIS cannot depend on parameters.

Nevertheless, it can be observed that many uses of parameters can be avoided
by a proper use of the control term and pattern of a RIS (see Proposition 2 in
Appendix D). For example, the intensional set considered above can be expressed
with a RIS (hence, without parameters) as follows: {(z,y) : R |z € D}. If R is
for instance {(a, 1), (b,2), (a,2)} and D is {a}, then the formula {(z,y) : R | x €
D} ={(a,1),(a,2)} is (correctly) found to be satisfiable by SATrzs.

Therefore, it would be interesting to extend RIS to allow more general forms
of control expressions and patterns. Concerning patterns, from the proof of The-
orem 4, it turns out that the necessary and sufficient condition for the equisat-
isfiability result is that patterns adhere to the following definition.

Definition 2 (Bijective pattern). Let {z : D | F(x,v) ¢ P(z,v)} be a RIS,
then its pattern is bijective if P : {(z,v) : (z,v) € DX VAF(z,v)} =Y isa
bijective function (where: Y images of P; and V' domain of variables v ).

Note that all the admissible patterns of Lzrzs are bijective patterns. Besides
these, however, other terms can be bijective patterns. For example, x +n, n con-
stant, is a also a bijective pattern, though it is not allowed in Lrzs. Conversely,
x * x is not bijective as x and —z have = x x as image (note that (z,z x x) is
indeed a bijective pattern allowed in Lrzs).

The intuitive reason to ask for patterns to be bijective is that if y belongs to
a RIS whose pattern, P, is not bijective then there may be two or more elements
in the RIS domain, say z; and xg, such that P(z1) = P(z2) = y. If this is the
case, then eliminating, say, x1 from the domain is not enough to eliminate y from
the RIS. And this makes it difficult, for instance, to prove the equality between
a variable-RIS and a set (extensional or RIS) having at least one element.

Unfortunately, the property for a term to be a bijective pattern cannot be
easily syntactically assessed. Thus we prefer to leave it out of the definition of
Lrzs and to adopt a more restrictive definition of admissible pattern. From a
more practical point of view, however, we could admit also more general patterns,
with the assumption that if they are bijective patterns the result is surely safe;
while if they are not, it is not safe.



Finally, observe that if Ly provides other function symbols, Lrzs could
allow other control terms and patterns which are (syntactically) guaranteed to
be bijective patterns.

All the extensions mentioned above for control terms and patterns are in-
cluded in the implementation of Lrzs within {log} (see Sect. 6).

Complexity SATrzs strongly relies on set unification. Basically, rules dealing
with RIS “extract” one element at a time from the domain of a RIS by means
of set unification and construct the corresponding extensional set again through
set unification. Hence, complexity of our decision procedure strongly depends on
complexity of set unification. As observed in [11], the decision problem for set
unification when it involves nested set terms is NP-complete. A simple proof of
the NP-hardness of this problem has been given in [8]. The proof is based on a
reduction of 3-SAT to a set unification problem. Concerning NP-completeness,
the algorithm presented here clearly does not belong to NP since it applies syn-
tactic substitutions. Nevertheless, it is possible to encode this algorithm using
well-known techniques that avoid explicit substitutions, maintaining a polyno-
mial time complexity along each non-deterministic branch of the computation.
Besides, the detection of a solution of a unification problem (i.e. solving the
function problem) clearly implies solving the related decision problem. Thus,
the complexity of the function problem can be no better than the complexity
of the decision problem. Finally, since SAT rzs is parametric w.r.t. SAT y, its
complexity is at least the maximum between the complexity of both.

6 RIS in Practice

RIS have been implemented in Prolog as an extension of {log} [19], a freely
available implementation of CLP(SET) [9, 6], recently extended to include bi-
nary relations and partial functions [5]. In this case, the theory X is basically the
theory of CLP(SET), that is the theory of hereditarily finite hybrid sets. This
theory is endowed with a constraint solver, called SAT sg7, which is proved to
be a decision procedure for its formulas, provided each integer variable is associ-
ated to a finite domain. Syntactic differences between the abstract syntax used
in this paper and the concrete syntax used in {log} are made evident by the
following examples.

Example 5. The formula {5} € {z : {yu D} |z #D A5 ¢ xex} is written in
{log} as:

{5} inris(X in{Y/D}, X neq {} & 5nin X, X)

where ris is a function symbol defining RIS whose arguments are: i) a constraint
of the form z in A where z is the control term and A the domain of the RIS; i)
the filter given as a {log} formula; and iii) the pattern given as a {log} term.
Filters and patterns can be omitted as in Lrzs. Variables must start with an
uppercase letter; the set constructor symbols for both Lrzs and {log} sets are



written /. If this formula is provided to {log} it answers no because the formula
is unsatisfiable. O

The following are more examples of RIS that can be written in {log}.
Ezample 6.

— The multiples of a given number N: ris(X in D,0is X mod N), where is is
the Prolog built-in predicate that forces the evaluation of the arithmetic
expression in its right-hand side and then unifies the result with the term in
the left-hand side.

— The sets containing a given set A: ris(S in D, subset(4, S))

— A function that maps integers to their squares: ris([X,Y]in D,Y is X x X),
where ordered pairs are written using [-,]. Note that the pattern can be
omitted since it is the same as the control term, that is [X,Y].

RIS patterns in {log} can be any term (including {-/-}). If they are bijective
patterns, then the solver is guaranteed to be a decision procedure; otherwise
this may be not the case. For example, ris(X in{2,4/M},2x X) = {2,4,6,8} lies
inside the decision procedure.

In {log} the language of the RIS and the language of the parameter theory X
are completely amalgamated. Thus, it is possible for example to use predicates
of the latter in formulas of the former, as well as to share variables of both. The
following example uses this feature to prove a general property about sets.

Ezample 7. In {log} inters(A, B,C) means C = AN B. Then, if
inters(A, B,C) AD =ris(Xin A, X in B) A C neq D
is run on {log}, it (correctly) answers no. O

The original version of {log} can deal with general intensional sets, which
include our RIS as a special case. However, formulas involving such general
intensional sets fall outside the scope of {log}’s decision procedure. For example,
the same goal of Example 7 but written using general intensional sets is (wrongly)
found to be satisfiable by {log}.

6.1 Using {log} for program verification

{log} can be used to automatically prove program properties, such as partial
correctness. As an example consider program ltos (Fig. 2), written in an abstract
programming language with a OO-like syntax and semantics. Itos converts list
L into set C (so ordering and repetitions in L are lost). At the right we see the
pre- and post-condition and the loop invariant given as formulas over a suitable
set theory (for example, where lists are modeled as partial functions and these
as sets of ordered pairs [24]).

Then, to prove the partial correctness of ltos in a Hoare-like framework, it is
necessary to prove that (among other conditions): (a) the invariant is indeed an



function Set ltos(List L) > Pre-condition: true
Set C = new Set
L.fst()
while L.more() do > Invariant: Ve € C: & € ran L
C.add(L.get())
L.nxt()
end while
return C
end function > Post-condition: C' =ran L

Fig. 2. Itos converts list L into set C

invariant; and (b) upon termination of the loop, the loop invariant implies the
post-condition. Formally”:

L={(n,a)ul}AN(VzeC:z€ranl) = (Vzxe€{auC}:zcranl) (a)
L=0AN({MVzeC:zxeranl) = C =ranl (b)

The negation of these verification conditions can be written in {log} as:

L ={[N, A]/T} A ran(L,R) A C = ris(X in C, X in R)
N{A/C} #ris(X in {A/C}, X inR)
L={}ANran(L,R)ANC =ris(X inC, X in R) A nran(L, C) (b)

where ran and nran are the {log} constraints representing the range of a relation
and its negation, respectively. When these formulas are run on {log} it answers
no (i.e. (a) and (b) hold).

Observe that the set theory-based, human-oriented annotations can be easily
translated into the set language provided by {log} which then is used to discharge
the proof obligations.

6.2 Comparison with ProB

In order to gain further confidence in that {log} may be useful in practice, we
compare it to ProB [16], a mainstream solver for sets supporting a very general
notion of intensional sets. Thus, we defined a small benchmark consisting of
64 formulas involving RIS, and run them on {log} and ProB. The benchmark
covers the four operators supported by the decision procedure (i.e. =, #, €, ¢). A
summary of the results is presented in Table 1; details are provided in Appendix
C, while the complete benchmark can be found at https://www.dropbox.com/s/
vjsh91nym3g5tk2/experiments.tar.gz?d1=0. As can be seen, {log} is able to solve
RIS formulas that ProB does not solve, and in less time. This is an indication
that SAT rzs would also be of practical interest.

" We are assuming that —L.more() is modeled as L = (.



