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Università degli Studi di Parma,
Parco Area delle Scienze, 53/a, Campus Universitario

43100 Parma, Italy
alessandro.zaccagnini@unipr.it

Dedicated to Prof. K. Ramachandra
on the occasion of his seventieth birthday

Abstract

We study the relations between the distribution of the zeros of the
Riemann zeta-function and the distribution of primes in “almost all”
short intervals. It is well known that a relation like ψ(x)−ψ(x−y) ∼ y
holds for almost all x ∈ [N, 2N ] in a range for y that depends on the
width of the available zero-free regions for the Riemann zeta-function,
and also on the strength of density bounds for the zeros themselves.
We also study implications in the opposite direction: assuming that
an asymptotic formula like the above is valid for almost all x in a given
range of values for y, we find zero-free regions or density bounds.

1 Introduction

We investigate the relations between the distribution of the zeros of the
Riemann zeta-function and the distribution of primes in “almost all” short
intervals. Here and in the sequel “almost all” means that the number of
integers n ≤ x which do not have the required property is o(x) as x → ∞.
It is known since Hoheisel’s work in the 1930’s [8] that a relation of the type

ψ(x)− ψ(x− y) ∼ y (1)
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holds in a certain range for y whose width depends on the strength of both
zero-free regions and density estimates for the zeros of the zeta function. The
same relation is true, obviously in a much wider range for y, if we deal with
the same problem but only almost everywhere, that is, allowing a small set
of exceptions. Here we show that a partial converse is also true: if (1) holds
almost everywhere in a wide region of values for y, then the zeros of the
Riemann zeta-function can not be too dense near σ = 1, nor too close to the
same line, in a fairly strong quantitative sense. The corresponding relation
between the error term in the Prime Number Theorem and the width of the
zero-free region for the zeta-function is a classical result of Turán [19].

2 Prime numbers in all short intervals

For x ≥ 2 let π and ψ denote the usual Chebyshev functions and set

R1(x)
def
= sup

u∈[2,x]

∣∣∣∣π(u)−
∫ u

2

dt

log t

∣∣∣∣
R2(x)

def
= sup

u∈[2,x]

∣∣ψ(u)− u
∣∣.

The Prime Number Theorem (PNT), in the sharpest known form due to
Vinogradov and Korobov (see Titchmarsh [18, §6.19]), asserts that

Rj(x) � x exp
{
−cj(log x)3/5(log log x)−1/5

}
for suitable cj > 0, j = 1, 2. The additivity of the main terms for both π
and ψ suggests the truth of the statements

π(x)− π(x− y) ∼
∫ x

x−y

dt

log t
∼ y

log x
, (2)

ψ(x)− ψ(x− y) ∼ y, (3)

for y ≤ x (provided, of course, that y is not too small with respect to x),
and these relations are trivial for large y, that is y/

(
Rj(x) log x

)
→∞. The

unproved assumption that all the zeros β + iγ of the Riemann zeta-function
with real part β ∈ (0, 1) actually have β = 1

2
is known as the Riemann

Hypothesis (RH). It implies that Rj(x) � x1/2(log x)j for j = 1, 2, and this
is essentially best possible since Littlewood [11] proved in 1914 that

lim sup
x→∞

R1(x) log x

x1/2 log log log x
> 0.
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Assuming the RH, Selberg [17] proved in 1943 that (2) holds, provided that
y/(x1/2 log x) →∞. The best result to-date is due to Heath-Brown [6], and
is described in the following section.

2.1 Density Estimates

The connection with density estimates arises from the following well-known
fact: if there exist constants C ≥ 2 and B ≥ 0 such that

N(σ, T )
def
= |{% = β + iγ : ζ(%) = 0, β ≥ σ, |γ| ≤ T}|
� TC(1−σ)(log T )B (4)

for σ ∈
[

1
2
, 1

]
, then it is comparatively easy to prove that, for any fixed ε > 0,

both (2) and (3) hold in the range

y ≥ x1−C−1+ε. (5)

Huxley [9] showed that (4) holds with C = 12/5, and therefore 7/12 is an
admissible exponent in (5). Heath-Brown [6] has improved on (5), showing
that if ε(x) > 0 for all x ≥ 1, then a quantitative form of (2) holds for

x7/12−ε(x) ≤ y ≤ x

(log x)4

provided that ε(x) → 0 as x→∞. In fact, he proved that

π(x)− π(x− y) =
y

log x

(
1 +O

(
ε4(x)

)
+O

( log log x

log x

)4)
.

