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Introduction

Let X, Y be two real or complex Banach spaces. By X =Y we mean that
X and Y have the same elements and equivalent norms. By Y C X we mean
that Y is continuously embedded in X.

The couple of Banach spaces (X,Y") is said to be an interpolation couple
if both X and Y are continuously embedded in a Hausdorff topological vector
space V. In this case the intersection X NY is a linear subspace of V, and
it is a Banach space under the norm

vl xny = max{[jv][x, [lv]ly}.

Also thesum X +Y ={z+y: z € X, y € Y} is a linear subspace of V. It
is endowed with the norm

lollxsy = it lallx + il
As easily seen, X + Y is isometric to the quotient space X x Y/D, where
D = {(z,—z) : z € XNY}. Since V is a Hausdorff space, then D is
closed, and X + Y is a Banach space. Moreover, |z||x < ||z|x+y and
lylly <llyllx+y forallz € X,y € Y, so that both X and Y are continuously
embedded in X + Y.

The space V is used only to guarantee that X + Y is a Banach space. It
will disappear from the general theory.

If (X,Y) is an interpolation couple, an intermediate space is any Banach
space F such that

XNYCECX+Y.

An interpolation space between X and Y is any intermediate space such
that for every T' € L(X) N L(Y) (that is, for every T' € L(X + YY) whose
restriction to X belongs to L(X) and whose restriction to Y belongs to
L(Y)), the restriction of T' to E belongs to L(E).
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4 Introduction

The general interpolation theory is not devoted to characterize all the
interpolation spaces between X and Y but rather to construct suitable fami-
lies of interpolation spaces and study their properties. The most known and
useful families of interpolation spaces are the real interpolation spaces which
will be treated in chapter 1, and the complex interpolation spaces which will
be treated in chapter 2.

Interpolation theory has a wide range of applications. We shall em-
phasize applications to partial differential operators and partial differential
equations, referring to [36], [12] for applications to other fields. In particular
we shall give self-contained proofs of optimal regularity results in Holder
and in fractional Sobolev spaces for linear elliptic and parabolic differential
equations.

The domains of powers of positive operators in Banach spaces are not
interpolation spaces in general. However in some interesting cases they coin-
cide with suitable complex interpolation spaces, and in any case the theory
of powers of positive operators is very close to interpolation theory, and has
important connections with it. Therefore in chapter 4 we give an elementary
treatment of the powers of positive operators, with particular attention to
the imaginary powers.



Chapter 1

Real interpolation

Let (X,Y) be a real or complex interpolation couple.

If I is any interval contained in (0, +o00), LE(I) is the Lebesgue space LP
with respect to the measure dt/t in I. In particular, L(I) = L®(I). See
Appendix, §2.

1.1 The K-method

Definition 1.1.1 For everyz € X +Y andt > 0, set

K X,Y) = inf . 1.1.1
(b, X,Y)= _inf - (Jallx -+ tb]y) (1.1.1)

If there is no danger of confusion, we shall write K(t,x) instead of K(t,z, X,
Y).

Note that K(1,z) = ||z||x+y, and for every ¢ > 0 K(t,-) is a norm in
X +Y, equivalent to the norm of X +Y. Now we define a family of Banach
spaces by means of the function K.

Definition 1.1.2 Let 0 <0 <1, 1 <p < o0, and set

(X, Y)gp={z€X+Y:ttK(tz,X,Y) e LE(0,+00)},
(1.1.2)
20l (x v, = IO K (2, X, V)| 12 (0,003
(X,)Y)g = {z€X+Y:lim_ o+t ’K(t,z,X,Y)
(1.1.3)
=limy_, 0ot ?K(t,2,X,Y) =0}

Such spaces are called real interpolation spaces.

5



6 Chapter 1

The mapping z — [|z[|(x,y), , is easily seen to be a norm in (X,Y)g,. If
no confusion may arise, we shall write |[zlp,, instead of ||lz[/(x y), -

Note that K (¢t,z,X,Y) =tK(t"',z,Y, X) for each t > 0. By the trans-
formation 7 = ¢t~!, which preserves L% (0, 00), we get

(X,Y)gp=(Y, X)19p, 0<O<1, 1<p< 00,

and
(X7 Y)9 = (Y7X)1—0-

So, pay attention to the order!
Let us consider some particular cases.

(a) Let X =Y. Then X +Y = X, and K (¢,2) < min{t, 1}||z||. Therefore
(X, X)pp=X, 0<60<1,1<p<oo,
with equivalence of the respective norms.

(b) If X NY = {0}, then (X,Y )y, = (X,Y)y = {0} for every p € [1, o0],
6 (0,1).

(c¢) In the important case where Y C X we have K(t,z) < |z||x for
every ¢ € X, so that t — t 'K(t,z) € L%(a,00) for all @ > 0, and
lim;_,oo t K (t,z) = 0. Therefore, only the behavior near t = 0 of
t=9K (t,z) plays a role in the definition of (X,Y)y, and of (X,Y),.
Indeed, one could replace the half line (0,4+o00) by any interval (0, a)
in definition 1.1.2, obtaining equivalent norms.

The inclusion properties of the real interpolation spaces are stated below.
Proposition 1.1.3 For 0 <0< 1,1 <p; <py < oc we have
XNY C(X,Y)pp, C(X,Y)gp, C(X,Y)g C(X,Y)poo CX+Y. (1.1.4)

Moreover,
(X, Y)g’oo cXn ?,

where X, Y are the closures of X, Y in X +Y.
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Proof — Let us show that (X,Y ) is contained in X N'Y and it is con-
tinuously embedded in X + Y. For z € (X,Y )y o we have

K(t,) = inf Jlallx +Hbly <talloc, ¢ >0,

so that for every n € N (taking ¢t = 1/n) there are a,, € X, b, € Y such that
T = an + by, and

1 _
(lanllx + —llbnlly) < 2n el o,oo-

In particular, ||z — by x 1y = llanllx1y < llanllx < 2||zllg,on ™, so that the
sequence {b,} goes to z in X +Y as n — oo. This implies that (X,Y)g o is
contained in Y. Arguing similarly (i.e., replacing 1/n by n and letting n —
00), or else recalling that (X,Y )y o = (Y, X)1-6,00) We see that (X,Y )y « is
contained also in X. Moreover, by definition ||z|| x4y = K (1, 7). Therefore

[zllx+y = K(1,2) < [|lz]lg.0, V2 € (X,Y)g,00,

so that (X,Y)g « is continuously embedded in X + Y.

The inclusion (X,Y )y C (X,Y ), is obvious because K (-, z) is contin-
uous (see exercise 1, §1.1.1) so that ¢t ?K (¢, z) is bounded in every interval
[a,b] with 0 < a < b.

Let us show that (X,Y ), is contained in (X,Y)y and it is continuously
embedded in (X,Y )y for p < co. For each z € (X,Y )y, and t > 0,
recalling that K (-, z) is increasing we get

OK (1, 3) = (0p)!/? ( /t o s_op_lds> P kit o)
(1.1.5)

400 1/p
< (6p)t/P (/ s_op_lK(s,x)pds> , t>0.
t
The right hand side is bounded by (0p)/?||z|s,. Therefore z € (X,Y)g 0o,
and ||z|p.co < c||z]p,. Moreover letting t — oo we get limy_o t K (t,2) =

0. To prove that = € (X,Y)g we need also that lim; ot ’K(¢,z) = 0. To
this aim we remark that K (-, z) satisfies

t
K(t,z) < - K(s,z) forre X+Y, 0<s<t.
s
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Therefore,

/
H0K (t,2) = [(1— 0)p]/P ( / ts(l_a)p_lds>1 " Kt )
0

<[(1—@)p]'/? </Ots_0”_1t”K(s,$)”d8) l/p,

so that

t 1/p
0K () < [(1— 0)p]/P ( / s_ep_lK(s,a:)pds> >0, (1.16)
0

Letting ¢ — 0 in (1.1.6) and ¢ — oo in (1.1.5) it follows that z € (X,Y),.
Using both inequalities yield
lllo.00 < [min{0, 1 — 0}p]' /7o, (1.1.7)

Let us prove that (X,Y)g,, C (X,Y)gp, for p1 < ps. For z € (X,Y)g,,
we have

+oo 1/p2
lellog = ([t K 00T
0

h 1
— (/+ t—emK(t,x)m(t—aK(t’w))(m_pl)/mﬂ) /p2
O t

IN

—+00 ]./pg -~
(/ t_ele(t7 z)Pt %) (Supt>0 t_oK(t, x)) (p2=p1)/p2
0

= (I1zll0.p,)P2/P> (||]]9,00) 1 P1/P2,
and using (1.1.7) we find
I2llopa < [ming0, 1= O}pi 747 g, (1.18)

Finally, from the inequality K(¢,z) < min{l,t} ||z|xny for every z €
X NY it follows immediately that X N'Y is continuously embedded in
(X,Y)gpfor0<f<1,1<p<o0.

The statement is so completely proved. N

The first part of the proof of proposition 1.1.3 shows the connection be-
tween interpolation theory and approximation theory. Indeed, the sequence
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b, in the proof consists of elements of Y and converges to x in X +Y. The
rate of convergence of b, and the rate of blowing up of ||b, ||y are described
precisely by the fact that z € (X,Y)g.o (or z € (X,Y)g, C (X,Y)p,00)-

If Y C X other embeddings hold.
Proposition 1.1.4 IfY C X, for 0 < 6; < 0y <1 we have
(X,Y)p5.00 C (X, Y )p, 1 (1.1.9)
Therefore, (X,Y )g,, C (X,Y)g, q for every p, q € [1,00].

