
{log} User’s Manual
Version 4.9.1 Release 20

Gianfranco Rossi
Università degli Studi di Parma, Parma, Italy.

gianfranco.rossi@.unipr.it

Maximiliano Cristiá
CIFASIS and UNR, Rosario, Argentina.

cristia@cifasis-conicet.gov.a

April 30, 2016

Abstract

This is the second edition of the user’s manual for {log}, a Con-
straint Logic Programming language that embodies the fundamental
forms of set designation and a number of primitive operations for set
management. The {log} interpreter is written in Prolog and the full
Prolog code of the interpreter is freely available at the {log}WEB page
http://people.math.unipr.it/gianfranco.rossi/setlog.Home.html.

i

Contents

1 Introduction 1

2 Using {log} 2
2.1 Loading {log} libraries . 3
2.2 Dealing with {log} programs 3
2.3 Asking for help . 4

3 Solving formulas with extensional sets 5
3.1 Set operators . 7
3.2 Introducing formulas . 7

4 Solving formulas with binary relations 11

5 Solving formulas including integer numbers 14
5.1 Finite domains . 17
5.2 Intervals as sets . 19
5.3 Cardinality constraint . 20

6 Control Predicates 21

7 Prolog-{log} communication 23
7.1 From Prolog to {log} . 23
7.2 From {log} to Prolog . 25

8 Lists and Multisets 25

9 Restricted Universal Quantifiers 26

10 Intensional set terms 28

11 The {log} library 30

ii

1 Introduction

{log} (read ‘set-log’) is a Constraint Logic Programming language that em-
bodies the fundamental forms of set designation and a number of primitive
operations for set management [1, 4, 7, 9].

Sets are designated primarily by the explicit enumeration of all its ele-
ments (extensional sets), using set terms. Sets can contain not only atoms
as their elements, but also other sets (nested sets), with no restriction over
the level of set nesting.

The language provides a number of basic primitive operations for set
management, such as = (equality), in (set membership), un (union), inters
(intersection), etc. {log} can also deal with binary relations and partial
functions through most of the standard relational operators, such as dom

(domain) and comp (relational composition). Given that binary relations
and partial functions are sets of ordered pairs they can be freely combined
with sets, thus providing a uniform treatment for all these concepts.

Furthermore, {log} provides Restricted Universal Quantifiers (RUQ)
and Intensional Sets, that is sets defined by property rather than by enu-
merating all their elements.
{log} inherits much of standard Prolog: its syntax (a part a few mi-

nor changes), the user interaction modality, input/output facilities, some
extra-logical features (e.g., arithmetic). Throughout the manual, we assume
the reader is familiar with Prolog and programming with Prolog techniques,
as well as with the general principles and notation of Constraint Logic Pro-
gramming languages. Moreover, for some part of the {log} language (e.g., its
syntax) we will only describe those features that really differ from standard
Prolog. For other parts (e.g., input/output, arithmetic) we will completely
rely on the corresponding standard Prolog facilities. Finally, for all the
formal results concerning {log} (e.g., its logical and procedural semantics,
the constraint solving mechanism) we refer the reader to the {log} specific
papers listed in the Bibliography section.

The {log} interpreter is written in standard Prolog and has been tested
using SWI-Prolog (last releases) and can be ported to any Prolog system
implementing standard Prolog with very limited effort.

The first version of the {log} interpreter was developed by Agostino
Dovier and Enrico Pontelli, under the supervision of Eugenio Omodeo and
Gianfranco Rossi, as part of their work to obtain the “Laurea” degree at
the Department of Mathematics and Computer Science of the University of
Udine in 1991. Later on, the {log} interpreter was revised at various times
by Gianfranco Rossi, who is still maintaining the current version of the

1

interpreter. More recently (circa 2015), Gianfranco Rossi and Maximiliano
Cristiá added support for binary relations and partial functions.

The Prolog code of the {log} interpreter is available at the {log} WEB
page http://people.math.unipr.it/gianfranco.rossi/setlog.Home.html.
At the same page, you can find also the PDF file of this manual, the {log}
library file containing the {log} definitions of some operations on sets not
provided as built-in in {log}, a library of definitions for binary relations
and partial functions, a file containing a number of simple preprocessing
rules (“filtering rules”) that may help constraint solving, a few sample {log}
programs, and the postscript files of various papers related with {log}.

2 Using {log}
Assume the {log} interpreter (Prolog source code) has been saved into a file
named setlog.pl. To start working with the interpreter, invoke Prolog and
then load the {log} interpreter, e.g., by giving the directive

?- consult(’setlog.pl’).

The {log} interpreter is loaded into the Prolog program database. At this
point there are two ways to use {log}: interactively, much as Prolog itself;
and as a Prolog predicate. We will illustrate both of them with a simple
example. To access the interactive environment run the following directive:

?- setlog.

and {log} will show you its prompt:

{log}=>

Now you can give it goals much as in the Prolog environment. For example,
you can ask {log} to find the solution for the following formula:

{log}=> un({1},{2},A).

in which case {log} answers:

A = {1,2}

and asks you if you want another solution.
The same goal can be executed from the Prolog environment, e.g. by

using the predicate setlog/1 (see Sect. 7.1 for more information):

?- setlog(un({1},{2},A)).

2

making Prolog to print:

A = {1,2}

In the interactive mode, you can leave the {log} environment by issuing:

{log}=> halt.

and you can re-enter the {log} environment by simply issuing again setlog.
Note that, in the current implementation, a few run-time errors possibly
detected by Prolog while executing the {log} interpreter may force execution
to leave the {log} environment. To re-enter {log}, call the setlog goal.

2.1 Loading {log} libraries

Libraries can be loaded in any order and in any moment. Library predicates
are dealt with as other user defined predicates. The standard {log} library
can be loaded from the {log} environment by issuing:

{log}=> consult_lib.

The same can be done from the Prolog environment by issuing

?- consult_lib.

All other libraries, e.g. the library ’setloglibpf.slog’ concerning par-
tial functions, can be consulted using the {log} predicate consult/1. For
example:

{log}=> consult(’setloglibpf.slog’).

The same can be obtained from the Prolog environment by issuing

?- setlog(consult(’setloglibpf.slog’)).

or, equivalently, by exploiting the Prolog predicate setlog_consult/1, by:
?- setlog_consult(’setloglibpf.slog’). See Section 11 for the com-
plete list of the predicates defined in the standard {log} libraries.

