
GOLDBACH VARIATIONS:

PROBLEMS WITH PRIME NUMBERS

Alessandro Zaccagnini

Praeludium

We will call prime numbers the integers n ≥ 2 which are divisible only by 1 and
themselves. Euclid (fourth century B. C.) first showed that there exist infinitely
many prime numbers. His proof is an excellent example of a mathematical argu-
ment: if 2, 3, 5, . . . , p were the only prime numbers, we could construct the number
2 · 3 · 5 · · ·p + 1, which has the property of leaving the remainder 1 when divided
by any of our former prime numbers. Since every integer larger than 1 is either
a prime number, or is divisible by at least a prime, our list can not be complete.
According to the great British mathematician G. H. Hardy, this proof “is as fresh
and significant as when it was discovered–two thousand years have not written a
wrinkle on it.”

The following is a short list of prime numbers.

2 3 5 7 11 13 17 19 23 29 31 37 41 43

47 53 59 61 67 71 73 79 83 89 97 101 103 107

109 113 127 131 137 139 149 151 157 163 167 173 179 181

191 193 197 199 211 223 227 229 233 239 241 251 257 263

269 271 277 281 283 293 307 311 313 317 331 337 347 349

353 359 367 373 379 383 389 397 401 409 419 421 431 433

439 443 449 457 461 463 467 479 487 491 499 503 509 521

523 541 547 557 563 569 571 577 587 593 599 601 607 613

617 619 631 641 643 647 653 659 661 673 677 683 691 701

709 719 727 733 739 743 751 757 761 769 773 787 797 809

811 821 823 827 829 839 853 857 859 863 877 881 883 887

907 911 919 929 937 941 947 953 967 971 977 983 991 997

Table 1. The prime numbers below 1000.

Now that we know that there are infinitely many prime numbers, we might ask
if there is a method to compute them, apart from trial division. Eratosthenes
(second century B. C.) devised the so-called sieve that allows to separate the prime
numbers from the composite ones: we show how it works by means of Table 2.
Setting aside the number 1, which has a special status, we delete from the table
below all multiples of 2 starting from 22 = 4. Next, we look for the first uncancelled
number, which is 3, and go on as before, starting from 32 = 9. We repeat these
operations with 5, starting from 52 = 25, then with 7, from 72 = 49, and finally
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with 11, from 112 = 121. Now we can stop, since the first uncancelled number
is 13 and 132 = 169 is outside our table, which now shows 1 and all prime numbers
through 144. The lines help to cancel multiples of the same prime number.

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81 82 83 84

85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108

109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132

133 134 135 136 137 138 139 140 141 142 143 144

Table 2. Eratosthenes’ sieve.

Prime numbers go on forever, according to Euclid, but looking carefully at Ta-
ble 1 one sees that their density seems to decrease slowly, and this can be checked
building larger tables, as our Table 3 below shows. Can we explain this phenom-
enon? Performing the operations required by the sieve on the integers 1, 2, . . . ,
N , (where N is a very large number) we can observe that only about one half of
the integers survive the first step (when we deal with the prime number 2), and
only 2

3 of them remain after the second step (p = 3), and so on. In other words,
when dealing with the prime number p we cancel about 1/p-th of the integers in our
table that have not been cancelled yet. Since every non-prime integer has at least
a prime factor not exceeding its square root, at the end the proportion of surviving
numbers in Table over their total should be roughly

(

1 − 1

2

)

·
(

1 − 1

3

)

·
(

1 − 1

5

)

· · ·
(

1 − 1

p

)

,

where p is the largest prime number ≤
√

N . We can not even hint at a proof here,
but it is known that the above product is approximately

c

log N
(1)

where c = 1.1229197 . . . , if N is a very large number. Here and in the sequel log
denotes the natural logarithm function, in base e = 2.718281828 . . . If N is a very
large number, it may seem legitimate to expect that there should be approximately
cN/ logN prime numbers ≤ N , since (1) apparently represents the proportion of
uncancelled numbers in Eratosthenes’ sieve. Actually this is not the case, since for
large N the proportion of the numbers cancelled by the prime p ≤