Proof — For z € (X,Y ), o we have, using the inequality K(t,z) < ||z|x
for t > 0,

1 —+00
leloss = [ O K e+ [ K G a)d
0 1

1 “+o00
< [ el et + [ ol (1.1.10)
0 1
<1 olpaso + ]
T — ||
— 02 _ 01 02,00 01 X

and the statement follows since (X,Y)p, 00 CX +Y =X. B

Note that (1.1.9) is not true in general. See next example 1.1.10.

Proposition 1.1.5 For all § € (0,1), p € [1,00], (X,Y ), is a Banach
space. For all @ € (0,1), (X,Y)g is a Banach space, endowed with the norm
Of ()(7 Y)g’oo.

Proof — Let {z,}nen be a Cauchy sequence in (X,Y)g,. Due to the con-
tinuous embedding (X,Y)p, C X + Y, {z,}nen is a Cauchy sequence in
X +Y too, so that it converges to an element z € X +Y.

Let us estimate ||z, — z|lp,. Fix € > 0, and let ||z, — zplg, < € for
n, m > n.. Since y — K(t,y) is a norm in X + Y, for every n, m € N and
t > 0 we have K(t,z, — z) < K(t,z, — ) + K(t, 2 — ), so that

t K (t,xn —x) <t UK (t, 2 — 2) + 70 max{t, 1} ||z, — 2l x4y, (1.1.11)
Let p = 0co. Then for every t > 0 and n, m > n,

tOK(t, 2y — x) < e+t max{t, 1}||zm — =) xsv.
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Letting m — +o0, we find t YK (t,z,, — ) < e for every ¢t > 0. This implies
that © € (X,Y)p o and that z, — z in (X,Y )y . Therefore (X,Y)s o is
complete.

It is easy to see that (X,Y)y is a closed subspace of (X,Y)g . Since
(X,Y)p,00 is complete, then also (X,Y")y is complete.

Let now p < 0co. Then

1/6 L/p
|lzn — z|lgp = lim (/ PR (¢, a2y, — w)pdt> .
0—0 5

Due again to (1.1.11), for every ¢ € (0,1) we get, for n, m > n.,

1/6 Vp
(/ '[;_ap_lK(fEn — $)pdt> S ||$TL - fEmHG,p
1

1/6 1/p
+zm — z||xay (/6 t=P = max{t, 1}dt> <e+C0O,p)|Tm — =l x+v-

Letting first m — oo and then § — 0 we get z € (X,Y )y, and z, — z in
(X,Y)pp. So, (X,Y)y, is complete. W

The spaces (X,Y)p, and (X,Y)y are interpolation spaces, as a conse-
quence of the following important theorem.

Theorem 1.1.6 Let (X1,Y1), (Xo,Ys) be interpolation couples. If T €
L(X1,X2) N L(Y1,Y3), then T € L((X1,Y1)0,p, (X2,Y2)9) N L((X1,Y1)0,
(X2,Y3)g) for every 8 € (0,1) and p € [1,00]. Moreover,

1T L((X1,Y2).p,(X2,Y2)g.p) < Tz ex1,x0) " UIT M Lovn v)) - (1.1.12)

Proof — Assume first that || T (x, x,) # 0. Let z € (X1,Y1)gyp: then for
every a € X1, b € Y] such that z = a + b and for every ¢t > 0 we have

1T\l (vy v
ITallx, +tTbllv, < T |lncx,,x2) <||a||X1 4‘15#”5”1/1 ;
” ||L(X1,X2)
so that

T
K(t, T, X5, Y2) < | Tl x, x0) K (t””LM,x,Xl,m) . (1.113)
1T\l (x1,x0)



Real interpolation 11

17|z vy ,vs)
1T Lx,x5)

Setting s =t we get Tz € (X2,Y2)q,p, and

0
1T Levy v
1Tzl (x2,v2)5, < 1Tl L(x1,x2) <—||T||L((X1 Xz)) 121l (x1,v2)e., -
1,2

and (1.1.12) follows. From (1.1.13) it follows also that
limy_,ot CK (t,2,X,,Y1) = im0 t P K (t, 2, X1,Y]) =0 =
— limy_0t K (¢, Tz, Xo,Ys) = limy_, 00 t 'K (t, Tz, Xo,Y5) = 0,

that is, T maps (X1,Y1)g into (X2, Y2)y.
In the case where ||T||1(x,, x,) = 0 replace everywhere ||T'(|1(x, x,) by
€ > 0 and then let ¢ — 0; the result follows. N

Taking X; = Xy = X, Y; =Y, =Y, it follows that (X,Y )y, and
(X,Y)y are interpolation spaces. Another important consequence is the
next corollary.

Corollary 1.1.7 Let (X,Y) be an interpolation couple. For 0 < 6 < 1,
1 < p < oo there is ¢(0,p) such that

lyllx vy, < @)yl Iyl vy € X NY. (1.1.14)

Proof — Set K = R or K = C, according to the fact that X, Y are real or
complex Banach spaces. Let y € X NY, and define T by T'(\) = Ay for each
A € K. Then [Tk x) = lvllx: ITlloxyy = lylly, and [T px,x,v)s,) =
lyll(x,y),,- The statement follows now from theorem 1.1.6, through the
equality (K,K)p, =K. B

1.1.1 Examples

Let us see some easy examples. C'(R"™) is the space of the bounded continuous
functions in R", endowed with the sup norm || - |[o0; C*(R") is the subset of
the continuously differentiable functions with bounded derivatives, endowed
with the norm || f]loo + X7 ||Difllco- For 6 € (0,1), C?(R") is the set of
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the bounded and uniformly Hoélder continuous functions, endowed with the

o f@) =~ Fw)l

s = Wlloe + oo = 17 lko +sup =020

For 6 € (0,1), p € [1,00), WPP(R") is the space of all f € LP(R") such that

[f(z) = f(y)P e
[flwer = (/R"XR" Wda: dy) < o0.

It is endowed with the norm || - ||ze + [+ ]yyo.-
Example 1.1.8 For 0 <6< 1,1 <p< oo we have
(C(R"),CH(R"))g,00 = C*(R), (1.1.15)
(LP(R™), Wl’p(]R”))g,p = WP (R"), (1.1.16)
with equivalence of the respective norms.

Proof — Let us prove the first statement. Let f € (C(R"),C1(R"))g.00
and let x # y € R™. For every decomposition f = a + b, with a € C(R"),
b€ CHR™) it holds || f|lcc < |lallcc + ||b]lcos SO that

Iflloo < K (1, £, C(R"), CH(R")) < || fllg,00,

and

[f (@) = f(y)] < lalz) = aly)] + [b(z) = b(y)] < 2[|allec + [Ibllcr |2z =yl

so that

1f (@) = f(y)| < 2K (Je —yl, £, C(®"),C"(R") < 2|z — y|°[|f lo,00-

Therefore f is §-Holder continuous and ||f||ce = || fllec + [f]ce < 3/ f|l0,00-

Conversely, let f € C?(R"). Let ¢ € C®(R"™) be a compactly supported
function, say Supp ¢ C B(0,1), such that [, ¢(z)dxr = 1. For every f €
C’(R™) and ¢ > 0 set

1

_tn o

() f(y)so<u>dy, a(@) = f(2) - bi(), = €R". (L117)

t

Then
1

a(r) = I Rn(f(x) — fl@z —y))ply/t)dy
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so that
oo < ooz [ wle(u/dy = #1f1co [ Tul’plw)do.

Moreover, ||bt|loo < ||f]loo, and

Dibe) = oy [ 1) Drol(@— ) )y,

Since [ Dip((z — y)/t)dy = 0, we get

Dibla) = sy [ (7@ =) = @) Dioly/ 0y (1118

which implies

1Dibilloe < oo [ 1l |Digp(w)
Therefore,
0K (t, f) <t (larlloo + tlbellcr) < Clf llco-
Hence C?(R") C (C(R"), C*(R™))g.00-

The proof of the second statement is similar. We recall that for every
be WHP(R") and h € R” \ {0} it holds

(fR (W : ]|Lf)L|_ b(x)l)pdw) < 10bl

For every f € (LP(R™),W'P(R"))p, let f = a + b, with a € LP(R"), b €
WLP(R™), we have
_ P
[ Varho gy,
R™ XR™

|h|0p+n

_ h) — a(z)|
< o 1a(z +
> /R"XR" |h|0p+n

p1 bz + ) — b(z)|?
+/R”><R"2 DGR dx dh

P
dz dh

1’ P||Db|"
ap—2 lallze | op—1[RIPIIDDl[ 1
< /Rn (2 |h|0p+n +2 |h|0p—|—n dh

<Gy [ 17" Nl + 1h] Bl
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so that

_ p
/ Farh) = F@F < e, [ R,
R xXR" h0p+n R

o K(r, f)P
= ¢ / el /E)B(O,l) don-1=6

Therefore, (LP(R™), WP(R"))g,, is continuously embedded in W¥P(R™). To
be precise, we have estimated so far only the seminorm [f]y ,. But we already
know that each (X,Y )y, is continuously embedded in X + Y in our case
X +Y =X = LP(R") so that we have also || f||r < C|f|lg,p-

To prove the other embedding, for each f € WP define a; and b; by
(1.1.17). Then

el = feo (o 170) = S @) (252 )y

< o o 11 0) = F@)P e (552 ) dyd

were for p > 1 we applied the Jensen inequality to the probability measure
t™"p((z — y)/t)dy. So we get

o0 dt 0 1 [x— dt
Pl < [ ~ ) (e
el < [T 1w - @ e S )dyds S
0 1 dt
= — p —0[)_ — 7| —
e ) f(:v)l/o t tn@( - )tdyda:

= [ 1w - P /|:y|t-"f’tinso(—t )%dydx

< llello f(y) = f@)]”

T Op+n Jrespn |y — x|fPtn

dz d - C[f]wep'

Using (1.1.18) and arguing similarly, we get also

<O H[Diplloo

9p+n [f]W9p7

/ 1007 Dy 10 L <
0 t

with Ci = [on | Di(y)|dy, while [|by|[zr < [|fllzellellr = [1f]|ze-
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Therefore, t=K(t, f, LP, W'P) < t=9)as||r + t"70||bsll 1o € L2(0,1),
with norm estimated by C||f||y6.», and the second part of the statement
follows. m

Note that the proof of (1.1.15) yields also
(L®(R™), Lip(R™))p.00 = (BUC(R™), BUCY(R™))g.00 = C?(R™).
We shall see later (§3.2) another method to prove (1.1.15) and (1.1.16).