TOOL (VERSION) SAT UNSAT TIMEOUT/WARNING TOTAL AUTO TIME
{log} (4.9.4) 30 34 0 64 100% 16s
ProB (1.6.0-SR1) 25 11 28 64  56% 103s

SAT+UNSAT)

Table 1. Summary of the empirical evaluation (timeout 10s; AUTO = 1005208

7 Related Work

Having intensional sets as first-class entities in programming and modeling lan-
guages is widely recognized as a valuable feature that makes programs and
models potentially more readable and compact than those based on other data
structures. Some form of intensional sets are offered for instance by modeling
frameworks, such as Mini-Zinc [17], ProB [16] and Alloy [15]; general-purpose
programming languages, such as SETL [21] and Python; and by (Constraint)
Logic Programming languages, such as Godel [14] and {log} [8]. However, as far
as we know, none of these proposals implements a decision procedure for inten-
sional sets. For example, Alloy (even when using the Kodkod library) needs to
set in advance the size of sets (or types). Such proposals lack, in general, the
ability to perform high-level reasoning on general formulas involving intensional
sets (e.g. the kind of reasoning shown in Example 7 and Sect. 6.1).

A very general proposal is CLP({D}), a CLP language offering arbitrarily
nested extensional and intensional sets of elements over a generic constraint do-
main D [10]. However, no working implementation of this proposal has been
developed. As observed in [10], the presence of undecidable constraints such as
{z :p(x)} = {x : g(x)} (where p and ¢ can have an infinite number of solutions)
“prevents us from developing a parametric and complete solver”. Conversely,
the same problem written using RIS, {z : Dy | p(z)} = {z : D2 | ¢(z)}, D1, D>
variables, always admits at least one solution, namely D1 = Dy = (). Generally
speaking, finding a fragment of intensional sets that is both decidable and ex-
pressive is a key issue for the development of an effective tool for reasoning with
intensional sets. RIS, as presented here, may be a first step toward this goal.

Several logics (e.g. [12,22,23]) provide some forms of intensional sets. How-
ever, in some cases, for the formula to be decidable, the intensional sets must
have a ground domain; in others, set operators do not include set equality; and
in others, they present a semi-decision procedure. Handling intensional sets can
be related also to handling universal quantifiers in a logical setting, since inten-
sional sets “hide” a universal quantifier. Tools such as SMT solvers deal with this
kind of problems (see, e.g., [7] and [1]), although in general they are complete
only in quite restricted cases [13].

Our decision procedure finds models for formulas with finite but unbounded
domains, in the sense that their cardinalities are not constrained by a fixed value.
The field of finite model finding faces a similar problem but usually with bounded
domains. There are two basic styles of model finding: the MACE-style in which
the formula is transformed into a SAT problem [3]; and the SEM-style which



uses constraint solving techniques [25]. Our approach is closer to the SEM-style
as it is based on constraint programming. However, since both methods do not
deal with quantified domains as sets, then they cannot reduce the domain every
time an element is instantiated, as we do with RIS—for instance, in rule (=2).
Instead, they set a size for the domain and try to find a model at most as large
as that.

Ideas from finite model finding were taken as inspiration by Reynolds et al.
[18] for handling universal quantifiers in SMT. These authors propose to find
finite models for infinite universally quantified formulas by considering a finite
domain. In this sense, they are closer to the SEM-style although taking advantage
of the standard DPLL(T) architecture of SMT solvers. In doing so, they are able
to handle formulas involving operators from the theories usually supported by
these tools. In particular, Reynolds et al. make use of the cardinality operator
for the sorts of quantified variables and propose a solver for a theory based on
this operator. Then, they make a guess of the cardinality for a quantified sort
and use the solver to try to find a model there. In the default strategy, the initial
guess is 1 and it is incremented in 1. Note that our approach does not need a
cardinality operator because it operates directly over a theory of sets.

8 Concluding Remarks

We have shown a decision procedure for an expressive class of intensional sets,
called Restricted Intensional Sets (RIS). Key features of this procedure are: it
returns a finite representation of all possible solutions of the formula; it allows
set elements to be variables; it is parametric with respect to any first-order
theory endowed with a decision procedure; and it is implemented as part of
the {log} tool. On the other hand, we have shown through a number of simple
examples that, although RIS are a subclass of general intensional sets, they are
still sufficiently expressive as to encode and solve many interesting problems.

Nevertheless, it can be interesting trying to extend the language of RIS, for
example, with rewrite rules for other set operators (such as union and intersec-
tion) because this would contribute to enlarge the class of problems that the
decision procedure can deal with. Yet another line of investigation is to study
the relation between RIS and the decision procedure for binary relations recently
added to {log} [5].
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A  Formal Syntax and Semantics

The language of Restricted Intensional Sets, Lrzs, is parametric with respect to
an arbitrary theory X which must include: a class @5 of admissible X'-formulas
based on a non-empty set of function symbols Fy and a set of predicate symbols
ITy, an interpretation structure Zy with domain Dx and interpretation function
(~)IX, and a decision procedure SAT y for X-formulas. We assume that ITy
contains at least the =y operator, which is interpreted as the identity in Dx.

A.1 Syntax

Syntax is defined primarily by giving the signature upon which terms and for-
mulas of the language are built.

Definition 3 (Signature). The signature Xrzs of Lrzs is a triple (F,I1,V)
where:

— F is the set of function symbols, partitioned as F = Fs U Fx where Fgs
contains O, {-u-} and {- | - ® -}, while Fx contains the function symbols
provided by the theory X.

— II is the set of primitive predicate symbols, partitioned as I[I = IIs U Iy
where Ils contains =g, €s, set and isX, while IIxy contains the predicate
symbols provided by the theory X (at least =x ).

— V is a denumerable set of variables, partitioned as V = Vs U Vy.

Intuitively, §) represents the empty set, {z u A} represents the set {z} U A
and {z : D | F(z) e P(x)} represents the intensional set {y : 3z(x € D A F(z) A
y =x P(z))}. [m,n], m and n integer constants, is intended as a shorthand for
{m,m+1,...,n}.

Lprzs defines three sorts: X, Set and Bool.

Definition 4 (Sorts of function symbols). The sorts of the symbols defined
in F are as follows:

0 : Set
{-u-}: X x Set — Set
{-:-] &} : X xSet x Bool x X — Set

—
§: XX+ x X=X, if s € Fy, for some ng >0
v : Set, if v € Vg
v: X, ifvEeVy

Note that terms that will constitute the elements of sets are all of sort X.
RIS-terms are built from symbols in F and V as follows.



Definition 5 (RZS-terms). The set of RIS-terms is the minimal subset of
the set of terms generated by the following grammar, respecting the sorts as given
in Definition /.
Tors = Elem | Set
Elem :=Tx | V
Set :="0"
| Ris
| "{" Elem "v” Set "}’
| Vs
Ctrl .=V | (" Cul *,” Ctrl ")’
Pattern := Ctrl | (" Ctrl ", Tx ") | (" Ta 7,7 Ctrl 7)’
Ris == "{" Ctrl “:" Set "|” dx ~o  Paitern "}’
where: V (Vs) represents any element belonging to the set of variables V (Vs);
and Ty and @y represent the set of non-variable X-terms and the set of X-
formulas built using symbols in Fx and Iy, respectively. In addition, the lan-

guage requires that for each RIS the pattern be either exactly the same Ctrl term
appearing as control term or a term including it.

Terms of sort Set are called set terms; in particular, set terms of the form
{-u-} are extensional set terms, whereas set terms of the form {-:-|- e -} are
RIS terms.

Definition 6 (Sorts of predicate symbols). The sorts of the predicate sym-
bols defined in II are as follows:

- =g - : Set x Set — Bool
- E€g - : X x Set — Bool
=y - : X x X — Bool
set,isX : Set UX — Bool

Definition 7 (RZS-constraints). A RZS-constraint is any atomic predicate
formed by symbols in Ils, provided their parameters are of the proper sort ac-
cording to Definition 4. The set of RZS-constraints is denoted by Crzs.

Definition 8 (RZS-formulas). The set of RZS-formulas, denoted by Przs,
s given by the following grammar.

Przs == true | Crzs | "Crzs | Przs N Pris | Przs V Przs | Px

where Crzs represents any element belonging to the set of RZS-constraints and
Py represents any element of the set of X -formulas.

If 7 is an infix symbol, then —7 is written as #. For example, — - € - becomes

s



A.2 Semantics

Symbols in X'z 7s are interpreted according to the interpretation structure R =
(D, (-)®), where D and (-)® are defined as follows.

Definition 9 (Interpretation domain). The interpretation domain D is par-
titioned as D = Dset U Dy where:

— Dset: the collection of all finite sets built from elements in Dx
— Dx: a collection of any other objects (not in Dse ).

Definition 10 (Interpretation function). The interpretation function (-)®
for symbols in Xrzs is defined as follows:

— Each sort S € {X,Set} is mapped to the domain Ds.

— R coincides with Ly for symbols in Fx and Iy .