√
N is very rarely
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exactly 1/p: this happens only exceptionally. The computations leading to (1) are
not therefore fully justified, but using a different and rather intricate argument (too
long and complicated to be summarized here), Jacques Hadamard and Charles de
la Vallée Poussin proved independently in 1896 that

π(N) ∼ N

log N
, (2)

where, traditionally, π(N) denotes the number of prime numbers not exceeding
N . There is no danger of confusion with the other meaning of π: in this talk the
number π = 3.14159 . . . will never appear. The symbol ∼ denotes an approximate
equality: more precisely, (2) means that the ratio between the quantities π(N) and
N/ logN is very close to 1 when N is very large. This is known as the Prime
Number Theorem, and it is the result of more than a century of efforts of first-
rate mathematicians, such as L. Euler, C. F. Gauss, P. L. Dirichlet, B. Riemann,
P. Chebyshev.

Table 3 shows the value of π(N) when N is a small power of 10, the error in the
approximation and the ratio between the quantities in (2).

N π(N) π(N) − N

log N

π(N) logN

N

10 4 0 0.921 . . .
102 25 3 1.151 . . .
103 168 23 1.161 . . .
104 1229 143 1.132 . . .
105 9592 906 1.104 . . .
106 78498 6116 1.084 . . .
107 664579 44158 1.071 . . .
108 5761455 332774 1.061 . . .
109 50847534 2592592 1.054 . . .
1010 455052511 20758029 1.048 . . .

Table 3. Values of π(N) for N = 10n, n = 1, . . . , 10. The differences in the third
column are rounded to the nearest integer.

Thema: Goldbach’s problem

In 1742, the mathematician Christian Goldbach, in a letter to Euler, stated that
every even integer larger than 4 can be written as a sum of two (not necessarily
distinct) odd primes. In other words, if n is an even integer larger than 4 it is
possible to find two odd prime numbers p1 and p2 so that

n = p1 + p2. (3)

For instance, 10 = 3 + 7 = 5 + 5 = 7 + 3. Today this is known as “Goldbach’s
binary problem,” and no proof has been found yet. We give the number of solutions
of equation (3) (denoted by r(n)) for even n through 200 in Table 4. Note that
r(4) = 1 because 4 = 2 + 2, and that, as above for 10, solutions like 3 +7 and 7 + 3
are considered as distinct.
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In this case, an analysis of Table 4 seems to show that the number of solutions
r(n) grows with n, but in an extremely irregular fashion: for example, r(180) = 28,
while r(182) = 12. Can we try and explain this phenomenon, too?

n r(n) n r(n) n r(n) n r(n) n r(n)

2 0 4 1 6 1 8 2 10 3
12 2 14 3 16 4 18 4 20 4
22 5 24 6 26 5 28 4 30 6
32 4 34 7 36 8 38 3 40 6
42 8 44 6 46 7 48 10 50 8

52 6 54 10 56 6 58 7 60 12
62 5 64 10 66 12 68 4 70 10
72 12 74 9 76 10 78 14 80 8
82 9 84 16 86 9 88 8 90 18
92 8 94 9 96 14 98 6 100 12

102 16 104 10 106 11 108 16 110 12
112 14 114 20 116 12 118 11 120 24
122 7 124 10 126 20 128 6 130 14
132 18 134 11 136 10 138 16 140 14
142 15 144 22 146 11 148 10 150 24

152 8 154 16 156 22 158 9 160 16
162 20 164 10 166 11 168 26 170 18
172 12 174 22 176 14 178 13 180 28
182 12 184 16 186 26 188 10 190 16
192 22 194 13 196 18 198 26 200 16

Table 4. Values of r(n) for even n through 200.

First of all, it is rather reasonable that r(n) grows somehow, since the larger n,
the larger the number of primes that can appear as summands in (3). Furthermore,
we can use (2) to obtain an expected “order of magnitude” for r(n).

