Primes in almost all short intervals and the distribution of the zeros of the Riemann zeta-function

Alessandro Zaccagnini Dipartimento di Matematica, Università degli Studi di Parma, Parco Area delle Scienze, 53/a, Campus Universitario 43100 Parma, Italy alessandro.zaccagnini@unipr.it

> Dedicated to Prof. K. Ramachandra on the occasion of his seventieth birthday

Abstract

We study the relations between the distribution of the zeros of the Riemann zeta-function and the distribution of primes in "almost all" short intervals. It is well known that a relation like $\psi(x) - \psi(x-y) \sim y$ holds for almost all $x \in [N, 2N]$ in a range for y that depends on the width of the available zero-free regions for the Riemann zeta-function, and also on the strength of density bounds for the zeros themselves. We also study implications in the opposite direction: assuming that an asymptotic formula like the above is valid for almost all x in a given range of values for y, we find zero-free regions or density bounds.

1 Introduction

We investigate the relations between the distribution of the zeros of the Riemann zeta-function and the distribution of primes in "almost all" short intervals. Here and in the sequel "almost all" means that the number of integers $n \leq x$ which do not have the required property is o(x) as $x \to \infty$. It is known since Hoheisel's work in the 1930's [8] that a relation of the type

$$\psi(x) - \psi(x - y) \sim y \tag{1}$$

holds in a certain range for y whose width depends on the strength of both zero-free regions and density estimates for the zeros of the zeta function. The same relation is true, obviously in a much wider range for y, if we deal with the same problem but only almost everywhere, that is, allowing a small set of exceptions. Here we show that a partial converse is also true: if (1) holds almost everywhere in a wide region of values for y, then the zeros of the Riemann zeta-function can not be too dense near $\sigma = 1$, nor too close to the same line, in a fairly strong quantitative sense. The corresponding relation between the error term in the Prime Number Theorem and the width of the zero-free region for the zeta-function is a classical result of Turán [19].

2 Prime numbers in all short intervals

For $x \geq 2$ let π and ψ denote the usual Chebyshev functions and set

$$R_1(x) \stackrel{\text{def}}{=} \sup_{u \in [2,x]} \left| \pi(u) - \int_2^u \frac{\mathrm{d}t}{\log t} \right|$$
$$R_2(x) \stackrel{\text{def}}{=} \sup_{u \in [2,x]} |\psi(u) - u|.$$

The Prime Number Theorem (PNT), in the sharpest known form due to Vinogradov and Korobov (see Titchmarsh [18, §6.19]), asserts that

$$R_j(x) \ll x \exp\left\{-c_j (\log x)^{3/5} (\log \log x)^{-1/5}\right\}$$

for suitable $c_j > 0$, j = 1, 2. The additivity of the main terms for both π and ψ suggests the truth of the statements

$$\pi(x) - \pi(x - y) \sim \int_{x - y}^{x} \frac{\mathrm{d}t}{\log t} \sim \frac{y}{\log x},\tag{2}$$

$$\psi(x) - \psi(x - y) \sim y, \tag{3}$$

for $y \leq x$ (provided, of course, that y is not too small with respect to x), and these relations are trivial for large y, that is $y/(R_j(x)\log x) \to \infty$. The unproved assumption that all the zeros $\beta + i\gamma$ of the Riemann zeta-function with real part $\beta \in (0,1)$ actually have $\beta = \frac{1}{2}$ is known as the Riemann Hypothesis (RH). It implies that $R_j(x) \ll x^{1/2} (\log x)^j$ for j = 1, 2, and this is essentially best possible since Littlewood [11] proved in 1914 that

$$\limsup_{x \to \infty} \frac{R_1(x) \log x}{x^{1/2} \log \log \log x} > 0.$$

Assuming the RH, Selberg [17] proved in 1943 that (2) holds, provided that $y/(x^{1/2}\log x) \to \infty$. The best result to-date is due to Heath-Brown [6], and is described in the following section.