— The constant and function symbols in Fs are interpreted as follows:
e () is interpreted as the empty set (;
o {zu A} is interpreted as the set {x™} U AR;

e Let v be a vector of free variables and x1,...,x, all the variables oc-
curring in term c, then {c: D | F(c,v) ® P(c,v)} is interpreted as the
set

{y:321,...,20(c € DR AFR(c,v) Ny =x PR(c,v))}.

— The predicate symbols in Ils are interpreted as follows:
o © =g y is interpreted as ™ = y*, where = is the identity relation in
Dset;
oz €5 A is interpreted as x™* € AR, where € is the set membership
relation in Dset;
o isX(z) is interpreted as ™ € Dx;
e set(x) is interpreted as x™° € Dset.

A.3 Sample instances of X

In this section we briefly show how the language Lr7s is completed by consid-
ering two specific instances of X.

Integer arithmetic. Let us assume Fxy is partitioned as Z U Fy, where Z
is the denumerable set of constants representing the integer numbers, i.e. Z =
{0,—1,1,-2,2,...}, and Fz contains the arithmetic operators + and * over in-
teger numbers. ITy contains the predicate symbols =7 and <. The interpretation
domain is the set of integer numbers Z. =y is interpreted as the equality in Z,
while < in interpreted as the ordering relation “less than or equal to” in Z.

A Z-term is any linear expression, i.e. co + X c; * x; where ¢; are con-
stants and x; variables. A Z-constraint is any atomic predicate formed by sym-
bols in ITy, while a Z-formula is a conjunction of either positive or negative
Z-constraints. Moreover we assume there is a complete solver, SATy, for Z-
formulas.



Ezample 8. The following is an admissible Z-formula equaling a RIS to an ex-
tensional set:

{‘T:[_272] |x7é005*x} = {_107_575710}
O

Other function symbols can be added to Fx provided the decision procedure
is extended accordingly. For example we can add the binary function symbol
(+,+), which is used to construct ordered pairs: (t,u), where t and u are Z-terms,
is interpreted as the pair with components ¢ and u. The notions of Z-constraint
and Z-formula remain unchanged.

Ezample 9. When ordered pairs are added to Ly, the RIS can be used to define
partial functions. For example, when Ly is the language of integer arithmetic
considered in this section, the following RIS represents a linear function defined
over some underspecified domain D:

Linl={z:De(x,3xx—4)}

while the following is another linear function defined in the same domain D:
Lin2={z:De(z,z+1)}

And set membership can be used to compute their point-wise composition:

(z,y) € Linl A (y,z) € Lin2

CLP(SET). The second instance of X is the theory of hereditarily finite hybrid
sets implemented in CLP(SET), as defined in [9] and further extended in [6].

The set of function symbols Fx is partitioned as {0, {- ux -}, [,/ ]JUZ U
F7UFy, where Z is the set of integer constants as in the theory above, Fz is the
set of function symbols {+, —, %, div, mod} representing operations over integer
numbers, and Fy is a (possibly empty) set of user-defined constant and function
symbols. [a,b], a,b € Z represents the interval of integers [a,b]. The intuitive
semantics of l3; and {-uy -} is the same as ) and {-u-} in Lrzs, respectively. In
particular, {zuy A} represents the set {z} U A. Differently from Lzzs, however,
set elements can be either finite sets or non-set elements of any sort.

The set of predicate symbols ITy is the set {=4, €4, un, ||, <, size, sety, integer}.
We will write symbols (3, {-us -}, =3 etc. without the subscript whenever there
is no confusion. The intuitive semantics of these symbols is the following: = and
in are interpreted as the equality and the membership relations, respectively; un
represents the union relation: un(S7, S2,S3) holds if and only if S3 = S; U Ss; ||
represents the disjoint relationship between two sets: S7 || Sz holds if and only if
S1NSe = 0; size represents set cardinality: size(S, n) holds if and only if n = |S];
< represents the comparison relation “less or equal” over Z; set(t) and integer(t)
hold if and only if ¢ is a term denoting a set and an integer number, respectively.



CLP(SET )-terms (resp., CLP(SET )-constraints) are the terms (resp., atomic
predicates) built from symbols in Fy (resp., Ilx) respecting the sorts, in the
usual way. A CLP(SET )-formula is a conjunction of either positive or negative
CLP(SET)-constraints.

CLP(SET) is endowed with a constraint solver, called SAT sg7, which is
proved to be a decision procedure for CLP(SET )-formulas, provided each integer
variable occurring in the input formula has a finite domain [a, b] associated with
it.

As CLP(SET) has been extended to deal with some integer arithmetic for-
mulas (essentially by using the CLP(FD) solver), it can safely deal with all the
integer arithmetic examples given above.

Ezample 10. The following are three examples of RIS involving CLP(SET)-
formulas.

The first example is a formula stating the equality between a RIS computing
all the subsets of cardinality 2 of a given set and an extensional set:

{z: {{a,c},b,{d}} | size(x,2)} = {{a, c}}

Note that we use the same external notation for both Lzrzs set terms and
CLP(SET) set terms. However, which kind of set terms we are actually referring
to is automatically inferred from the context where the terms occur.

The second example shows a function that maps all integer elements of a set
E to their successors, filtering out all the non-integer elements in E (we assume
(,) € Fy:

{y : E | integer(y) o (y,y + 1)}

The last example is a formula using classical set operators to prove set-
theoretical properties:

inters(A,B,CYAND={z: A| X eB}AncAAneBAnED

where inters(A, B,C) is defined in CLP(SET) in terms of the primitive con-
straints as follows: un(Ny, C, A) A un(Nz,C, B) ANy || N2, Ny and N3 new fresh
variables. This formula is (correctly) proved by SATrzs to be false.

B Rewrite rules for =, #, € and ¢

This section lists all the Lrzs rewrite rules for =, #, € and ¢, except those given
in Sect. 3.2. Many of the rules listed in this appendix are borrowed directly from
[9].

We adopt the following notational conventions: t,u (possibly subscripted)
stand for any terms of sort X; A, B, C and D stand for any set term (i.e., either
a variable of sort Set, or (), or {x u A}, or a RIS); D and E represent either
variables of sort Set or variable-RIS; X, N are variables of sort Set, while x is
a variable of sort X. Variables appearing in the right-hand side but not in the



left-hand side are assumed to be new, fresh variables. Besides, recall that: a) the
rules are given for RIS whose domain is not another RIS (see Appendix B.1 for
further details); b) the control term of RIS terms is omitted and it is assumed to
be wvariable x in all cases (see Appendix B.2 for further details); ¢) F, G, P and
Q are shorthands for F(x,v), P(x,v), G(x,v) and Q(z,v), respectively, where
v is a vector of free variables; and d) we use = and € in place of =y and €y
whenever it is clear from the context.

FEquality
0 =0 — true (=6)
X =X — true (=7)
If A is not a variable:
A=X S X=A4A (=s)
If X € vars(to,...,tn): (=9)
X ={to,...,thn u A} — false (=10)

If rules =19 and B do not apply:
X = A — substitute X by A in the rest of the formula (=11)

If X ¢ vars(to, ..., tn):

X:{to,...,tnuX}—)X:{to,...,tnuN} (:12)
{tuAd} =0 — false (=13)
{tuA} ={uuB} —

t=uNA={uuB}Vt=uA{uuvA}=DB (=14)

Vi=uANA=BVA={uuN}A{tuN} =B

{to, .- ytmu X} ={ug,...,unu X} —
(to=uj A{t1,...,tmu X} ={uo, ..., uj—1,uj41,..., un u X}
Vitg=u; AMto,. ., tmu X} ={uo,...,uj—1,Uj41,.. ., un u X} (=15)
Vitg=u; AMt1,...,tmu X} ={ug,...,upu X}
VX ={touN}A{ts,...,tmu N} ={ug,...,unu N})

(X |FeP}={yuX} —
X ={duE}AF(d,v) ANy = P(d,v) (=16)
AN{E|FeP}=N



Inequality

0 #£ 0 — false
X #£ X — false

If A is not a variable
A#X — X #£A

If X cwvars(ty,...,ty):
X #{t1,...,th u A} — true

If X ¢ vars(ty,..., ty):
X £{ty, .. touX}— (¢ XV

DA {tuA}or {tuA} =0 — true
{tuA} # {uuv B} —

(ye{tvAiny¢{uuBh)V(y ¢ {tuA} Ay e{uuB})

If D is not 0:
(D|FoP}#A—

(ye{D|FePtAyg A)V(y¢{D|FeP}Ayc A

Set membership

t e — false
te{uvA} —t=uvte A

teX — X ={tuN}

te{D|FeP} —deDAF(dv)At=P(dv)

te{{duD} | FeP} —

~-~\/tn¢X)

F(d,v)Ante {P(d,v)u{D|FeP}}

V-F(dv)Ate{D]|FeP}

(#8)



Not set membership

t ¢ — true (¢1)
tg{uuvA} —t#+untd¢ A (¢2)
If X € vars(t):

t¢ X — true (¢3)

t¢{{duD} | FeP} —
F(d,v) At #x P(d,v) At ¢ {D| F e P} (¢4)
VAF(dv) At g {D|FeP)

Procedure remove_neq

Let R; be variable-RIS and let Y; be their innermost domain variables; let P
be either X = Ry, or Ry =), or Ry = Ry, or t ¢ R;. Then, remove_neq applies
the following rewrite rule:

PAY;#A— (PAzeY;Az ¢ A)V(PAze ANz ¢Y)) (#9)

Remarks

— In all rules, @ denotes either the empty set or a RIS term whose domain is
the empty set.