Example 1.1.9 Let Q € R" be an open set with the following property: there
exists an extension operator E such that E € L(C(Q),C(R™)) N L(C%(Q),
C’(R™)) N L(C'(Q),CH(R™)), for some 6 € (0,1) (by extension operator we
mean that B f g = f(x), for all f € C(2)). Then

(C(Q),C' (@)oo = C°(A).
Proof — Theorem 1.1.6 implies that
E € L((C(%),C'(9))g.00, (C(R™), C(R™))g,00)-

We know already that (C(R"),C'(R"))g,e0c = C?(R"). So, for every f €
(C(),CH(M)o,0r Ef € C’(R") and ||Ef||09 rmy < C”f||(c(ﬁ),cl(§))9,OO
Since f = Eflﬂ’ then f € 00( ) and Hf||09 < C||f|| C@),C @))o00”

Conversely, if f € C?(Q) then Ef € CG(R”) = (C(R"),CH(R"))g.0
The retraction operator Rg = g belongs obviously to L(C(R™),C(2)) N
L(CYR"™),C1(2)). Again by theorem 1.1.6, f = R(Ef) € (C(R),C1(9))g.0
with norm not exceeding C||Ef||co(mn) < C'||f||09(5). [ ]

Such a good extension operator exists if {2 is an open set with uniformly
C' boundary. 5 is said to be uniformly C' if there are N € N and a (at
most) countable set of balls By, whose interior parts cover 02, such that the
intersection of more than N of these balls is empty, and diffeomorphisms
k : Br — B(0,1) C R™ such that ox(Bx N Q) = {y € B(0,1) : y, > 0},
and ||gk|lcr + |lgg tller are bounded by a constant independent of k. (In
particular, each bounded Q with C' boundary has uniformly C' boundary).
It is sufficient to construct £ when 2 = R’}. The construction of E for
any open set with uniformly C' boundary will follow by the usual method
of local straightening the boundary.
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If Q =R} = {z = (¢/,2,) € R" : z, > 0} we may use the reflection
method: we set

f(x)a In Z 0,

Ef(z) =
Cl41.]c'(:v/7 _-Tn) + Ozgf(.’lf’, _2:1771)7 Tn < 07

where a1, as satisfy the continuity condition o + as = 1 and the differen-
tiability condition —a1 — 29 = 1, that is a3 = 3, ag = —2.

Then E € L(C(RT), C(R")) N L(C*(RT), C* (")) N L(C' (T, C' (R")),
for every 0 € (0,1).

Let now (€2, 1) be a o-finite measure space. To define the Lorentz spaces

LP4(§2) we introduce the rearrangements as follows. For every measurable
f:Q—=Ror f:Q+— Cset

m(o, f) = p{z € Q:|f(z)[ >0}, 020,

and
f*(@t) =inf{o: m(o, f) <t}, t>0.

f* is obviously nonnegative, decreasing (i.e. nonincreasing), and f*, |f| are
equi-measurable, that is

{t>0: /() > o}l = p{z € Q:|f(z)| > o},

and consequently |[{t > 0: f*(t) € [01,02]} = u{z € Q : |f(x)| € [01,02]},
etc. Therefore, for each p > 1,

L 15@Ptdn) = [ @)Pdss sup ess 1£)] = £7(0) = sup ess ().
(1.1.19)
and for each measurable set E C €2,

wE)
[ @t = [ 0t
E 0

f* is called the nonincreasing rearrangement of f onto (0, 00).
The Lorentz spaces LP4(2) (1 <p < oo, 1 < g < o0) are defined by

@) = {1 € @)+ 1@ s = °°<t”ﬂf*(t>>q%)” "),
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for ¢ < 00, and

LP(Q) = {f € LN(Q) + L¥(Q) : || fllzn = stugtl/”f*(t) < oo}
>

(For p = oo we set as usual 1/0c = 0).

Note that in general || - ||z».« is not a norm but only a quasi-norm, i.e.
the triangle inequality is replaced by ||f + g|| < C(||f|| + llgll). Moreover,
due to (1.1.19),

LPP(Q) =LP(Q), 1<p< 0.

Example 1.1.10 Let (2, 1) be a o-finite measure space. Then (L' (), L>°())
18 an interpolation couple. For 0 < 0 <1, 1 < q < 0o we have

(LY(Q), Lo ()9, = LT79(R). (1.1.20)

Proof — Let V be the space of all measurable, a.e. finitely valued (real or
complex) functions defined in Q. V is a linear topological Hausdorff space
under convergence in measure on each measurable E¥' C ) with finite measure
w(E). Both L'(2) and L>®(2) are continuously embedded in V. Therefore
(L'(R),L%°(R)) is an interpolation couple.

The proof of (1.1.20) is based on the equality

K(t, f,LN(Q), L®(Q)) :/Otf*(s)ds, t>0. (1.1.21)

Once (1.1.21) is established, (1.1.20) follows easily. Indeed, since f* is de-
creasing then K(t, f) > tf*(t), so that for ¢ < oo

0K (G = 2t K ()14 > [3oe0ara e (t)rdk

- ”f”%l/(l—e),q(g)v

and similarly, for ¢ = oo
sup ([t K (t, )l > sup [t~ £*(#)|[ oo = || Fll 170-0000 (-
>0 >0

The opposite inequality follows from the Hardy-Young inequality (A.3.1)

(i) for ¢ < oc:
[0 K (¢, £)IIo —/0 ¢ q</0 s (s) s) t

1 < —0 * ds
< SO O = I r-aragey
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and from the obvious inequality

_ g [t ds 0 ox 1
£ Kt e <670 [ SZ50 08 (6) e = G om0y

for ¢ = 0.
Let us prove (1.1.21). To prove <, for every f € L'(Q) + L*()) and
x € () we set

if | f(z)| > f*(t),
=0 otherwise,

b(z) = f(z) — a(z).

The function a is defined in such a way that |a(z)| = |f(z)|— f*(¢) if | f(z)| >
[*(t), la(z)| = 0if | f(z)| < f*(¢). Then

lall = [ (@] = £ (@)nldo),

where £ = {z € Q : |f(z)| > f*(t)} has measure < ¢ (because |f| and f*
are equi-measurable), and f* is constant in [u(E),t]. Therefore,

(E)
foller = [ (76 = 7ends < [ (77 - ().

Moreover,
= |f(z)] if [f(z)] < [*(1),
|b()]|
= (@) if [f(2)] > f(0),
so that ;
)l <10 = [ £@ds, wen
Therefore,

t
K(t, f, L' L®) < |lall 11 + t]|b] £ S/O f*(s)ds.

To prove the opposite inequality we use the fact that for every decom-
position f = a + b we have (see exercise 7, §1.1.2)

f*(s) <a*((1 —¢)s) +b*(es), s>0,0<e<1.
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Then, if a € L'(Q), b € L>®(R), and a + b = f we have
t t t
/ F*(s)ds < / (1 = &)s)ds + / b (es)ds
0 0 0

1
<
—1—¢

/Oooa*(r)d7'+tb*(0) < 1%6/Q \a(z)|j(dz) + ¢ sup ess |b(z)].

Letting ¢ — 0 we get

t
| 7 (s)ds < llalgs + bl

so that :
K(t, f, LY(Q), L®(9)) < / £ (s)ds,

and the statement follows. H

1.1.2 Exercises

1) Prove that for every x € X +Y, t — K(t,z) is concave (and hence
continuous) in (0, 00).

2) Prove that if X N Y = {0} then (X,Y)y, = {0} for each 6 € (0,1),
p € [1,00].

3) Take # = 0 in definition 1.1.1 and show that (X,Y )y, = (X,Y ) = {0},
for all p € [1,00). Show that X C (X,Y )¢ cc-

Take 6 = 1 in definition 1.1.1 and show that (X,Y);, = (X,Y); = {0},
for all p € [1,00). Show that ¥ C (X,Y) oc.

4) Following the method of example 1.1.8 show that (C(R"), C}(R")); 00 =
Lip(R"™), and that for 1 < p < oo, (LP(R?), WHP(R?))1 o = WLP(R").

5) Show that for 0 < § < 1, C*(R") is not dense in C’(R™). Show that
(C(R™),CY(R™))g is the space of the “little Holder continuous” functions
h?(R™), consisting of those bounded functions f such that

lim sup [flz+h) = fz)]

=0.
h—0 zcrn |h|0

6) Following the method of example 1.1.8 show that

(LP(R"), WP (R"))g,q = By 4(R"),
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defined by Bg,q(]R”) ={f € LP(R"): [f]qu < oo}, where

ey, = ([ ([ /@) - @+ ypas) q/pwﬁdh)”q,

and [[fll gy = 1fllze + [f1ns.

7) Let © be an open set in R" such that there exists an extension operator
E € L(LP(Q), L (R")) N LW (Q), WoP(R™)) N L(W P (Q), WP (R™)), for
some p € [1,00) and 0 € (0,1). Show that

(LP(92), WP (Q))g,, = WP (92).

Show that if Q has uniformly C' boundary such extension operator E does
exist (see the remarks after example 1.1.9).