2.1 Density Estimates

The connection with density estimates arises from the following well-known fact: if there exist constants $C \ge 2$ and $B \ge 0$ such that

$$N(\sigma, T) \stackrel{\text{def}}{=} |\{ \varrho = \beta + i\gamma \colon \zeta(\varrho) = 0, \ \beta \ge \sigma, \ |\gamma| \le T \}|$$
$$\ll T^{C(1-\sigma)} (\log T)^B$$
(4)

for $\sigma \in \left[\frac{1}{2}, 1\right]$, then it is comparatively easy to prove that, for any fixed $\varepsilon > 0$, both (2) and (3) hold in the range

$$y \ge x^{1-C^{-1}+\varepsilon}.$$
(5)

Huxley [9] showed that (4) holds with C = 12/5, and therefore 7/12 is an admissible exponent in (5). Heath-Brown [6] has improved on (5), showing that if $\varepsilon(x) > 0$ for all $x \ge 1$, then a quantitative form of (2) holds for

$$x^{7/12-\varepsilon(x)} \le y \le \frac{x}{(\log x)^4}$$

provided that $\varepsilon(x) \to 0$ as $x \to \infty$. In fact, he proved that

$$\pi(x) - \pi(x - y) = \frac{y}{\log x} \Big(1 + \mathcal{O}\big(\varepsilon^4(x)\big) + \mathcal{O}\Big(\frac{\log\log x}{\log x}\Big)^4 \Big).$$

The Density Hypothesis (DH) is the conjecture that (4) holds with C = 2 and some $B \ge 0$; in view of the Riemann–von Mangoldt formula (see Titchmarsh [18, Theorem 9.4]), the Density Hypothesis is optimal apart from the value of B, and it yields the exponent 1/2 in (5). Thus DH and RH have almost the same consequence as far as this problem is concerned.

2.2 Negative results

Maier [12] startled the world in 1985 by proving that (2) is false for $y = (\log x)^{\lambda}$ for any fixed $\lambda > 1$. Hildebrand & Maier [7] improved on this in 1989 but their result is too complicated to be stated here. Later Friedlander, Granville, Hildebrand & Maier [3] extended these results to arithmetic progressions.

3 Prime numbers in almost all short intervals

For technical convenience we define the Selberg integral by means of

$$J(x,\theta) \stackrel{\text{def}}{=} \int_{x}^{2x} |\Delta(t,\theta)|^2 \, \mathrm{d}t$$

where $\Delta(x,\theta) := \psi(x) - \psi(x - \theta x) - \theta x$. The natural expectation is that the relation

$$J(x,\theta) = o\left(x^3\theta^2\right) \tag{6}$$

holds in a much wider range for $y = \theta x$ than (5), since we now allow some exceptions to (3). We remark that, when $x^{\varepsilon-1} \leq \theta \leq 1$, the Brun–Titchmarsh inequality (see for example Montgomery & Vaughan [13]) yields $J(x,\theta) \ll_{\varepsilon} x^{3}\theta^{2}$. Ingham [10] proved in 1937 that (6) holds for $x^{-2C^{-1}+\varepsilon} \leq \theta \leq 1$. Hence (6) is known to hold in the ranges

$$\begin{cases} x^{-5/6+\varepsilon} \le \theta \le 1 & \text{unconditionally, and} \\ x^{-1+\varepsilon} \le \theta \le 1 & \text{assuming the DH.} \end{cases}$$
(7)

Assuming the RH, Selberg [17] gave the stronger bound

$$J(x,\theta) \ll x^2 \theta \log^2(2\theta^{-1})$$

uniformly for $x^{-1} \leq \theta \leq 1$. Goldston & Montgomery [5], using both the RH and the Pair Correlation Conjecture, showed that if $y = x^{\alpha}$ then

$$J(x, yx^{-1}) \sim (1 - \alpha)xy \log x$$

uniformly for $0 \leq \alpha \leq 1 - \varepsilon$, and Goldston [4], assuming the Generalized Riemann Hypothesis, gave the lower bound

$$J(x, yx^{-1}) \ge \left(\frac{1}{2} - 2\alpha - \varepsilon\right) xy \log x$$

uniformly for $0 \le \alpha < \frac{1}{4}$.

For technical reasons, our result is stated in terms of a modified Selberg integral with the function π in place of ψ , and represents the improvement in the known range of validity for y corresponding to Heath-Brown's result quoted above. The detailed proof can be found in [21].