— Rule (=16) is motivated by the observation that the analogous rule (=4) of
Figure 1 does not work satisfactory (it loops forever) whenever the constraint
has the form {X | FeP} = {yuX} where the same variable X occurs in both
sides of the equation. As an example, the rewriting of the simple constraint
{z : Dex} = {1uD} does not terminate, though it has the obvious solution
D = {1u N}, N a new fresh variable. Thus, rule (=14) is introduced to
deal with this special case. It is exactly the same as rule (=4), but the RIS
{E | FeP} in the last conjunct is set equal to the new variable N. Note that
rule (=14) is in a sense the analogous of rule (B) which deals with equations
of the form X = {to,...,t, u X} where the same variable X occurs in both
sides of the equation.

— The set part of an extensional set can be also a RIS term. All rules listed
in this section and in Sect. 3.2 still continue to work also in these cases. In
particular, rule (B) deals also with the constraint

X ={to,....tnu{X | FeP}}

where the domain of the RIS is the same variable occurring in the left-hand
side of the equality. This constraint is rewritten to

X:{to,...,tnl_l{le.P}}

where N is a new fresh variable. For example, the equality X = {a,bu {z :
X | true @ x}} is rewritten to X = {a,bu {x : N | true e 2}}. Note that, if
N =0, then X = {a,b}, which is clearly a solution of the given constraint.



— The fact that X # {D | F e P} is not considered in solved form as it is
X # S when S is not a RIS term, is motivated by the observation that,
while determining the satisfiability of X # S is immediate, the satisfiability
of X # {D | F ¢ P} depends on D, F and P, and hence requires further
simplification of the constraint.

— In Algorithm 1 (shown in Sect. 3), SATrzs calls SAT x only once, at the
end of the computation. SAT y is called by passing it the whole collection
of X-constraints previously accumulated in the current formula @ by the
repeated applications of the rewrite rules within STEP. Alternatively, and
more efficiently, SAT x could be called repeatedly in the inner loop of the
solver, just after the STEP procedure has been called. This would allow
possible inconsistencies to be detected as soon as possible instead of being
deferred to the last step of the decision procedure. For example, if ¢ contains
the equation {1} = {2}, which is rewritten by STEP as 1 =» 2, calling
SAT » just after STEP ends allows the solver to immediately detect that @ is
unsatisfiable. Similarly, variable substitutions entailed by equalities possibly
returned by SAT » are propagated to the whole formula @ as soon as possible.

B.1 Nested RIS domains

According to the syntax of Lrzs (Appendix A), RIS domains can be a nested
chain of RIS, ending in a variable or an extensional set. On the other hand, the
rewrite rules presented in Sect. 3.2 and Appendix B apply only to RIS whose
domain is not another RIS. We do so because the rewrite rules for the most
general case are more complex, thus they would hinder understanding of the
decision procedure.

These more general rules, however, can be easily generated from the rules for
the simpler case. In this section we show how this generalization can be done by
showing how one of the rules presented in Sect. 3.2, namely rule (=3), is adapted
to deal with the more general case. All other rewrite rules can be generalized in
the same way.

Consider a non-variable RIS whose domain is a nested chain of RIS where
the innermost domain is an extensional set. The generalization of rule (=3) to a
RIS of this form is a follows:

{{...{{duD}|FLeP}...|Fp_10Py 1} |F,eP,} =B —

{...{{duD} | FLeP}...|Fpp_10Pp_1}={nuN}

A (F(n,v) N{Pnp(n,v)u{N | F,eP,}} =B
V-F(n,v)A{N | F,eP,}=B)

where n and N are two new variables. Note that the first element n of the domain
of the outermost RIS is obtained by the recursive application of the same rules
for equality, over the domain itself (possibly another RIS) and the extensional
set {nuN}. Note also that when m = 1 this rule boils down to rule (=3) of Fig.
1.



B.2 Control Terms

As with nested RIS domains, we preferred not to show the rewrite rules when
the control term is not a variable, as these rules are somewhat more complex
than the others.

When the control term is not a variable then it is an ordered pair of the form
(z,y) where both components are variables. Consider the following RIS:

{(z,y) : {(1,2),55} | F e P}

The problem with this RIS is that (z,y) does not unify with 55, for all x and
y. The semantics of RIS stipulates that 55 must not be considered as a possible
value for F' and P.

As this example shows, it is necessary to consider one more case (i.e. one
more non-deterministic choice) in each rewriting rule. For example, if in rule
(=3) we consider a general control term ¢, and not just a variable, the rule is
split into two rules:

IfceVordeVor (¢c= f(x1,...,2,) and d = f(t1,...,tn)):
{c:{duD} | FeP}=B—

c=dANF(c,v) N{P(c,v)u{c:D| FeP}}=DB
Ve=dAN-F(e,v)AN{c:D|FeP} =B

Ife= f(xy,...,2n) and d = g(t1,...,ty) and (f Z g or n £ m):
{c:{duD} | FeP}=B—{c:D|FeP}=B

Note how the second rule simply skips d.

C Details of the Comparison with ProB

In this section we give some further details about the empirical comparison
between {log} and ProB described in Sect. 6.2.

The following table lists the 64 formulas used for the comparison. In each
row it is depicted the {log} formula followed by the corresponding ProB formula.
Column RsSLT is the result returned by each tool, where S means sat, U means
unsat, T means timeout and W means warning. Recall that the expected answer
always coincides with the answer returned by {log}.

Experiments were performed on a Latitude E7470 (06DC) with a 4 core In-
tel(R) Core™ i7-6600U CPU at 2.60GHz with 8 Gb of main memory, running
Linux Ubuntu 16.04.1 (xenial) 64-bit with kernel 4.4.0-38-generic. {log} 4.9.4
over SWI-Prolog (multi-threaded, 64 bits, version 7.2.3) and ProB 1.6.0-SR1
(from the command-line interface, i.e. probcli) were used during the experi-
ments. A 10 seconds timeout was set as the maximum time that the tools can
spend to give an answer for each formula.

The translation from {log} into ProB was made manually. However, the
translation was made as to preserve the similarity of both formulas as much as



possible. Given that {log}’s sets are untyped but ProB’s are not, they usually
were translated as sets of type STRING. In particular, {log}’s constants (e.g, a)
were translated as ProB’s strings (e.g, "a"). The exception are sets of numbers
and integer constants. {log}’s patterns were translated as equalities by intro-
ducing an existentially quantified variable. The u operator was translated as set
union.