2.2 Dealing with {log} programs

{log} programs are much like Prolog programs; that is, a collection of clauses
saved in a file. For example, assume the following clause is saved in file p.pl:

un12(A) :- un({1},{2},A).

3

Then you can load it into the {log} environment with the consult/1 pred-
icate as follows:

{log}=> consult(’p.pl’).

and then you can use the clauses defined in it as follows:

{log}=> un12({1,2,3}).

in which case {log} answers no because the union of sets {1} and {2} is not
equal to the set {1,2,3}.

While consulting, the interpreter shows on the standard output the num-
ber of the clause of the given program it is currently reading. If a syntax
error is detected in the program, program consulting is immediately stopped.
The last clause number that appeared on the output is the number of the
clause where the error was detected. In the current implementation, finding
out a syntax error while reading a program forces execution to leave the
{log} environment.

Clauses stored in the {log} program database can be completely removed
by executing the directive:

{log}=> abolish.

The current content of the program database can be printed out on the
standard output by using the directive

{log}=> listing.

Note that both predicates abolish and listing refer to the whole set
of stored clauses (both user defined and those of the library predicates),
but not to predicates in the standard {log} library setloglib.slog which,
conversely, are not removed and not listed1.

2.3 Asking for help

Finally, simple help facilities are provided in the form of built-in predicates:

• help/0 (or setlog help/0 from the Prolog environment) provides
general help information on {log};

1At present, no other facility is provided to consult, remove, or listing a program in
{log}. In particular, it is not allowed to consult a program stored in file by using
the syntax [file], as usual in Prolog. Moreover, there is no support for reconsulting a
program. The standard Prolog predicates abolish/2 and listing/1 are not provided for
now.

4

• h/1 provides more detailed information on {log}, according to its pa-
rameter: h(syntax) for {log} syntactic convenctions; h(constraints)
for {log} constraints; h(builtins) for {log} built-in predicates; h(lib)
for {log} standard library predicates; h(prolog) for Prolog predicates
for accessing {log} from the Prolog environment; h(all) to get all
available help information.

3 Solving formulas with extensional sets

An extensional set is a set whose elements are enumerated. For example,
{1,a,hello} is an extensional set with three elements. Some of the elements
of an extensional set can be other extensional sets. For example, {a,b} is
an element of the following extensional set {51,{a,b}}. Elements inside an
extensional set can be of any sort (or type or class), as shown in the previous
examples.

The most simple extensional set is the empty set noted in {log} as {}.
The second most simple extensional set is the singleton set, noted in {log}
as {e}, where e is its single element. Then we can ask {log} whether the
empty set is equal to a singleton set:

{log}=> {} = {1}.

in which case the answer is, obviously, no.
As in mathematics, {log} extensional sets can contain variables. In

{log}, as in Prolog, variables are denoted by words starting with an up-
percase letter. Then, we can ask {log} to solve the following equation:

{log}=> {X} = {1}.

where X is a variable. In this case the answer is:

X = 1

Note that

{log}=> {x} = {1}.

results in a no answer because x is a constant (as it does not start with an
uppercase letter) not equal to 1.

A more interesting formula is the following:

{log}=> {X,Y} = {2,1}.

5

because it has two solutions:

X = 2, Y = 1

X = 1, Y = 2

that {log} is able to find by exploiting set unification [8].
{log} also provides a notation (not used in mathematics) to define sets.

The expression {x / A} represents the set {x} ∪ A. Then, A must be a
set. So, for instance, we can write {1 / {a / {}}} which represents the set
{1} ∪ ({a} ∪ ∅) which is equal to the set {1, a}. Given this obvious equal-
ity, {log} allows a more user-friendly notation: we can write {1, a / {}}

instead of {1 / {a / {}}}; and {1 , a / {}} can be further simplified as
{1, a}. When combined with the fact that variables can be sets, this nota-
tion provides a new level of expressiveness to the language. For instance, it
is interesting to ask {log} for the solutions of the following formula (which
again calls into play set unification):

{log}=> {X/A} = {6,7,8}.

as it has six:

1 X = 6, A = {7,8}

2 X = 6, A = {6,7,8}

3 X = 7, A = {6,8}

4 X = 7, A = {6,7,8}

5 X = 8, A = {6,7}

6 X = 8, A = {6,7,8}

Note that, for instance, the second solution states that {6 / {6,7,8}} is
equal to {6,7,8} which is true in virtue of the so-called absorption property
of set theory [4]. Recall that {6 / {6,7,8}} can be written as {6,6,7,8}

where the presence of duplicate elements becomes evident.
Note how the number of solutions increases if we want to identify more

elements in the set. For example, the following equation:

{log}=> {X,Y/A} = {6,7,8}.

has 30 solutions, among which:

X = 6, Y = 7, A = {8}

X = 6, Y = 7, A = {7,8}

X = 6, Y = 6, A = {6,7,8}

6

In {x1,...,xn / A}, x1,...,xn is called element part and A is called set
part. It is very important to remark that since the set part of an extensional
set can be a variable (representing any finite extensional set), then {log}’s
extensional set constructor allows users to write unbounded finite sets. In
effect, an expression such as {x / A} represents a finite but unbounded set
as the set denoted by A can have any number of elements.

3.1 Set operators

{log} supports all the classic set operators. All set operators are given as
predicates. Then, for instance, we can ask {log} to find a value for A in:

{log}=> inters({1},{2},A).

making {log} to answer

A = {}

as A must be equal to the intersection between {1} and {2}.
Table 1 lists all the set operators available in {log} as predicates. As can

be seen, most operators have their own negation. Although {log} imple-
ments negation in the form of Negation as Failure (see Sect.3.2), it is always
advisable to use the negated predicates.

All the arguments of all these predicates can be variables and set terms.
Even the in and nin predicates admit sets as the first argument because in
{log} set elements can be sets. For example:

{log}=> {1} in {2,a,{1}}.

makes {log} to answer yes.
We believe all set operators are self-explanatory although set and nset

require some clarifications. Users seldom need to indicate that something
is a set when writing {log} code. In general, {log} automatically infers the
sort of variables by analyzing the formulas in which they participate. Hence,
predicates set and nset are generally used internally by {log}. Users may
see a set predicate as part of the answer given by {log} for some formulas—
see an example in the next section. Users may need to use set predicates
in some formulas involving multisets (see Sect. 8.