Theorem 3.1 If $x^{-5/6-\varepsilon(x)} \leq \theta \leq 1$, where $0 \leq \varepsilon(x) \leq \frac{1}{6}$ and $\varepsilon(x) \to 0$ when $x \to \infty$, then

$$I(x,\theta) \stackrel{\text{def}}{=} \int_{x}^{2x} \left| \pi(t) - \pi(t-\theta t) - \frac{\theta t}{\log t} \right|^{2} dt$$
$$\ll \frac{x^{3}\theta^{2}}{(\log x)^{2}} \left(\varepsilon(x) + \frac{\log\log x}{\log x} \right)^{2}$$

In particular, the assumptions imply that $I(x, \theta) = o(x^3\theta^2(\log x)^{-2})$. A simple consequence is that for θ in the above range, the interval $[t-\theta t, t]$ contains the expected number of primes $\sim \theta t (\log t)^{-1}$ for almost all integers $t \in [x, 2x]$.

3.1 Outline of the proof

Since the details of the proof are rather complicated, we start with a weaker, but somewhat easier, result and deal with J instead of I. First we briefly sketch the classical proof of

$$J(x,\theta) = \int_{x}^{2x} \left| \psi(t) - \psi(t-\theta t) - \theta t \right|^{2} \mathrm{d}t = o\left(x^{3}\theta^{2}\right) \tag{8}$$

uniformly for $x^{-5/6+\varepsilon} \leq \theta \leq 1$, by means of the Density bound (4) and then give some details of a different proof in the same spirit as Heath-Brown's paper [6]. What follows should be taken with a grain of salt: it is not supposed to be the literal truth, but rather an approximation to it. The interested reader is referred to Saffari & Vaughan [16] for all the details. For brevity, we set $\mathcal{L}_1 := \log x$. By the explicit formula for ψ (see for example Davenport [2, §17]) we have

$$\psi(x) = x - \sum_{|\gamma| < T} \frac{x^{\varrho}}{\varrho} + \mathcal{O}\left(\frac{x}{T} (\log xT)^2\right),$$

with the usual convention for the sums over the zeros of the zeta function. Hence

$$J(x,\theta) \ll \int_{x}^{2x} \Big| \sum_{|\gamma| < T} t^{\varrho} \frac{1 - (1-\theta)^{\varrho}}{\varrho} \Big|^{2} dt + \frac{x^{3}}{T^{2}} (\log xT)^{4}.$$

The last term is harmless provided that T < x and $T^{-1} = o(\theta \mathcal{L}_1^{-2})$ which we now assume. We now skip all details until the very last step. The integral is easily rearranged into

$$\sum_{|\gamma_1| < T, \, |\gamma_2| < T} \frac{1 - (1 - \theta)^{\varrho_1}}{\varrho_1} \frac{1 - (1 - \theta)^{\overline{\varrho}_2}}{\overline{\varrho}_2} \int_x^{2x} t^{\varrho_1 + \overline{\varrho}_2} \, \mathrm{d}t.$$

Since $(1 - (1 - \theta)^{\varrho}) \varrho^{-1} \ll \theta$, we have that the last expression is

$$\ll \theta^2 \sum_{|\gamma| < T} x^{1+2\beta} = x\theta^2 \sum_{|\gamma| < T} \left\{ 2\mathcal{L}_1 \int_{1/2}^{\beta} x^{2\sigma} \, \mathrm{d}\sigma + x \right\}$$
$$= x\theta^2 \left\{ 2\mathcal{L}_1 \int_{1/2}^{1} N(\sigma, T) x^{2\sigma} \, \mathrm{d}\sigma + xN\left(\frac{1}{2}, T\right) \right\}$$

The last summand is negligible if we slightly strengthen our demand to $T = o(x\mathcal{L}_1^{-1})$, since $N(\frac{1}{2}, T) \ll T \log T$ by the Riemann–von Mangoldt formula. It is clear that we achieve our goal if we can prove that

$$\int_{1/2}^{1} N(\sigma, T) x^{2\sigma} \, \mathrm{d}\sigma = o\left(x^2 \mathcal{L}_1^{-1}\right). \tag{9}$$

It is important to stress the fact that simply plugging (4) into this integral does not suffice, since it would only yield the bound $\ll x^2 \mathcal{L}_1^B$ for the integral in question. Actually, what is needed for Theorem 3.1 is a zero-free region for the Riemann zeta-function of the shape

$$\sigma > \sigma_0(x) \stackrel{\text{def}}{=} 1 - \frac{c}{\mathcal{L}_1^A} \tag{10}$$

for some fixed $A \in (0, 1)$, and Korobov & Vinogradov proved that one can take any $A > \frac{2}{3}$ (see Titchmarsh [18, §6.19]). In fact, (10) clearly implies that the upper limit for the integral in (9) can be replaced by $\sigma_0(x)$, and this gives the desired bound provided that T is chosen (optimally) satisfying $T^C = o(x^2 \mathcal{L}_1^{-4})$, and then it easily follows that (6) holds in the range (7).

