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1. INTRODUCTION

Programming and specification languages allow to represent information by means
of data structures, each of them characterized by a specific organization of the ele-
ments involved and by a corresponding access policy. In this paper we consider the
following structures, which represent distinct though strongly related abstractions:
lists, multisets, compact lists, and sets.

Each of these four data structures contains an arbitrary (possibly empty) col-
lection of elements of any type, where each element can be either an elementary
data object or a composite object. Let us define an aggregate as a data structure
with this property. The basic difference among the four considered aggregates lies
in the specific handling of order and/or repetitions of elements. Lists are ordered
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collections of elements, where duplicates are allowed. Multisets, often called bags
in the literature, are lists in which the ordering is irrelevant. Compact lists are lists
in which contiguous occurrences of the same element are collapsed into a single
element. Finally, in sets both ordering and duplicates are not relevant.

The importance of these data structures is widely recognized in various areas of
Computer Science. Lists are the classical example in use to introduce dynamic data
structures in imperative programming languages. They are the fundamental data
structure in functional and logic languages. Sets are the main data structure used
in specification languages (e.g., in Z [Potter et al. 1996]) and in high-level declara-
tive programming languages [Beeri et al. 1991; Dovier et al. 1996; Gervet 1997; Hill
and Lloyd 1994]; moreover imperative programming languages may take advantage
from the set data abstraction (e.g., SETL [Schwartz et al. 1986]). Multisets emerge
as the most natural data structure in several areas, ranging from coordination lan-
guages [Banatre and Matayer 1993] to Database theory [Grumbach and Milo 1996],
from membrane and DNA computing modeling [Pāun 2000] to linear logic [Tzou-
varas 1998]. The notion of compact list is much less developed and some examples
of its application are suggested in [Dovier et al. 1998].

Lists, multisets, compact lists, and sets have been analyzed from an axiomatic
point of view. In [Dovier et al. 1998], they have been studied in the context of
Constraint Logic Programming languages, where these aggregates are represented
as terms by means on different constructors. Each aggregate is associated to a
theory which specifies the properties of the aggregate constructor symbol.

In [Dovier et al. 1998], equalities between terms in each of the four theories are
studied. In particular, the unification problems in the equational theories, which
describe the properties of the four aggregates, are solved by providing unification
algorithms for all of them. NP-unification algorithms for sets and multisets are also
presented in [Aliffi et al. 1999; Dantsin and Voronkov 1999].

In this paper we extend the results presented in [Dovier et al. 1998] to the case of
more general constraints. The constraints we consider are conjunctions of literals
based on both equality and membership predicate symbols. For each aggregate, we
introduce a first-order theory and we investigate the problem of deciding whether a
constraint is satisfiable in each model of the theory. We base our decidability results
on the introduction of a standard model and a solved-form for each aggregate. These
results allow us to solve the constraint satisfiability problems by applying rewriting
procedures which map satisfiable constraints into solved-form constraints.

The paper is organized as follows. In Section 2 we briefly discuss the existing
results for similar problems. After the preliminary definitions of Section 3, in
Section 4 we recall from [Dovier et al. 1998] the first-order and equational theories
of the four aggregates. In Section 5 we define the notion of constraint and we identify
the standard models for the theories used to describe the considered aggregates. To
ease the presentation, we choose the multiset theory as the working theory and we
briefly point out the differences in the other theories. We show that satisfiability
of constraints in standard models is equivalent to satisfiability in any model. Then
we define the notion of solved form for our constraints, and we prove that solved
form constraints are satisfiable in the proposed standard models. In Section 6 we
describe the constraint rewriting procedures used to eliminate all constraints not in
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.



Constraint-solving for Lists, Multisets, Compact Lists, and Sets · 3

solved form. We use these procedures in Section 7 to solve the general satisfiability
problem for the considered constraints. Some conclusions are drawn in Section 8.

2. RELATED WORKS

The problem of set and multiset unification has been tackled by several authors,
using different representations (see [Dovier et al. 2001] for a survey on the set
unification problem). These problems are often reduced to ACI and AC unification
problems, respectively (see, e.g., [Büttner 1986; Livesey and Siekmann 1976]). In
these cases, a union-based representation is usually employed, where the union
binary function symbols ∪ and ] are used as the set and multiset constructors,
respectively. The operators ∪ and ] fulfill associativity (A) and commutativity
(C ). Moreover, ∪ is idempotent (I ). In order to deal with nested sets and multisets,
the unary function symbols {·} and {[ · ]} are also included. They act as singleton
constructors for sets and multisets, respectively. Thus, the set {a, b, c} can be
represented as a term of the form {a} ∪ {b} ∪ {c} and the multiset {[ a, b, b, c ]} can
be represented as {[ a ]} ] {[ b ]} ] {[ b ]} ] {[ c ]}. Since {·} and {[ · ]} are free function
symbols, they do not fulfill any particular axiom (see, e.g., [Baader and Nipkow
1998]). Equational theories which also allow to deal with nested sets and multisets
are called general ACI and general AC, respectively.

Unification and disunification algorithms for general ACI and AC theories can be
obtained by exploiting both the results for simpler cases (unification with constants–
[Baader and Büttner 1988]) and the combining approach developed in [Baader and
Schulz 1995; 1996]. This approach, however, due to its generality, tends to produce
a huge number of failing non-deterministic computation branches, which can be
pruned using more ad-hoc procedures.

The general problem of solving disequations with respect to a given equational
theory has also been addressed in [Bückert 1988], where a technique to transform
disequations into universally quantified unification problems is presented. The
method described in [Bückert 1988] cannot be applied in the case of theories over
sets, since it can generate undecidable formulas. In fact, existentially quantified
formulas containing equations and disequations are decidable in the case of AC
theories, as a corollary of the results presented in [Comon 1993]. Unfortunately,
the same results cannot be applied to ACI theories, hence to sets. These the-
ories are studied in [Dovier et al. 2004] where constraint solving procedures are
developed.

As far as membership and not-membership are concerned, we are not aware of
studies that extend those equational theories to encompass this kind of constraints.
Actually, for sets, both membership and not-membership could be easily defined in
terms of equality and disequality constraints: t ∈ s can be defined as {t} ∪ s = s
and t /∈ s as {t}∪s 6= s. Conversely, for multisets, membership t ∈ s can be defined
as ∃X ({[ t ]} ] X = s), where X is a new variable, while t /∈ s can be defined as
∀X ({[ t ]} ] X 6= s), i.e., using a formula with universal quantification. Note that
t /∈ s could be simplified to s = {[ X ]} ∪R ∧X 6= t∧ t /∈ R. On the contrary, t /∈ R,
where R is a variable, is not reducible to a system of equalities and disequalities. For
lists and compact lists of unknown length, both membership and not-membership
cannot be defined in terms of equality and disequality constraints.
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The union-based representation can also be used for lists and compact lists, where
the union operator is associative for lists, and associative and partially idempotent
for compact lists.

An alternative approach consists of considering a list-like representation based
on an element insertion constructor for each of the four aggregates (see Section 4).
In [Dovier et al. 2000] some comparisons between the union-like and list-like rep-
resentations are presented and they highlight the different expressive powers. In
particular, it turns out that the singleton operator is not expressible using existen-
tially quantified formulas with union. Furthermore, the list-based representation
is shown to be more natural for dealing with membership constraints. General
constraint solving procedures based on this approach, though limited to the case
of sets, are presented in [Dovier and Rossi 1993; Dovier et al. 2000]. In [Dovier
et al. 1998] we consider the four data structures considered in this paper, using the
list-like representation for all of them, but limitedly to the case of unification. Note
that constraints on sets are particular cases of formulas of multi-level syllogistics,
studied in [Cantone et al. 2001], where axioms for sets are not simply equational ax-
ioms. However, [Cantone et al. 2001] is mainly concerned with decidability results
rather than with constraint solving procedures.

In this paper we make use of the list-like representation constraint solving pro-
cedures (that can be used as decision procedures, as well) for constraints involving
equality and membership literals.

3. PRELIMINARY NOTIONS

Basic knowledge of first-order logic (e.g., [Chang and Keisler 1973; Enderton 1973])
is assumed. We fix some notations and recall some basic notions that will be used
throughout the paper.

A first-order language L = 〈Σ,V〉 is defined by a signature Σ = 〈F , Π〉 composed
by a set F of constant and function symbols, by a set Π of predicate symbols, and
by a denumerable set V of variables. The capital letters X, Y, Z, etc. are used to
represent variables, while f , g, etc. represent constant and function symbols, and
p, q, etc. represent predicate symbols. X̄ and t̄ denote a (possibly empty) sequence
of variables and terms, respectively.