Take a very large number N , and consider the π(N)− 1 odd primes less than or
equal to N , and all of their possible sums. Obviously, if both p1 and p2 are ≤ N ,
we can only conclude that p1 + p2 ≤ 2N , but this is not very important, since we
are content with an approximate result. By (2) the possible sums p1 + p2 are

(

π(N) − 1
)2 ∼ N2

(log N)2
,

so that, on average, every even integer n ≤ 2N has about N/(logN)2 representa-
tions of the type (3) with p1 and p2 ≤ N , since there are exactly N even integers
≤ 2N . This average argument does not yet explain the remarkable irregularities in
Table 4, but it suggests that r(n) should be close to

n

(log n)2
. (4)

Can we give a convincing explanation of what we observe? In other words, does
(4) really give the right order of magnitude of r(n)? And, assuming the answer to
be positive, how do we explain the irregularities of r(n)? In Table 5 we give the
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solutions of the equations a + b = n for n = 60 and n = 62, where a and b are odd
integers and a ≤ b (these are inessential simplifications that we introduce in order
to keep the Table within reasonable size).

1 + 59 1 + 61
∗ 3 + 57 ∗ ∗ 3 + 59

5 + 55 5 + 57 ∗
7 + 53 7 + 55

∗ 9 + 51 ∗ ∗ 9 + 53
11 + 49 11 + 51 ∗
13 + 47 13 + 49

∗ 15 + 45 ∗ ∗ 15 + 47
17 + 43 17 + 45 ∗
19 + 41 19 + 43

∗ 21 + 39 ∗ ∗ 21 + 41
23 + 37 23 + 39 ∗
25 + 35 25 + 37

∗ 27 + 33 ∗ ∗ 27 + 35
29 + 31 29 + 33 ∗

31 + 31

Table 5. How to obtain the solutions of equation (3) for n = 60 or n = 62. The
stars mark the multiples of 3.

Now we perform a sort of double sieve, deleting from the potential solutions of
equation (3) those with a summand divisible by 3, which are marked by stars. We
immediately note an important difference between the two cases: when n = 60 the
stars appear at the same height, so that when we consider the prime number 3 we
only cancel 1/3 of the solutions of the equation a + b = 60 listed at the beginning,
and 1− 1/3 = 2/3 of them survive. On the contrary, when n = 62 we cancel about
2/3 of the solutions of the equation a + b = 62, leaving just 1 − 2/3 = 1/3 of the
total.

How do we tell the two situations apart? It is not very difficult to see that
the difference lies in the fact that 3 divides 60 but not 62. Obviously the prime
number 3 itself is not special: the same argument holds for all odd primes p ≤

√
n.

Hence, arguing by analogy with the earlier problem, we are tempted to modify the
previous conjecture that r(n) is about (4), replacing it by

n · 1

2
·
(

1 − 1

p1

)

·
(

1 − 1

p2

)

· · ·
(

1 − 1

pr

)

·
(

1 − 2

q1

)

·
(

1 − 2

q2

)

· · ·
(

1 − 2

qs

)

, (5)

where p1, . . . , pr are the distinct odd prime factors of n, while q1, . . . , qs are the
other odd primes below

√
n, and we inserted the factor 1

2
in order to take into

account the fact that there is no even summand in (3) if n 6= 4.
Luckily it is not difficult to simplify the expression (5) somewhat: recalling the

differences between (1) and (2), after a short computation, our conjecture takes the
shape

r(n) ∼ c′ · p1 − 1

p1 − 2
· p2 − 1

p2 − 2
· · · pr − 1

pr − 2
· n

(log n)2
, (6)

for a suitable constant c′ = 1.3203 . . . called “twin-prime constant” for a reason we
shall presently see. We remark that, for instance, when n = 60 the product over
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the prime factors in (6) is 8/3 = 2.6666 . . . while for n = 62 it is only 30/29 =
1.03448 . . . Hence, if our argument is correct, the reason why r(60) = 12 is more
than twice r(62) = 5 is not mysterious anymore.

We said above that Goldbach’s problem has not been settled, yet: there are
radically different arguments which suggest the correctness of (6), itself a very
strong form of the Goldbach conjecture, but nobody has been able to give a rigorous
proof as of now. Actually, this conjecture has been checked by means of computers
up to n = 4 · 1014, but obviously this can not be considered a proof. A part of
the difficulty lies in the fact that the approximation given by (2) is not sufficiently
precise. Anyway, several “approximate” results have been proved, but they are not
easy to describe here. The easiest to talk about among them is now the subject of
our . . .