3.2 The full result

In order to get the full result given by Theorem 3.1 we need a more involved argument. We use the Linnik–Heath-Brown identity: For z > 1

$$\log(\zeta(s)\Pi(s)) = \sum_{k \ge 1} \frac{(-1)^{k-1}}{k} (\zeta(s)\Pi(s) - 1)^k = \sum_{k \ge 1} \sum_{p \ge z} \frac{1}{kp^{ks}} = \sum_{n \ge 1} \frac{c_n}{n^s},$$

say, where $\Pi(s) = \prod_{p < z} (1 - p^{-s})$. Hence, if $z \leq \frac{1}{2}x$, $\theta \leq \frac{1}{2}$ and $t \in [x, 2x]$ then

$$\pi(t) - \pi(t - \theta t) = \sum_{t - \theta t < n \le t} c_n + \mathcal{O}(\theta x^{1/2}).$$

For $k \ge 1$ put

$$\left(\zeta(s)\Pi(s)-1\right)^k = \sum_{n\geq 1} \frac{a_k(n)}{n^s},$$

so that $a_k(n) = a_1^{*k}(n)$, a_1^{*k} being the k-fold Dirichlet convolution of a_1 with itself, where $a_1(1) = 0$ and $a_1(n) = 0$ unless all prime factors of n are $\geq z$, in which case $a_1(n) = 1$. If $z > x^{1/k_0}$ then $(\zeta(s)\Pi(s) - 1)^k$ has no non-zero

coefficient for $n \leq x$ and $k \geq k_0$. We will eventually choose $k_0 = 4$. It is far from easy to approximate $\zeta(s)\Pi(s) - 1$ with Dirichlet polynomials. We have

$$\pi(t) - \pi(t - \theta t) = \sum_{1 \le k < k_0} \frac{(-1)^{k-1}}{k} \sum_{t - \theta t < p \le t} a_k(n) + \mathcal{O}(\theta x^{1/2}).$$

The goal is to find a function $\mathfrak{M}_k(t)$ which is independent of θ , such that

$$\Sigma_k(t,\theta) \stackrel{\text{def}}{=} \sum_{t-\theta t$$

where $\Re_k(t,\theta)$ is "small" in L^2 norm over [x, 2x].

3.3 Reduction to mean-value bounds

We skip the tedious, detailed description of the decomposition into Dirichlet polynomials. Essentially, we can truncate the Dirichlet series for both ζ and Π at height 2x without changing the sum we are interested in. Simplifying details, we have

$$\Sigma_k(t,\theta) = \sum_{t-\theta t$$

for suitable Dirichlet polynomials f_h . Thus we can write $\Sigma_k(t, \theta)$ as a contour integral by means of the truncated Perron formula: neglecting the error term we have

$$\Sigma_k(t,\theta) \sim \frac{1}{2\pi i} \int_{\frac{1}{2} - iT_0}^{\frac{1}{2} + iT_0} \left(\zeta^*(s)\Pi^*(s) - 1\right)^k \frac{t^s - (t - \theta t)^s}{s} \, \mathrm{d}s$$

the stars meaning that we have truncated the Dirichlet series at 2x. Here $T_0 = x^{5/6+\beta}$, where $\beta > 0$ is very small but fixed. A short range near 0 of the form $|\Im(s)| \leq T_1$ gives the main term of Σ , in the very convenient form $\theta \mathfrak{M}_k(t)$, with $\mathfrak{M}_k(t)$ independent of θ , plus a manageable error term, provided that θ is not too close to 1. For brevity, we do not give the precise definition of T_1 (which depends on the details of the decomposition into Dirichlet polynomials referred to above), and only remark that our final choice satisfies $T_1 = x^{o(1)}$.

We finally have the estimate for the L^2 norm of $\Re_k(t,\theta)$

$$\int_{x}^{2x} |\Re_{k}(t,\theta)|^{2} dt \ll x^{2} \theta^{2}(\log x) \max_{T \in [T_{1},T_{0}]} \int_{T}^{2T} |\zeta^{*}(s)\Pi^{*}(s) - 1|^{2k} dt$$

so that we need to prove that the rightmost integral above is $o(x(\log x)^{-1})$ uniformly for $T \in [T_1, T_0]$.