The set of first-order terms (ground terms) built on F and V (F , respectively) are
denoted by T (F ,V) (T (F), respectively). The number of occurrences of constant
and function symbols in a term t is denoted by size(t), while FV(t̄) is the set of all
the variables which occur in the terms t̄. If ϕ is a first-order formula, FV(ϕ) is the
set of free variables in ϕ. A formula is closed if it has no free variables. ∃ϕ (∀ϕ)
is used to denote the existential (universal, respectively) closure of the formula ϕ,
namely ∃X1 · · · ∃Xn ϕ (∀X1 · · · ∀Xn ϕ, respectively), where {X1, . . . , Xn} = FV(ϕ).
An axiom is a closed first-order formula. If Θ = {ϕ1, . . . , ϕn} is a set of axioms and
A1, . . . , An are names for the axioms ϕ1, . . . , ϕn, we refer to Θ simply as A1 · · ·An.
In this work we assume that any first-order theory T includes standard equality
axioms: (=1) ∀X(X = X) and (=2) ∀X∀Y ((X = Y )→ (ϕ→ ϕ′)) where ϕ is any
first-order formula, X and Y are free in ϕ, and ϕ′ is obtained from ϕ by replacing
zero or more occurrences of X with Y [Chang and Keisler 1973; Enderton 1973].

An equational axiom is a formula of the form ∀(` = r) where ` and r are terms.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.
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An equational theory E is an axiomatization whose axioms are equational axioms.
Given two terms ` and r, we write ` ≈E r if the axioms in E can prove that ` is equal
to r. A system of equations S is a conjunction of equations `1 = r1 ∧ · · · ∧ `n = rn.
An E-solution (a solution, when the context is clear) of S is a substitution σ,
which replaces variables with ground terms, such that for all i ∈ {1, . . . , n} it holds
σ(`i) ≈E σ(ri).

Given L = 〈Σ,V〉, a Σ-structure is a pair A = 〈A, I〉 where A 6= ∅ is the domain
and I is the interpretation function of each constant, function, and predicate sym-
bols of Σ on A. A valuation σ is a function from a subset of the set of variables V
to A. When Σ is given, σ can be uniquely extended to terms, and allows to assign
truth values to formulas. A valuation σ is said to be successful for ϕ if σ(ϕ) = true
(briefly, A |= σ(ϕ)). A formula ϕ is satisfiable in A, denoted by A |= ∃ϕ, if there
exists a valuation σ such that A |= σ(ϕ). We say that A |= ϕ if for every valu-
ation σ from FV(ϕ) to A it holds that A |= σ(ϕ). Two formulas C1 and C2 are
equi-satisfiable in A if: C1 is satisfiable in A if and only if C2 is satisfiable in A. A
structure A is a model of a theory T if A |= ϕ for all ϕ in T . We say that T |= ϕ
if A |= ϕ for all models A of T .

4. THE THEORIES

We recall from [Dovier et al. 1998] the first-order axiomatic theories for the four
aggregates. Each theory has its own signature. Precisely, Π is {=,∈} and F
contains (at least) the constant symbol nil and exactly one among the following
binary function symbols:

[ · | · ] for lists, {[ · | · ]} for multisets,
[[ · | · ]] for compact lists, { · | · } for sets.

Moreover, each of the four signatures can contain an arbitrary number of fresh
constant and function symbols. The four function symbols above are referred as
aggregate constructors. The empty list, the empty multiset, the empty compact list,
and the empty set are all denoted by the constant symbol nil. We simplify syntactic
notations for terms built using the aggregate constructors in a standard way. In
particular, the (multiset) term {[ s1 | {[ s2 | · · · {[ sn | t ]} · · · ]} ]} will be denoted by
{[ s1, . . . , sn | t ]} or by {[ s1, . . . , sn ]} when t is nil. The same conventions will be
exploited also for the other aggregates.

In the following sections we introduce the axioms we need to define a theory for
each aggregate. Then the four theories are presented in Section 4.5.

4.1 Lists

The language LList is defined as 〈ΣList ,V〉, where ΣList = 〈FList ,Π〉, [ · | · ] and nil
are in FList , and Π = {=,∈}. We recall that FList can contain other constant and
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function symbols. The first-order theory List of lists is shown below.

(K) ∀X Y1 · · ·Yn (X 6∈ f(Y1, . . . , Yn) )
f ∈ FList , f is not [ · | · ]

(W ) ∀Y V X (X ∈ [ Y |V ]↔ X ∈ V ∨X = Y )

(F1) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)
f ∈ FList

(F2) ∀X1 · · ·XmY1 · · ·Yn (f(X1, . . . , Xm) 6= g(Y1, . . . , Ym))
f, g ∈ FList , f is not g

(F3) ∀X (X 6= t[X])
where t[X] denotes a term t having X as proper subterm

The three axiom schemas (F1), (F2), and (F3) (called freeness axioms, or Clark’s
equality axioms—see [Clark 1978]) have been originally introduced by Mal’cev
in [Mal’cev 1971]. Since [ · | · ] belongs to FList , axiom schema (F1) holds for [ · | · ]
as a particular case. (F3) states that there is no term which is a proper subterm of
itself (occurs check). Notice that (K) implies that ∀X (X /∈ nil).

4.2 Multisets

The language LMSet is defined as 〈ΣMSet ,V〉, where ΣMSet = 〈FMSet , Π〉, {[ · | · ]}
and nil are in FMSet , and Π = {=,∈}. A theory of multisets—called MSet—can
be obtained from the theory of lists shown above. The constructor [ · | · ] is replaced
by the constructor {[ · | · ]} in axiom schema (K) and axiom (W ). The behavior of
this new symbol is regulated by the following equational axiom

(Em
p ) ∀XY Z {[ X, Y |Z ]} = {[ Y, X |Z ]} (permutativity)

which intuitively states that the order of elements in a multiset is immaterial.
Axiom schema (F1) does not hold for multisets, when f is {[ · | · ]}. It is replaced by
axiom schema (Fm

1 ):

(Fm
1 ) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)

for any f ∈ FMSet , f is not {[ · | · ]}

The theory KWEm
p Fm

1 F2F3, however, is not endowed with a general criterion for
establishing equality and disequality between multisets. To obtain it, the following
multiset extensionality property is introduced: Two multisets are equal if and only
if they have the same number of occurrences of each element, regardless of their
order. The axiom proposed in [Dovier et al. 1998] to force this property is the
following:

(Em
k ) ∀Y1Y2V1V2



{[ Y1 |V1 ]} = {[ Y2 |V2 ]} ↔

(Y1 = Y2 ∧ V1 = V2)∨
∃Z (V1 = {[ Y2 |Z ]} ∧ V2 = {[ Y1 |Z ]})
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Axiom (Em
k ) implies (Em

p ). Axiom schema (Fm
3 ) is also introduced:

(Fm
3 ) ∀X1 · · ·XmY1 · · ·YnX

(
{[ X1, . . . , Xm |X ]} = {[ Y1, . . . , Yn |X ]}
→ {[X1, . . . , Xm ]} = {[ Y1, . . . , Yn ]}

)

It reinforces the acyclicity condition imposed by standard axiom schema (F3). As
a matter of fact, X 6= {[ a, b, b |X ]} follows from (F3). Axiom schema (Fm

3 ) states for
instance that, since {[ a, a, b ]} 6= {[ a, b, b ]}, then {[ a, a, b |X ]} 6= {[ a, b, b |X ]}. This
property is not a consequence of the remaining part of the theory.

4.3 Compact Lists

The language LCList is defined as LCList = 〈ΣCList ,V〉, where ΣCList = 〈FCList , Π〉,
[[ · | · ]] and nil are in FCList , and Π = {=,∈}. The theory of compact lists—called
CList—is obtained from the theory of lists with only a few changes. The list
constructor symbol is replaced by the binary compact list constructor [[ · | · ]] in
(K) and (W ). The behavior of this symbol is regulated by the equational axiom

(Ec
a) ∀XY [[X,X |Y ]] = [[X |Y ]] (absorption)

which, intuitively, states that contiguous duplicates in a compact list are immaterial.
As for multisets, we introduce a general criterion for establishing both equality and
disequality between compact lists. This is obtained by introducing the following
axiom:

(Ec
k) ∀Y1Y2V1V2




[[ Y1 |V1 ]] = [[Y2 |V2 ]] ↔
(Y1 = Y2 ∧ V1 = V2)∨
(Y1 = Y2 ∧ V1 = [[Y2 |V2 ]])∨
(Y1 = Y2 ∧ [[ Y1 |V1 ]] = V2)




Axiom (Ec
a) is implied by (Ec

k). Axiom schema (F1) is replaced by axiom schema
(F c

1 ):

(F c
1 ) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)

for any f ∈ FCList , f is not [[ · | · ]]
The freeness axiom (F3) needs to be suitably modified. The introduction of (F3)

is motivated by the requirement of finding solutions to equality constraints over
Σ-structures whose domain is based on the Herbrand Universe, where each term
is modeled by a finite tree. As opposed to lists and multisets, an equation such
as X = [[ nil |X ]] admits a successful valuation over compact lists. Precisely, a
valuation that binds X to the term [[ nil | t ]], where t is any term. Therefore,
axiom schema (F3) is weakened as follows:

(F c
3 ) ∀X (X 6= t[X])

unless: t is of the form [[ t1, . . . , tn |X ]], with n > 0,
X /∈ FV(t1, . . . , tn), and t1 = · · · = tn

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.
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4.4 Sets

The language LSet is defined as LSet = 〈ΣSet ,V〉, where ΣSet = 〈FSet , Π〉, { · | · }
and nil are in FSet , and Π = {=,∈}. The last theory we consider is the theory Set
of sets. Sets satisfy both the permutativity and the absorption properties which, in
the case of { · | · }, can be rewritten as follows:

(Es
p) ∀XY Z {X, Y |Z} = {Y, X |Z}

(Es
a) ∀XY {X, X |Y } = {X |Y }

A criterion for testing equality (and disequality) between sets is obtained by
merging the multiset equality axiom (Em

k ) and the compact list equality axiom
(Ec

k):

(Es
k) ∀Y1Y2V1V2




{Y1 |V1} = {Y2 |V2} ↔
(Y1 = Y2 ∧ V1 = V2)∨
(Y1 = Y2 ∧ V1 = {Y2 |V2})∨
(Y1 = Y2 ∧ {Y1 |V1} = V2)∨

∃Z (V1 = {Y2 |Z} ∧ V2 = {Y1 |Z})




According to (Es
k), duplicates and ordering of elements in sets are immaterial.