Variatio Prima

In (3) we considered the problem of representing large enough even numbers (where
large enough means greater than 4) in the form p1 + p2, where p1 and p2 are odd
primes. We now ask: what is the corresponding problem for the odd integers? Since
every prime apart from 2 is odd, we have to sum three odd primes in order to get
another odd integer. Hence, we call “ternary Goldbach conjecture” the following
statement: for every sufficiently large odd integer n there exist three odd primes
p1, p2 and p3, not necessarily distinct, such that

n = p1 + p2 + p3. (7)

Of course it is possible to work by analogy with the previous cases, performing a
triple sieve. Furthermore it may be expected that this should be an easier problem,
since the “average” argument leading to (4) now gives the much larger number
n2/(log n)3. Actually, in 1937 the Russian mathematician I. M. Vinogradov proved
that for any sufficiently large odd integer n, the equation (7) has always at least
one solution. Moreover Vinogradov proved that there is a formula similar to (6) for
the number of solutions, which we call r3(n). If n is a large odd number

r3(n) ∼ c′′ · (p1 − 1)(p1 − 2)

p2
1 − 3p1 + 3

· (p2 − 1)(p2 − 2)

p2
2 − 3p2 + 3

· · · (pr − 1)(pr − 2)

p2
r − 3pr + 3

· n2

(log n)3
, (8)

where c′′ is another positive constant, and p1, p2, . . . , pr are the prime factors of
n.

At the time, Vinogradov could not say precisely what “sufficiently large” means,

but later researches showed that every odd n > 3315

is sufficiently large. Unfor-
tunately this is an enormous number (it has almost 7 million digits) which has
been reduced over time, though it is still impossible to check the remaining cases
by computer. Recently the French mathematician O. Ramaré proved that for any

integer n ≥ 2, the equation

n = p1 + p2 + · · ·+ pr

is soluble with the p’s prime numbers, and r ≤ 7.
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Variatio Secunda

We now change equation (3) turning the + sign into a − sign:

n = p1 − p2. (9)

The most important consequence is that while equation (3) could only have finitely
many solutions, we can not say the same thing for equation (9). In order to compare
the two situations, we consider a large number N , and we count the solutions of
equation (9) with p2 ≤ N . Table 6 gives the number of solutions of (9) (denoted
by πn(N)) for even n through 100, and N = 10000. We immediately see that all
numbers in the Table are rather large, but once again there are visible irregularities:
going back to our previous example, π60(10000) is more than twice π62(10000). We
ask: is it possible to find a simple explanation to this phenomenon?

n πn n πn n πn n πn n πn

2 205 4 203 6 411 8 208 10 270
12 404 14 245 16 200 18 417 20 269
22 226 24 404 26 240 28 248 30 536
32 196 34 215 36 404 38 213 40 267
42 489 44 227 46 201 48 409 50 270

52 221 54 410 56 240 58 212 60 535
62 206 64 201 66 458 68 209 70 318
72 401 74 206 76 220 78 428 80 272
82 205 84 493 86 207 88 217 90 531
92 218 94 208 96 400 98 232 100 260

Table 6. Values of πn(10000) for even n through 100.

Once we fix n = 60 and N = 10000, for instance, we can construct a the
analogous of Table 5, where in the first column we write the odd numbers 1, 3, . . . ,
9999, and in the second the numbers 1 + 60, 3 + 60, . . . , 9999 + 60. Removing as
above the multiples of 3 from each column, we see that in this case as well they
appear at the same height, whereas for n = 62 they appear at different heights.
Hence we are led to conjecture that for πn(N) a relation like

πn(N) ∼ c′ · p1 − 1

p1 − 2
· p2 − 1

p2 − 2
· · · pr − 1

pr − 2
· N

(log N)2
(10)

should hold, where, as above, p1, . . . , pr are the odd prime factors of n (which
we consider as fixed), N is a very large number, and c′ is the same constant as in
(6). We can explain its name, at last; the problem had originally been stated thus:
is it true that there exist infinitely many “twin primes,” that is, primes having a
difference of 2 like 11 and 13? We conclude by remarking that the smallest values
in Table 6 occur when n is a power of 2, while the largest are those for n’s having
lots of small, odd prime factors, like 6, 30, . . . , in good agreement with (10). This
problem, just like Goldbach’s, is still open, although some “approximate” results
are known, but again they are too difficult to describe here.