3.2 Introducing formulas

In this section we will show how to write some of the formulas accepted by
{log}.

7

Operator {log} Meaning

set set(A) A is a set
equality A = B A = B
membership x in A x ∈ A
union un(A,B,C) C = A ∪B
intersection inters(A,B,C) C = A ∩B
difference diff(A,B,C) C = A \B
subset subset(A,B) A ⊆ B
strict subset ssubset(A,B) A ⊂ B
disjointness disj(A,B) A ‖ B

Negations

equality A neq B A 6= B
union nun(A,B,C) C 6= A ∪B
intersection ninters(A,B,C) C 6= A ∩B
difference ndiff(A,B,C) C 6= A \B
membership x nin A x /∈ A
subset nsubset(A,B) A 6⊆ B
disjointness ndisj(A,B) A 6‖ B

Table 1: Set operators available in {log}

8

In {log} conjunction is written with the & character (instead of the
comma as in Prolog). Then, in asking {log} to solve the formula:

{log}=> un({1/B},{j},A) & j in B.

it answers:

B = {j/_G6327},

A = {1,j/_G6327}

Constraint: set(_G6327)

where _G6327 is a variable name automatically generated by {log} and
Constraint is a list of constraints that the variables returned by {log}
must verify. In this case the constraint is very simple and intuitive: _G6327
must be a set as is the set part of an extensional set. Variables automatically
generated by {log} are called new or fresh variables. In general, {log} will
include many fresh variables in its answers. For the sake of presentation,
from now on, we will replace these system generated names by simpler more
readable ones.

Logical disjunction is also available in {log} by means of the or connec-
tive (instead of the semicolon as in Prolog). The same formula given above
but using disjunction in place of conjunction:

{log}=> un({1/B},{j},A) or j in B.

has two solutions:

A = {j,1/B}

Constraint: set(B)

B = {j/C}

Constraint: set(A), set(C)

where A can be any set in the second solution.
Disjunction and conjunction can be freely combined to form complex

formulas. As conjunction has higher precedence than disjunction use paren-
thesis to write the right formula.
{log} provides also negation by means of the naf predicate. naf imple-

ments Negation as Failure: naf G, where G is any {log} goal, fails if the goal
G has a solution, and succeeds otherwise. Unfortunately, naf suffers of all
the well-known problems of Negation As Failure. Generally speaking, naf is
not able to deal correctly with goals containing uninitialized variables. As
an example, the simple goal

9

{log}=> naf X = a & X in {b}.

answers no, while the logically equivalent goal

{log}=> X in {b} & naf X = a.

correctly answers X = b, simply because, in the first goal, when naf is exe-
cuted X is still uninitialized.

When G is a primitive constraint, however, the problem can be bypassed
by using the negated version of the primitive constraints (see Table 1). For
example, the first goal above, written using neq in place of negated equality,
that is

{log}=> X neq a & X in {b}.

correctly answers X = b.
Note that the logical implication can be implemented using disjunction

and negation. Therefore, instead of writing, for instance:

x ∈ B ∪ C =⇒ (x ∈ B ∨ x ∈ C) (1)

you can write
¬x ∈ B ∪ C ∨ x ∈ B ∨ x ∈ C

which in turn is equivalent to:

A = B ∪ C ∧ (x /∈ A ∨ x ∈ B ∨ x ∈ C)

which can be easily translated into {log} as (assuming x is intended to be a
variable):

{log}=> un(B,C,A) & (X nin A or X in B or X in C).

Precisely, you can use {log} to automatically prove theorems about set
theory. If you want to prove that (1) is a theorem then you can ask {log}
to try to find a solution for:

{log}=> un(B,C,A) & X in A & X nin B & X nin C.

that is, the negation of your theorem. In this case {log} returns no which
means that there is no value (for X, A, B and C) satisfying the formula. In
turn, this implies that the negation of the formula given to {log} (i.e. your
theorem) is always satisfiable. And if a formula is always satisfiable, it is a
theorem. In this sense, {log} behaves as a decision procedure for the theory
of finite, unbounded sets [7]

10

4 Solving formulas with binary relations

A binary relation is a set of ordered pairs. If X and Y are two sets then
any set R such that R ⊆ X × Y is a binary relation. Given that binary
relations are sets (of ordered pairs) then {log} can be used to work with
formulas involving binary relations. Such formulas, however, may involve
not only set operators (cf. Table 1) but also relational operators. For this
purpose, {log} introduces a rich set of relational operators, such that it can
determine the satisfiability of any formula including them.

For example, the following formula

{log}=> dom(R,{a}).

makes {log} to return the most general binary relation whose domain is the
set {a}. This relation is given a follows:

R = {[a,Y]/S}

Constraint: comp({[a,a]},S,S), [a,Y] nin S, rel(S)

There are several things to comment about this answer. R is given as an
extensional set containing the ordered pair [a,Y] because R must contain
at least an ordered pair (because it has a not-empty domain) whose first
component must be a but whose second component can be anything—fact
that is represented by making the second component to be a variable.

Observe that ordered pairs are noted with square brackets. Then, [x,y]
represents the ordered pair (x, y). Note that, [x,y] = [w,z], if and only
if x = w and y = z. In this manual, when writing mathematics we will use
parenthesis to note ordered pairs, but we will use square brackets when we
show {log} code.

Moreover, the set part of R (i.e. S) is constrained to be a binary relation
by means of the predicate rel(S). Indeed, rel forces its argument to be a
set of ordered pairs. However, constraining S to be a relation is not enough
for the correctness of the solution. The domain of S must be a subset of {a}.
This is forced by the constraint comp({[a,a]},S,S). In effect, comp(Q,T,U)
means U = Q◦T , that is U is the result of the relational composition between
Q and T . Formally:

Q ◦ T = {(x, z) | ∃y : (x, y) ∈ Q ∧ (y, z) ∈ T}

Then, it can be shown that dom({(a, a)} ◦T) = {a}, thus guaranteeing that
dom({(a, y)} ∪ T) = {a}, for any y.