The space W%P(Q) is usually defined as the set of the functions f € LP(Q)
such that

oo = ([ dedy)w < oo

|z — y|frtn
8) Let (2, 1) be any measure space. Prove that for each a, b € L'(Q) +
L (€2) we have
(a+0b)*(s) <a*((1+¢)s) +b"(es), s>0,0<e<1.
(This is used in example 1.1.10). Hint: show preliminarly that

m(og + o1,a +b) < m(og,a) + m(o1,b), o9, o1 > 0.

1.2 The trace method

In this section we describe another construction of the real interpolation
spaces, which will be useful for proving other properties, and will let us see
the connection between interpolation theory and trace theory.

We shall use LP and Sobolev spaces of functions with values in Banach
spaces, whose definitions and elementary properties are in Appendix A.

Definition 1.2.1 For 0 <0 <1 and 1 < p < oo define V(p,0,Y,X) as the
set of all functions u : Ry — X +Y such that u € W'P(a,b; X +Y) for
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every 0 < a < b < oo, and
t > ug(t) = tPu(t) € L2(0, +00;Y),
t > vg(t) = t9u(t) € L2(0,4+00; X),

with norm

||U||V(p,0,Y,X) = ||ug| LP(0,400;Y) T l|ve| LP(0,4-00;X)"

Moreover, for p = +oo define a subspace of V(00,0,Y, X), by

‘/0(00797Y7X) = {u € V(OO,H,Y,X) : }/1_{% ”teu(t)”X = %1_{% ”teul(t)”Y = 0}

It is not difficult to see that V(p,0,Y, X) is a Banach space endowed
with the norm || - |ly(.9,v,x), and that Vp(00,0,Y, X) is a closed subspace
of V(00,0,Y,X). Moreover any function belonging to V(p,,Y, X) has a
X-valued continuous extension at ¢ = 0. Indeed, for 0 < s < ¢ from the
equality u(t) — u(s) = [Lu/(0)do it follows, for 1 < p < oo,

t do\Y? /7 1t ) 1/p
lu(t) — u(s)llx < (/ ||06_1/pu'(0)||§(70) ( / a—w—l/mpda>

< ullv o,y (1= )] V/7 (00 — A=)/

with p’ = p/(p — 1). Arguing similarly, one sees that also if p =1 or p = oo,
then w is uniformly continuous near ¢t = 0.

With the aid of corollary A.3.1 we are able to characterize the real in-
terpolation spaces as trace spaces.

Proposition 1.2.2 For (6,p) € (0,1) x [1,+00], (X,Y)q,, is the set of the
traces at t = 0 of the functions in V(p,1 —6,Y, X), and the norm

||$||£; = inf{[jullyp1-0,y,x) : z=u(0), u € V(p,1-0,Y,X)}

is an equivalent norm in (X,Y)q . Moreover, for 0 < <1, (X,Y )y is the
set of the traces at t = 0 of the functions in Vy(oo,1 —0,Y, X).
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Proof — Let z € (X,Y)p,. We need to define a function v € V(p,1 —
0,Y, X) such that u(0) = =.

For every ¢ > 0 there are a; € X, by € Y such that |ja;||x + t]|bt]ly <
K(t,z). It holds t'~9||b;|ly < t K (t,z), and the function t — t ?K(t, )
is in LL(0,+00). Moreover, we already know (see the proof of proposition
1.1.3) that lim; ,ob; = z in X + Y. So, the function ¢ — b; looks a good
candidate to u But in general it is not measurable with values in Y, and
it is not in Wl P(0,00) with values in X. So we have to modify it, and we
proceed as follows.

For every n € N let a,, € X, b, € Y be such that a,, + b, = x, and

1
lanllx + —lbnlly < 2K(1/n, ).

For t > 0 set

o o
u(t) = ) bnyix T — ant1)X
D P e

1
n+i’'n +i'n

1®);

where y, is the characteristic function of the interval I, and

Since (X, Y ), is contained in (X, Y ) oo, then t~?K (t, z) is bounded, so that
limy_,o K(t,2) = 0. Therefore, lim,_, ||an||x = 0, so that ||z — b,||x+y <
lanl|x — 0 as n — oo, and z = limyou(t) = limy_oov(t) in X + Y.
Moreover,

TL

2n+ DK ((1/(n+1),2) <47 K(t,z),

:I>—'

]
(1.2.1)
so that t — t'%u(t) € L2(0,4+00;Y). By Corollary A.3.1, t — t'~%v(¢)
belongs to L% (0, +00;Y), and

-0 -1
”tl VIIL? (0,4-00;Y) <40 ”xHH,P‘

On the other hand,
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so that v is differentiable almost everywhere with values in X, and

o0 = [ als)ds = 1o(0)

where g(t) = > 02, X(_lr,L] (t)ap41 is such that

o0
lg@®lx <D x, | 1 (O2K(1/(n+1),z) < 2K(t,x).
n=1 (m’n]
It follows that

£ O <77 sup llg(s)]| + £ g(0)]| < 44K (tz). (122
S

Then t — t' =% () belongs to L(0,4+o00; X), and

||t1—0

vl| L2(0,+00;X) < 4”‘77”9,17‘

Therefore, z is the trace at t = 0 of a function v € V(p,1 —6,Y, X), and
213, < 2(2 4 1/6)[|z|g.-

If z € (X,Y)y, then, by (1.2.1), lim_,o t'~?||u(t)|ly = 0, so that lim;_,g
B0lo(t) |y = 0. By (1.2.2), limy ot~ g(t)[lx = 0, 0 limy o 1=/ ()||x
= 0. Then v € Vj(o0,1 — 0,7, X).

Conversely, let z be the trace at ¢ = 0 of a function u € V(p,1—-0,Y, X).
Then

t
2=z —u(t) + u(t) = —/0 o (s)ds + u(t) Yt >0,

so that Lt
t K (t,x) <70 HZ/ u'(s)ds
0

+ 10w ||y (1.2.3)
X

Corollary A.3.1 implies now that ¢ — ¢t 9K (¢, 2) belongs to L(0,400), so
that z € (X,Y)p,, and

L,
00 =75 zlg,p-

[

If z is the trace of a function u € Vy(oco,1 — 0,Y, X), we may assume
without loss of generality that u vanishes for ¢ large. Then, by (1.2.3),
lim;_,ot K (t,2) = limy_,oo t °K(t,2) = 0, so that z € (X,Y ). W
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Example 1.2.3 Choosing X = LP(R"), Y = WYP(R?),and 0 = 1—1/p, 1 <

p < oo, we get the following well known characterization of W'~/ (R"):
W1-1/PP(R") is the space of the traces at (z,0) of the functions (z,t) —

v(z,t) € WHP(R'). Indeed, we already know that W'—1/PP(R?) = (LP(R™),
Wl’p(]R"))l_l/m,, thanks to to example 1.1.8. By proposition 1.2.2, W1=1/p»

(R™) is the space of the traces at ¢ = 0 of the functions v € V(1/p, p, WLP(R™), LP(R"™)).
But v € V(1/p,p, W'P(R"), LP(R")) if and only if the function v(z,t)

= o(t)(x) is in WHP(R?T!): the condition ¢ — t'/Pu(t) € LE((0,+o00),
WLP(R™)) means that

—+00 n
/ / <|’U({E, t)|p + Z |/Ua:,» («'137 t)|p> dz dt < 0,
0 R i=1

and the condition ¢ — t'/Pv/(t) € L2((0, +00), L?(R™)) means that

“+o0o
/ / (g (1, £)|Pdez dt < oo.
0 R™

In particular, choosing p = 2 we get that H'/ 2(R™) is the space of the
traces at (z,0) of the functions (z,t) = v(z,t) € HY(RT).

This example shows an important connection between interpolation the-
ory and trace theory.

Remark 1.2.4 (important) By Proposition 1.2.2, if z € (X,Y )y, or z €
(X,Y)y, then z is the trace at ¢ = 0 of a function u belonging to LP(a,b; Y')N
WP (a,b; X) for 0 < a < b. But it is possible to find a more regular function
veVp,1-0Y X) (or v e Vy(oo,1 —6,Y,X)) such that v(0) = z. For
instance we may take

v(t) = l/Otfu,(s)ds, t>0.

t
Then v € W' (a,b;Y) N W?P(a,b; X) for 0 < a < b, v(0) = =z, and
moreover ¢ — t' 7% (t) belongs to LL(0,+o00;Y), t — %/ () belongs to
L2(0,400;Y), and t — t' =%/ (t) belongs to L¥(0,4+00; X), with norms esti-
mated by const. [[ully,1-9,y,x)-
Even better, choose any smooth nonnegative function ¢ : Ry — R, with
compact support and [;° s p(s7)ds = 1, and set

o0 = [T o(2)un T = [Toten(3) S
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Then v € C*(Ry; X NY), v(0) =z, and
t = "0 (¢) € L2(0,400; X), n €N,
t > "0 (1) € L2(0, +00;Y), n € NU{0},

with norms estimated by c(n)|ullv(p,1-0,y,x). If in addition p = oc and
z € (X,Y)y then

limy o " ?[o™ ()| x =0, n €N,

limg_yo "0 o™ (1) |}y =0, n € NU {0},

By means of the trace method it is easy to prove some important density
properties.

Proposition 1.2.5 Let 0 < 0 < 1. For 1 < p < oo, X NY 1is dense in
(X,Y)gp. Forp=o0, (X,Y)g is the closure of X NY in (X,Y )y 0.

Proof — Let p < oo, and let z € (X,Y)p,. By Remark 1.2.4, 2 = v(0),
where v € C®((0,00); X NY) NV (p,1 —6,Y, X), and moreover ¢ +— t>~ %4/
€ LL(0,400;Y). Set

z. = v(e), Ve >0.