Variationes Ad Libitum

We said that the twin-prime problem may be stated in a slightly different fashion,
which suggests a new variation: if there are really infinitely many prime numbers



8 ALESSANDRO ZACCAGNINI

p such that p + 2 is prime as well, is it true that there are infinitely many primes p
such that both p+2 and p+4 are prime numbers? Looking up Table 1 we discover
that this happens only once, when p = 3. It is not too difficult to understand where
the problem lies: for any integer n, one among the numbers n, n + 2 and n + 4 is a
multiple of 3. But modifying our demand and looking at the numbers p, p + 2 and
p + 6, we discover that these are simultaneously prime in a large number of cases:
actually, there are 55 prime numbers p < 10000 such that both p + 2 and p + 6 are
again primes.

We are thus led to consider what some mathematicians call constellations of
primes: given k distinct positive integers a1, a2, . . . , ak, we ask if there are infinitely
many primes p such that p+a1, . . . , p+ak are all simultaneously prime. Evidently,
the twin primes correspond to the case k = 1 and a1 = 2. In order to simplify the
argument, we set a0 = 0 and write in compact form (a0, . . . , ak) the set of k + 1
integers a0, a1, . . . , ak, thus identifying the constellation itself. The problem we
face immediately is how to tell the situation with k = 2, a1 = 2 and a2 = 4 (that
is, the constellation (0, 2, 4)), apart from k = 2, a1 = 2 and a2 = 6 (i. e., the
constellation (0, 2, 6)), which as we saw are radically different.

We can work as follows: we consider the primes p which do not exceed k + 1
(k+1 being the number of primes in the constellation), and for each of these primes
we compute the remainders of a0, a1, . . . , ak when divided by p. If for any of these
primes it happens that the remainders, in some order, are 0, 1, . . . , p− 1, then the
numbers p = p+a0, p+a1, . . . , p+ak can be simultaneously prime for at most one
value of p, and we call the constellation (a0, . . . , ak) non-admissible. On the other
hand, if for every prime ≤ k +1 at least one remainder is missing, the constellation
is called admissible.

a b π(0,a,b) a b π(0,a,b) a b π(0,a,b) a b π(0,a,b)

2 6 55 2 8 57 2 12 92 2 14 73
2 18 66 2 20 82 2 24 59 2 26 68
2 30 112 2 32 85 2 36 65 4 6 57
4 10 91 4 12 62 4 16 57 4 18 71

6 8 62 6 12 118 6 14 76 6 16 81
6 18 125 6 20 106 6 22 62 8 12 49
8 14 68 8 18 88 12 60 166 20 30 101

30 60 223 30 90 221 30 120 219 60 120 228

Table 7. Computations for some admissible constellations of primes with N =
10000.

Going back to our previous example, in the case (0, 2, 4) we see at once that
for p = 2 all the remainders are 0, while if p = 3 they are 0, 2, 1, respectively.
When (0, 2, 6) and p = 2 all the remainders are 0, but for p = 3 they are 0, 2, 0,
respectively.

The ideas explained above suggest the conjecture that for any given admissible
constellation (a0, . . . , ak), there are infinitely many primes p such that p + a1, . . . ,
p + ak are all primes, although the formula corresponding to (10) is rather com-
plicated. But why should we just consider constellations of primes, which have,
so to speak, a fixed distance? Actually, the same method can be used to study
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the problem of the distribution of the primes p such that 2p + 1 is another prime,
and we might even choose more complicated relations. This suggests that there are
infinitely many problems of this type, but we stop here since our time has ran out.

Coda

These last few words are for those who insist on knowing the whole truth. The
constant c in (1) is 2e−γ , γ being the Euler-Mascheroni constant, defined by

γ = lim
n→∞

(

n
∑

i=1

1

i
− log n

)

= 0.5772156649 . . .