11

Finally, note that the constraint [a,Y] nin S is generated by the solver
to avoid possibly infinite computations due to the application of the ab-
sorption property, which might generate set terms with infinitely many oc-
currences of the same element. In fact, the formula R = {x/S} & x nin S

ensures that S cannot contain any occurrence of x.
Since binary relations are sets of ordered pairs, they can be built by

means of the same set constructors described in Section 3. In particular the
empty binary relation is denoted with {}. Furthermore, formulas involving
relational operators are built as we shown in Section 3.2 (i.e. by means of &
and or). Besided, they can be freely combined with formulas involving set
operators. For example:

{log}=> dom(R,{a/B}) & [b,X] in R.

is a formula combining set and relational operators and making use of the
extensional set constructor.

It is very important to remark that, as can be seen in the previous
formula, not only the relation is a set in exactly the same sense of the sets
introduced in Section 3, but also its domain. This clearly shows that {log}
allows for a completely uniform treatment of sets and binary relations.

Table 2 lists all the relational operators available in {log} as predicates.
The negation of these relational operators, apart from rel, has not yet been
defined. In turn, Table 3 gives the mathematical definition of each relational
operator given in Table 2. All the arguments of all these predicates can be
variables and set terms.

As with set operators, we believe all relational operators are self-explanatory.
Same considerations mentioned for set and nset apply for rel and nrel.
That is, in general, users do not need to indicate that something is a binary
relation because {log} automatically infers this fact.

A partial function is a binary relation where no two ordered pairs share
the same first component. Formally, f is a partial function if and only if f
is a binary relation and:

∀x, y1, y2 : (x, y1) ∈ f ∧ (x, y2) ∈ f =⇒ y1 = y2 (2)

Therefore, partial functions are a subset of binary relations. This means
that {log} can also be used to find solutions for formulas involving partial
functions. These formulas, are built as formulas involving binary relations
plus the addition of the predicates listed in Table 4.

Differently from rel, users must explicitly include a pfun predicate for
all those binary relations they want to be partial functions. {log} will only

12

Operator {log} Meaning

binary relation rel(R) R is a binary relation
domain dom(R,A) domR = A
range ran(R,A) ranR = A
composition comp(R,S,T) T = R ◦ S
inverse inv(R,S) S = R−1

domain restriction dres(A,R,S) S = ACR
domain anti-restriction dares(A,R,S) S = A−CR
range restriction rres(A,R,S) S = RBA
range anti-restriction rares(A,R,S) S = R−BA
overriding oplus(R,S,T) T = R⊕ S
relational image rimg(A,R,B) B = R[A]

Negations

binary relation nrel(R) R is not a binary relation

Table 2: Relational operators available in {log}

Operator Definition

domain domR = {x | ∃y : (x, y) ∈ R}
range ranR = {y | ∃x : (x, y) ∈ R}
composition R ◦ S = {(x, z) | ∃y : (x, y) ∈ R ∧ (y, z) ∈ S}
inverse R−1 = {(y, x) | (x, y) ∈ R}
domain restriction ACR = {(x, y) | (x, y) ∈ R ∧ x ∈ A}
domain anti-restriction A−CR = {(x, y) | (x, y) ∈ R ∧ x /∈ A}
range restriction RBA = {(x, y) | (x, y) ∈ R ∧ y ∈ A}
range anti-restriction R−BA = {(x, y) | (x, y) ∈ R ∧ y /∈ A}
overriding R⊕ S = (domS −CR) ∪ S
relational image R[A] = ran(ACR)

Table 3: Definition of relational operators

13

Operator {log} Meaning

partial function pfun(F) F verifies (2)
function application apply(F,X,Y) F (X) = Y
identity function id(A,F) idA = F

Negations

partial function npfun(F) F does not verifies (2)

Table 4: Partial function operators available in {log}

automatically assert that F is a partial function if it appears as the first
argument of apply or as the second of id. For example, the following formula
is unsatisfiable if F is intended to be a partial function but it is satisfiable
for a binary relation:

{log}=> dom(F,{a}) & [a,Y1] in F & [a,Y2] in F & Y1 neq Y2.

Then, {log} answers:

F = {[a,Y1],[a,Y2]/G}

Constraint: [a,Y2] nin G, comp({[a,a]},G,G), [a,Y1] nin G,

Y1 neq Y2, rel(G)

for that formula but it answer no for the following:

{log}=> pfun(F) & dom(F,{a}) & [a,Y1] in F & [a,Y2] in F

& Y1 neq Y2.

{log} behaves as a decision procedure also for the theory of finite, un-
bounded binary relations. This means, as with sets, that {log} is able to
find out whether any formula, involving binary relations and the operators
listed in Tables 2 and 4, is satisfiable or not.

5 Solving formulas including integer numbers

{log} deals with arithmetic expressions through a number of built-in predi-
cates. The comparison arithmetic operators available in {log} are shown in
Table 5. In the table, e1, e2 are integer expressions and n is a variable or
an integer constant.

An arithmetic expression is either a simple number or an arithmetic func-
tion (e.g. +, -, *, mod, etc.); the arguments of a function are in turn arith-
metic expressions. Numbers can be either integer or floating-point numbers.
For example, the following arithmetic formulas are solved as shown:

14

Operator {log} Meaning

simple equality n is e1 n = e1
less or equal e1 =< e2 e1 ≤ e2
less e1 < e2 e1 < e2
greater or equal e1 >= e2 e1 ≥ e2
greater e1 > e2 e1 > e2
equal e1 =:= e2 e1 = e2
not equal e1 =ē2 e1 6= e2

Table 5: Comparison arithmetic operators available in {log}

{log}=> X is 3 * 5.

X = 15

{log}=> 1.5 + 1 > 0.7.

yes

As Prolog, {log} does not evaluate arithmetic expressions unless they
occur as parameters in one of the built-in predicates listed in Table 5. As
an example, given the formula

{log}=> 2 + 3 in {5}.

{log} answers no because the expression 2 + 3 is left unevaluated and 2 + 3

does not belong to the set {5}. Conversely, using the is predicate, the
formula

{log}=> X is 2 + 3 & X in {5}.

turns out to be satisfiable and the answer will be X = 5. In fact, the is

predicate forces {log} to evaluate the expression at the right hand side as
soon as possible.

If the expression e_i in the built-in predicates of Table 5 is a floating-
point expression, then all variables possibly occurring in e_i must have a
value. Otherwise, a problem in the arithmetic expression is detected and
{log} answers no. For example:

{log}=> 1.5 + X > 0.7.