Thus, (Es
k) implies the equational axioms (Es

p) and (Es
a). In [Dovier et al. 1998]

it is also proved that they are equivalent in all Σ-structures where the domain is
isomorphic to a subset of the set of ground terms (Herbrand Universe). The theory
Set also contains axioms (K), (W ) with [ · | · ] replaced by { · | · }, and axiom schemas
(F2). Axiom schema (F1) is replaced by:

(F s
1 ) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)

for any f ∈ FSet , f is not { · | · }
The modification of axiom schema (F3) for sets simplifies the one used for compact
lists:

(F s
3 ) ∀X (X 6= t[X])

unless: t is of the form {t1, . . . , tn |X} and X ∈ FV(t1, . . . , tn)

4.5 Equational Theories

We have shown that each aggregate constructor is precisely characterized by zero,
one or two equational axioms. In particular, lists do not require any axiom, mul-
tisets need the permutativity axiom (Em

p ), compact lists use the absorption axiom
(Ec

a), and sets are characterized by both the permutativity axiom (Es
p) and the

absorption axiom (Es
a).

Figures 1 and 2 summarize the axiomatizations of the four theories.

5. CONSTRAINTS, STANDARD MODELS, AND SOLVED FORM

In this section we first introduce the set of formulas we are interested in. These
formulas are called constraints and are basically the existentially quantified formulas
of the languages described in the previous section.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.
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Theory empty with Equality Herbr. Acycl. Eq. Theory

List (K) (W ) (F1) (F2) (F3) EList

MSet (K) (W ) (Em
k ) (F m

1 ) (F2) (F3) (F m
3 ) EMSet

CList (K) (W ) (Ec
k) (F c

1 ) (F2) (F c
3 ) ECList

Set (K) (W ) (Es
k) (F s

1 ) (F2) (F s
3 ) ESet

Fig. 1. Axioms for the four theories. From left to right, the name of the first-order theory, the
first-order axiom schemas, and the name of the equational theories.

Eq. Theory Perm. Abs.

EList

EMSet (Em
p )

ECList (Ec
a)

ESet (Es
p) (Es

a)

Fig. 2. Axioms for the four equational theories. From left to right the name of the equational
theory and the equational axioms.

Definition 5.1 Constraints. Let T be either List or MSet or CList or Set . A
T-constraint CT is a conjunction of atomic LT-formulas or negation of atomic LT-
formulas of the form s π t, where π ∈ Π, and s, t ∈ T (FT,V).

Throughout the paper we will use the following terminology to refer to particular
kinds of constraints: equality (disequality) constraints are conjunctions of atomic
formulas of the form s = t (s 6= t, respectively), while membership (not-membership)
constraints are conjunctions of membership atoms (negative membership literals,
respectively), i.e. formulas of the form s ∈ t (s 6∈ t, respectively).

We are interested in the problem of deciding whether a formula over one of the
aggregates is satisfiable in each model of the theory of that aggregate. We start
tackling this problem by introducing standard models for the four theories and
giving a general notion of solved form for constraints. We prove that: (1) the
satisfiability of a constraint in the standard model is equivalent to its satisfiability
in each model (i.e., the theory and the standard model correspond on the class
of considered constraints); (2) solved form constraints are always satisfiable in the
corresponding standard model.

5.1 Standard Models

Each aggregate constructor is characterized by its equational theory (EList , EMSet ,
ECList , and ESet). Using the appropriate equational theory we can define standard
models for the first-order theories List , MSet , CList , and Set . Each model is
obtained as a partition of the Herbrand Universe. To simplify our presentation, we
describe in details only the multisets case.

Definition 5.2. The Σ-structure MSET for MSet is defined as follows.

(1) The domain of the Σ-structure is the quotient T (FMSet)/ ≡MSet of the Her-
brand Universe T (FMSet) over the smallest congruence relation ≡MSet induced
by the equational theory EMSet on T (FMSet).

(2) The interpretation of a term t is its equivalence class it with respect to ≡MSet .
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.
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(3) = is interpreted as the identity on the domain T (FMSet)/ ≡MSet .
(4) The interpretation of membership is: it ∈ is is true if and only if there is a

term of the form {[ t1, . . . , tn, t | r ]} in is .

In Lemma A.2 we prove thatMSET is a model of MSet . We call it the standard
model for MSet . For the other aggregates the names of the models are LIST ,
CLIST , and SET . The definition of these models is obtained by using the appro-
priate equational theory, in the very same way as shown for multisets.

Definition 5.3 [Jaffar and Maher 1994]. Let L = 〈Σ,V〉 be a a first-order lan-
guage, T be a theory on L, A be a Σ-structure on L, and C be a class of first-order
formulas on L. The theory T and the structure A correspond on the class C if, for
each ϕ ∈ C, we have that T |= ∃ϕ if and only if A |= ∃ϕ.

This property means that if ϕ is an element of C and ϕ is satisfiable in A, then it
is satisfiable in all the models of T . We prove that MSet and the standard model
MSET correspond on the class of constraints defined in Definition 5.1. In the proof
we use some basic results which can be found in the Appendix (Lemmas A.1–A.3).
The proofs for the other theories are similar. Intuitively all these proofs exploit
two facts: our standard models are “minimal” models for the theories (i.e., they
are contained in each model) and the formulas are only existentially quantified.

Theorem 5.4. The theory MSet and the model MSET correspond on MSet-
constraints.

Proof. From Lemma A.2 it follows that MSET is a model of MSet, namely
that if C is a first-order formula and MSet |= C, then MSET |= C.

On the other hand, if ∃C is a formula with only existential quantifiers, then
MSET |= ∃C if and only if there exists a valuation σ such that MSET |= σ(C).
Assume that M |= σ(C). From Lemmas A.1 and A.3, we have that M |= ∃C for
all models M of MSet. This implies that MSet |= ∃C.

5.2 Solved Form

We have proved that a constraint is satisfiable in each model if and only if it is
satisfiable in the standard one. However, we still have to develop a procedure
which tests satisfiability in the standard model. Such a procedure will be based on
the notion of solved form.

Definition 5.5. A constraint C = c1∧· · ·∧cn is in solved form if for i ∈ {1, . . . , n},
ci has one of the following forms:

—X = t and X does not occur neither in t nor elsewhere in C

—X 6= t and X does not occur in t

—t /∈ X and X does not occur in t.

Remark 5.6. In the case of multisets (sets) t ∈ X is equivalent to X = {[ t |N ]}
(X = {t |N}, respectively) where N is a new variable. This allows us to always
remove membership constraints. The property does not hold for lists and compact
lists. In these cases the solved form must include the further case

—t ∈ X and X does not occur in t.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.
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This inclusion, however, requires the introduction of further semantics conditions
in the definition of the solved form for lists and compact lists. As a matter of fact,
a constraint such as

[[ a |N ]] ∈ Y ∧ [[ a, a |N ]] 6∈ Y

is unsatisfiable in CLIST , since [[ a |N ]] and [[ a, a |N ]] are equivalent terms in
ECList . Furthermore, the constraint

X ∈ Y ∧ Y ∈ X

is unsatisfiable in both LIST and CLIST . Intuitively, the additional conditions
that must be tested for the solved form constraint C in the case of lists and compact
lists are: (i) membership constraints in C do not form any cycle; (ii) for each pair of
literals of the form t 6∈ X, t′ ∈ X in C, t and t′ are not equivalent modulo ≡E , where
E is the equational theory for either lists or compact lists. Both conditions can be
automatically tested. In particular, as concerns condition (ii), we known from
unification theory (see, e.g., [Baader and Nipkow 1998; Siekmann 1989]) that given
an equational theory E, knowing whether two terms are equivalent modulo ≡E is
the same as verifying whether the two terms t and t′ are E-unifiable with empty
mgu (ε). Thus, test (ii) is connected with the availability of a unification algorithm
for the theory E. In [Dovier et al. 1998] it is proved that all four equational
theories we are dealing with are finitary (i.e., they admit a finite set of mgu’s that
covers all possible unifiers) and, moreover, the unification algorithms for the four
theories are presented. This gives us a decision procedure for the test. A more
precise characterization of the additional conditions for lists and compact lists can
be found in [Dovier et al. 2003].

We prove that solved form constraints are satisfiable in the corresponding stan-
dard models. We prove the property for MSet-constraints.

Theorem 5.7 Satisfiability of Solved Forms. Given a MSet-constraint C
in solved form, it holds that MSET |= ∃C.