The Density Hypothesis (DH) is the conjecture that (4) holds with C =
2 and some B ≥ 0; in view of the Riemann–von Mangoldt formula (see
Titchmarsh [18, Theorem 9.4]), the Density Hypothesis is optimal apart from
the value of B, and it yields the exponent 1/2 in (5). Thus DH and RH have
almost the same consequence as far as this problem is concerned.

2.2 Negative results

Maier [12] startled the world in 1985 by proving that (2) is false for y =
(log x)λ for any fixed λ > 1. Hildebrand & Maier [7] improved on this in
1989 but their result is too complicated to be stated here. Later Friedlan-
der, Granville, Hildebrand & Maier [3] extended these results to arithmetic
progressions.
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3 Prime numbers in almost all short intervals

For technical convenience we define the Selberg integral by means of

J(x, θ)
def
=

∫ 2x

x

|∆(t, θ)|2 dt,

where ∆(x, θ) := ψ(x)−ψ(x− θx)− θx. The natural expectation is that the
relation

J(x, θ) = o
(
x3θ2

)
(6)

holds in a much wider range for y = θx than (5), since we now allow some
exceptions to (3). We remark that, when xε−1 ≤ θ ≤ 1, the Brun–Titchmarsh
inequality (see for example Montgomery & Vaughan [13]) yields J(x, θ) �ε

x3θ2. Ingham [10] proved in 1937 that (6) holds for x−2C−1+ε ≤ θ ≤ 1. Hence
(6) is known to hold in the ranges{

x−5/6+ε ≤ θ ≤ 1 unconditionally, and

x−1+ε ≤ θ ≤ 1 assuming the DH.
(7)

Assuming the RH, Selberg [17] gave the stronger bound

J(x, θ) � x2θ log2
(
2θ−1

)
,

uniformly for x−1 ≤ θ ≤ 1. Goldston & Montgomery [5], using both the RH
and the Pair Correlation Conjecture, showed that if y = xα then

J
(
x, yx−1

)
∼ (1− α)xy log x

uniformly for 0 ≤ α ≤ 1 − ε, and Goldston [4], assuming the Generalized
Riemann Hypothesis, gave the lower bound

J(x, yx−1) ≥
(

1

2
− 2α− ε

)
xy log x

uniformly for 0 ≤ α < 1
4
.

For technical reasons, our result is stated in terms of a modified Selberg
integral with the function π in place of ψ, and represents the improvement
in the known range of validity for y corresponding to Heath-Brown’s result
quoted above. The detailed proof can be found in [21].

Theorem 3.1 If x−5/6−ε(x) ≤ θ ≤ 1, where 0 ≤ ε(x) ≤ 1
6

and ε(x) → 0
when x→∞, then

I(x, θ)
def
=

∫ 2x

x

∣∣∣∣π(t)− π(t− θt)− θt

log t

∣∣∣∣2dt
� x3θ2

(log x)2

(
ε(x) +

log log x

log x

)2
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In particular, the assumptions imply that I(x, θ) = o(x3θ2(log x)−2). A sim-
ple consequence is that for θ in the above range, the interval [t−θt, t] contains
the expected number of primes ∼ θt(log t)−1 for almost all integers t ∈ [x, 2x].

3.1 Outline of the proof

Since the details of the proof are rather complicated, we start with a weaker,
but somewhat easier, result and deal with J instead of I. First we briefly
sketch the classical proof of

J(x, θ) =

∫ 2x

x

∣∣ψ(t)− ψ(t− θt)− θt
∣∣2 dt = o

(
x3θ2

)
(8)

uniformly for x−5/6+ε ≤ θ ≤ 1, by means of the Density bound (4) and then
give some details of a different proof in the same spirit as Heath-Brown’s
paper [6]. What follows should be taken with a grain of salt: it is not
supposed to be the literal truth, but rather an approximation to it. The
interested reader is referred to Saffari & Vaughan [16] for all the details. For
brevity, we set L1 := log x. By the explicit formula for ψ (see for example
Davenport [2, §17]) we have

ψ(x) = x−
∑
|γ|<T

x%

%
+O

( x
T

(log xT )2
)
,

with the usual convention for the sums over the zeros of the zeta function.
Hence

J(x, θ) �
∫ 2x

x

∣∣∣ ∑
|γ|<T

t%
1− (1− θ)%

%

∣∣∣2 dt+
x3

T 2
(log xT )4.