Problem in arithmetic expression

no

Conversely, if e_i is an integer expression, then it can contain uninitial-
ized variables. As an example:

15

Operator {log} Meaning

integer integer(t) t is an integer number
integer ninteger(t) A is not an integer number

Table 6: integer and ninteger constraints

{log}=> 34 is X + 1.

X = 33

In fact, arithmetic built-in predicates over integer expressions are dealt
with by a constraint solver over finite domains (namely, CLP(FD)).

As concerns solving formulas including integer numbers, {log}’s solver
is incomplete. That is, given a goal G, if the answer is no, then G is surely
unsatisfiable; otherwise, it is not guaranteed, in general, that G is satisfiable.

{log}=> 34 > X + 1.

WARNING: non-finite domain

true

Constraint: X in int(inf,32)

int(inf,32) represents the integer interval [−∞..32] (see next subsec-
tion). The warning message means that the answer might be incorrect—
although in this particular example it is correct.

As another example:

{log}=> X+1 > Y & X+1 < Y.

WARNING: non-finite domain

true

Constraint: integer(X), integer(Y)

where integer is a {log} primitive constraint: integer(X) is true if and
only if X is an integer number. There is also its negative version ninteger

(see Table 6).
This goal is clearly unsatisfiable, but {log} (actually the underlying

CLP(FD) solver) is not able to detect it.
The solver becomes complete (i.e. a decision procedure) if we provide

a finite domain for each integer variable which occur in the formula to be
checked.

16

5.1 Finite domains

Domains for integer variables are specified through integer intervals. In
mathematics an integer interval is noted [m,n] and represents the set {i ∈
Z | m ≤ i ≤ n}. In {log} intervals are noted as int(m,n), where m and n

can be, in general, either constants or variables and represent the same than
in mathematics.

Intervals are primarily used to associate a finite domain to an integer
variable. The formula:

X in int(1,10)

states that the domain of the variable X is the interval [1, 10].
Note that when used to specify domains, the interval limits must be

integer constants.
The last two goals above, give the correct answer if we provide suitable

domains for the integer variables X and Y.

{log}=> 34 > X + 1 & X in int(1,100).

X = 1

...

Another solution? (y/n)

X = 32

Another solution? (y/n)

no

{log}=> X+1 > Y & X+1 < Y & X in int(1,10) & Y in int(1,20). (3)
no

It is important to observe that {log}, by default, always performs label-
ing at the end of the computation for all the integer variables which have a
finite domain associated with them in the resulting final formula. Labeling a
variable X with domain D means non-deterministically assigning to X one
by one all possible values in D. After each value has been assigned, then
the whole constraint is analyzed again to check its satisfiability.

If one wants to suppress the defalt activation of labeling one can give
the goal:

nolabel.

If we, successively, give the goal

{log}=> 34 > X + 1 & X in int(1,100).

then the answer now will be

17

true

Constraint: X in int(1,32)

instead of generating all possible values for X as in the case when labeling is
active.

When global labeling is deactivated we can nevertheless perform labeling
on a single variable by using the built-in predicate labeling(X).

Global labeling can be reactiveted in any moment by the goal

label.

The domain of an integer variable can be obtained also as the result of
solving some arithmetic constraint on this variable. For example, the goal

{log}=> 34 > X + 1 & X >= 1 & X =< 100.

will produce the same result as the goal 34 > X + 1 & X in int(1,100)

shown above.
Note that labeling is performed only for variables which have a bounded

domain associated with them. For example,

{log}=> 34 > X + 1 & X =< 100.

WARNING: non-finite domain

true

Constraint: X in int(inf,32)

where it is evident that no labelling has been performed.
Observe that in the goal (3) it is enough to specify the domain for one

of the two variables, for example

@X+1 > Y & X+1 < Y & X in int(1,10).@

will produce the same result as above.
Finally note that the atom X in {1,2,3} is logically equivalent to X in int(1,3)

but it processing by the {log}’s solver is quite different. Actually, X in {1,2,3}
is operationally equivalent to

X in int(1,3) & labeling(X)

Thus, X in {1,2,3} is not used to associate a domain to the variable X;
rather it is used to nondeterministically assign to X each value form a set of
possible values.

18

5.2 Intervals as sets

Integer intervals are sets. Thus, most {log} primitive set predicates can
include also terms of the form int(m,n) everywhere a set can be used. A
few of these predicates allow intervals to be unbounded (i.e. one or both of
the limits n and m can be uninitialized variables), while most of them work
well only with bounded intervals.

Precisely, the following predicates allow unbounded intervals to be used
as their parameters:

• t1 in t2 (membership)

• t1 nin t2 (non-membership)

• inters(t1,t2,t3) (intersection)

As an example:

{log}=> inters(int(3,N),int(10,20),A) & A neq {}

& N in int(-1000000,1000000).

in which case the first answer is:

N = 21, A = int(10,20)

Afterwards, {log} will give one answer for each N in int(-1000000,1000000)

that satisfies the formula.
Note that if we do not provide any domain for the integer variable N then

the first answer is:

WARNING: non-finite domain

A = int(10,20)

Constraint: N in int(21,sup)

As another example (in which it is not necessary to specify a domain for
the involved integer variables)

{log}=> int(A,B) = {1,X,3}.

A = 1, B = 3, X = 2

The following predicates allow bounded intervals to be used as their pa-
rameters:

• un(s1,s2,s3) (union), nun(s1,s2,s3) (non-union)

• disj(s1,s2) (disjointness), ndisj(s1,s2) (non-disjointness)

19

Operator {log} Meaning

set cardinality size(A,N) |A| = N

Table 7: The set cardinality operator

• subset(s1,s2) (subset), nsubset(s1,s2) (not subset)

• diff(s1,s2,s3) (difference), ndiff(s1,s2,s3) (not difference)

• ssubset(s1,s2) (strict subset)

• ninters(s1,s2,s3) (not intersection)

Note that all primitive predicates for relational operators (see Table 2)
do not yet support intervals as their parameters.