Proof. We split C into the three parts: C=, C /∈, and C 6=, containing =, /∈, and
6= literals, respectively. We use the two auxiliary functions rank and find. The rank
of a well-founded multiset is basically the maximum nesting of braces needed to
write it. Precisely:

rank(s) =
{

0 if s is not of the form {[ u | v ]}
max{1 + rank(u), rank(v)} if s is {[u | v ]}

find(X, t) is a function that produces for each pair (X, t) a set of integer numbers
indicating the ‘depth’ of the occurrences of the variable X in t. It can be defined
as:

find(X, t) =

8
>>>>>>>><
>>>>>>>>:

∅ if t is a constant term
{0} if t is a variable X
{1 + n : n ∈ find(X, y)} if t is {[ y | f(t1, . . . , tm) ]},

f is not {[·|·]}
{1 + n : n ∈ find(X, t1) ∪ · · · ∪ find(X, tm)} if t is f(t1, . . . , tm),

f is not {[·|·]}
{1 + n : n ∈ find(X, y)} ∪ find(X, s) if t is {[ y | s ]}, s 6= nil
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We build a successful valuation γ of C, in various steps; since the valuation is on
a domain whose elements are terms, valuations are substitutions.

C= is of the form X1 = t1 ∧ · · · ∧ Xm = tm. We define the substitution: θ1 =
[X1/t1, . . . , Xm/tm].

C 6= is of the form Z1 6= s1∧· · ·∧Zo 6= so (Zi does not occur in si), and C /∈ is of the
form r1 /∈ Y1∧· · ·∧rn /∈ Yn (Yi does not occur in ri). Let W1, . . . , Wh be the variables
in C different from the variables X̄, Ȳ , Z̄ and let θ2 = [W1/nil, . . . , Wh/nil].

Let s̄ = 1 + max{rank(t) : t /∈ X occurs in θ2(C) or X 6= t occurs in θ2(C)}.
Let R1, . . . , Rj be the all the variables occurring in θ2(C /∈ ∧ C 6=) (actually, all

the variables Ȳ and Z̄). Let n1, . . . , nj be auxiliary variables ranging over N. We
build a system S of linear disequations over the integers in the following way:

(1) S = {ni > s̄ : ∀i ∈ {1, . . . , j}} ∪ {ni1 6= ni2 : ∀i1, i2 ∈ {1, . . . , j}, i1 6= i2}
(2) For each literal Ri 6= s in θ2(C 6=) and for all k in {1, . . . , j}, i 6= k

S = S ∪ {ni 6= nk + c : ∀c ∈ find(Rk, s)}
(3) For each literal r /∈ Ri in θ2(C /∈) and for all k in {1, . . . , j}, i 6= k

S = S ∪ {ni 6= nk + c + 1 : ∀c ∈ find(Rk, r)}
We say that a linear disequality a 6= b over the integers is safe if, after expressions

evaluation, it is not of the form u 6= u. We say that a system A of linear disequations
over the integers with variables x1, . . . , xh is safe if each disequation in A is either
a safe disequality or it is of the form xi > m, where m is an integer number. A
finite set of safe linear disequalities has always an infinite number of solutions (see
Lemma A.4 in the Appendix). We show that all disequalities of S are safe. The
disequalities generated at point (1) are safe by definition; those introduced in points
(2) and (3) are safe since c is always a positive number. Thus, it is possible to find
an integer solution for the system S. Let η = {n1 = n̄1, . . . , nj = n̄j} be a solution
and define

θ3 = [Ri/{[ nil ]}n̄i : ∀i ∈ {1, . . . , j}]
where {[ nil ]}n̄ denotes the term {[ · · · {[︸ ︷︷ ︸

n̄

nil ]} · · · ]}.

It is immediate to see that in KWEm
k Fm

1 F2F
3Fm

3 it holds that {[ nil ]}x =
{[ nil ]}y if and only if x = y and {[ nil ]}x ∈ {[ nil ]}y if and only if x = y − 1
(see Lemma A.5 in the Appendix).

Let γ = θ1θ2θ3 (where sθ1θ2θ3 stands for θ3(θ2(θ1(s)))) and observe that Cγ is
a conjunction of ground literals. We show that KWEm

k Fm
1 F2F

3Fm
3 |= Cγ. We

analyze each literal of C.

X = t :. θ1(X) syntactically coincides with θ1(t) = t. The substitution θ2 makes
the two identical terms ground. A literal of this form is true in any model of
equality.

Z 6= s :. the following cases are possible:
—s is of the form {[ nil ]}p for some p < s̄. Zγ is of form {[ nil ]}n for some n > s̄.

Since n > p the result follows.
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—s is of the form {[ Wi ]}p for some variable Wi and some p < s̄. Zγ is of form
{[ nil ]}n for some n > s̄. Since Wiγ = nil, the situation is identical to the
previous case.

—s is of the form {[ A ]}p for some variable A among the Ȳ , Z̄, and some p < s̄. Then
find(A, t) = {p}. This means that the the constraint nZ 6= nA+p is introduced in
S and satisfied by the assignment η. Thus Zθ = {[ nil ]}nZ and tθ = {[ nil ]}nA+p.
Since nZ 6= nA + p the result follows as in the previous cases.

—If s is not in any of the previous forms, then sγ can be proved different from Zγ
using a sequence of applications of Em

k and F2.
r /∈ Y :. four cases are possible:

—r is of the form {[ nil ]}p for some p < s̄. Y γ is of form {[ nil ]}n for some n > s̄.
Since n 6= p + 1 the result follows.

—r is of the form {[ Wi ]}p for some variable Wi and some p < s̄. Zγ is of form
{[ nil ]}n for some n > s̄. Since Wiγ = nil, the situation is identical to the
previous case.

—r is of the form {[ X ]}p for some variable X among the Ȳ , Z̄, and some p ≤ s̄.
Then find(X, t) = {p}. This means that the the constraint nY 6= nX + p + 1 is
introduced in S and satisfied by the assignment η. Thus Y θ = {[ nil ]}nY and
rθ = {[ nil ]}nX+p. Since nY 6= nX + p + 1 the result follows as in the previous
cases.

—If r is not in any of the previous forms, then rγ can be proved different from Y γ
using axiom W and a sequence of applications of Em

k and F2.

Hence a solved-form constraint can be seen as a symbolic representation for a
non-empty and possibly infinite set of valuations, i.e., the valuations satisfying it.

6. CONSTRAINT REWRITING PROCEDURES

In this section we describe the procedures that allow us to obtain solved form
constraints from any given constraint C. Precisely, these procedures rewrite the
constraint C either into an equi-satisfiable disjunction of constraints in solved form
or false. The constraint is rewritten to false if and only if it is not satisfiable in
the standard model. As a consequence of the results of the previous sections these
procedures decide the satisfiability of a constraint in each model of the theory.
Moreover, the disjunction of constraints in solved form given as output is a finite
representation for the valuations satisfying the input constraint.

All procedures have the same overall structure shown in Figure 3: they take a
constraint C as input and repeatedly select a conjunct c in C not in solved form
(if any) and apply one of the rewriting rules to it. The procedure stops when the
constraint C is in solved form or it contains false as one of its conjuncts.

The procedure is non-deterministic. Some rewriting rules have two or more pos-
sible non-deterministic choices. Each non-deterministic computation returns a con-
straint in solved form or false. Globally, the procedure returns a finite collection
C1, . . . , Ck of constraints. The input constraint C and the disjunction C1∨ · · ·∨Ck

are equi-satisfiable in the standard models. We show the details for the multiset
case only. Details for the other procedures can be found in [Dovier et al. 2003].
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Let T be one of the theories List ,MSet ,CList ,Set , π be a symbol in {=, 6=,∈, 6∈},
and C be a T-constraint

while C contains an atomic constraint c not in solved form and C 6= false do
select c;
if c = false then return false

else if c = true then erase c
else if c = ` π r apply any rewriting rule for T-constraints of the form ` π r;

return C

Fig. 3. Main loop of constraint rewriting procedures

6.1 Equality Constraints

Unification algorithms for verifying the satisfiability and producing the solutions of
equality constraints in the four aggregate theories have been proposed in [Dovier
et al. 1998]. These algorithms fall in the general schema of Figure 3. Some deter-
minism in the statement select c is added to ensure termination. They are called:

unify-List for lists
unify-MSet (called unify-bags in [Dovier et al. 1998]) for multisets
unify-CList for compact lists
unify-Set for sets

and they are used unaltered in the four global constraint solvers that we propose
in this paper.

The output of the algorithms is either false, when the input constraint is unsat-
isfiable, or a collection of solved form constraints composed only by equality atoms.
In Figure 4 we show the rewriting rules for multiset unification.

The algorithm uses the auxiliary functions tail and untail defined as follows:

tail(f(t1, . . . , tn)) = f(t1, . . . , tn) f is not {[ · | · ]}, n ≥ 0
tail(X) = X X is a variable
tail({[ t | s ]}) = tail(s)
untail(X) = nil X is a variable
untail({[ t | s ]}) = {[ t | untail(s) ]}

The following lemma, which states the soundness and completeness of the unifi-
cation rules, has been proved in [Dovier et al. 1998]. We report here the proof for
the sake of completeness.