The tools needed for completing the proof include the Korobov–Vinogradov zero-free region, the Halász method and Ingham's fourth power moment estimate for the Riemann zeta-function.

Here some of the difficulties arise from the fact that not all Dirichlet polynomial involved have a fixed, bounded number of factors. We had to make a different choice for the Dirichlet polynomials from Heath-Brown, because that choice leads to too large error terms since we have a larger zthan Heath-Brown and a much smaller h. This is due to the fact that we need z to be almost $x^{1/3}$, as opposed to $x^{1/6}$. The slight additional difficulty is more than compensated by the fact that we only have to save a little over the estimate given by Montgomery's theorem, since our problem leads naturally to estimating the mean-square of a Dirichlet polynomial. For the details see the author's paper [21].

4 The inverse problem

What can one say about the zeros of the Riemann zeta-function, given bounds for $J(x, \theta)$ (or for $I(x, \theta)$) uniformly in a suitable range for θ ? In other words, does a bound for J imply something like a density theorem or a zero-free region for the zeta function? The answer is positive and the general philosophy is that good estimates for J in a sufficiently wide range of uniformity for θ yield good zero-free regions for the zeta function, just as one would expect. It should be remarked, however, that we do not establish a real equivalence between density bounds and bounds for J. This is very clearly illustrated by Corollary 4.2 below.

Our main result is the following

Theorem 4.1 Assume that

$$J(x,\theta) \ll \frac{x^3\theta^2}{F(\theta x)}$$
 uniformly for $G(x)^{-1} \le \theta \le 1$ (11)

where F and G are positive, strictly increasing functions, unbounded as x tends to infinity. There exist absolute constants $B_0 \ge 1$ and $C_0 \ge 1$ such that if F and G are as above with $G(x) = x^{\beta}$ for some fixed $\beta \in (0,1]$, then for any $B \ge \max(B_0, \beta^{-1})$ and any $C > C_0$ we have

$$N(\sigma,T) \ll_{B,C} \frac{T^{BC(1-\sigma)}}{\min(F(T^{B-1}),T)}$$

There is a more general form of this Theorem which gives interesting results also in the case $G(x) = o_{\varepsilon}(x^{\varepsilon})$ for every $\varepsilon > 0$: see Corollary 4.4. We note that the proof gives the numerical bounds $B_0 \leq 40000$ and $C_0 \leq 2000 \log(16e)$, though these values can without doubt be improved upon, and that the Riemann Hypothesis implies that one can take $F(x) = x(\log x)^{-2}$ and $G(x) = x^{1-\varepsilon}$.

Corollary 4.2 If (11) holds with $F(x) = x^{\alpha}$ and $G(x) = x^{\beta}$ for some fixed $\alpha, \beta \in (0, 1]$ then

$$\Theta \stackrel{\text{def}}{=} \sup \{ \Re(\varrho) \colon \zeta(\varrho) = 0 \} \le 1 - \frac{1}{C_0} \eta$$

where C_0 is the same constant as in Theorem 4.1, and

$$\eta = \begin{cases} B_0^{-1} & \text{if } \beta \ge B_0^{-1} \text{ and } \alpha \ge (B_0 - 1)^{-1} \\ \alpha (1 + \alpha)^{-1} & \text{if } \beta \ge B_0^{-1} \text{ and } \alpha \le (B_0 - 1)^{-1} \\ \beta & \text{if } \beta < B_0^{-1} \text{ and } \alpha \ge \beta (1 - \beta)^{-1} \\ \alpha (1 + \alpha)^{-1} & \text{if } \beta < B_0^{-1} \text{ and } \alpha \le \beta (1 - \beta)^{-1} \end{cases}$$

Thus, if one could prove that Theorem 4.1 holds with $B_0 = 2$ and $C_0 = 1$, then from (11) with $\alpha = \beta = 1 - \varepsilon$ one would recover the Riemann Hypothesis, though a simpler, direct argument suffices (see the beginning of §2 in [22]). If instead $F(x) \ll_{\varepsilon} x^{\varepsilon}$ for every $\varepsilon > 0$, then our result is the following:

Corollary 4.3 If the hypotheses of Theorem 4.1 hold with $F(x) \ll x^{\varepsilon}$ for every $\varepsilon > 0$ and $G(x) \ge F(x)$, then for every $B > B_0$ and t > 2 the Riemann zeta-function has no zeros in the region

$$\sigma > 1 - \frac{(B-1)\log F(t)}{BC_0 \log t}$$

Finally, the general version referred to above yields the following result for a special but interesting choice of slowly growing functions F and G.