The last term is harmless provided that T < x and T−1 = o
(
θL−2

1

)
which we

now assume. We now skip all details until the very last step. The integral is
easily rearranged into∑ ∑

|γ1|<T, |γ2|<T

1− (1− θ)%1

%1

1− (1− θ)%2

%2

∫ 2x

x

t%1+%2 dt.

Since
(
1− (1− θ)%

)
%−1 � θ, we have that the last expression is

� θ2
∑
|γ|<T

x1+2β = xθ2
∑
|γ|<T

{
2L1

∫ β

1/2

x2σ dσ + x

}

= xθ2

{
2L1

∫ 1

1/2

N(σ, T )x2σ dσ + xN

(
1

2
, T

)}
.
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The last summand is negligible if we slightly strengthen our demand to T =
o
(
xL−1

1

)
, since N

(
1
2
, T

)
� T log T by the Riemann–von Mangoldt formula.

It is clear that we achieve our goal if we can prove that∫ 1

1/2

N(σ, T )x2σ dσ = o
(
x2L−1

1

)
. (9)

It is important to stress the fact that simply plugging (4) into this integral
does not suffice, since it would only yield the bound � x2LB

1 for the integral
in question. Actually, what is needed for Theorem 3.1 is a zero-free region
for the Riemann zeta-function of the shape

σ > σ0(x)
def
= 1− c

LA
1

(10)

for some fixed A ∈ (0, 1), and Korobov & Vinogradov proved that one can
take any A > 2

3
(see Titchmarsh [18, §6.19]). In fact, (10) clearly implies

that the upper limit for the integral in (9) can be replaced by σ0(x), and
this gives the desired bound provided that T is chosen (optimally) satisfying
TC = o

(
x2L−4

1

)
, and then it easily follows that (6) holds in the range (7).

3.2 The full result

In order to get the full result given by Theorem 3.1 we need a more involved
argument. We use the Linnik–Heath-Brown identity: For z > 1

log
(
ζ(s)Π(s)

)
=

∑
k≥1

(−1)k−1

k

(
ζ(s)Π(s)− 1

)k
=

∑
k≥1

∑
p≥z

1

kpks
=

∑
n≥1

cn
ns
,

say, where Π(s) =
∏

p<z (1− p−s). Hence, if z ≤ 1
2
x, θ ≤ 1

2
and t ∈ [x, 2x]

then
π(t)− π(t− θt) =

∑
t−θt<n≤t

cn +O
(
θx1/2

)
.

For k ≥ 1 put (
ζ(s)Π(s)− 1

)k
=

∑
n≥1

ak(n)

ns
,

so that ak(n) = a∗k1 (n), a∗k1 being the k-fold Dirichlet convolution of a1 with
itself, where a1(1) = 0 and a1(n) = 0 unless all prime factors of n are ≥ z,

in which case a1(n) = 1. If z > x1/k0 then
(
ζ(s)Π(s) − 1

)k
has no non-zero

6



coefficient for n ≤ x and k ≥ k0. We will eventually choose k0 = 4. It is far
from easy to approximate ζ(s)Π(s)− 1 with Dirichlet polynomials. We have

π(t)− π(t− θt) =
∑

1≤k<k0

(−1)k−1

k

∑
t−θt<p≤t

ak(n) +O
(
θx1/2

)
.

The goal is to find a function Mk(t) which is independent of θ, such that

Σk(t, θ)
def
=

∑
t−θt<p≤t

ak(n) = θMk(t) + Rk(t, θ),

where Rk(t, θ) is “small” in L2 norm over [x, 2x].

3.3 Reduction to mean-value bounds

We skip the tedious, detailed description of the decomposition into Dirichlet
polynomials. Essentially, we can truncate the Dirichlet series for both ζ and
Π at height 2x without changing the sum we are interested in. Simplifying
details, we have

Σk(t, θ) =
∑

t−θt<p≤t

bk(n) where
∑
n≥1

bk(n)

ns
=

k∏
h=1

fh(s)

for suitable Dirichlet polynomials fh. Thus we can write Σk(t, θ) as a contour
integral by means of the truncated Perron formula: neglecting the error term
we have

Σk(t, θ) ∼
1

2πi

∫ 1
2
+iT0

1
2
−iT0

(
ζ∗(s)Π∗(s)− 1

)k ts − (t− θt)s

s
ds,

the stars meaning that we have truncated the Dirichlet series at 2x. Here
T0 = x5/6+β, where β > 0 is very small but fixed. A short range near 0
of the form |=(s)| ≤ T1 gives the main term of Σ, in the very convenient
form θMk(t), with Mk(t) independent of θ, plus a manageable error term,
provided that θ is not too close to 1. For brevity, we do not give the precise
definition of T1 (which depends on the details of the decomposition into
Dirichlet polynomials referred to above), and only remark that our final
choice satisfies T1 = xo(1).