Lemma 6.1 [Dovier et al. 1998]. Let T be one of the theories List, MSet,
CList, Set, and AT be the standard model for T. Let C be a T-constraint, C1, . . . , Ck

be the constraints non-deterministically returned by unify-T(C), and N̄i = FV(Ci) \
FV(C). Then AT |= ∀

(
C ↔ ∨k

i=1 ∃N̄iCi

)
.

Proof. Let us prove the property for each rule separately.

unify-MSet(1), (2), (3). They immediately follow from equality axioms.
unify-MSet(4). It is justified by axiom (Fm

3 ).
unify-MSet(5). It is immediately justified by axiom schema (F 2).
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Rules for unify-MSet

(1) X = X 7→ true

(2)
t = X

t is not a variable

ff
7→ X = t

(3)
X = t

X 6∈ FV(t), X occurs elsewhere in C

ff
7→

X = t and apply the substitution [X/t] to C

(4)
X = t

t is not X, X ∈ FV(t)

ff
7→ false

(5)
f(s1, . . . , sm) = g(t1, . . . , tn)

f is not g

ff
7→ false

(6)
f(s1, . . . , sm) = f(t1, . . . , tm)

m ≥ 0, f is not {[ · | · ]}
ff
7→

s1 = t1 ∧ . . . ∧ sm = tm

(7)
{[ t | s ]} = {[ t′ | s′ ]}

tail(s) and tail(s′) are not the same variable

ff
7→

(i) (t = t′ ∧ s = s′) ∨
(ii) (s = {[ t′ |N ]} ∧ {[ t |N ]} = s′)

(8)
{[ t | s ]} = {[ t′ | s′ ]}

tail(s) and tail(s′) are the same variable

ff
7→

untail({[ t | s ]}) = untail({[ t′ | s′ ]})

Fig. 4. Rewriting rules of the unification algorithm for multisets

unify-MSet(6). One direction follows from the equality axioms, the other one
from axiom (F1)

unify-MSet(7). It is immediately justified by axiom (Em
k ).

unify-MSet(8). It is immediately justified by axiom (Fm
3 ) (the auxiliary function

untail replace the variable that occurs as tail of the two multisets with nil).

Remark 6.2. Consider the constraint

{[ a |X ]} = {[ b |Y ]} ∧ {[ d |X ]} = {[ e |Y ]}
If we apply rule (7ii) to the first equation and then to the second equation, we
obtain:

X = {[ b |N1 ]} ∧ {[ a |N1 ]} = Y ∧X = {[ e |N2 ]} ∧ {[ d |N2 ]} = Y

Then, apply rule (2) to the second equation and then apply substitution (rule (4))
to the first and second equation we get:

X = {[ b |N1 ]} ∧ Y = {[ a |N1 ]} ∧ {[ b |N1 ]} = {[ e |N2 ]} ∧ {[ d |N2 ]} = {[ a |N1 ]}
The first two equations are in solved form. The third and fourth equations consti-
tute a constraint absolutely equivalent to the starting one. This is a possible source
of non-termination. However, a simple selection strategy is sufficient to avoid this
problem. From the initial system, apply rule (7ii) to the first equation and then
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the two substitutions induced:

X = {[ b |N1 ]} ∧ Y = {[ a |N1 ]} ∧ {[ d, b |N1 ]} = {[ e, a |N1 ]}
Then rule (8) can be used removing “tail” variables:

X = {[ b |N1 ]} ∧ Y = {[ a |N1 ]} ∧ {[ d, b ]} = {[ e, a ]}
And in few steps termination (with failure) occurs. Basically the rule is “when a
multiset-multiset equation is selected, recursively processing first all the equations
introduced by it”. This rule is easy implemented using a stack. For more details,
see [Dovier et al. 1998].

6.2 Membership and Not-Membership Constraints

The rewriting procedures for membership and not-membership constraints on a
specific aggregate are obtained from the general schema of Figure 3, using the
rewriting rules for membership and not-membership constraints suitably instanti-
ated with the corresponding theory. These rules are justified by axioms (K) and
(W ) that hold in all the four theories. In Figure 5 we show the rules in the case
of multisets. Note that the rewriting rule (4) for in-MSet can be used for sets and
multisets, but not for the other theories (see also Remark 5.6). Thus, the rules for
membership constraints in the case of lists and compact lists only deal with cases
(1)–(3), while constraints of the form r ∈ X remain unchanged in the solved form.

Rules for in-MSet

(1)
r ∈ f(t1, . . . , tn)
f is not {[ · | · ]}

ff
7→ false

(2) r ∈ {[ t | s ]} ¯ 7→ r = t ∨ (a)
r ∈ s (b)

(3)
r ∈ X

X ∈ FV(r)

ff
7→ false

(4)
r ∈ X

X 6∈ FV(r)

ff
7→ X = {[ r |N ]}

Rules for nin-MSet

(1)
r /∈ f(t1, . . . , tn)
f is not {[ · | · ]}

ff
7→ true

(2) r /∈ {[ t | s ]}) ¯ 7→ r 6= t ∧ r /∈ s

(3)
r /∈ X

X ∈ FV(r)

ff
7→ true

Fig. 5. Rewriting rules for membership and not-membership constraints

Lemma 6.3. Let T be one of the theories List, MSet, CList, Set, and AT be
the standard model for the theory T. Let C be a T-constraint, C1, . . . , Ck be the
constraints non-deterministically returned by nin-T(in-T(C)), and N̄i = FV(Ci) \
FV(C). Then AT |= ∀

(
C ↔ ∨k

i=1 ∃N̄iCi

)
.
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Proof. We prove soundness and completeness for multisets, thus with respect
to the model MSET . Soundness and completeness for the other aggregates can
be proved in the very same way (with the exception of rule (4)). Soundness and
completeness is proved for each rewriting rule separately since the rules are mutually
exclusive.

in-MSet(1). r ∈ f(t1, . . . , tn), with f different from {[ · | · ]} is equivalent to false
by axiom (K).

in-MSet(2). This is exactly axiom (W ).
in-MSet(3). Assume that there is a valuation σ such that MSET |= σ(r ∈ X).

This means that σ(X) is an equivalence class which contains a term of the form:
{[ s1, . . . , sn, r′ | t ]} for some terms s1, . . . , sn, t and for some term r′ in the equiva-
lence class σ(r). Axiom (F3) ensures that X cannot be a subterm of r.

in-MSet(4). Assume that there is a valuation σ such that MSET |= σ(r ∈
X). This means that σ(X) is an equivalence class which contains a term of the
form: {[ s1, . . . , sn, r′ | t ]} for some terms s1, . . . , sn, t and for some term r′ in σ(r).
Since MSET is a model of (Em

k ) this means that the class σ(X) contains also
{[ r′, s1, . . . , sn | t ]} for some terms s1, . . . , sn, t. Thus, it is a model of X = {[ r |N ]}.
The other direction is similar.

nin-MSet(1), (2), (3). Same proofs as for the corresponding in-MSet rules, using
the same axioms.

6.3 Disequality Constraints

Rewriting rules for disequality constraints consist of a part common to the four
theories (rules (1)–(5)), and a part which is specific to each theory. In Figure 6 we
show the rules for the multiset case.

Some words are necessary to explain the rules which manage disequalities between
multisets. In particular, if we used directly axiom (Em

k ) in rule(6.2) of Figure 6, we
would have that:

{[ t1 | s1 ]} 6= {[ t2 | s2 ]} ↔ (t1 6= t2 ∨ s1 6= s2)∧
∀N (s2 6= {[ t2 |N ]} ∨ s1 6= {[ t1 |N ]})

Since an universal quantification is introduced, this is no longer a constraint ac-
cording to Definition 5.1.

Alternatively, we could use the intuitive notion of multi-membership: x ∈i y if x
belongs at least i times to the multiset y. This way, one can provide an alternative
version of equality and disequality between multisets. In particular, we would have
that:

{[ t1 | s1 ]} 6= {[ t2 | s2 ]} ↔ ∃X∃n (n ∈ N∧
(X ∈n {[ t1 | s1 ]} ∧X /∈n {[ t2 | s2 ]})∨
(X ∈n {[ t2 | s2 ]} ∧X /∈n {[ t1 | s1 ]}))

In this case, however, the quantification over natural numbers is outside the lan-
guage we are studying. Conversely, the rewriting rule (6.2) adopted in Figure 6
avoids these difficulties introducing only one existential quantification (∃N in the
set of terms T (FMSet)).
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Rules for neq-MSet

(1)
d 6= d

d is a constant

ff
7→ false

(2)
f(s1, . . . , sm) 6= g(t1, . . . , tn)

f is not g

ff
7→ true

(3)
t 6= X

t is not a variable

ff
7→ X 6= t

(4)
X 6= X

X is a variable

ff
7→ false

(5)
f(s1, . . . , sn) 6= f(t1, . . . , tn)
n > 0, f is not consT( · , · )

ff
7→ s1 6= t1∨ (1)

...
...

sn 6= tn (n)

(6.1)
{[ t1 | s1 ]} 6= {[ t2 | s2 ]}
tail(s1) and tail(s2)

are the same variable

9
=
; 7→ untail({[ t1 | s1 ]}) 6= untail({[ t2 | s2 ]})

(6.2)
{[ t1 | s1 ]} 6= {[ t2 | s2 ]}
tail(s1) and tail(s2)

are not the same variable

9
=
; 7→ (t1 6= t2 ∧ t1 /∈ s2)∨ (a)

({[ t2 | s2 ]} = {[ t1 |N ]} ∧ s1 6= N) (b)

(7)
X 6= f(t1, . . . , tn)

X ∈ FV(t1, . . . , tn)

ff
7→ true

Fig. 6. Rewriting rules for disequality constraints on multisets

Remark 6.4. Observe that, differently from multisets, the rewriting rule for dis-
equality between compact lists follows immediately from axiom (Ec

k). As a matter
of fact, this axiom does not introduce any new variable.