Corollary 4.4 Let B_0 and C_0 denote the constants in Theorem 4.1. Then if (11) holds with $F(x) = \exp(\log x)^{\alpha}$ and $G(x) = \exp(\log x)^{\beta}$ for some fixed $\alpha, \beta \in (0, 1]$, then the Riemann zeta-function has no zeros in the region

$$\sigma > 1 - \frac{1 + o(1)}{B_0 C_0 \left(\log(2 + |t|) \right)^{r(\alpha, \beta)}}$$

where $r(\alpha, \beta) := (1 - \min(\alpha, \beta))\beta^{-1}$.

We observe that if $F(x) = (\log x)^A$ then from Corollary 4.3 we recover Littlewood's zero-free region (which is needed in the proof), while arguing as in the proof of Corollary 4.4 we can show that one recovers the Korobov– Vinogradov zero-free region, provided that one can take $F(x) = G(x) = \exp\{(\log x)^{3/5}(\log \log x)^{-1/5}\}$.

Recall that $\Delta(x,\theta) := \psi(x) - \psi(x - \theta x) - \theta x$. In order to put our results into proper perspective, we recall that Pintz [14], [15] proved that if $\rho_0 = \beta_0 + i\gamma_0$ is any zero of the Riemann zeta-function, then

$$\limsup_{x \to \infty} \frac{|\Delta(x,1)|}{x^{\beta_0}} \ge \frac{1}{|\varrho_0|}$$

and also the more precise inequality $\Delta(x, 1) = \Omega(x \exp\{-(1-\varepsilon)\omega(x)\})$ where $\omega(x) := \min\{(1-\beta)\log x + \log |\gamma|: \varrho = \beta + i\gamma\}.$

4.1 Sketch of the proof

Since every zero $\rho = \beta + i\gamma$ of the Riemann zeta-function gives rise to a pole of the function

$$F(s) \stackrel{\text{def}}{=} -\frac{\zeta'}{\zeta}(s) - \zeta(s)$$

we can detect zeros by counting the "spikes" of the function F just to the right of the critical strip. It should be remarked that since ζ is of finite order (as a Dirichlet series), it does not cancel the contribution of the pole of $-\zeta'/\zeta$ at $s = \rho$. Obviously F is related to the function $\Delta(x, \theta)$ defined above, which is the sum of the coefficients in its Dirichlet series in the interval $(x - \theta x, x]$. The function Δ , in its turn, appears in the Selberg integral. Since we are assuming that $|\Delta(t, \theta)|$ is usually small, that is, it is small in the L^2 -norm over the interval [x, 2x], this piece of information can be used to show that the zeta function can not have too many zeros.

More precisely, if the zeta function has a zero in the circle $|s-1-it| \leq r$, say, then for a suitable integer k, we have that $F^{(k)}(1+r+it)$ is "large" in a strong quantitative sense. Taking all zeros into account, we find a lower bound for $N(\sigma, T)$. But the assumption on J can be used to give an upper bound for $|F^{(k)}(s)|$, and therefore for $N(\sigma, T)$.

From now on we write c_j for a suitable positive, absolute, effectively computable constant, $\mathcal{L}_2 = \log T$, $w = 1 + \mathrm{i}t$ with $2 \leq |t| \leq T$, $r = c_7(1 - \sigma)$, $s_0 = w + r$.

The crucial lower estimate is the following bound.