Then z. € X NY, and we shall show that z. — 2 in (X,Y ).
We have z. — z = 2.(0), where

z(t) = (v(e) = v(#))x10,6 (%)-

It is not hard to check that z. € W'P(a,b; X) for 0 < a < b < oo, and that
ze(t) = —v'(t)x .., (t). It follows that

lim ||£1702L(¢)|

e—0

L2(0,400;x) = 0-

Moreover, due to the equality

)= | T o (81 (s)ds,
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we get, using the Hardy-Young inequality (A.3.1)(ii),

+oo B +o00 ds pdt 1/p
1602 Ozzoemy < ([ 877 ([ X @5l @I S) T

1 ds

_— e (2—0)py,,! 1/p
< 1= < o X0, (8)8 llv (3)||Y?> ,

so that ¢+ t'702,(t) € LX(0, +00;Y) for every ¢, and
. 1-6
gl_I)I(l) Ht za(t)HLf(O,—i-oo;Y) =0.

Therefore, zz. — 0 in V(p,1 — 0,Y, X) as ¢ — 0, which means that ||z —
x||£p — 0 as ¢ = 0. From Proposition 1.2.2 we get lim._,q ||z — z||g,, = 0.

Let now z € (X,Y)y. Due again to remark 1.2.4, z is the trace at
t = 0 of a function v € Vy(oco,1 — 6,Y, X), such that ¢ — t>=0/(t) €
L>®(0,400;Y) and limy_,o t*~%||v/(t)|y = 0. Let z., z. be defined as above.
Then lim;_ot'7%||v' ()| x = 0, so that

supt'~|ZL(1)|x = sup 'O’ (8)]x = 0, ase =0,
t>0 0<t<e

and

supt' ||z (1) |y = sup #'’[v(e) —v(B)lly <2 sup s |jo(s)lly =0,
t>0 0<t<e 0<s<

as ¢ = 0. Arguing as before, it follows that ||z, — z|[p0c - 0ase —0. R

1.2.1 Exercises

1) Prove the statements of remark 1.2.4.

2) Prove that (X,Y)g, is the set of the elements z € X 4+ Y such that
z = u(t) + v(t) for almost all ¢ > 0, with ¢ — ¢ %u(t) € LL(0,00; X),
t > t17%(t) € L£(0,00;Y), and the norm

x+—  inf : 180w (t)|

r=u(t)+v(t L2(0,00;X) + ”tl_ev(t)l

LY (0,00;Y)

is equivalent to the norm of (X,Y)q .
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3) Prove that (X,Y )y, is the set of the elements z € X +Y such that z =
Jo2 u(t)dt/t, with t — t~%u(t) € LE(0,00; X), t = t'7u(t) € LE(0,00;Y),
and the norm

e dnf (a2 ,00x) + 10 @) 12 0,00v)
a= [ u(t)dt/t

is equivalent to the norm of (X,Y ).
Hint: use remark 1.2.4 to write any z € (X,Y )y, as z = — [;° v(t)dt, as
in the proof of next proposition 1.3.2.

4) Let Q C R" be a bounded open set with C! boundary. Prove that
W1=1/Pr(90) is the space of the traces on 99 of the functions in W1hP(Q).

1.3 Intermediate spaces and reiteration

Let us introduce two classes of intermediate spaces for the interpolation
couple (X,Y).

Definition 1.8.1 Let 0 < 8 < 1, and let E be a Banach space such that
XNYCECX+Y.

(i) E is said to belong to the class Jy between X and Y if there is a
constant ¢ such that

lzlle < c|lz| % ?lz)l$, YzeXNY.

In this case we write E € Jg(X,Y).

(i) E is said to belong to the class Ky between X and Y if there is k > 0
such that
K(t,z) < kt||z||g, Yz e E, t>0.

In this case we write E € Kyg(X,Y).
If 6 € (0,1) this means that E is continuously embedded in (X,Y )y oo.

A useful characterization of Jy(X,Y') is the following one.

Proposition 1.3.2 Let 0 < 0 < 1, and let E be a Banach space such that
XNY CECX+4Y. The following statements are equivalent:
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(i) E belongs to the class Jy between X and Y,

(ii) (X,Y)p1 C E.
Proof — The implication (ii) = (i) is a straightforward consequence of
Corollary 1.1.7, with p = 1. Let us show that (i) = (ii). For every z €

(X,Y)gq1, let uw € V(1,1 —6,Y,X) be such that u(t) vanishes for large t,
u(0) = z, and set

By remark 1.2.4, t — t>~%/(t) belongs to LL(0,+00;Y), and ¢ — =%/ (¢)
belongs to LL(0,+o00; X). Moreover v(0) = x, v(+oc) = 0, so that

400
T = —/ o' (t)dt.
0
Let ¢ be such that |jy||z < ¢llyl|%||lyll%? for every y € X N'Y. Then
0 —0 - —0 0 —0 —0
' @)z < cllv' O I @1 = et = @5 1" @Ol

Since ¢+ [[27%/(#)[|§ belongs to LY/*(0,+00) and ¢ = [[t!=04/ ()]} be-
longs to L/a=9 (0, +00), by the Hélder inequality v' € L'(0, +o0; E), and

) 0/11,1-0 )
Izllp < e[t ’Ul(t)HLi(o,oo;Y)) (It ’U’(t)|L1(0,oo;X))1 < const. [|z[lg1- W

By Definition 1.3.1 and Proposition 1.2.5, if 0 < 8 < 1 a space E belongs
to Kp(X,Y) N Jy(X,Y) if and only if

(X,Y)p1 CEC(X,Y)pc0

In particular, (X,Y )y, and (X,Y )y are in Ko(X,Y) N Jy(X,Y), for every
p € [1,00]. We shall see in chapter 2 that also the complex interpolation
spaces [X,Y ]y are in Ko(X,Y) N Jy(X,Y).

But there are also intermediate spaces belonging to Ky(X,Y) N Jy(X,Y)
which are not interpolation spaces.

Example 1.3.3 C'(R") € J;5(C(R"), C*(R")) N K, ;5(C(R™), C*(R")). But
CY(R™) is not an interpolation space between C(R™) and C?(R™).
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Proof — From the inequalities (i = 1,...,n)

1
|f(z + hei) — f(z) = Dif(x)h] < §||Dz¢f||ooh2, Vz €R", h >0,

we get
he;) — 1
Dif(a)] < L2 E ‘Z) f@l SIDiif loch, Vo € R, h >0,
so that 2/ .
1Diflle < 1% 4 S Difllochs Vo> 0.

Taking the minimum on h over (0, +00) we get

1Dif oo < 2011 flloo) (I Dsif o)/, Vf € C*(R")

so that

I£en < (171o0)2 (15172 + 2 Ss (D)2

< Ol flls) 7 (1f le2) 2.

This implies that C'(R") belongs to Jl/Q(C(R"),CQ(]R”)). To prove that
it belongs also to K 5(C(R"), C?(R™)), namely that it is continuously em-
bedded in (C(]R”),CQ(]R"))UQ,OO, we argue as in example 1.1.8: for every
f € CH(R™) the functions a;, b; defined in (1.1.17) are easily seen to satisfy

latlloo < CtlfLip, Nbellcr < Clifller, 1Dijbilloc < O [fLip.

Therefore, K (t, f, C(R™), C*(R™)) < |lajszlloo + tl[bjs2]lcz < CtV2||fllen so
that C'(R") is in K5 (C(R™), C*(R")).

But C'(R") is not an interpolation space between C(R") and C?(R"),
even for n = 1. Indeed, consider the family of operators

1

5@ = [ L (fy) = f(0)) dy, € R

1 w2 y? +e?
It is easy to see that ||7%||;(cw)) and ||T:||(c2(r)) are bounded by a constant
independent of €. Indeed, for every continuous and bounded f,

wnwi<e [
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1 —.’B2 2 2
T)'@) = || a it e ()~ F0)dy,

and for every f € C'(R),

(T-f)"(z) Z/_l —233(;_21;?8; 3¢%) / f'(s)ds dy

_/ —2z(—2? + 3y? + 3£?)

Y / !
S [ - rovasay

so that, if f € C%(R),
@@l <ol [

On the contrary, choosing f.(z) = (z2 + €2)'/2n(x), with € C°(R), n = 1
in [—1,1], we get

(1)) = [

_1 y2 +€2

z? +3y + 3¢2

d n < 3 n

S

~1/e s2+1

so that lim,_,o(7%f.) (0) = 400, while the C' norm of f. is bounded by a
constant independent of e. Therefore ||T.||(c1(r)) blows up as e — 0. So,
C'(R) cannot be an interpolation space between C(R) and C?(R).

This counterexample is due to Mitjagin and Semenov, it shows also that
C*([~1,1]) is not an interpolation space between C([—1,1]) and C?([—1,1]),
and it may be obviously adapted to show that for any dimension n, C''(R"?)
is not an interpolation space between C(R") and C?*(R"). m

Remark 1.3.4 Arguing similarly one sees that CF(R") belongs to
Jl/Q(Ck_l(]R"),Ck“(]R")) N Kl/g(Ck_l(]R"),CkH(]R{")), for every k € N.
It follows easily that for m; < k < my € N, C¥(R") belongs to the class
Jk=m1)/(ma—my) (C™(R"),C™2(R"™)). For instance, knowing that CH(R™)
belongs to J; ;2 (C(R"), C?(R™)) and C?(R") belongs to Jij2(CHR™), C3(R"))
one gets, for every f € C3(R"),

Ifller < CIFIELIFNE < CUTILE AN N g

so that [|f[I24" < C'|| £11%57 1 £]l¢fs', which implies

fller < CIFIZ2I 1L
that is, C'(R™) belongs to J; ;5(C(R™), C*(R")).
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Now we are able to state the Reiteration Theorem. It is one of the main
tools of general interpolation theory.