We finally have the estimate for the L2 norm of Rk(t, θ)∫ 2x

x

|Rk(t, θ)|2 dt� x2θ2(log x) max
T∈[T1,T0]

∫ 2T

T

|ζ∗(s)Π∗(s)− 1|2k dt

7



so that we need to prove that the rightmost integral above is o(x(log x)−1)
uniformly for T ∈ [T1, T0].

The tools needed for completing the proof include the Korobov–Vinogra-
dov zero-free region, the Halász method and Ingham’s fourth power moment
estimate for the Riemann zeta-function.

Here some of the difficulties arise from the fact that not all Dirichlet
polynomial involved have a fixed, bounded number of factors. We had to
make a different choice for the Dirichlet polynomials from Heath-Brown,
because that choice leads to too large error terms since we have a larger z
than Heath-Brown and a much smaller h. This is due to the fact that we need
z to be almost x1/3, as opposed to x1/6. The slight additional difficulty is
more than compensated by the fact that we only have to save a little over the
estimate given by Montgomery’s theorem, since our problem leads naturally
to estimating the mean-square of a Dirichlet polynomial. For the details see
the author’s paper [21].

4 The inverse problem

What can one say about the zeros of the Riemann zeta-function, given bounds
for J(x, θ) (or for I(x, θ)) uniformly in a suitable range for θ? In other words,
does a bound for J imply something like a density theorem or a zero-free re-
gion for the zeta function? The answer is positive and the general philosophy
is that good estimates for J in a sufficiently wide range of uniformity for θ
yield good zero-free regions for the zeta function, just as one would expect.
It should be remarked, however, that we do not establish a real equivalence
between density bounds and bounds for J . This is very clearly illustrated by
Corollary 4.2 below.

Our main result is the following

Theorem 4.1 Assume that

J(x, θ) � x3θ2

F (θx)
uniformly for G(x)−1 ≤ θ ≤ 1 (11)

where F and G are positive, strictly increasing functions, unbounded as x
tends to infinity. There exist absolute constants B0 ≥ 1 and C0 ≥ 1 such
that if F and G are as above with G(x) = xβ for some fixed β ∈ (0, 1], then
for any B ≥ max

(
B0, β

−1
)

and any C > C0 we have

N(σ, T ) �B,C
TBC(1−σ)

min
(
F

(
TB−1

)
, T

)
8



There is a more general form of this Theorem which gives interesting
results also in the case G(x) = oε(x

ε) for every ε > 0: see Corollary 4.4.
We note that the proof gives the numerical bounds B0 ≤ 40000 and C0 ≤
2000 log(16e), though these values can without doubt be improved upon, and
that the Riemann Hypothesis implies that one can take F (x) = x(log x)−2

and G(x) = x1−ε.

Corollary 4.2 If (11) holds with F (x) = xα and G(x) = xβ for some fixed
α, β ∈ (0, 1] then

Θ
def
= sup{<(%) : ζ(%) = 0} ≤ 1− 1

C0

η

where C0 is the same constant as in Theorem 4.1, and

η =


B−1

0 if β ≥ B−1
0 and α ≥ (B0 − 1)−1

α(1 + α)−1 if β ≥ B−1
0 and α ≤ (B0 − 1)−1

β if β < B−1
0 and α ≥ β(1− β)−1

α(1 + α)−1 if β < B−1
0 and α ≤ β(1− β)−1.

Thus, if one could prove that Theorem 4.1 holds with B0 = 2 and C0 = 1,
then from (11) with α = β = 1−ε one would recover the Riemann Hypothesis,
though a simpler, direct argument suffices (see the beginning of §2 in [22]).
If instead F (x) �ε x

ε for every ε > 0, then our result is the following:

Corollary 4.3 If the hypotheses of Theorem 4.1 hold with F (x) � xε for
every ε > 0 and G(x) ≥ F (x), then for every B > B0 and t > 2 the Riemann
zeta-function has no zeros in the region

σ > 1− (B − 1) logF (t)

BC0 log t
.