N FORMULA RsLT
{log} inters(A,B,C) & C neq ris(X in A, [], X in B) U
PROB__ A:POW(STRING) & B:POW(STRING) & (A /\ B) /= {x | x:A & x:B}
{log} un(A,B,C) & A neq ris(X in C,[],X in A)
PROB__ A:POW(STRING) & B:POW(STRING) & C:POW(STRING) & A \/ B = C & A /= {x | x:C & x:A}
{log} un(A,B,C) & C neq ris(X in C,[],X in A or X in B)
PROB__ A:POW(STRING) & B:POW(STRING) & (A \/ B) /= {x | x:A or x:B}
{log} subset(A,B) & A neq ris(X in A, [],X in B)
PROB  A:POW(STRING) & B:POW(STRING) & A <: B & A /= {x | x:A & x:B}
{log} un(A,B,C) & diff(A,B,D) & D neq ris(X in C, [J, X in A & X nin B)
PROB  A:POW(STRING) & B:POW(STRING) & C:POW(STRING) & D:POW(STRING) &
A\/B=C&A-B=D&D/={x | x:C&x:A&x/:B}
{log} un(A,B,C) & inters(A,B,D) & D neq ris(X in C, [], X in A & X in B)
PROB  A:POW(STRING) & B:POW(STRING) & C:POW(STRING) & D:POW(STRING) &
A\V/B=C&A/\B=D&D/={x | x:C& x:A & x:B}
{log} ris(X in U,[],(X in A or X in B) & (X in A or X in C)) neq ris(X in U,[], X in A or (X in B & X in C))
PROB  A:POW(STRING) & B:POW(STRING) & C:POW(STRING) &
{x | (x:A or x:B) & (x:A or x:C)} /= {x | x:A or (x:B & x:C)}
{log} ris(Xin U,[J,(X in A & X in B) or (X in A & X in C)) neq ris(X in U,[J, X in A & (X in B or X in C))
PROB  A:POW(STRING) & B:POW(STRING) & C:POW(STRING) &
{x | (x:A & x:B) or (x:A & x:C)} /= {x | x:A & (x:B or x:0)}
{log} ris(X in D, [1,X50,X+1) = {2,3}
PROB  D:POW(INTEGER) & {y | #(x).(y=x+1 & x:D & x > 0)} = {2,3}
10 {log} ris(X in D, [],size(X,2),X) = {{a,c},{a,b}}
PROB__ D:POW(POW(STRING)) & {x | x:D & card(x)=2} = {{"a","c"},{"a","b"}}
{log} ris(X in {a,c},[],true, [X]) = {[Y],[z],[V]}
PRrROB  v:STRING & w:STRING & z:STRING & {y | #(x).(x:{"a","c"} & [x]=y)} = {[v], [w], [2]}
12 {log} ris(X in {a,b/D},],X neq b,X) = {c/R}
PROB__ D:POW(STRING) & E:POW(STRING) & R:POW(STRING) & E = {"a","b"} \/ D & {x | x:E & x /= "b"} = {"c"} \/ R
{log} ris(X in {a,b/D},[],X neq b,X) = {a} & D={a}
PrROB  D:POW(STRING) & E:POW(STRING) & E = {"a","b"} \/ D & {x | x:E & x /= "b"} = {"a"} & D = {"a"}
14 {log} ris(X in {1,2},[],X>0,X+1) = ris(X in D, [],X>0,X-1)
PROB  D:POW(INTEGER) & {y | #(x).(x:{1,2} & x >0 & y = x+1)} = {y | #x).(x:D & x > 0 & y = x-1)}
{log} {a} = {a/ris(X in {a},[],true,X)}
ProB  {"a"} = {"a"} \/ {x | x:{"a"}}
16 {log) {b,ar = {a/ris(X in {b,a/N},[],X neq a,X)} & N={b}
PrOB__ N:POW(STRING) & {"b","a"} = {"a"} \/ {x | x:({"b","a"} \/ W) & x /= "a"} & N = {"b"}
17 {log} ris(X in {a/D},[],true,X) = D
PROB  D:POW(STRING) & {x | x:({"a"} \/ D)} =D
18 {log} {a/ris(X in D,[],true,X)} =D & D = {a,b}
PROB__ D:POW(STRING) & ({"a"} \/ {x | x:D}) =D & D = {"a","b"}
19 {log} ris(X in D, [],true,X) neq D & set(D)
PROB__ D:POW(STRING) & {x | x:D} /= D
20 {log} ris(X in N,[],true,X) = {a,b/N}
PROB__ N:POW(STRING) & {x | x:N} = {"a","b"} \/ N
21 {log} ris(X in N, (J,X neq a,X) = {a,b/N}
PROB__ N:POW(STRING) & {x | x:N & x /= "a"} = {"a","b"} \/ N
22 {log} {10000/U} = ris(Y in {100/U}, [],true,Y)
PROB  x:NAT & U:POW(NAT) & {10000} \/ U = {y | y:({100} \/ W)}
23 {log} {a/ris(X in N, [],true,X)} = {b/N}
PROB__ N:POW(STRING) & {"a"} \/ {x | x:N} = {"b"} \/ N
24 {log} ris(X in int(0,4),[Y],0 is X mod 2,Y,Y is X*X) = {4,0,16}
PROB  {y | #(x).(x:0..4 £ 0 = xmod 2 & y = x*xx)} = {4,0,16}
25 {log} R = {[a,1],[b,3],[c,4]} & ris(X in {a,c},[Y],[X,Y] in R, [X,Y]) = {[a,1],[c,4]}
ProB R = {("a",1),("b",3), ("c", )} & {Gx,y) | x:{"a","c"} & (x,y):R} = {("a",1),("c",4)}
26 {log} [5,W] in ris(X in D, [Y],true, [X,Y],Y is X*X)
PROB  D:POW(INTEGER) & (5,w):{(x,y) | x:D & y=x+x}
27 {log} [W,36] in ris(X in D, [Y],true, [X,Y],Y is X*X)
PROB  D:POW(INTEGER) & (w,36):{(x,y) | x:D & y=x*x}
{log} Sqrs is ris(X in int(1,100), [Y],true, [X,Y],Y is X*X)
PrOB  Sgrs = {(x,y) | x:1..100 & y=x*x}
29 {log} N=20& N > 1 & MD is N div 2 & ris(X in int(2,MD),[], O is N mod X,X) = {}

o

N

w

N

o

(=}

-

©

©|

1

=

1

(5

1

=

2

0|

aclaclaclccaladnunacnannunnnnunnn<ndnscsocannsunnnnsonodonnsusas oS cs o gscscscas

PROB n =20&n>1&md=n/2&{x | x:2..nd & 0 = n mod x} = {}

30 {log} N =101 & N > 1 & MD is N div 2 & ris(X in int(2,MD),[], O is N mod X,X) = {}
PROB n =101 &n > 1 &md =n/2 & {x | x:2..md & 0 = n mod x} = {}

31 {log} X in ris(Y in U, [],Y neq X,Y)
PrOB  U:POW(STRING) & x:{y | y:U & y /= x}

32 {log} X in ris(Y in U,[],Y nin U,Y)
PROB  U:POW(STRING) & x:{y | y:U & y/:U}

33 {log} X in U & X nin ris(Y in U,[],true,Y) & set(U)
PrROB  U:POW(STRING) & x:U & x/:{y | y:U}

34 {log} X in ris(Y in U,[J,Y > 0 & Y < 10,Y) & X in ris(Y in U,[J,Y =< 0 or Y >= 10,Y)
PROB  U:POW(INTEGER) & x:{y | y:U & y>0 & y<10} & x:{y | y:U & y<=0 or y>=10}

35 {log} X in ris(Y in U,[1,Y > 0 & Y < 10,Y) & X nin ris(Y in U,[1,Y > 0 & Y < 10,Y)
PROB  U:POW(INTEGER) & x:{y | y:U & y>0 & y<10} & x/:{y | y:U & y>0 & y<10}




36 {log) X in ris(Y in U,[],Y>=0 & Y¥<10,Y) & X in ris(Y in U, [],Y=<0 or Y>=10,Y)
PROB  U:POW(INTEGER) & x:{y | y:U & y>=0 & y<10} & x:{y | y:U & y<=0 & y>=10}
37 {log} ris(X in D, [],X neq b,X) = {} & D neq S & S={a}