As concerns sets, axiom (Es
k) introduces an existentially quantified variable, as

for multisets. Thus, its direct application for stating disequality would require
universally quantified constraints that go outside the language. On the other hand,
the rewriting rule (6.2) used for multisets (Figure 6) cannot be used in this context.
In fact, the property that s1 6= N implies {[ t1 | s1 ]} 6= {[ t1 |N ]}, holding for finite
multisets, does not hold for sets. For instance, {a} 6= {a, b} but {b, a} = {b, a, b}.
Thus, this rewriting rule would be not correct for sets.

A rewriting rule for disequality constraints on sets, however, can be easily ob-
tained by taking the negation of the standard extensionality axiom for sets

(Ek) x = y ↔ ∀z (z ∈ x↔ z ∈ y)

This leads to the following rewriting rule that replaces rules (6.1) and (6.1) of
Figure 6 in the case of disequality constraints on sets.

(6) {t1 | s1} 6= {t2 | s2}
} 7→

Z ∈ {t1 | s1} ∧ Z /∈ {t2 | s2}∨ (a)
Z ∈ {t2 | s2} ∧ Z /∈ {t1 | s1} (b)

Soundness and completeness of neq-MSet are proved by the following lemma.
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Lemma 6.5. Let C be a MSet-constraint, C1, . . . , Ck be the constraints non-
deterministically returned by neq-MSet(C), and let N̄i = FV(Ci) \ FV(C). Then
MSET |= ∀

(
C ↔ ∨k

i=1 ∃N̄iCi

)
.

Proof. Let us prove the property for each rule separately.

neq-MSet(1), (3), (4). They immediately follow from equality axioms.
neq-MSet(2). It is justified by axiom (F2).
neq-MSet(5). One direction follows from the equality axioms, the other one from

axiom (Fm
1 )

neq-MSet(6.1). It is immediately justified by axiom schema (Fm
3 ).

neq-MSet(6.2). The constraint {[ t1 | s1 ]} 6= {[ t2 | s2 ]} is equivalent to:

t1 /∈ {[ t2 | s2 ]} ∧ {[ t1 | s1 ]} 6= {[ t2 | s2 ]} ∨ (1)
t1 ∈ {[ t2 | s2 ]} ∧ {[ t1 | s1 ]} 6= {[ t2 | s2 ]} (2)

Since we are looking for successful valuations overMSET that deal with multisets
of finite elements, axiom (Em

k ) ensures that t1 /∈ {[ t2 | s2 ]} implies {[ t1 | s1 ]} 6=
{[ t2 | s2 ]}. Thus, formula (1) is equivalent to t1 ∈ {[ t2 | s2 ]} which, in turn, is
equivalent by (W ) to the disjunct (a) generated by the rewriting rule.

Consider now formula (2). It is easy to see that

MSET |= ∀(t1 ∈ {[ t2 | s2 ]} ↔ ∃M ({[ t1 |M ]} = {[ t2 | s2 ]})) (3)

Thus, (2) is equivalent to

∃M ({[ t1 |M ]} = {[ t2 | s2 ]} ∧ {[ t1 | s1 ]} 6= {[ t2 | s2 ]}) (4)

It remains to prove that (4) is equivalent to the disjunct (b), namely:

∃N (s1 6= N ∧ {[ t2 | s2 ]} = {[ t1 |N ]}) (5)

(4)→ (5). Assume that there exists M which satisfies (4). M = s1 will immedi-
ately lead to a contradiction. Thus, (5) is satisfied by N = M .

(5)→ (4). Assume that there exists N which satisfies (5). It immediately follows
from the fact, true for finite multisets, that s1 6= N implies {[ t1 | s1 ]} 6= {[ t1 |N ]}.
Thus, choose M = N .

Remark 6.6. In our theories an aggregate can be built starting from any ground
uninterpreted Herbrand term, called the kernel, and by adding to it the elements
that compose the aggregate. Thus, two aggregates can contain the same elements
but nevertheless they can be different because they have different kernels. For
instance, the two terms {a | b} and {a | c} denote two different sets containing the
same elements (i.e., only a) but based on different kernels (i.e., b and c, respectively).

Rewriting rules for disequality constraints on aggregates other than sets are for-
mulated in such a way to take care of the possibly different kernels without having
to explicitly resort to kernels. Conversely, the rewriting rule for disequality con-
straints on sets (similar to rule (6) of neq MSet and its subrules) is not able to
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“force” disequality between two sets when they have the same elements but dif-
ferent kernels. A possible completion of the above procedures to take care of this
case is presented in [Dovier and Rossi 1993]. Basically, a new constraint (ker) is
introduced and the rewriting rule (6) is endowed with a third non-deterministic
case: ker(s1) 6= ker(s2). For further details, see [Dovier et al. 2003].

7. CONSTRAINT SOLVING

Now we have all ingredients to address the problem of establishing whether a con-
straint C is satisfiable in the corresponding standard model. Theorem 5.4 ensures
that the property is inherited by any model.

Constraint satisfiability for a theory T is checked by the non-deterministic rewrit-
ing procedure SATT shown in Figure 7. SATT is completely parametric with respect
to the theory involved and it iteratively uses the rewriting procedures presented in
the previous sections, until a fixed-point is reached, i.e., any new rewritings do not
further simplify the constraint. This happens when the constraint is either in solved
form or it is false.

By Theorem 5.7 a constraint in solved form is guaranteed to be satisfiable in
the corresponding model. Moreover, it will be proved in Theorem 7.2 that the
disjunction of solved form constraints returned by SATT is equi-satisfiable in the
standard model with the original constraint C. Therefore, SATT can be used as
a test procedure to check satisfiability of C: if it is able to reduce C to at least
one solved form constraint C ′, then C is satisfiable; otherwise, C is unsatisfiable.
The generated constraint in solved form can be exploited to compute all possible
successful valuations for C.

function SATT(C)
repeat

C′ := C;
C := unify-T(neq-T(nin-T(in-T(C))))

until C = C′;
return(C)

Fig. 7. The satisfiability procedure, parametric with respect to T

The rest of this section is devoted to prove the crucial result of termination of
the procedure SATT(C), to prove its soundness and completeness, and, finally, to
give some hints on its complexity.

Theorem 7.1 Termination. Let T be one of the theories List, MSet, CList,
Set, and C be a T-constraint. Each non-deterministic execution of SATT(C) termi-
nates in a finite number of steps. Moreover, the constraint returned is either false
or a solved form constraint.

Proof. We give the proof for the case of MSet. The other proofs can be found
in [Dovier et al. 2003].
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It is immediate to see, by the definitions of the procedures, that if C is different
from false and not in solved form, then some rewriting rule can be applied. If we
apply a rewriting rule that leads to false, then the process terminates. Thus, we
do not analyze such rules in the rest of this proof.

We prove that the repeat cycle cannot loop forever. For doing that, we define
a complexity measure for constraints. Let us assume that constraints of the form
X = t, with X neither in t nor elsewhere in C, are removed from C. Similarly, we
assume that true constraints are not counted in the complexity measure. These two
assumptions are safe since those constraints do not fire any new rule application.
The complexity measure that we associate with a constraint is the following triple:

compl(C) = 〈 α(C) = # vars in C,
β(C) = {[ size(s) + size(t) : s op t ∈ C ]},
γ(C) =

∑
s op t∈C size(s) 〉

The first and third element of the triple are non-negative integers. The second
is a multiset of non-negative integers. Multisets of non-negative integers are well-
ordered [Dershowitz and Manna 1979] by the ordering obtained as the transitive
closure of the rule:

{[ s1, . . . , si−1, t1, . . . , tn, si+1, . . . , sm ]} ≺ {[ s1, . . . , sm ]} ,

for i ∈ {1, . . . , m}, n ≥ 0, t1 < si, . . . , tn < si. The ordering on triples is the
(well-founded) lexicographical ordering.