The proof is far from easy. From a numerical point of view, N/(log N − 1) is a
better approximation to π(N) than N/ log N : This can be explained by the general
theory. A still closer approximation is given by the logarithmic integral function,
defined by

li(N) =

∫ N

2

dt

log t
.

With this function, the difference π(N)− li(N) turns out to be much smaller than
the one in the third column of Table 3. It is conjectured that there exists a positive
constant A such that for large N we have

∣

∣π(N) − li(N)
∣

∣ ≤ A
√

N log N,

but the best estimates known today are extremely weaker.
It has been proved that both r(n) and πn(N) do not exceed four times the

expression on the right in (6) and (10) respectively. More generally, it has been
proved that all quantities we dealt with do not exceed some fixed multiple of the
expected quantity. Furthermore, it is now known that the even integers n such
that r(n) is significantly smaller than (6) are rather rare. The precise statement is
technical.

Hardy & Littlewood in their famous paper [3] give a history of conjecture (6),
proving that similar formulae conjectured before (which, essentially, had a different
constant in place of c′, or a product over odd prime factors of n of a different
shape) are certainly wrong. Their paper contains an accurate criticism of the
“probabilistic” methods leading to these incorrect formulae, which use arguments
resembling the one that leads to (1), as well as several tables. Furthermore, they
describe a revolutionary new method to tackle this and similar problems, and almost
all of the strongest results obtained since (including Vinogradov’s) have been proved
using their method. It is impossible even to vaguely hint at the ideas involved: we
would need a deep knowledge of real and complex analysis.

The constants c′ and c′′ are respectively

c′ = 2
∏

p6=2

(

1 − 1

(p − 1)2

)

and c′′ =
∏

p6=2

(

1 +
1

(p − 1)3

)

,

where the products are over the odd primes. The number 3315

has been reduced to
e100000, but this is still enormous (it has more than 43000 digits).
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As far as the constellation of primes are concerned, let us call ρ(p) the number
of distinct remainders of the numbers a0, . . . , ak when divided by p. Rephrasing
the above argument, it is not difficult to prove that the constellation (a0, . . . , ak) is
admissible if and only if ρ(p) < p for every prime number p. The expected number
of prime numbers p ≤ N such that also p + a1, . . . , p + ak are prime numbers is
given by the formula

π(a0,a1,...,ak)(N) ∼
∏

p

(

1 − 1

p

)−1−k (

1 − ρ(p)

p

)

· N

(log N)k+1
,

which contains both (2) and (10) as special cases. For example, in the case k = 2
shown in Table 7 we have ρ(p) = 3 for all prime numbers not dividing ab(b − a).

Note. This talk owes much to the first one in Lang’s book [5], while the title is
clearly inspired by the dialogue “Aria with Diverse Variations” in Hofstadter’s book
[4]. Finally, the data in Table 3 are taken from Tables 5.2 and 26 respectively of
the books by Conway & Guy [1], and by Ribenboim [7], while all other data were
computed by the author. For further information see also the references below, and
the following web pages:

http://www.inesca.pt/∼tos/goldbach.html

Goldbach Conjecture numerical verification results by Tomás Oliveira e Silva.

http://www.informatik.uni-giessen.de/staff/richstein/ca/Goldbach.html

Verifying Goldbach’s Conjecture up to 4 · 1014 by Jörg Richstein.

http://purl.oclc.org/NET/TRN/

Enumeration of the twin primes and Brun’s constant to 1014 by Thomas Nicely.

I am indebted to Keith Matthews for these links. This text is available online at
the address
http://www.math.unipr.it/∼zaccagni/psfiles/Goldbach E.ps

and in Italian at
http://www.math.unipr.it/∼zaccagni/psfiles/Goldbach I.ps

References

[1] J. H. Conway & R. K. Guy, The Book of Numbers, Springer, Berlin, 1997.

[2] G. H. Hardy, A Mathematician’s Apology, Cambridge U. P., Cambridge, 1940.
[3] G. H. Hardy & J. E. Littlewood, Some problems of “Partitio Numerorum”; III: On the ex-

pression of a number as a sum of primes, Acta Math. 44 (1923), 1–70.
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