Finally, the general version referred to above yields the following result
for a special but interesting choice of slowly growing functions F and G.

Corollary 4.4 Let B0 and C0 denote the constants in Theorem 4.1. Then if

(11) holds with F (x) = exp
(
log x

)α
and G(x) = exp

(
log x

)β
for some fixed

α, β ∈ (0, 1], then the Riemann zeta-function has no zeros in the region

σ > 1− 1 + o(1)

B0C0

(
log(2 + |t|)

)r(α,β)

where r(α, β) :=
(
1−min(α, β)

)
β−1.
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We observe that if F (x) = (log x)A then from Corollary 4.3 we recover
Littlewood’s zero-free region (which is needed in the proof), while arguing
as in the proof of Corollary 4.4 we can show that one recovers the Korobov–
Vinogradov zero-free region, provided that one can take F (x) = G(x) =
exp

{
(log x)3/5(log log x)−1/5

}
.

Recall that ∆(x, θ) := ψ(x) − ψ(x − θx) − θx. In order to put our
results into proper perspective, we recall that Pintz [14], [15] proved that
if %0 = β0 + iγ0 is any zero of the Riemann zeta-function, then

lim sup
x→∞

|∆(x, 1)|
xβ0

≥ 1

|%0|

and also the more precise inequality ∆(x, 1) = Ω
(
x exp{−(1−ε)ω(x)}

)
where

ω(x) := min
{
(1− β) log x+ log |γ| : % = β + iγ

}
.

4.1 Sketch of the proof

Since every zero % = β + iγ of the Riemann zeta-function gives rise to a pole
of the function

F (s)
def
= − ζ ′

ζ
(s)− ζ(s)

we can detect zeros by counting the “spikes” of the function F just to the
right of the critical strip. It should be remarked that since ζ is of finite order
(as a Dirichlet series), it does not cancel the contribution of the pole of −ζ ′/ζ
at s = %. Obviously F is related to the function ∆(x, θ) defined above, which
is the sum of the coefficients in its Dirichlet series in the interval (x− θx, x].
The function ∆, in its turn, appears in the Selberg integral. Since we are
assuming that |∆(t, θ)| is usually small, that is, it is small in the L2-norm
over the interval [x, 2x], this piece of information can be used to show that
the zeta function can not have too many zeros.

More precisely, if the zeta function has a zero in the circle |s−1− it| ≤ r,
say, then for a suitable integer k, we have that F (k)(1 + r + it) is “large” in
a strong quantitative sense. Taking all zeros into account, we find a lower
bound for N(σ, T ). But the assumption on J can be used to give an upper
bound for |F (k)(s)|, and therefore for N(σ, T ).

From now on we write cj for a suitable positive, absolute, effectively
computable constant, L2 = log T , w = 1 + it with 2 ≤ |t| ≤ T , r = c7(1−σ),
s0 = w + r.

The crucial lower estimate is the following bound.
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Lemma 4.5 There exist absolute constants c1 and c2 > 0 with the following
property: let L−1

2 ≤ r ≤ c1/(16e) and K ≥ c2rL2. If the Riemann zeta-
function has a zero in the circle |s − w| ≤ r, then there exists an integer k
such that K ≤ k ≤ 2K and

1

k!

∣∣F (k)(w + r)
∣∣ ≥ 2

c1

( c1
4r

)k+1

.

This can be proved as Lemma A in Bombieri [1, §6], applying a suitable
form of Turán Second Main Theorem (see the Corollary of Theorem 8.1 in
Turán [20]; the proof of the latter result yields c1 = 1/(8e)) to the function
k!−1

∣∣F (k)(w + r)
∣∣ using the development for the zeta-function

ζ ′(s)

ζ(s)
=

∑
|%−w|≤1

1

s− %
+O(L2),

given by Titchmarsh [18, Theorem 9.6], the Cauchy inequalities for the
derivatives of holomorphic functions, the Phragmén–Lindelöf principle and
the fact that ζ is of finite order in the half plane σ > 1

2
.

Lemma 4.6 There exist absolute constants A0 ≥ 1, B0 ≥ 1 and C0 ≥ 2 with
the following property. Let L−1

2 ≤ r ≤ c1/(16e). If the zeta-function has a
zero in the circle |s− w| ≤ r, then for all x ≥ TB0 and C > C0 we have∫ xA0

x

∣∣∣ ∑
n∈[x,y]

Λ(n)− 1

nw

∣∣∣2 dy

y
�C (log x)3x−Cr.