Lemma 4.5 There exist absolute constants c_1 and $c_2 > 0$ with the following property: let $\mathcal{L}_2^{-1} \leq r \leq c_1/(16e)$ and $K \geq c_2 r \mathcal{L}_2$. If the Riemann zeta-function has a zero in the circle $|s - w| \leq r$, then there exists an integer k such that $K \leq k \leq 2K$ and

$$\frac{1}{k!} \left| F^{(k)}(w+r) \right| \ge \frac{2}{c_1} \left(\frac{c_1}{4r} \right)^{k+1}.$$

This can be proved as Lemma A in Bombieri [1, §6], applying a suitable form of Turán Second Main Theorem (see the Corollary of Theorem 8.1 in Turán [20]; the proof of the latter result yields $c_1 = 1/(8e)$) to the function $k!^{-1} |F^{(k)}(w+r)|$ using the development for the zeta-function

$$\frac{\zeta'(s)}{\zeta(s)} = \sum_{|\varrho-w| \le 1} \frac{1}{s-\varrho} + \mathcal{O}(\mathcal{L}_2),$$

given by Titchmarsh [18, Theorem 9.6], the Cauchy inequalities for the derivatives of holomorphic functions, the Phragmén–Lindelöf principle and the fact that ζ is of finite order in the half plane $\sigma > \frac{1}{2}$.

Lemma 4.6 There exist absolute constants $A_0 \ge 1$, $B_0 \ge 1$ and $C_0 \ge 2$ with the following property. Let $\mathcal{L}_2^{-1} \le r \le c_1/(16e)$. If the zeta-function has a zero in the circle $|s - w| \le r$, then for all $x \ge T^{B_0}$ and $C > C_0$ we have

$$\int_{x}^{x^{A_0}} \Big| \sum_{n \in [x,y]} \frac{\Lambda(n) - 1}{n^w} \Big|^2 \frac{\mathrm{d}y}{y} \gg_C (\log x)^3 x^{-Cr}.$$

The proof of this Lemma is close to Bombieri [1], §6, Lemma B, using our Lemma 4.5 in place of his Lemma A.

Lemma 4.7 Uniformly for $x^{\varepsilon-1} \leq \theta \leq \frac{1}{2}$ we have

$$\int_{x}^{2x} \Big| \sum_{n \in (t-\theta t,t]} \frac{\Lambda(n) - 1}{n} \Big|^2 \frac{\mathrm{d}t}{t} \ll_{\varepsilon} x^{-3} J(x,\theta) + \theta^4.$$

It is a straightforward application of the Brun–Titchmarsh inequality.

Lemma 4.8 For $\tau = \exp(\theta)$ we have

$$\int_{-\theta^{-1}}^{\theta^{-1}} \Big| \sum_{n \in (x,y]} \frac{\Lambda(n) - 1}{n} n^{\mathrm{i}u} \Big|^2 \,\mathrm{d}u \ll \theta^{-2} \int_x^y \Big| \sum_{n \in (u,\tau u]} \frac{\Lambda(n) - 1}{n} \Big|^2 \frac{\mathrm{d}u}{u} + \theta.$$

This follows from Gallagher's Lemma (see Bombieri [1, Theorem 9]). From Lemma 4.6 we have

$$\int_{x}^{x^{A_0}} \int_{\gamma - \frac{1}{2}r}^{\gamma + \frac{1}{2}r} \Big| \sum_{n \in (x,y]} \frac{\Lambda(n) - 1}{n^{1 + iv}} \Big|^2 \, \mathrm{d}v \frac{\mathrm{d}y}{y} \gg r(\log x)^3 x^{-Cr},$$

for any $C > C_0$, and, summing over zeros,

$$N(\sigma, T)r(\log x)^{3}x^{-Cr} \ll r\log T \int_{x}^{x^{A_{0}}} \int_{-T-r}^{T+r} \Big| \sum_{n \in (x,y]} \frac{\Lambda(n) - 1}{n^{1+iu}} \Big|^{2} du \frac{dy}{y},$$

since each point of the interval (-T - r, T + r) belongs to at most $c_0 r \mathcal{L}_2$ intervals of type $(\gamma - \frac{1}{2}r, \gamma + \frac{1}{2}r)$, by the Density Lemma in Bombieri [1, §6].

Hence

$$N(\sigma, T) \ll \frac{\log T}{(\log x)^3} x^{Cr} \int_x^{x^{A_0}} \int_{-T-r}^{T+r} \Big| \sum_{n \in (x,y]} \frac{\Lambda(n) - 1}{n^{1+iu}} \Big|^2 du \frac{dy}{y} \\ \ll \frac{\log T}{(\log x)^3} x^{Cr} \Big\{ \theta^{-2} \int_x^{x^{A_0}} \int_x^y \Big| \sum_{n \in (u,\tau u]} \frac{\Lambda(n) - 1}{n} \Big|^2 \frac{du}{u} \frac{dy}{y} + \theta \log x \Big\}$$