We will prove that given a constraint C a constraint C ′ with lower complexity
is reached in a finite number of non-failing successive rule applications. We show
this property by case analysis. Most rule applications decrease the complexity in
one step. When this does not happen, we enter in more detail.

unify-MSet(1). α does not increase, β decreases.

unify-MSet(2). α and β do not increase. γ decreases, since size(X) = 0 and
size(t) > 0.

unify-MSet(3). α decreases by 1.

unify-MSet(6). α does not increase. β decreases, since an equation of size 1 +∑m
i=1 size(si)+size(ti) is replaced by m smaller equations of size size(si)+size(ti).

unify-MSet(7). In this case the complexity may remain unchanged at the first
step. However, the unification algorithm adopts a selection strategy that ensures
that after a finite number of steps, either α decreases or α does not change and β
decreases (see Remark 6.2).

unify-MSet(8). After one rule application, we are in case (7) with both the tails
of the multisets non-variables. After a finite number of steps, we enter the situation
where α is unchanged and β decreases.

in-MSet(2). α does not increase. β decreases, since a constraint of size 1 +
size(r) + size(s) + size(t) is non-deterministically replaced by one of smaller size,
i.e. either size(r) + size(s) or size(r) + size(t).

nin-MSet(1), (3). α does not increase and β decreases.
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nin-MSet(2). α does not increase. β decreases, since a constraint of size 1 +
size(r) + size(s) + size(t) is non-deterministically replaced by two constraints of
smaller size size(r) + size(s) and size(r) + size(t).

neq-MSet(2), (7). Trivially, α does not increase and β decreases.
neq-MSet(3). α and β do not increase. γ decreases, since size(X) = 0 and

size(t) > 0.
neq-MSet(5). α does not increase. β decreases, since a constraint of size 1 +∑m
i=1 size(si) + size(ti) is non-deterministically replaced by one of size size(si) +

size(ti).
neq-MSet(6.2). A unique application of this rule may not decrease the constraint

complexity. However, the rule removes {[ t1 | s1 ]} 6= {[ t2 | s2 ]} and introduces

{[ t2 | s2 ]} = {[ t1 |N ]} ∧ (6)
s1 6= N (7)

Consider now the two cases:
(1) {[ t2 | s2 ]} is {[ r1, . . . , rn ]}
(2) {[ t2 | s2 ]} is {[ r1, . . . , rn |A ]}, for some variable A distinct from N that has just

been introduced.
In the first case the successive execution of unify-MSet replaces equation (6) by:

t1 = ri ∧N = {[ r1, . . . , ri−1, ri+1, . . . , rn ]}
for some i = 1, . . . , n. We have that

size(t1) + size(ri) < size({[ t1 | s1 ]}) + size({[ t2 | s2 ]}).
The equation N = {[ r1, . . . , ri−1, ri+1, . . . , rn ]} is eliminated by applying the sub-
stitution for N . N occurs only in the constraint s1 6= N , that becomes s1 6=
{[ r1, . . . , ri−1, ri+1, . . . , rn ]}. Again, its size is strictly smaller than that of the orig-
inal disequality constraint. Thus, after some further steps, α remains unchanged
while β decreases. Strictly speaking, some other actions may occur during that
sequence of actions. However, if no other rule (6.2) is executed, then all rules de-
crease the complexity tuples. Conversely, if other rules of this form are executed,
then we need to wait for all the substitutions of this form to be applied. But they
are all independent processes.

The second case is similar, but in such a case a substitution also for A is com-
puted, ensuring that α decreases.

neq-MSet(6.1). After one step, we are in the above situation (6.2).

The soundness and completeness result of the global constraint solving procedure
for List, MSet, CList, and Set follows from the lemmas in the previous sections. As
observed in Remark 6.6, the completeness of the Set case needs some care to deal
with kernels.

Theorem 7.2 Soundness - Completeness. Let T be one of the theories List,
MSet, CList, and Set, C be a T-constraint, and C1, . . . , Ck be the solved form
constraints non-deterministically returned by SATT(C), and N̄i be FV(Ci) \ FV(C).
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Then AT |= ∀
(
C ↔ ∨k

i=1 ∃N̄iCi

)
, where AT is the model which corresponds with

T.

Proof. We specialize the proof for the multiset case. Theorem 7.1 ensures the
termination of each non-deterministic branch. At each branch point, the num-
ber of non-deterministic choices is finite. Thus, C1, . . . , Ck can be effectively com-
puted. Both soundness and completeness results about the global constraint solving
procedure follow from the results proved individually for the procedures involved:
Lemma 6.1 for unification, Lemma 6.3 for in-MSet and nin-MSet , and Lemma 6.5
for neq-MSet.

Corollary 7.3 Decidability. Given a T-constraint C, it is decidable whether
AT |= ∃C, where AT is one of the standard models LIST ,MSET , CLIST , SET .

Proof. From Theorem 7.2 we know that C is equi-satisfiable with C1 ∨ · · · ∨
Ck. If all the Ci are false, then C is unsatisfiable in LIST (MSET , CLIST ,
SET ). Otherwise, it is satisfiable, since solved form constraints are satisfiable
(Theorem 5.7).

As far as complexity is concerned, we first need to distinguish between the com-
plexity of the constraint satisfiability problem and the complexity of the satisfiabil-
ity procedure we present.

Complexities of the four unification problems are studied in [Dovier et al. 1998]:
the decision problem for unification is proved to be solvable in linear time for
lists, while it is NP-complete for the other cases. In the case of lists, not only
the unification problem is polynomial, but also the problem involving equalities
and disequalities. In particular, if a constraint on lists is a conjunction of equal-
ities and disequalities, then its satisfiability is solvable in deterministic quadratic
time [Baader and Nipkow 1998; Corbin and Bidoit 1983]. On the other hand, the
satisfiability problem for conjunctions of membership and disequality constraints
on lists is NP-hard. A reduction from 3-SAT is briefly discussed in [Dovier et al.
2003]. The same reduction can be applied to the other aggregates. Since X 6= Y is
equivalent to X 6∈ {[ Y ]}, the above mentioned reduction can be adapted to prove
the NP-hardness of the satisfiability problem for constraints involving only mem-
bership and not-membership. In the four aggregate theories, the satisfiability of a
conjunction of disequalities and not-membership can be tested in polynomial time
by simply applying some reorderings on the terms and syntactic checks. The case
of disequalities on sets with a union-based approach has been considered in [Dovier
et al. 2004].

Let us now comment on the complexity of our constraint rewriting procedures.
The unification algorithm presented in [Dovier et al. 1998] and briefly recalled here
can generate terms which grow exponentially. Consider for instance the constraint

X1 = f(X2, X2) ∧X2 = f(X3, X3) ∧ . . . ∧Xn−1 = f(Xn, Xn).

It is easy to see that if we apply all the substitutions, then X1 will be bound to a
term whose size is exponential with respect to n. However, as explained in [Aliffi
et al. 1999; Dantsin and Voronkov 1999], it is possible to avoid explicit substitu-
tions, thus obtaining an implementation of the unification algorithm which works
in non-deterministic polynomial time. In our context, at the implementation level,
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terms can be represented by linked structures. Precisely, a term f(t1, . . . , tn) can
be represented by a node labeled by f pointing to the nodes representing t1, . . . , tn.
Each occurrence of a variable X is associated to a unique node. In this way, explicit
substitutions are implemented by node collapsing. If we exploit such implementa-
tion in our constraint satisfiability procedure SATT, we only need to perform some
further checks at the end of the computation to guarantee the satisfiability of the
returned constraint. For instance, if we get a conjunct of the form X 6= t we need
to check that this is coherent with the equalities, i.e., we have to check that the
pointers of X and t do not syntactically generate the same terms. Hence, since
the procedures for membership, not-membership, and disequalities, work in non-
deterministic polynomial time, we can obtain a non-deterministic polynomial time
implementation for SATT.

8. CONCLUSIONS

We have extended the results of [Dovier et al. 1998] studying the constraint solving
problem for four different theories, namely the theories of lists, multisets, compact
lists, and sets. The analyzed constraints are conjunctions of literals based on equal-
ity and membership predicate symbols. We have identified the standard models for
these theories by showing that they correspond with the theories on the class of
considered constraints. We have developed a notion of solved form (proved to be
satisfiable) and presented the rewriting algorithms which allow this notion to be
used to decide the satisfiability problems for the four aggregates. In particular, we
presented a constraint solving technique parametric with respect to these theories
and we have pointed out the differences and similarities among the four kinds of
aggregates.

An implementation of the results described in this paper can be found in the
Constraint Logic Programming language {log} ( http://prmat.math.unipr.it/
∼gianfr/SETLOG/setlog fd.pl). In this language the aggregate theories discussed
in this paper (except that for compact lists) are combined all together to provide a
general framework where to deal with several of the proposed forms of aggregates
simultaneously. As a matter of fact, the choices made in the axiomatic definition of
the theories, as well as the parametric definition of the relevant constraint rewriting
procedures, make their combination into a single general framework immediately
feasible, with only a very limited effort.

As further work it could be interesting to study the properties of the four ag-
gregates in presence of append-like operators (append for lists, ∪ for sets, ] for
multisets). These operators cannot be defined without using universal quantifiers
(or recursion) with the languages analyzed in this paper [Dovier et al. 2000].

APPENDIX

We recall some technical definitions. Given two Σ-structures A and B, B = 〈B, (·)B〉
is a substructure of A = 〈A, (·)A〉 if B ⊆ A and for all x ∈ B it holds that
(x)A = (x)B. Given two Σ-structures A and B, a function h : A −→ B is said to
be an homomorphism from A to B if:

(i) ∀f ∈ F , a1, . . . , an ∈ A (h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))) ;
(ii) ∀p ∈ Π, a1, . . . , am ∈ A (pA(a1, . . . , am)→ pB(h(a1), . . . , h(am))) .
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The function h is said to be an isomorphism if f is bijective and in the property (ii)
also the ← implication holds. Given two Σ-structures A and B, an embedding of A
in B is an isomorphism from A to a substructure of B.