The proof of this Lemma is close to Bombieri [1], §6, Lemma B, using
our Lemma 4.5 in place of his Lemma A.

Lemma 4.7 Uniformly for xε−1 ≤ θ ≤ 1
2

we have∫ 2x

x

∣∣∣ ∑
n∈(t−θt,t]

Λ(n)− 1

n

∣∣∣2 dt

t
�ε x

−3J(x, θ) + θ4.

It is a straightforward application of the Brun–Titchmarsh inequality.

Lemma 4.8 For τ = exp(θ) we have∫ θ−1

−θ−1

∣∣∣ ∑
n∈(x,y]

Λ(n)− 1

n
niu

∣∣∣2 du� θ−2

∫ y

x

∣∣∣ ∑
n∈(u,τu]

Λ(n)− 1

n

∣∣∣2 du

u
+ θ.
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This follows from Gallagher’s Lemma (see Bombieri [1, Theorem 9]).
From Lemma 4.6 we have∫ xA0

x

∫ γ+ 1
2
r

γ− 1
2
r

∣∣∣ ∑
n∈(x,y]

Λ(n)− 1

n1+iv

∣∣∣2 dv
dy

y
� r(log x)3x−Cr,

for any C > C0, and, summing over zeros,

N(σ, T )r(log x)3x−Cr � r log T

∫ xA0

x

∫ T+r

−T−r

∣∣∣ ∑
n∈(x,y]

Λ(n)− 1

n1+iu

∣∣∣2 du
dy

y
,

since each point of the interval (−T − r, T + r) belongs to at most c0rL2

intervals of type
(
γ− 1

2
r, γ+ 1

2
r
)
, by the Density Lemma in Bombieri [1, §6].

Hence

N(σ, T ) � log T

(log x)3
xCr

∫ xA0

x

∫ T+r

−T−r

∣∣∣ ∑
n∈(x,y]

Λ(n)− 1

n1+iu

∣∣∣2 du
dy

y

� log T

(log x)3
xCr

{
θ−2

∫ xA0

x

∫ y

x

∣∣∣ ∑
n∈(u,τu]

Λ(n)− 1

n

∣∣∣2 du

u

dy

y
+ θ log x

}
by Lemma 4.8 with T = θ−1, τ = exp θ. The inner integral is essentially

� log x max
x≤t≤y

∫ 2t

t

∣∣∣ ∑
n∈(u,τu]

Λ(n)− 1

n

∣∣∣2 du

u
� log x max

x≤t≤y
J
(
t, τ − 1

)
t−3

by Lemma 4.7. By our hypothesis and our choice of T , we finally have

N(σ, T ) � log T

log x
xCr

{
1

F (θx)
+

θ

log x

}
� log T

log x
xCr

{
1

F
(
xT−1

) + T−1

}

This is our main estimate, subject to the conditions x ≥ max
(
TB0 , G−1(T )

)
and θ = T−1, and the proof of the various corollaries is fairly straightforward.
For the details see the author’s paper [22].
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[15] J. Pintz. On the remainder term of the prime number formula and the
zeros of the Riemann zeta-function. In Number Theory, LNM 1068,
pages 186–197, Noordwijkerhout, 1984. Springer-Verlag.

[16] B. Saffari and R. C. Vaughan. On the fractional parts of x/n and related
sequences. II. Ann. Inst. Fourier, 27:1–30, 1977.

13



[17] A. Selberg. On the normal density of primes in small intervals, and the
difference between consecutive primes. Arch. Math. Naturvid., 47:87–
105, 1943.

[18] E. C. Titchmarsh. The Theory of the Riemann Zeta–Function. Oxford
University Press, Oxford, second edition, 1986.

[19] P. Turán. On the remainder-term of the prime-number formula. II. Acta
Math. Acad. Sci. Hungar., 1:155–166, 1950.

[20] P. Turán. On a New Method of Analysis and its Applications. J. Wiley
& Sons, New York, 1984.

[21] A. Zaccagnini. Primes in almost all short intervals. Acta Arithmetica,
84.3:225–244, 1998.

[22] A. Zaccagnini. A conditional density theorem for the zeros of the Rie-
mann zeta-function. Acta Arithmetica, 93.3:293–301, 2000.

14