5.3 Cardinality constraint

size is a set predicate that represents the cardinality of a set. It is defined
in Table 7. Note that its second argument can be an integer constant or a
variable. For example, the answer to the following formula:

{log}=> size(A,3).

is

A = {X,Y,Z}

Constraint: X neq Y, X neq Z, Y neq Z

because {X,Y,Z}, with X, Y and Z variables, is the most general set of three
elements provided they hold different values—and from here the constraint.

Given size(A,N), when N is a variable and the set part of A is a variable,
then we may get the same warning message discussed above, unless we bound
N to an interval. For example:

{log}=> size({1/R},N).

we get as first answer

WARNING: non-finite domain

true

Constraint: 1 nin R, M in int(0,sup), size(R,M), set(R), N in int(1,sup)

{log} provides also a few built-in predicates to support aggregation func-
tions over sets. See Table 8.

When applied to an empty set, smin and smax return no, while sum

returns 0.

20

Operator {log} Meaning

sum sum(A,N) sum all elements of set A
min smin(A,N) the least element of set A
max smax(A,N) the greatest element of set A

Table 8: Aggregation functions available in {log}

6 Control Predicates

{log} provides a number of built-in predicates that can be used by the user
to interact with the control mechanisms of the interpreter. We will distin-
guish these predicates into three categories: general predicates, predicates
for controlling constraint solving, predicates for execution monitoring.

General

• call(G), call(G,C): to call a goal G, possibly with constraint C

• solve(G): same as call(G) but all constraints possibly generated by
G are immediately solved

• G!: to make execution of goal G deterministic.

Comments about G!. {log} does not provide the general ‘cut’ facility of
Prolog. In {log}, however, it is possible to make the execution of a goal G
determinate by putting the cut symbol just after the goal G. G!, where
G is any {log} goal, is executed exactly as G except that when G succeeds
all (possibly none) alternative solutions for G are discarded. Thus, only the
first solution for G is computed: if backtracking should later return to this
goal, no further solutions will be found.

As an example:

{log}=> X in {a,b}!.
X = a

Another solution? (y/n)y

no

whereas the same goal without ‘cut’ would return the two distinct solutions
X = a, X = b.

Note that the ‘cut’ operator applies to any {log} goal, including dis-
junctions, conjunctions (e.g., (X in a,b & Y in {c,d})!), RUQs, user and
system defined predicates.

21

Constraint solving

• delay(G,C), where G and C are {log} formulas: to delay execution of
G until either C becomes true or the computation ends

• strategy(S): to change goal atom selection strategy:

– S = cfirst: select primitive constraints first

– S = ordered: select all atoms in the order they occur

– S = cfirst(list of atoms)): select atoms in list of atoms just
after primitive constraints.

Default atom selection strategy: cfirst

• noneq elim/0, neq elim/0: to deactivate/activate elimination of neq-
constraints (default: neq elim)

• noirules/0, irules/0: to deactivate/activate inference rules (default:
irules)

Comments about strategy(S). Atoms in a goal are executed left-to-right
in the order they appear in the goal, except that the atomic constraints are
executed before any other non-constraint atoms occurring in the goal. This
default strategy can be changed by using the built-in predicate strategy as
shown in the following examples.

Given the goal

{log}=> write(b) & write(X) & X in {a}.

we get as answer (using the default strategy cfirst)

ba

X = a

that is, the constraint X in {a} is executed first (thus binding X to a),
then the other atoms, write(b) and write(X), are taken into account.
Conversely, if we give first the goal strategy(ordered), then the same goal
as above will produce the answer (_G2641 is the system generated name of
the uninitialized variable X)

b_G2641

X = a

22

since atoms are executed in the exact order they occur in the goal2. Finally,
if we give first the goal strategy(cfirst([nl])) then any predicate nl

(“new line”) possibly occurring in the next goals will be executed just before
any other non-constraint atoms. For example:

{log}=> write(b) & write(X) & nl & X in {a}.

we get as answer

ba

X = a

where the blank line before ab is caused by the execution of nl before that
of the built-in predicates write.

Monitoring execution

• trace(Mode): to activate constraint solving tracing:

– Mode = sat: general tracing

– Mode = irules: inference rules tracing

• notrace/0: to deactivate constraint solving tracing (default)

• time(G,T): to get the CPU time T (in milliseconds) required to solve
the goal G.

7 Prolog-{log} communication

7.1 From Prolog to {log}

Main predicates

• setlog/0: to enter/re-enter the {log} interactive environment

• setlog(G), setlog(G,C): to call a {log} goal G, possibly getting an
(output) {log} constraint C

• setlog(G,InCLst,OutCLst), setlog_sc(C,InCLst,OutCLst): to solve
a {log} goal G (resp. constraint C) with a (possibly empty) input con-
straint list InCLst and output constraint list OutCLst

2With the exception of equalities which are in any case considered before any other
non-constraint atoms.

23

• setlog(G,T,OutCLst,Res): to solve a {log} goal G with an output
constraint list OutCLst and a timeout T (an integer constant specify-
ing a time in milliseconds). If setlog(G,T,OutCLst,Res) returns no,
then G is surely unsatisfiable; otherwise, the value taken by Res spec-
ifies how the execution of G terminates: success, if G terminates suc-
cessfully within the time T; time_out, if G does not terminate within
the time T; maybe, if G terminates successfully within the time T but
only after some controls which ensure completeness of the solver has
been disabled (see comment below).

Comments about setlog(G,T,OutCLst,Res) (calling {log} with a time-
out). The answer Res = maybe comes from the fact that, if {log} is not
able to check satisfiability of G in the given time, it tries to deactivate some
rewrite rules (e.g. the elimination of neq-constraints) in the hope to become
capable of detecting possible inconsistencies. The deactivation of these rules,
however, causes the solver to loss completeness. Therefore, if it terminates
(within the time T) with no, then we can anyway conclude that the goal G is
unsatisfiable; otherwise, we cannot conclude that G is surely satisfiable, but
only that it may be satisfiable.

Note that, due to the fact that the execution of setlog(G,T,OutCLst,Res)
tries three different strategies to check the satisfiability of G before ending
definitively, it may take a total amount of time equal to 3 ∗ T milliseconds.

Other predicates

• setlog_clause(Cl): to add a {log} clause Cl to the current {log}
program

• setlog_config(list_of_params): to modify {log} configuration pa-
rameters directly from the Prolog environment. Each parameter in
list_of_params can be:

– strategy(S): see the control predicate strategy in Sect. 6

– path(Path): Path is the pathname of the directory to be used to
prefix the name of any file which is loaded in {log} through the
consult predicates (default: ’.’)