Lemma A.1 [Chang and Keisler 1973]. Let A and B be two Σ-structures
and let h be an embedding of A in B. If ϕ is an open formula of L = 〈Σ,V〉,
then for each valuation σ on A:

A |= σ(ϕ)↔ B |= h(σ(ϕ)) .

Lemma A.2. MSET is a model of the theory MSet.

Proof. For each axioms/axiom schemas (A) of the theory MSet we need to
prove thatMSET models (A) (briefly,MSET |= (A)). We give only the sketch of
the proof.

(K), (W ):. The fact thatMSET is a model of (K) and (W ) is a consequence of
the membership predicate interpretation inMSET (cf. point (4) of Definition 5.2).

(Fm
1 ):. This axiom holds inMSET , since f(t1, . . . , tn) and f(s1, . . . , sn) belong

to the same class inMSET , only if for all i = 1, . . . , n it holds that ti and si belong
to the same class.

(F2):. It holds, by definition ofMSET , since terms beginning with different free
symbols belong to different classes.

(F3), (Fm
3 ):. Since each ground term has a finite size, both MSET |= (F3) and

MSET |= (Fm
3 ) hold; it can be formally proved by induction on the complexity of

the terms.
(Em

p ):. MSET is a model of (Em
p ), since for any equational theory E, T (F)/ ≡E

is a model of E [Siekmann 1989].
(Em

k ):. MSET is a model of (Em
p ), as seen in the previous point, but it is also

the initial model, namely two terms s and t are in the same class if and only if
(Em

p ) can prove that s = t. This is exactly the meaning of the axiom (Em
k ).

Lemma A.3. Let M be a model of MSet. Let h : T (FMSet)/ ≡EMSet
−→ M be

defined as h( it ) = tM. The function h is an embedding of MSET in M.

Proof. We will prove the following facts:

(1) The definition of h( it ) does not depend on the choice of the representative of
the class;

(2) h is an homomorphism;
(3) h is injective;
(4) If h( it ) ∈M h( is ), then it ∈MSET is .

These facts imply the thesis.

(1) If t1 and t2 are two terms such that
¨
§

¥
¦t1 =

¨
§

¥
¦t2 , then by definition (Em

p ) |= t1 =
t2. Since A |= t1 = t2 holds in every model A of (Em

p ), then in particular it
holds in M, i.e., tM1 = tM2 .
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(2) We need to prove that:
(a) for all f ∈ FMSet and for all terms t1, . . . , tn ∈ T (FMSet) it holds that

h(fMSET (
¨
§

¥
¦t1 , . . . ,

¨
§

¥
¦tn )) = fM(h(t1), . . . , h(tn))

Now,

h(fMSET (
¨
§

¥
¦t1 , . . . ,

¨
§

¥
¦tn )) = h(f(t1, . . . , tn)) By fact (1) above

= (f(t1, . . . , tn))M By def. of h
= fM(tM1 , . . . , tMn ) By def. of structure
= fM(h(t1), . . . , h(tn)) By def. of h

(b) For all terms t and s, if it ∈MSET is , then h( it ) ∈M h( is ). From
it ∈MSET is , using fact 1. above, we have that there is a term s′ in is

of the form {[ t | r ]} and that h( is ) = s′M. Hence, we have that h( is ) =
{[ tM | rM ]}M; (W ) ensures that h( it ) = tM belongs to it.

(3) We prove, by structural induction on t1, that if h(
¨
§

¥
¦t1 ) = h(

¨
§

¥
¦t2 ), then

¨
§

¥
¦t1 =

¨
§

¥
¦t2 .

Basis. Let t1 be a constant c. Since M is a model of axiom schema (F2), it
can not be that t2 = f(s1, . . . , sn), with f different from c. Hence, it must be
that t2 = c.
Step. Let t1 be f(s1, . . . , sn), with f 6≡ {[ · | · ]}. It cannot be t2 ≡ g(r1, . . . , rm),
with g 6≡ f , sinceM is a model of (F2). So, it must be t2 ≡ f(r1, . . . , rn), and,
by (F1), sMi = rMi , for all i ≤ n. Using the inductive hypothesis we have¨
§

¥
¦t1 =

¨
§

¥
¦t2 .

Let t1 be {[ s1, . . . , sn | r ]}, with r not of the form {[ r1 | r2 ]}. Since it cannot be
that t2 is f(v1, . . . , vn) (from the previous case applied to t2), then it must be
t2 is {[u1, . . . , um | v ]}, for some v not of the form {[ v1 | v2 ]}. Let us assume,
by contradiction, that

¨
§

¥
¦t1 6=

¨
§

¥
¦t2 , and tM1 = tM2 , while the thesis holds for all

terms of lower complexity. From tM1 = tM2 we obtain that the two terms have
in M the same elements. Since M is a model of (W ), the elements of tM1
are exactly sM1 , . . . , sMn and the elements of tM2 are exactly uM1 , . . . , uMm . So,
by inductive hypothesis, there is a bijection b : {1, . . . , n} −→ {1, . . . , m} such
that

¨
§

¥
¦si =

¨
§

¥
¦ub(i) . This means that m = n and that there is a term t′2 in

¨
§

¥
¦t2

of the form {[ s1, . . . , sm | v ]}. Applying n times (Em
k ), in all possible ways, we

obtain that rM = vM, hence by inductive hypothesis ir = iv . From this fact,
we conclude that

¨
§

¥
¦t2 =

¨
§

¥
¦t′2 =

¨
§

¥
¦{[ s1, . . . , sn | r ]} =

¨
§

¥
¦t1 , which is in contradiction

with our assumption.
(4) If h( it ) ∈M h( is ), then tM ∈M sM and hence (K) implies that s must be

a term of the form {[ t1 | t2 ]}. By induction on s using (W ), we can prove
that in particular s must be a term of the form {[ t1, . . . , ti, . . . , tn | r ]}, with
tM1 = tM = h( it ). We have already proved that h is injective, hence it must
be t1 ∈ it , and from this we obtain it ∈MSET is .

We say that a linear disequality a 6= b over the integers is safe if, after expressions
evaluation, it is not of the form u 6= u. We say that a system A of linear disequations
over the integers with variables x1, . . . , xh is safe if each disequation in A is either
a safe disequality or it is of the form xi > m, where m is an integer number.
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Lemma A.4. Let A be a safe system of linear disequations over the integers. A
has always an infinite number of solutions.

Proof. Let us partition the system A into two systems A6=, which contains
all the disequalities of A, and A> which contains all the disequations of the form
xi > m of A. We proceed by induction on the number of variables in A.

If in A there is only one variable x1, then we can rewrite all the disequalities of
A6= in the form x1 6= ai, where ai is a rational number. Let max be the maximum
of all the ai and of all the integers occurring in A>. All the integers greater of max
are solutions of A.

If in A there are n variables x1, . . . , xn, then we concentrate on the variable x1.
Each disequality of A6= can be rewritten in the form ai,1x1 6= pi(x2, . . . , xn), where
pi(x2, . . . , xn) = ai,2x2 + . . . + ai,nxn + ai,n+1 is a linear expression with integer
coefficients over the variables x2, . . . , xn. Let max be the maximum of all the |ai,j |
and of all the integers occurring in A>. We assign to x1 value max + 1. We prove
that the system A′ obtained from A by replacing x1 with max + 1 is a safe system
in n − 1 variables. To prove this we have to prove that all the disequalities in A′

are safe. If in A there is a disequality of the form ai,1x1 6= ai,n+1, then in A′ we
have a disequality of the form ai,1(max + 1) 6= ai,n+1 which is not reducible to
u 6= u since the absolute value on the left side is greater than that on the right
side. If in A there is a disequality of the form ai,1x1 6= ai,2x2 + . . .+ai,nxn +ai,n+1

with at least one of the ai,2, . . . , ai,n different from 0, then this trivially become
a safe disequality in A′. Now we have that each solution of A′ completed with
x1 = max + 1 is a solution of A. Since by inductive hypothesis A′ has an infinite
number of solutions, A has an infinite number of solutions.

Lemma A.5. In KWEm
k Fm

1 F2F
3Fm

3 it holds that:

(1) {[ nil ]}x = {[ nil ]}y if and only if x = y;
(2) {[ nil ]}x ∈ {[ nil ]}y if and only if x = y − 1.

Proof. Let us prove (1). If x = y, then we immediately get the thesis, since
the two terms are syntactically the same. On the other hand, let us assume that
in KWEm

k Fm
1 F2F

3Fm
3 we can prove {[ nil ]}x = {[ nil ]}y. We can safely assume

that x ≥ y ≥ 0. We proceed by induction on x. If x = 0, then we immediately
have y = 0. If x > 0, then when we apply axiom Em

k to {[ nil ]}x = {[ nil ]}y we get
{[ nil ]}x−1 = {[ nil ]}y−1. By inductive hypothesis this implies x − 1 = y − 1, and
hence x = y.

The proof of (2) can be similarly done exploiting axiom W instead of axiom
Em

k .
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