PROB__ D:POW(STRING) & S:POW(STRING) & {x | x:D & x /= "b"} = {} & D /= S & S={"a"
38 {log} ris(X in D,[],X neq b,X) = {} & D neq {} & b nin D
PROB__ D:POW(STRING) & {x | x:D & x /= "b"} = {} & D /= {} & "b"/:D
{log} un(A,B,D) & disj(A,C) & D=C & ris(X in A, [],true,X) neq {}
PROB  A:POW(STRING) & B:POW(STRING) & C:POW(STRING) & D:POW(STRING) &
AN/ B=D&A/\C={}&D=C&{x | x:A} /= {}
40 {log} ris(X in {a}, [],true,X) = A & un(A,B,D) & disj(A,C) & D=C
PROB  A:POW(STRING) & B:POW(STRING) & C:POW(STRING) & D:POW(STRING) &
{x | x:{"a"}} =A & A\/B=D&A/\C=A{}&D=C
41 {log} N=20& N> 1 & MD is N div 2 & ris(X in int(2,MD),[], O is N mod X,X) neq <}
PROB n=20&n>1&md=n/2& {x | x:2..md & 0 = n mod x} /= {}
42 {log} ris(X in {a/D}, [],true,X) neq D
PROB__ D:POW(STRING) & {x | x:({"a"} \/ D)} /=D
43 {log} ris(X in {a,b/D},[],X neq b,X) neq {a} & D={a}
PROB__ D:POW(STRING) & E:POW(STRING) & E = {"a","b"} \/ D & {x | x:E & x /= "b"} /= {"a"} & D = {"a"}
44 {log} X nin ris(Y in U, [1,Y nin U,Y)
PROB__ U:POW(STRING) & x/:{y | y:U & y/:U}
45 {log} X nin ris(Y in U, [J,Y neq X,Y)
PROB__U:POW(STRING) & x/:{y | y:U & y /= x}
46 {log} un(A,B,C) £ Znin C & Z in ris(X in C, [J, X in A & X in B)
PROB  A:POW(STRING) & B:POW(STRING) & C:POW(STRING) & A \/ B = C & Z/:C & Z:{x | x:C & x:A & x:B}
47 {log} diff(A,B,C) & Z in C & Z nin ris(X in C, [J,X in A & X nin B)
PROB__ A:POW(STRING) & B:POW(STRING) & C:POW(STRING) & A - B = C & Z:C & Z/:{x | x:C & x:A & x /: B}
{log} ris(X in D,[],X neq b,X) neq {} & D neq {} & b nin D
PROB  D:POW(STRING) & {x | x:D & x /= "b"} /= {} & D /= {} & "b"/:D
49 {log} Z in ris(X in D, [],X neq b,X) & D neq S & S={a}
PROB__ D:POW(STRING) & S:POW(STRING) & Z:{x | x:D & x /= "b"} & D /= S & S={"a"}
50 {log} Z nin ris(X in D, [],X neq b,X) & D neq S & S={a}
PROB__ D:POW(STRING) & S:POW(STRING) & Z/:{x | x:D & x /= "b"} & D /= S & S={"a"
51 {log} ris(X in D,[],X neq b,X) = {} & a in D & set(D)
ProB  D:POW(STRING) & {x | x:D & x /= "b"} = {} & "a":D
{log} ris(X in D,[],X neq b,X) neq {} & b in D & size(D,1)
PROB  D:POW(STRING) & {x | x:D & x /= "b"} /= {} & "b":D & card(D)=1
53 {log} X nin ris(Y in U, [],true,Y) & U = {X/V}
PROB  U:POW(STRING) & V:POW(STRING) & x/:{y | y:U} & U = {x} \/ V
54 {log} X nin ris(Y in U,[],true,Y) & X nin U
PROB  U:POW(STRING) & x/:{y | y:U} & x/:U
55 {log} dom(E,int(0,10)) & pfun(E) & apply(E,0,1) & int(1,10) = ris(I in int(1,10),[I1,81,8],
[11,81] in E & [1,8] in E,I,11 is I - 1 & S is S1 * I) & apply(E,10,F)
PROB E: 0..N +-> NAT & F:NAT & E(0) = 1 & 1..10 = {i | i:1..10 & E(i) = i*E(i-1)} & E(10) = F
{log} ris(X in {a,b/D},[],X neq b,X) = {c,b}
PROB__ D:POW(STRING) & E:POW(STRING) & E = {"a","b"} \/ D & {x | x:E & x /= "b"} = {"c","b"}
57 {log} ris(X in {a/D},[],true,X) = E & a nin E
PrROB  D:POW(STRING) & {x | x:({"a"} \/ D)} =E & "a" /: E
58 {log} ris(X in N, [],true,X) = {a,b/M} & a nin N
PROB__ N:POW(STRING) & M:POW(STRING) & {x | x:N} = {"a","b"} \/ M & "a"/:N
59 {log} {a/tis(X in N,[],true,X)} = {b/N} & a nin N
PROB _ N:POW(STRING) & {"a"} \/ {x | x:N} = {"b"} \/ N & "a" /: N
60 {log} {Xr = ris(Y in U,[,Y neq X,Y)
PROB__U:POW(STRING) & {x} = {y | y:U &y /= x}
61 {log} X nin ris(Y in U, [1,Y = X,Y) & ssubset({X},0)
PROB  U:POW(STRING) & x/:{y | y:U & y=x} & {x} <<: U
62 {log} X nin ris(Y in U, [, Y = X,Y) & un({X,Z},M,0) & X neq Z
PROB__ U:POW(STRING) & M:POW(STRING) & x/:{y | y:U & y=x} & U = {x,z} \/ M& z /= x
{log} ris(X in D,[1,X neq b,X) = {} & D neq {} & b nin D
PROB__ D:POW(STRING) & {x | x:D & x /= "b"} = {} & D /=
64 {log} b in ris(X in D, [],X nin {b/K},X) & D = {a/s}
PROB__ D:POW(STRING) & S:POW(STRING) & K:POW(STRING) & "b":{x | x:D & x /: {"b"} \/ K} & D = {"a"} \/ S
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Each {log} formula was run within the following Prolog program:

use_module(library(dialect/sicstus/timeout)) .
consult(’setlog494-4’).
set_prolog_flag(toplevel_print_options,
[quoted(true), portray(true)l).
setlog(<FORMULA>, 2500, _CONSTR, _RES).

where <FORMULA> is replaced by each formula and 2500 is one quarter of the
time (in milliseconds) that {log} spends in trying to solve the formula (i.e. the
total time is 10 seconds). Each of these programs was run from the command
line as follows:

prolog -q <  <PROG>



In turn each ProB formula was run with the following command:

probcli.sh -p SMT TRUE
—-p BOOL_AS_PREDICATE TRUE
-p CLPFD TRUE
-p MAXINT 2147483647 -p MININT -2147483647
-p TIME_OUT 2000
-eval_file  <PROG>

We used a large integer interval because, if not indicated otherwise, {log}
will use all integers to find a solution for a goal (although this is seldom done
as it tries to reason about integer arithmetic as implemented by the CLP(FD)
solver [4]). The timeout was set to 10 seconds as in {log} (ProB multiplies by
five the timeout given in the command line).

Finally, both sets of commands were executed from two simple bash scripts.
In order to compute the execution times of each run we simply took the time
right before launching each script and the time right after it has finished.

D Detailed Proofs

This section contains detailed proofs of the theorems stated in the main text,
along with some results that justify some of our claims. We start with the jus-
tification that RIS can be used to encode restricted universal quantifiers.

Proposition 1.

D={z:D|F}&Ve(xe D = F)

Proof. =)
xeD
= xze€{z:D|F} [by H]
= € DAF(x) [by RIS def.]

<=) By double inclusion. {z : D | F} C D is trivial from the definition of RIS.
Now D C{z:D| F}:

reD

— F(z) by HJ
= x € DAF(x)

= ze{z:D|F} [by RIS def.]

O

In turn, the following proposition supports the claim that many parameters
can be avoided by a convenient control term.



Proposition 2. If n is a vector of existentially quantified variables declared
inside the RIS and v is a vector of free variables, then:

S={z:Dy| F(z,v,n) Ann € Dy @ P(x,v,7)}
& S={(z,n): D1 x Dy | F((z,n),v) e P((x,1),v)}

Proof.
:})
acS
< dz,n(x € DAN € Dy A F(z,v,n) A P(z,v,n) = [by H; RIS def.]
< dz,n((z,n) € D x Dy A F(z,v,n) A P(z,v,n) = ) [by x def)]
< a€{(x,n): Dy X Dy | F((x,1),v) e P((x,1n),v)} [by RIS def.]
<) Similar to the previous case. O

The next subsections provide the proofs of the theorems stated in the main
text. All these proofs concern the base Lrzs language, not the possible exten-
sions discussed in Sect. 5 nor those presented in Appendixes B.1 and B.2.

D.1 Satisfiability of the solved form (Theorem 1)

Basically, the proof of this theorem uses the fact that, given a RZS-formula &
verifying the conditions of the theorem, it is possible to guarantee the existence
of a successful assignment of values to all variables of @ using pure sets only, with
the only exception of the variables X occurring in terms of the form X = u—
which are obviously already assigned. In particular, the solved forms involving
variable RIS verify the following:

—t¢{X, | F(z,v)e P(z,v)}
—{X; | F(z,v) e P(x, v%{ =

0
— {X1| F(z,v) e P(z,v)} = {X5 | G(z,v) e Q(z,v)}

are solved with X7 = X = (), where X7 and X} are the innermost variables of
the domains of the RIS.

In the proof we use the auxiliary function find:

’ ift=0,2+#0
, IO ift=x
Jind@ =0 040 e find(e, )} it =1ty

{14+ n:n¢€ findlz,y)}U find(z,s) ift={yus},s#0
which returns the set of ‘depths’ at which a given element x occurs in the set t.

Proof. Consider a RZS-formula @. The proof is basically the construction of a
mapping for the variables of @ into the interpretation domain Dse. The con-
struction is divided into two parts by dividing @ as @_ A @,., where &_ is a



conjunction of equalities whose lL.h.s is a variable, and @, is the rest of @. In
the first part @_ is not considered. A solution for @, is computed by looking for
valuations® of the form

X {0 1)
——
n;

fulfilling all # and ¢ constraints. We will briefly refer to the second component
of (1) as {#}™. In particular, the (innermost) variables appearing as RIS do-
mains are mapped onto @ (n; = 0) and the numbers n; for the other variables
are computed choosing one possible solution of a system of integer equations
and disequations, that trivially admits solutions. Such system is obtained by
analyzing the ‘depth’ of the occurrences of the variables in the terms. Then, all
the variables occurring in the RZS-formula @ only in r.h.s. of equations of &_
are bound to () and the mappings for the variables of the L.h.s. are bound to the
uniquely induced valuation.