Theorem 1.3.5 Let 0 < 6y < 6 < 1. Fiz 6 € (0,1) and set w = (1—06)0y+
001. The following statements hold true.

(i) If E; belong to the class Ky, (1 =0,1) between X and Y, then
(Eo, Er)op C (X, Y )wp, Vp € [1,00], (Eo, Er)p C (X,Y ).

(i1) If E; belong to the class Jy, (i =0,1) between X and Y, then
(X7Y)w,p - (E07E1)9,p7 Vp € []-700]7 (X7Y)w C (EOaEl)G'

Consequently, if E; belong to Ko, (X,Y) N Jp,(X,Y), then
(E07E1)0,p = (XvY)w,pv Vp € [1700]7 (E07E1)0 = (X,Y)w,
with equivalence of the respective norms.

Proof — Let us prove statement (i). Let k; be such that K (¢, z) < k;t%|z| g,
for every x € E;, i = 0,1. For each = € (Ey, E1)gyp, let a € Eg, b € E; be
such that £ =a + 0. Then

K(t,z,X,Y) < K(t,a,X,Y)+ K(t,b,X,Y) < kot”||a| g, + k1t (|b]| 2,
Since a and b are arbitrary, it follows that
K(t,z,X,Y) < max{ko, ks #P° K (t9*% 2, Ey, E,).
Consequently,
YK (2, X, Y) < max{ko, k0O 0 K0 % 4 By By, (1.3.1)

By the change of variable s = t17% we see that t — t YK (t, z, X,Y") belongs
to LE(0, +00), which means that z belongs to (X,Y), p, and

12l (x,v),,, < max{ko, k1 }(01 — 00) " /Pl (50,51, ifP <00,
12/l (XY )0 0o < max{ko, k1 t|zll(m,,51),,, ifp= o0
If x € (Ey, E1)g, by (1.3.1) we get

e < " _
%g%t K(t,x,X,Y)_max{ko,kl};l_r)r(l)s K(s,z,Ey, Ey) =0,
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and

lim ¢ “K(t,x,X,Y) < max{ko, k1 } Jim s'K(s,z,Ey, E1) =0,

t—+o00

so that z € (X,Y),.

Let us prove statement (ii). By proposition 1.2.2 and remark 1.2.4, every
z € (X,Y )y, is the trace at ¢ = 0 of a regular function v : Ry = X NY
such that v(+o00) = 0, t = t179¢'(t) belongs to LL(0,4+o00, X), t +— 270/ ()
belongs to L%(0,+00,Y), and

- - T
||t1 w“’(t)HLf(o,Jroo,X) + ||t2 wvl(t” L2(0,400,Y) < ka”()?,Y)w,pa

with k£ independent of  and v. We shall show that the function
g(t) = ot/ =), £ >0,

belongs to V(p,1—6, Ey, Ey): since g(0) = x, this will imply, through propo-
sition 1.2.2, that = € (Eo, E1)gp.
To this aim we preliminarly estimate |[v'(¢)||g,, i = 0,1. Let ¢; be such
that
Iylle, < cllyly "yl YyeY, i=o0,1.

Then

C; _ —0; _ 0, .
' ()15 < s 8" 0" I " 15"~ v ()l i=0, 1,

so that from the equalities
00+1—w:1—9(91—90), 91+1—w:1+(1—9)(91—00),
we get

(3) ls' 000/ (s))|

T
12(0,+0050) < ok Izl v, 0

(1.3.2)
(i) [|s" =000 (5)]| 12 0,1 0050y < €Ok 121K vy, -
From the equality v(f) = — [ v'(s)ds and 1.3.2(ii), using the Hardy-

Young inequality (A.3.1)(ii) if p < oo, we get

C()k Tr
. < .
Lf(O,-I—OO,El) = (1 N 9)(01 _ 00) ||$”(X,Y)w,p

||t(1_‘9)(91_9°)v(t)|
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It follows that ¢ — t'~%g(t) € LX(0, +00; E1), and
1£' =g ()|

Moreover ¢ (t) = (6 — )~ 1t~ 1H1/(O1=00)y! (£1/(61=00)) "s0 that, by (1.3.2)(i),
t 1700/ () = (61 — 0) 1100 =00))/(01=b0)yy(41/(B1=b0)) € [R(0, +00; Ey),
and

1t =04’ (1))

Therefore, g € V(p,1 — 0, Ey, E), so that z = g(0) belongs to (Eo, E1)s,p,
and

_1/p||t(1_‘9)(01_00)v(t)

L2(0,400;51) < (01— bo) 122 (0,4-005221)-

12(0+00i) < (01— 00) 71T 0000 (1)

L£(0,+007E0) :

||$||{EO,E1)9’p < (61— 90)_1_1/pk||$||zx,y)w,p-

If x € (X,Y)w, then (1.3.2)(i) has to be replaced by
c o 1=0(01—60) |,/ _
?_I)%S [ ()l o = 0,

so that

$—0+1/(61—60)
im¢'Y|g’ —lim 1! (£ (01—00) _
it g Wllmy = Jim —5—p—[lv'(¢ )&, = 0.
Similarly, (1.3.2)(ii) has to be replaced by

lim s'F(=001=00) 1/ (5)|| g, = 0.

Using the equality

£1/(61—60) 10 +oo
0 (t) = tl_a/ v'(s)ds + = <€1_0/ v'(s)ds) ,
£

t1/(81—6¢) 1/(61—60)

which holds for 0 < ¢ < &, one deduces that lim;_,ot'~?||g(¢)||z, =0. W

Remark 1.3.6 By proposition 1.2.3, (X,Y)p, and (X,Y)y belong to
Ko(X,Y) N Jp(X,Y) for 0 < # < 1 and 1 < p < oco. The Reiteration
Theorem yields

((Xay)ﬂo,tm’ (X7Y)917q1)0710 = (X7Y)(1—0)00+091,p’
((Xv Y)@ou (X7 Y)91,q)9,p = (X7 Y)(1—0)00+0¢91,p7

(X, Y) 9,95 (X5 Y )0, )0p = (X, Y) (1-6)99+061 >
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for 0 < 0p,0; < 1, 1 < p, g < oo. Moreover, since X belongs to Ko(X,Y) N
Jo(X,Y), and Y belongs to K1(X,Y) N Ji(X,Y) between X and Y, then

(X;Y)00,0:Y)op = (X, Y)(120)09040.00 (X5 Y )09, Y)o = (X,Y) (1-0)00+05
and
(X7 (X’ Y)91,q)(9,p = (XaY)Gla,}n (Xu (X7 Y)t91)0 = (X7Y)0107
for 0 < 0y,0; < 1,1 <p, ¢ < 0.

1.3.1 Examples

The following examples are immediate consequences of examples 1.1.8, 1.1.10,
1.1.9 and remark 1.3.6.

Example 1.3.7 Let 0< 01 < 05,<1,0<0<1. Then
(O (R"), C% (B") g0 = OO0 (g1,
If Q is an open set in R™ with uniformly C* boundary, then
(001 (ﬁ)v 002 (ﬁ))e,oo = 0(1_0)61+962 (ﬁ)
Example 1.3.8 Let 0< 0,1 <6, <1,0<60<1,1<p<o0. Then
(Walap(Rn)7 W62”’(Rn))9p — W(1—9)91+002,p(]Rn)_

If Q is an open set in R™ with uniformly C* boundary, then

(WO P(2), WP (§2))g 0 = W00 (),

Example 1.3.9 Let (2, 1) be a o-finite measure space. For 1 < pg, p1, ¢ <
00, 0 < 8 <1, define p and q by
1 1-6 ¢ 1 1—-60 0
- + =, + —.
p Po b1 q 4q0 q1

Then
(LPo90 (), LP191(Q))g,4 = LPI().

Recalling that LPP(Q2) = LP(QY), and taking po = qo, p1 = q1, we get
1 1-6 0

_ = _|_ —

p Po m

(LP2(82), L1 (2))g,¢ = L79(€),
In particular,

(LP(9Q), L7 (Q))g.y = L¥(Q) = LI(Q) for 6 = <1 - %) <1 - ?f.
1
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Another generalization of example 1.1.8 is the following.
Example 1.3.10 For0<0<1,1<p,g<o0, méEN,
(LP(R™), W™P(B"))g,s = By (R").
Here B, ,(R") is the Besov space defined as follows: if s is not an integer,

let [s] and {s} be the integral and the fractional parts of s, respectively. Then
By ,(R") consists of the functions f € WP (R) such that

[flB;, =

= % Ihldﬁ (/1; D% (@ +h) = Daf(ﬂ&)l”d@‘) q/p) :

|ar|=[s]

is finite. In particular, for p = ¢ we have B} ,(R") = W*P(R").
If s = k € N, then BY (R") consists of the functions f € W*=1P(R")
such that

[f]Blﬁ,q - Z (/R" |hc|l:+q

lal=[s]-1

(A IDYf( + 2h) — 2D%f ( + h) + D“f(x)|1’dx> q/p> e

is finite. For m = 1 see exercise 5, §1.1.2. For the complete proof see [36,
§2.3, 2.4].

1.3.2 Applications. The theorems of Marcinkiewicz and Stam-
pacchia

Let (2,p), (A,v) be two o-finite measure spaces. Traditionally, a linear
operator T : L'(Q) + L>®(Q) — L'(A) + L*(A) is said to be of weak type
(p,q) if there is M > 0 such that

sup o(w{y € A:|Tf(y)] > oY < M| fllo(@);
g

for all f € LP(2). This is equivalent to say that the restriction of T' to LP(12)
is a bounded operator from LP(2) to L2°°(A). Indeed, by the properties of
the nonincreasing rearrangements,

supo(v{y € A :|g(y)| > o })"/? = supt"/9g*(t) = [lg| Lo (1.3.3)
>0 t>0
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T is said to be of strong type (p, q) if its restriction to LP(Q2) is a bounded
operator from LP(€2) to LI(A).