– rw_rules(File): File is the name of the file containing the
“filtering rules” (default: ’setlog_rules.pl’).

• setlog_rw_rules: to load the filtering rule library.

24

7.2 From {log} to Prolog

General

• prolog_call(G): to call any Prolog goal G from {log}.

Specific Prolog built-in predicates The following Prolog built-in pred-
icates are directly available in {log} for user convenience.

- nl/0

- ground/1

- var/1

- nonvar/1

- name/2

- functor/3

- arg/3

- =../2

- ==/2

- \==/2

- @/2

- @==/2

- read/1

- write/1

- call/1

- assert/1

- consult/1

- listing/0

- abolish/0

8 Lists and Multisets

{log} provides also lists and multisets (or bags).
Lists are exactly the same as in Prolog. For example, [a,b,c] denotes

a list of three elements, while [] denotes the empty list. Similarly to set
terms, a list term of the form [x / A] denotes the list which is obtained by
concatenating the list [x] with the list represented by A. As for sets, the
list part A can be a variable.

Multisets are similar to sets, but the number of repeated elements in
a multiset does matter (while it is irrelevant in a set). For example, the
two multisets /[a, b/] and /[b, a, a/] are distinct multisets, while /[a, b/] and
/[b, a/] are the same multiset. Multisets in {log} are represented by terms

25

Operator {log} Meaning

list list(A) A is a list
multiset multiset(A) A is a multiset

Table 9: list and multiset constraints

of the form *(s) where s is any extensional set term, different from {}. The
empty multiset is represented as {}, that is with the same symbol as the
empty set. For instance:

• *({a,b,b}) is the multiset /[a, b, b/], containing one occurrence of a
and two occurrences of b

• *({a,b/R}) is the multiset /[a, b/] ∪R

A few primitive set constraints apply to lists and multisets as well. Pre-
cisely, the following constraints are used to deal with both lists and multisets:

• A = B (equality); A neq B (non-equality)

• x in A (membership); x nin A (non-membership)

Moreover, there are also two new primitive constraints to test whether a
term represent either a list or a multiset (see Table 9).

Here are a few examples showing goals involving lists and multisets.

{log}= *({a,b}) = *({b,a}).

yes

{log}=> X nin [1,2].

true

Constraint: X neq 1, X neq 2

{log}=> X in L & Y nin L & list(L).

true

Constraint: X in L, X neq Y, Y nin L, list(L)

9 Restricted Universal Quantifiers

Restricted Universal Quantifiers (RUQs) are atoms of one of the following
forms:

forall(X in s , G)

26

forall(X in s , exists(V,G))

forall(X in s , exists([V1, . . . , Vn], G)

where: X is a variable; s is a term representing either a set or a multiset or
a list or an interval int(a,b); V , Vi are variables “local” to G; and G is an
arbitrary goal, containing at least one occurrence of X.

Intuitively, an RUQ atom is true if and only if, for all element x in s,
the instance of G where x replaces X is true.

RUQs can be used as a convenient way both for

• iterating over all elements of the given set s, and;

• building all sets s satisfying the given property G.

Example 9.1 Iterating over a set

• print elements(S) prints all elements of the set S, one for each line.

print elements(S) :−
forall(X in S, write(X) & nl).

• all pair(S) is true if all elements of S are pairs.

all pair(S) :−
forall(X in S, exists([X1,X2] X = [X1,X2]).

Sample goal:

{log}=> all pair({[peter,ann],[tom,mary],[john,ann]}).

yes.

Example 9.2 Building sets

• subset(R,S) is true if R ⊆ S

subset(R,S) :−
forall(X in R,X in S).

When subset(R,S) is called with S instantiated to a set and R unin-
stantiated, it builds in R all possible subsets of S.

Sample goal:

{log}=> subset(R,{mary,ann}).

R = {};
R = {mary};
R = {ann};
R = {mary,ann}.

27

RUQs can occur everywhere ordinary atoms are allowed. In particular,
RUQs can be nested at any depth, i.e. the goal part of a RUQ can be an
RUQ itself and so on.

Example 9.3 Nested RUQs

disj(S1,S2) is true if S1 and S2 are disjoint sets.

disj(S1,S2) :−
forall(X in S1, forall(Y in S2, X neq Y)).

Observe that RUQs are not dealt with as constraints. Executing the
RUQ forall(X in s , G) always starts a computation that iteratively exe-
cutes the goal G over all elements of the set s. If s and G are not enough
instantiated this can lead to an infinite computation. For instance, the
goal forall(X in R,X in {a/S}), after generating the two solutions R =

{} and R = {a}, will go into an infinite loop trying to add the element a to
the set R which already contains it.

10 Intensional set terms

Besides extensional set terms, that allow a set to be defined by explicitly
enumerating all its elements, {log} also provides intensional set terms, that
allow a set S to be defined by providing a condition G that is necessary and
sufficient for an element X to belong to S.

Intensional set terms are terms of one of the following forms:

{X : G}
{X : exists(V,G)}
{X : exists([V1, . . . , Vn], G)}

where: X is a variable; s is a term representing either a set or a multiset or
a list or an interval int(a,b); V , Vi are variables “local” to G; and G is an
arbitrary goal containing at least one occurrence of X.

Intuitively, the intensional set term denotes the set of all instances of X
satisfying the formula G.

Example 10.1 Intensional sets

• powerset(S,P) is true if P is the powerset of set S.

powerset(S,P) :−
P = {X : subset(X,S)}.

28

where predicate subset is defined as in Example 9.2.

Sample goal:

{log}=> powerset({a,b},P).

P = {{},{a},{a,b},{b}}.

• cross product(A,B,CP) is true if CP is the Cartesian product of sets
A and B.

cross product(A,B,CP) :−
CP = {P : exists([X,Y],P = [X,Y] & X in A & Y in B)}.

Sample goal:

{log}=> cross product({a,b},{1,2},CP).

CP = {[a,1],[a,2],[b,1],[b,2]}.

Intensional set definitions can be used, in particular, to build a set R
from a given set S by applying a given function f to each element of S:

R = {Y : exists(X,X in S & Y is f(X)}.