In detail, let X3,...,X,, be all the variables occurring in @, save those oc-
curring in the Lh.s. of equalities, and let X;,..., X}, h < m, be those variables
occurring as domains of RIS terms. Let n, ..., n,, be auxiliary variables ranging

over N. We build the system Syst as follows:

— For all ¢+ < h, add the equation n; = 0.
— For all h < i < m, add the following disequations:

n; #n; +c VX; #tin @ and c € find(X;,t)
n; #c VX; #tin @ and t = {(}°
n,#n;+c+ 1Vt ¢ X, in ¢ and c € find(X;,t)
n; #c+1 Vit ¢ X; in @ and ¢t = {0}

If m = h, then n; = 0 for all 4 = 1,...,m is the unique solution of Syst.
Otherwise, it is easy to observe that Syst admits infinitely many solutions. Let:

—{n1=0,...,n5 =0,np41 = Bht1,-..,Nm = Ty} be one arbitrarily chosen
solution of Syst.

— 6 be the valuation such that §(X;) = {0} for all : < m.

— Y1,..., Yy beall the variables of @ which appear only in the Lh.s. of equalities
of the form Y; = ¢;.

— o be the valuation such that o(Y;) = 6(t;).

We prove that R |= @[fo], by case analysis on the form of the literals in &:

— Y, =t; It is satisfied, since o(Y;) has been defined as a ground term and
equal to 6(t;).

8 A waluation o of a X-formula ¢ is an assignment of values from the interpretation
domain Dx to the free variables of ¢ which respects the sorts of the variables.



— X; #t Iftisaground term, then we have two cases: if ¢ is not of the form
{0}¢, then it is immediate that 6(X;) # ¢; if t is of the form {0}, for some
¢, then we have n; # ¢, by construction, and hence 0(X;) # t.
If ¢ is not ground, then if 8(X;) = 6(t), then there exists a variable X; in ¢
such that n; = 7 + ¢ for some ¢ € find(X},t); this cannot be the case since
we started from a solution of Syst.

— t¢ X; Similar to the case above.

— {X;| F(z,v)eP(z,v)} =0 This means that n; = 0 and 6(X;) = 6(X,) =
0(Xy) = 0.

—{X; | F(z,v) e P(z,v)} = {X; | G(z,v) e Q(z,v)} This means that
fi; =n; =0 and 0(X;) = 0(X,) =

D.2 Satisfiability of #s A $x (Theorem 2)

The satisfiability of @y is determined by SAT . Since SAT y is a decision pro-
cedure for X-formulas, if @y is unsatisfiable, then SAT » returns false; hence, ®
is unsatisfiable. If @4 is satisfiable, then SAT x rewrites @y into an X-formula
in a simplified form which is guaranteed to be satisfiable w.r.t. the interpretation
structure of Ly. This rewriting, however, may cause variables in @y, i.e. vari-
ables of sort X, to get values for which the formula is satisfied. These variables
can occur in both @y and &s. Given that, at this point, @5 is in solved form,
non-set (free) variables of sort X can only appear in S in case 3; in t and R in
case 4; and in R and U in cases 6 and 7 of Definition 1. Literals based on #
and ¢, however, remain in solved form disregarding any value assigned to the
variables in S and ¢. Similarly, RIS R and U remain as variable-RIS disregard-
ing any value assigned to the non-set (free) variables possibly occurring in them;
hence, solved form literals involving them remain in solved form. Hence, @ is
satisfiable.

D.3 Termination of SATrzs (Theorem 3)

First of all, it is worth noting that the requirement that the set of variables
ranging on RZS-terms (i.e. variables of sort Set) and the set of variables ranging
on X-terms (i.e. variables of sort X) are disjoint sets prevents us from creating
recursively defined RIS, which could compromise the finiteness property of the
sets we are dealing with. In fact, a formula such as X = {D | F(X) e P},
where F(X) means that F' contains the variable X, is not an admissible RZS-
constraint, since the outer X should be of sort Set whereas the inner X should
be of sort X (recall that the filter is a X'-formula). Note that, on the contrary, a
formula such as X = {D(X) | F e P} is an admissible formula, and it is suitably
handled by our decision procedure.

Let a rewriting procedure for m be the repeated application to an input RZS-
formula @ of the rewrite rules for a specific RZS-constraint « until either @
becomes false or no rules for 7 apply. Following [9], we begin by proving that
each individual rewriting procedure is locally terminating, that is each call to
such procedures will stop in a finite number of steps. For all the rules inherited



from CLP(SET) we assume the results in [9]. Then we prove local termination
only for the new rules dealing with RIS.

Non-recursive rules (namely, rules (=1), (#s), and (€4)) terminate trivially.
Note that rule (€4) actually generates € y-constraints.

Now consider rules which contain direct recursive calls involving RIS. There
are two cases.

(i) The RIS in the left-hand side of the rule has the form {{duD} | F P}, and
the RIS occurring in the recursive call in the right-hand side is {D | F ¢ P}
(rules (=2), (=3), (¢4)). Observe that the “complexity” of the term D is
strictly smaller than the “complexity” of the term {d u D}, since the latter
has at least one function symbol (namely {-u-}) less than the former. Then,
there is a chain of recursive calls with increasingly smaller RIS domains. This
is enough to guarantee that the chain is finite. At the last call, the domain
of the RIS will be either the empty set or a variable. If it is the empty set,
then the rewriting procedure terminates trivially. If the domain in the last
call is a variable, then we are in cases covered by the next case 7i.

(49) The RIS in the left-hand side of the rule has the form {D | F e P}, with D
a variable. The only recursive rule that deals with RIS of this form is rule
(=4). In this case, however, the left-hand part of the rule contains a term
{yu A} which is rewritten to the “simpler” term A. Thus, the recursive call
chain eventually terminates when A is either the empty set or a variable
(both cases are handled by trivially terminating rules). The only exception
is when A coincides with D. In fact, in this case, by substituting D in the
first equality by {C | F e P} we get the new equality {duC} = {C | F e P},
which has the same form of the initial equality dealt with by rule (=4). To
avoid this cyclic situation we introduce rule (=14).

Local termination of each individual procedure, however, does not guarantee
global termination of SAT rzs, since the different procedures may be dependent
on each other. However, we observe that rewrite rules not involving RIS in their
left-hand sides do not construct any new RIS term in their right-hand sides. They
simply treat RIS terms as any other term. Hence the presence of RIS terms do
not affect their termination, which has been proved in [9]. Hence, it is enough
to consider only the new rules involving RIS terms.

By rule inspection, we can see that all rules for the =-constraint do not
generate any RZS-constraint other than = itself and =y. =xy-constraints are
processed by the separate solver SAT y; hence they cannot cause any loop. The
same happens with rules (€4), (€5) and (¢4). The only rule that generates
constraints different from the constraint it deals with is rule (#g). This rule
rewrites a #-constraint in terms of € and ¢-constraints, on both RIS and non-RIS
terms. When € and ¢-constraints are applied to RIS terms, the involved rules do
not in turn generate #-constraints; thus, no rewriting loop can be created. When
€ and ¢-constraints are applied to non-RIS terms, the involved rules cannot call
rule (#s) recursively since they do not generate RIS terms by themselves; hence
they cannot cause any loop.



D.4 Equisatisfiability (Theorem 4)

The proof of Theorem 4 rests on a series of theorems each of which shows that
the set of solutions of left and right-hand sides of each rewrite rule is the same.

This section contains the detailed proofs on the equisatisfiability of the
rewrite rules involving RIS presented in Sect. 3.2 and Appendix B; the equi-
satisfiability of the remaining rules has been proved elsewhere [9]. Hence, these
proofs use the rules considering that the control expression is a variable and that
the domain of RIS are not other RIS. These proofs can be easily extended to the
more general case.

In the following theorems and proofs, F, G, P and Q are shorthands for
F(z,v), P(z,v), G(z,v) and Q(x,v), respectively. Moreover, note that a set
of the form {P(z,v) : F(z,v)} (where pattern and filter are separated by a
colon (:), instead of a bar (|); and the pattern is before the colon) is a shorthand
for {y : 3z, v(P(x,v) = y A F(x,v))}. That is, the set is written in the classic
notation for intensional sets used in mathematics. Finally, H denotes the current
hypothesis.

P and Q are assumed to be bijective patterns. Recall that all patterns al-
lowed in Lrzs fulfill this condition. The condition on the bijection of patterns
is necessary to prove that rule (=4) is equisatisfiable.