Since LY(A) = L?%(A) C L?*°(A), then any operator of strong type (p, q)
is also of weak type (p,q).

Theorem 1.3.11 Let T : L'(Q)+ L>(Q) — L'(A)+ L% (A) be of weak type
(po,qo) and (p1,q1), with constants My, My respectively, and

1§p07p1§00a ]-<qu qlSOOa

9 7# 1. Po < qo. p1 < 1.
For every 0 € (0,1) define p and q by

1 1—-6 0 1 1-6 0
= + —, + —.
b Do b1 q q0 q1

Then T is of strong type (p,q), and there is C independent of 0 such that
IT fllzacay < CMy " MY fll ooy, f € LP(Q).

Proof — Since both ¢y and ¢; are bigger than 1, then T is bounded
from LPi(Q2) to L%°°(A), with norm not exceeding CM;, i = 1,2. By
the interpolation theorem 1.1.6, T' is bounded from (LP°(2), LP*(2))g,, to
(L9°°(A), LI1*°(A))g,p, and
ITll(zo0 (@), (291 (@) L0 (4), L1 2 (A))g,) < CMg " MY,
On the other hand, we know from example 1.3.9 that

(LP(8), L7 (Q))gp = LPP(Q) = LP(Q),

P

and
L%®(A) = (L'(A), L®(A))1-1/g;00, = 1,2,

so that by the Reiteration Theorem
(L9 (A), L92°(A))g, = (L'(A), L%(A)) (1-0)(1-1/q0)+0(1—1 /g1 ) p

= (L' (A), L®(A))1-1/g,p-

The last space is nothing but L9P(A), again by example 1.1.10. Since py < qo
and p; < ¢ then p < g, so that L?P(A) C L99(A) = LI(A). It follows that
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T is bounded from LP(Q) to L4(A), with norm not exceeding C' M~ M?.
|

Theorem 1.3.11 is slightly less general than the complete Marcinkiewicz
Theorem, which holds also for gy or ¢; = 1.

Since every T of strong type (p,q) is also of weak type (p,q) we may
recover a part of the Riesz—Thorin Theorem from theorem 1.3.11: we get that
if T is of strong type (pi,q;), i = 0,1, with p;, ¢; subject to the restrictions
in theorem 1.3.11, then T is of strong type (p,q). The full Riesz—Thorin
Theorem will be proved in Chapter 2.

Let f be a locally integrable function. For each measurable subset A C )
with positive measure p(A) we define the mean value of f on A by

1
fa=p | f@n(do)

The space BMO(2) (BMO stands for bounded mean variation) consists of
those locally integrable functions f such that

sup [ 17(0) = falu(ds) < .

0<pu(A)<oo 1(A)
If 4(Q) < oo we see immediately that L>®(2) ¢ BMO(Q) C L'(9).
It is possible to show that if Q C R” is a Lipschitz bounded domain, then
BMO(S) is contained in each LP(Q2), 1 < p < oo, and that the norms

= ! var) . 1<
IIfIILp+[f]BMo,p—||f||Lp+Sgp<m [ 15~ 1 x) L 1<p<oo

are equivalent in BMO(2). This was proved by John and Nirenberg in
the well known paper [24] in the case where 2 is a cube. For such Q’s
we may extend the result of example 1.1.10 to the interpolation couple
(L' (), BMO(Q)).

Example 1.3.12 Let Q) be a bounded domain in R™ with Lipschitz continu-
ous boundary. Then for 0 < 6 <1, 1< q < o0,

(L'(Q), BMO(Q))g, = LT79(12).

As a consequence we get the main part of the Stampacchia interpolation
theorem.
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Theorem 1.3.13 Let € be a bounded domain in R™ with Lipschitz continu-
ous boundary, let 1 <r < oo and let T € L(L"(2)) N L(L>*(R2), BMO(Q)),
or else T € L(L"(2)) N L(BMO(Q2)). Then T € L(LP(Q)) for every
p € (r,0), and

1
1Tl 2zey < CITILGA T proy

in the first case,

1
1T zry < CUTI o 1T N s oy

in the second case.

Proof — In the first case, the interpolation theorem 1.1.6 implies that T €
L((L",L*®)g,p, (L",BMO)y,p) for every 6 € (0,1) and p € [1, 00|, and

1Tl 250V (17,810, < ITNE Lr)”THL L%, BMO)-*

By example 1.3.9, (L7 (), L®(2))g, = LT#7(Q). By example 1.3.12 and
reiteration, we still have

(L"(Q), BMO(Q))g,, = LT-77(Q).

Taking 6 = 1 —r/p (so that /(1 — ) = p) gives the first statement through
the equality LPP(2) = LP(2). The proof of the second statement is similar.
|

Campanato and Stampacchia ([15]) used the above interpolation theorem
to prove optimal regularity results for elliptic boundary value problems, as
follows.

Let

n

A= " Di(aij(x)D;)

ij=1

be an elliptic operator with L coefficients in a bounded open set 2 C R"
with regular boundary. If fj;, j = 0,...,n are in L?(f2), a weak solution of
the Dirichlet problem

Au=f inQ,

v =0 in 0N
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is any u € H}(Q) such that for every ¢ € C§°(Q) it holds

Jo 2o eut@n o Diptards = = [ foeholedda + |3 5@ Dyela)d

=1

It is not hard to see that the Dirichlet problem has a unique weak solution
u, and [lull g < C g |1 fyllge. See e, [1].
Moreover Campanato in [14, Thm. 16.1I] was able to prove the following;:

(i) if the coefficients a;; are in C*(12) for some « € (0,1) and the functions
fj are in BMO(S), then each derivative D;u belongs to BMO(2), and

| Diullrmoz < C 35— I fillBrmo,2;

(ii) if the coefficients a;; are in C'T%(Q) for some a € (0,1), fj = 0
and fo € BMO(Q), then u € H?(Q) satisfies the equation a.e., each
second order derivative D;ju belongs to BMO(2), and || D;jul| prro,2 <
CllfollBaro,2-

In case (i), applying theorem 1.3.13 with » = 2 to the operators Tj;,
i = 1,...,n, defined by T;(fo,...,fn) = Diu, u being the solution of the
Dirichlet problem, we get that if the f;’s are in LP(2), 2 < p < oo, then
each derivative D;u belongs to LP(Q), and || D;ullr < C 37— [ fjllLe-

In case (ii), applying again theorem 1.3.13 with r = 2 to the operators T;;,
i,j =1,...,n, defined by Tj; fo = Dju, we get that if fo € LP(Q2),2 < p < o0,
then each derivative D;ju belongs to LP($2), and || Djjul[r» < C|| follLe-

1.3.3 Exercises
1) Show that for 0 <0 < 1,0 # 1/2,
(C(R™), C*(R™))g,00 = C*(R").

Hint: prove that (C1(R"),C?(R"))ac0 = C'T¥(R") using example 1.1.8,
then use the Reiteration Theorem with E = C'(R").
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Complex interpolation

The complex interpolation method is due to Calderon [13]. It works in
complex interpolation couples. I may sound “artificial” compared to the
more “natural” real interpolation method of chapter 1, see next definitions
2.1.1 and 2.1.3. It is in fact an abstraction and a generalization of the method
used in the proof of the Riesz—Thorin interpolation theorem, which we show
below.

The theorem of Riesz—Thorin. Let (2, 1), (A,v) be o-finite measure
spaces. Let 1 < pg, p1, qo, ¢1 < oo and let T : LP°(QQ) + LP1(2) — LP(A) +
LB (A) be a linear operator such that

T € L(LP(Q), L9 (A)) N L(LP (), L% (A)).

Then

T € L(LP? (), L% (A)), 0<0 <1,
with

1 1-0 0 1 1-06 0

- = + _—, — = —|— —, (2.0.1)
Pe Po P1 Q4o q0 q1

and setting M; = ||T||L(L:D7;(Q)7Lq7_' (A))> 1=0,1, then

1Tl (zre (2),0 (A)) < M(}_OM{’.

In the case that some of the p;’s or the q;’s is oo the statement still holds if
we set as usual 1 /oo = 0.

Proof — We recall that the set of the simple functions (= finite linear com-
binations of characteristic functions of measurable sets with finite measure)
is dense in L"(A), for every r < oo.