Example 10.2 Set mapping

squares(I,S) is true if S is the set of all the squares of the numbers in I.

squares(I,S) :−
S = {Y : exists(X, X in I & Y is X * X)}.

Sample goal:

{log}=> squares({2,3,4},S).
S = {4,9,16}.

Intensional set terms can occur everywhere ordinary set terms are al-
lowed. Moreover, they can be nested at any depth, i.e. the goal part of an
intensional set term can be contain other intensional set terms.

Example 10.3 Assume predicate likes/2 is defined by the following clauses:

likes(john,beer).

likes(john,wine).

likes(mary,Any drink) :− Any drink neq wine.

likes(ann,wine).

Sample goal (note the intensional set term as an argument of a predicate):

{log}=> disj({P : likes(P,wine)},{P : likes(P,beer)}).
The answer will be no (being john the element in the intersection of the two
sets).

29

11 The {log} library

A number of common predicates, dealing with sets, multisets, and lists,
which are not implemented as built-in predicates by the interpreter, are pro-
vided as user-defined predicates by the standard {log} library ’setloglib.slog’.
The file ’setloglib.slog’ can be loaded as part of any {log} program us-
ing the built-in predicate consult-lib/0.

Below we list most of the predicates currently contained in ’setloglib.slog’.

Dealing with sets

• powerset(S,PS): powerset (PS = 2S)

• cross product(A,B,CP): the Cartesian product of sets A and B

• list to set(L,S): S is the set of all elements of the list L

• int to set(I,S): S is the set of all elements of the interval I

• dint to set(A,B,S): same as int to set/2 but delayed if interval
bounds are unknown

• diff1(S,X,R): equivalent to diff(S,X,R) but more efficient

• eq(T1,T2): syntactic unification between terms T1 and T2

• bun(S,R): generalized union: R is the union of all elements of the set
of sets S

• binters(S,R): generalized intersection: R is the intersection of all
elements of the set of sets S

Dealing with multisets

• int to bag(I,M): M is the multiset of all elements of the interval I

• bag to set(M,S): S is the set of all elements of the bag M

• msize(S,N): multiset cardinality (N = /S/)

30

Dealing with lists

• prefix(P,L): list P is a prefix of list L

• sublist(Sb,L): list Sb is a sublist of list L

• take(N,L,NewL): list NewL consists of the first N elements of list L

• drop(N,L,NewL): NewL is L with its first N elements removed

• extract(S,L,NewL): S is a set of integer numbers, L is a list of ele-
ments of any type, and NewL is a list containing the i-th element of
L, for all i in S (e.g., extract(4,2,[a,h,g,m,t,r],L) returns L =

[h,m])

• filter(L,S,NewL): L is a list, S is a set, and NewL is a list containing
the elements of L that are also elements of S (e.g., filter([a,h,g,m,t,r],m,h,s,L)
returns L = [h,m])

Remark 11.1 The problem of redundant solutions is still an open problem.
When the involved sets do not contain uninitialized variables the implemen-
tation takes care of avoiding as much as possible redundand solutions. When,
in contrast, some uninitialized variable is involved there may be cases in
which redundand (namely, equivalent or less general) solutions are returned.
For example, as a limit case, the goal

{{a / N}} = {{b / N},{a / N}}
returns over 100 repeated solutions of the form

N = {a,b / 1}.
While many work can be surely done to alleviate this problem (and possi-

bly it will be exploited in next releases of {log}), it is hard to devise a general
solution to completely remove it. For now, one can only try to partly over-
come this incovenience by using the ‘cut’ operator to make the computation
deterministic whenever non-determinism is not strictly required.

Acknowledgments

As mentioned in Section 1 the original design and implementation of the
{log} interpreter is due to Agostino Dovier and Enrico Pontelli, under the
supervision of Eugenio Omodeo and Gianfranco Rossi. Several other people,
however, contributed at various extent to the development of next versions of
the {log} interpreter. Among them, we wish to thank in particular: Bruna
Bazzan, Silvia Manzoli, Silvia Monica, Carla Piazza and Laura Gelsomino.

31

Bibliography (ordered by date)

[1] A. Dovier, E. G. Omodeo, E. Pontelli, G. Rossi. {log}: A Logic Pro-
gramming Language with Finite Sets. In Proc. 8th Int’l Conf. on Logic
Programming (K. Furukawa, ed.), The MIT Press, 1991.

[2] A. Dovier, G. Rossi. Embedding Extensional Finite Sets in CLP.
In Proceedings of 1993 International Logic Programming Symposium
(D. Miller, ed.), The MIT Press, 1993, pp. 540–556.

[3] P. Bruscoli, A. Dovier, E. Pontelli, G. Rossi. Compiling Intensional
Sets in CLP. In Logic Programming: Proceedings of the Eleventh In-
ternational Conference (P. Van Entenryck, ed.), The MIT Press, 1994,
pp. 647–661.

[4] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Lan-
guage for Programming in Logic with Finite Sets. Journal of Logic
Programming, 28(1):1–44, 1996.

[5] A. Dovier, C. Piazza, E. Pontelli, G. Rossi. On the Representation and
Management of Finite Sets in CLP-languages. In Proceedings of 1998
Joint International Conference and Symposium on Logic Programming
(J. Jaffar, ed.), The MIT Press, 1998, pp. 40-54.

[6] Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists,
multisets, and sets, and the relevant unification algorithms. Fundam.
Inform. 36(2-3) (1998) 201–234

[7] Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic
programming. ACM Trans. Program. Lang. Syst. 22(5) (2000) 861–931

[8] Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory Pract. Log.
Program. 6(6) (November 2006) 645–701

[9] Dal Palú, A., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite
domain constraints and CLP with sets. In: Proceedings of the 5th
ACM SIGPLAN International Conference on Principles and Practice
of Declaritive Programming. PPDP ’03, New York, NY, USA, ACM
(2003) 219–229

[10] Cristiá, M., Rossi, G., Frydman, C.S.: {log} as a test case generator
for the Test Template Framework. In Hierons, R.M., Merayo, M.G.,
Bravetti, M., eds.: SEFM. Volume 8137 of Lecture Notes in Computer
Science., Springer (2013) 229–243

32

[11] Cristiá, M., Rossi, G., Frydman, C.S.: Adding partial functions to
constraint logic programming with sets. TPLP 15(4-5) (2015) 651–665

33