Theorem 5 (Equivalence of rule (=1)).
Vo:{z:0| FeP}=10
Proof. Taking any v we have:
{:0| FeP}
={P(z,v):x € DA F(x,v)}
= {P(z,v) : false N\ F(x,v)}
= {P(x,v) : false}
=0

Lemma 1.
Vdv, D :
{z:{duD} | FeP}={P(d,v) | F(d,v)} U{P(z,v) |z € DA F(z,v)}

Proof. Taking any z, v and D we have:

{z:{duD} | FeP}
={P(z,v) :x € {du D} ANF(z,v)}

={P(z,v): (x=dVz € D)AF(z,v)}

={P(z,v) : (x =dA F(z,v))V(x € DA F(x,v))}

={P(z,v) :x=dAF(z,v)} U{P(z,v) |z € DA F(z,v)}
(d,v)

F(d,v)} U{P(z,v) |z € DA F(z,v)}



Theorem 6 (Equivalence of rule (=,)).
Vd,v, D :
{z:{duD} | FeP} =1
& -F(d,v)AN{z:D|FeP}=10
Proof. Taking any d, v and D and applying Lemma 1 we have:
{z:{duD} | FeP} =10
& {P(d,v) : F(d,v)} U{P(x,v):2 € DAF(x,v)} =10
& {P(d,v): F(d,v)} =0 AN{P(z,v) :x € DA F(z,v)} =10
& -F(d,v)AN{z:D|FeP}=10

Theorem 7 (Equivalence of rule (=3)).

Vdv,D,B :
{z:{duD} | FeP}=DB
<F(d,v) AN{P(d,v)u{x:D|FeP}} =B
VaF(d,v)AN{z:D|FeP} =B
Proof. Taking any d, v, D and B and applying Lemma 1 we have:
{r:{duD} | FeP}=RB
< {P(d,v): F(d,v)} U{P(z,v) :2 € DA F(z,v)} =B
< {P(d,v): F(d,v)}U{z:D|FeP}=RB
Now assume F'(d,v), then:
{P(d,v): F(d,v)}U{x:D|FeP} =B
s {Pd,v)}U{z:D|FeP}=DB
< {P(d,v)u{z:D| FeP}}=B
Now assume —F(d,v), then:
{P(d,v): F(d,v)}U{x:D|FeP} =B
PU{z:D|FeP}=B
{r:D|FeP}=B
which finishes the proof.

Remark 2. Note that in Theorem 7 when B is:



— An extensional set of the form {yu A}, then the equality in the first disjunct
becomes an equality between two extensional sets:

{P(d,v)u{z:D| FeP}}={yuA}

which is solved by the rules described in [9]. In turn, the equality in the
second disjunct becomes an equality between a RIS and an extensional set:

{z:D|FeP}={yuA}

This equality is managed by either rule (=3) itself (if D is not a variable) or
by rule (=4) (if D is a variable).

— A non-variable RIS of the form {z : {e u E} | G @ Q}, then the equality
in the first disjunct becomes an equality between an extensional set and a
non-variable RIS:

{P(d,v)u{z:D|FeP}}={x:{euE}|GeQ}

which is managed again by rule (=3). In turn, the equality in the second
disjunct becomes an equality between a RIS and a non-variable RIS:

{x:D|FeP}t={x:{evE}|GeQ}

which is managed by the same rule once more.
Moreover, note that in this case there can be up to four cases (and thus up
to four solutions) considering all the possible combinations of truth values
of Fand G

— A variable RIS of the form {z : E | G ¢ Q}, then the equality in the first
disjunct becomes an equality between an extensional set and a variable RIS:

{P(d,v)u{z:D|FeP}}={x:E|GeQ}

which is managed by rule (=4). In turn, the equality in the second disjunct
becomes an equality between a RIS and a variable RIS:

{z:D|FeP}={z:E|GeQ}

which is no further processed (if D is a variable) or is processed by rule (=3)
again (if D is not a variable).
O

Theorem 8 (Equivalence of rule (=4)).

Vo,D,y,A:y¢ A =
{r:D|FeP}={yuA}
< 3d,E:D={duvE}ANF(d,v)ANy=P(d,v)AN{z:E|FeP}=A



Proof.
——s )
By H, y € {z : D | F ¢ P}; then:

dd:de DAF(d,v) ANP(d,v) =y (31)

Hence, take E = D\ {d}, which verifies D = {duE} and F(d,v) and P(d,v) = z.
Therefore, it remains to prove that {z : E | F ¢ P} = A. We will prove it by
proving that:

{r:E|FeP}CANAC{x:E|FeP}
—{z:E| FeP}C A Take any w € {x : E | F @ P}; then
Ja:a € ENF(a,v)APla,v) =w (32)

As D = {du E} then a € D which implies w € {z : D | 7 ¢ P} which implies
w € {y | A}, by H. Besides a # d, which implies (a,v) # (d,v). Since P is
a bijective pattern, then P(a,v) # P(d,v). Given that P(d,v) =y [by (31)]
and P(a,v) = w [by (32)], then w # y, which implies that w € A.

— AC{z: E|FeP} Take any w € A; then, by H, w # y (%) and w € {z :
E | F e P}. Hence:

Ja:a € DA F(a,v) A Pla,v) =w (33)

So we need to prove that a € E, which by (33) will imply that w € {x : E |
F o P}, which will prove this branch.

Given that D = {du E} and that a € D, thena € E iff a # d. If a = d, then
(a,v) = (d,v), then P(a,v) = P(d,v), then w = y because P(a,v) = w [by
(33)] and P(d,v) = y [by (31)]. And if w = y then there is a contradiction
with (). Therefore, a # d and so a € E.

)
By H, let d and E be such that:

D={duE}ANF(d,v)ANP(d,v)=yAN{z:E|FeP}=A (2)
Now:

{r:D|FeP}={yuA}

s{z:{duE} | FeP}={yuA} by D ={duE} in (2)]
< {P(d,v): F(d,v)}U{z: E | FeP}={yuA} [by Lemma 1]
s {Pld,v)}U{z:E|FeP}={yuA} [by F(d,v) in (2)]
s {ytuAd={yu A} [by {z:E|FeP}=Ain (2)]
< true



The equivalence of the rules for # are trivial because these rules apply the
definition of set disequality which is given in terms of € and ¢.

Theorem 9 (Equivalence of rule (€4)).
Vu,D,y :
ye{x:D|FeP}e3Id:de DANF(d,v) ANy = P(d,v)

Proof. The proof is trivial since this is the definition of set membership w.r.t.
an intensional set. ad

Theorem 10 (Equivalence of rule (€5)).
Vu,d,y, D :
ye{x:{duD} | FeP}
SF(d,v) Ny € {P(d,v) |{z:D|FeP}}
VaF(d,v)ANye{z:D|FeP}
Proof. Taking any v, d, y and D and applying Lemma 1 we have:
{x:{duD} | FeP}
< {P(d,v): F(d,v)} U{P(z,v) :x € DA F(z,v)}
< {P(d,v): F(d,v)} U{x: D | FeP}
Now assume F'(d,v), then:
y € {P(d,v): F(d,v)} U{z: D | FeP}
s ye{Pd,v)}U{z:D|FeP}
s ye{Pd,v)u{z:D|FeP}}
Now assume —F(d,v), then:
y € {P(d,v): F(d,v)} U{z: D | FeP}
sSyedU{z:D|FeP}
sye{z:D|FeP}
Theorem 11 (Equivalence of rule (¢,)).
Vu,d,y, D :
y¢{{duD}| FeP}
SF(d,v) Ay # P(d,v) Az ¢ {D|FeP)
V=P(d,v) Ay ¢ {D| FeP}
Proof. Taking any v, d, y and D and applying Lemma 1 we have:
{z:{duD} | FeP}
< {P(d,v): F(d,v)} U{P(z,v) : x € DA F(x,v)}
< {P(d,v): F(d,v)}U{z:D|FeP}



Now assume F'(d,v), then:

y ¢ {P(d,v): F(d,v)}U{x: D | FeP}
sy g {P(d,v)}U{z:D|FeP}
Sy#Pld,v)Nyg{z:D|FeP}

Now assume —F(d, v), then:

y ¢ {P(d,v): F(d,v)}U{z:D|FeP}
Sygdu{x:D|FeP}
Syd¢{z:D|FeP}

Theorem 12 (Equivalence of rule (¢4)).

You,t,d, D :
t¢ {{duD}| FeP}
©F(d,v) At#P(dv) Nt ¢ {D|FeP}
VoF(d,v) At ¢ {D|FeP}

Proof.

t¢ {{duD}| FeP}
o Vr:x€{duD}AF(x,v) ANt # P(z,v) [by RIS semantics]
& Vo F(d,v) ANt # P(d,v) ANz € DA F(z,v) Nt # P(z,v)
V-F(d,v) Az € DA F(xz,v) ANt # P(x,v)
[by single out d]
SF(d,v) ANt # P(d,v) AVz :x € DA F(z,v) Nt # P(z,v)
VaF(d,v) A\Vx:x € DA F(x,v) ANt # P(z,v)
SF(d,v)ANt# P(d,v)ANt¢{D|FeP}
V-F(d,v)ANt ¢ {D|FeP}