by Lemma 4.8 with $T = \theta^{-1}$, $\tau = \exp \theta$. The inner integral is essentially

$$\ll \log x \max_{x \le t \le y} \int_{t}^{2t} \Big| \sum_{n \in (u, \tau u]} \frac{\Lambda(n) - 1}{n} \Big|^{2} \frac{\mathrm{d}u}{u} \ll \log x \max_{x \le t \le y} J(t, \tau - 1) t^{-3}$$

by Lemma 4.7. By our hypothesis and our choice of T, we finally have

$$N(\sigma, T) \ll \frac{\log T}{\log x} x^{Cr} \left\{ \frac{1}{F(\theta x)} + \frac{\theta}{\log x} \right\} \ll \frac{\log T}{\log x} x^{Cr} \left\{ \frac{1}{F(xT^{-1})} + T^{-1} \right\}$$

This is our main estimate, subject to the conditions $x \ge \max(T^{B_0}, G^{-1}(T))$ and $\theta = T^{-1}$, and the proof of the various corollaries is fairly straightforward. For the details see the author's paper [22].

References

- [1] E. Bombieri. Le Grand Crible dans la Théorie Analytique des Nombres. Societé Mathématique de France, Paris, 1974. Astérisque n. 18.
- [2] H. Davenport. *Multiplicative Number Theory*. GTM 74. Springer-Verlag, third edition, 2000.

- [3] J. Friedlander, A. Granville, A. Hildebrand, and H. Maier. Oscillation theorems for primes in arithmetic progressions and for sifting functions. *Journal of the American Mathematical Society*, 4:25–86, 1991.
- [4] D. A. Goldston. A lower bound for the second moment of primes in short intervals. *Expo. Math.*, 13:366–376, 1995.
- [5] D. A. Goldston and H. L. Montgomery. Pair correlation of zeros and primes in short intervals. In *Analytic Number Theory and Diophantine Problems*, pages 183–203, Boston, 1987. Birkhäuser.
- [6] D. R. Heath-Brown. The number of primes in a short interval. J. reine angew. Math., 389:22–63, 1988.
- [7] A. Hildebrand and H. Maier. Irregularities in the distribution of primes in short intervals. J. reine angew. Math., 397:162–193, 1989.
- [8] G. Hoheisel. Primzahlprobleme in der analysis. Sitz. Preuss. Akad. Wiss., 33:1–13, 1930.
- [9] M. N. Huxley. On the difference between consecutive primes. *Invent. Math.*, 15:164–170, 1972.
- [10] A. E. Ingham. On the difference between consecutive primes. Quart. J. Math. Oxford, 8:255–266, 1937.
- [11] J. E. Littlewood. Sur la distribution des nombres premiers. C. R. Acad. Sc. Paris, 158:1869–1872, 1914.
- [12] H. Maier. Primes in short intervals. Michigan Math. J., 32:221–225, 1985.
- [13] H. L. Montgomery and R. C. Vaughan. On the large sieve. Mathematika, 20:119–134, 1973.
- [14] J. Pintz. Oscillatory properties of the remainder term of the prime number formula. In Studies in Pure Mathematics to the memory of P. Turán, pages 551–560, Boston, 1983. Birkhäuser.
- [15] J. Pintz. On the remainder term of the prime number formula and the zeros of the Riemann zeta-function. In *Number Theory*, LNM 1068, pages 186–197, Noordwijkerhout, 1984. Springer-Verlag.
- [16] B. Saffari and R. C. Vaughan. On the fractional parts of x/n and related sequences. II. Ann. Inst. Fourier, 27:1–30, 1977.

- [17] A. Selberg. On the normal density of primes in small intervals, and the difference between consecutive primes. Arch. Math. Naturvid., 47:87– 105, 1943.
- [18] E. C. Titchmarsh. The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford, second edition, 1986.
- [19] P. Turán. On the remainder-term of the prime-number formula. II. Acta Math. Acad. Sci. Hungar., 1:155–166, 1950.
- [20] P. Turán. On a New Method of Analysis and its Applications. J. Wiley & Sons, New York, 1984.
- [21] A. Zaccagnini. Primes in almost all short intervals. Acta Arithmetica, 84.3:225–244, 1998.
- [22] A. Zaccagnini. A conditional density theorem for the zeros of the Riemann zeta-function. Acta Arithmetica, 93.3:293–301, 2000.