41
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Let a : Q+— C, b: A — C be simple functions. For every z € S = {z =
x+iy € C: 0 <z <1}, define

,

o)) )it € 0, a(a) #0,
f(2)(x) =
L 0, ifz e, a(z) =0.
( 1(l=z | 2
b %M it e a, 1) 20
9(2)(z) =
Lo, if z € A, b(z) = 0.
Then for each z € S, f(z) € LP(Q) for every p, and g(z) € LI(A) for every

) €
g. In particular, f(z) € LP°(Q2) N LP1(Q) so that T f(z) € L9(A) N LT (A),

and the function
= [ T1(2)9(z) vido)

is well defined, holomorphic in the interior of S, continuous and bounded in
S. Moreover,

q/4;
|F(it)] < |Tf(it)]lLao a) IIQ(M)IIqu R HT”L(L?’O(Q),L’?O(A))”aH%?];O(Q)HbHLqéO(A)
F+it)] < ITFQ+it) o lo(+iDl

< ATl .0 a0l 8 oy 10 ||(z/qQ1(A)

By the three lines theorem (see exercise 2, §2.1.3) we get

[FO0)] = (supyeg | F(it) )~ (supyeg [F(1 + it) )~

JyTabv(dr)| <

IN

”THL (LPo(2),L9% (A ))HT”%(LM (Q)’L41(A))”a”LP9 ”b”ng

The norm ||T'a|| 4 (5) is the supremum of

1

o025 )

/ (Ta)(z)b(z) v(dx)
A

when b runs in the set of the simple functions on A. So we get

[Tall 2o (a) < ||T||L LPO(0) )qu(A))”TH%(LPl(Q),qu(A))Ha”LW(Q)a
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for every simple function a : 2 — C. Since the set of such a’s is dense in
LP9 () the statement follows. W

Taking in particular p; = ¢;, we get that if 7" is in L(LPO(Q2), LP°(A)) N
L(LP(2), LPL(A)) then T € L(L"(2),L"(A)) for every r € [pg, p1]-

The crucial part of the proof is the use of the three lines theorem for the
function F'. The explicit expression of F' is not important; what is important
is that F' is holomorphic in the interior of S, continuous and bounded in S,
that F(0) = a, and that the behavior of F' in iR and in 1 + iR is controlled.
Banach space valued functions of this type are precisely those used in the
construction of the complex interpolation spaces.

2.1 Definitions and properties

Throughout the section we shall use the maximum principle for holomorphic
functions with values in a complex Banach space X: if €2 is a bounded open
subset of C and f : Q@ — X is holomorphic in Q and continuous in Q, then
If(O]lx < max{]|f(2)|lx : z € 00}, for every ¢ € Q. This is well known if
X = C, and may be recovered for general X by the following argument. For
every ¢ € Q let 2/ € X' be such that ||f({)]lx = (f(¢),z') and ||2'||x = 1.
Applying the maximum principle to the complex function z — (f(z),z’) we
get

1A (Ollx = [(f(¢), &")] < max{|(f(2),2")| : 2 € 00}

< max{||f(2)||x : z € 00}.

The maximum principle holds also for functions defined in strips. Dealing
with complex interpolation, we shall consider the strip

S={z=z+iyeC: 0<z <1}

If f: S+~ X is holomorphic in the interior of S, continuous and bounded in
S, then for each ( € §

1/ (Ollx < max{sup |[f(@t)|lx, sup|lf(1 +at)]x}-
teR teR

See exercise 1, §2.1.3.

Let (X,Y) be an interpolation couple of complex Banach spaces.
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Definition 2.1.1 Let S be the strip {z=z+iy € C: 0 <z <1}. F(X,Y)
1s the space of all functions f : S+— X +Y such that

(i) f is holomorphic in the interior of the strip and continuous up to its
boundary;

(ii) t > f(it) € C(R; X), t > f(1 +it) € C(R;Y), and

£l 7(x ) = max{sup | f (@) [|x, sup [|f (1 +it) [y } < oo.
ter teR

Fo(X,Y) is the subspace of F(X,Y) consisting of the functions f : S +—
X +Y such that
lim [|f(it)[x =0, lim [[f(1+4t)ly =0.
[t]—o00 [t|—o00
It is not hard to see that F(X,Y) and Fy(X,Y) are Banach spaces. If
fn is a Cauchy sequence, the maximum principle gives, for all z € S,

| fn(2) = fm(2) || x4y
< max{supeg || fn(it) — fin(it) | x+v, Supyer | fu(1 +it) — fn (1 +it) | x+v }

< max{sup;cg || fn(it) = fm(it) [ x, supsep | fn(1 + 12) — fn (1 +it) ||y}

Therefore for every z € S there exists f(z) = limy 00 fn(2) in X + Y, and
it is easy to see that f € F(X,Y). Since t — f,(it) converges in C(R; X)
and ¢t — f,(1+it) converges in C(R;Y’), then f, converges to f in F(X,Y).
Moreover, since Fy(X,Y) is closed in F(X,Y), then Fy(X,Y) is a Banach
space too.

An important technical lemma about the space Fo(X,Y) is the following
one. Its intricate proof is due to Calderon [13, p. 132-133]. A very detailed
proof is in the book of Krein-Petunin—Semenov [28, p. 217-220].

Lemma 2.1.2 The linear hull of the functions exp(6z°2+Az)a, § > 0, X € R,
a € XNY, is dense in Fo(X,Y).

The complex interpolation spaces [X, Y]y are defined through the traces
of the functions in F(X,Y).

Definition 2.1.3 For every 0 € [0,1] set

[(X,Y]o = {/(0): fe F(X,Y)}, allx,yy, = Az -

inf
JEF(X,Y), f(0)=
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[X, Y]y is isomorphic to the quotient space F(X,Y')/Ny, where N is the
subset of F(X,Y) consisting of the functions which vanish at z = 6. Since
Ny is closed, the quotient space is a Banach space and so is [X, Y.

Some immediate consequences of the definition are listed below.

(i) For every 6 € (0,1),
[Xv Y]0 = [Y7 X]l—@-

(ii) We get an equivalent definition of [X, Y]y replacing the space F(X,Y)
by the space Fo(X,Y). Indeed, for each f € F(X,Y) and § > 0 the
function f5(z) = 65(2_‘?)2f(z) is in Fo(X,Y), satisfies f5(0) = f(0), and
I fsll7x,v) < max{e?’, 65(1_0)2}||f||]:(X’Y). Letting § — 0 we obtain
also

inf = inf .
rerex Py g0y IFCN) = g (IS gy M lm0ew)

(iii) f Y = X then [X, X]y = X, with identical norms (see exercise 1,
§2.1.3).

(iv) For every t € R and for every f € F(X,Y), then f(0 +it) € [X,Y]y
for each 6 € (0,1), and || f(0 + it)[/x,y), = [[f(0)ll[x,y),- (this is easily
seen replacing the function f by g(z) = f(z + it))

Finally, from lemma 2.1.2 it follows that X NY is dense in [X,Y]y for
every 0 € (0,1). In the present chapter, this fact will be used only in example
2.1.11.

Proposition 2.1.4 Let 0 < 0 < 1. Then
XNYC[X,Y]jpCcX+Y.

Proof — Let a € X NY. The constant function f(z) = a belongs to
F(X,Y), and
1fll7x,y) < max{llal|x, [lally }-
Therefore, a = f(0) € [X,Y]p and ||al/x,y, < llallxny-
The embedding [X,Y ]y C X 4+ Y follows again from the maximum prin-
ciple: if a = f(6) with f € F(X,Y) then

lallx+y < max{sup;eg [|f (i)l x+v, supser [|F (1 +it)]| x v}

< max{supyeg ||/ (1) [ x, supser [[f (1 +it)ly } = | £l Fexv)
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so that ||al|x1y < ||a||[X,Y]e' u

Remark 2.1.5 Let V(X,Y) be the linear hull of the functions of the type
o(z)z, with ¢ € Fo(C,C) and z € X NY. Ifa € XNY, its [X,Y]g-norm
may be computed also as

lallix,yi, = . 11l 7 vy (2.1.1)

inf
JEV(X,Y), f(0)=
Proof — For each ¢ > 0 let fy € Fo(X,Y) be such that fy(f) = a and
| foll 7(x,v) < llallix,y], + €. Let 2+ r(z) be a function continuous in S and

holomorphic in the interior of S with values in the unit disk, and such that
r(0) =0, r'(0) # 0, r(z) # 0 for z # 0. For instance, we may take

z—0

m, ZGS

r(z) =

Set ,
fo(z) — =9

fl(z) = T(Z) ’

Then f; € Fo(X,Y), so that by lemma 2.1.2 there exists a function fo(z) =
S R_exp(0p2? + ypz)my, with 8 > 0, v, € R, 2, € X NY, such that || f; —
Foll7x,y)y < e Set

z € S.

f(z) = e#0 g 4 r(2)f2(z), z € S.
Then f € V(X,Y) and
1l 7x,vy < llfollzx,yy + I1f = follzex vy < llallix,yy, + 26 W

Remark 2.1.5 will be used in theorem 2.1.7 and in theorem 4.2.6.

We prove now that the spaces [X, Y]y are interpolation spaces.
Theorem 2.1.6 Let (X1,Y7), (Xo,Y2) be complex interpolation couples. If
T is in L(X1,Xs) and in L(Y1,Y2), then the restriction of T to [X1,Y1]g is
in L([X1, Y1), [ X2, Y2]g) for every 6 € (0,1). Moreover,

1T vl (o vale) < (1T nxsxo) P U N ppyava)) - (2.1.2)
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Proof — First let || T1(x,,x,) # 0 and | T|1(v;,v,) # 0- If @ € [X1,Y1]p, let
f € F(X1,Y1) be such that f(6) = a. Set

T, )
o2) = () rse), zes
L(Y1,Y2)

Then g € F(X,,Y3), and
lg(@)l1x, < (ITNLcxr,x00) "~ Ui v2) I (@)l x

lg(1 +it)llvy < (1T zexs.x00) " 2T v va)) P I1F (L + i8) |1y,

so that |lgll7(x,,v) < (Tl Lex,x) " UT N viya) 11 f l(x, vi)- Therefore
Ta = g(0) € [X3,Y3]p, and

1T allx,,v5), < (||T||L(X1,Xg))l_e(”THL(Yl,Yg))enall[Xl,Yl]g~

If either ||T'(|1(x,,x,) Of IT]|L(v;,v5) vanishes, replace it by € > 0 in the
definition of g and then let ¢ — 0 to get the statement.
If both [|T'(|1(x,,x,) and [T 1(y;,v,) Vvanish, set g(z) =Tf(z). W

Theorem 2.1.6 has an interesting extension to linear operators depending
onz€S.

Theorem 2.1.7 Let (X1,Y1), (X2,Y2) be complex interpolation couples.
For every z € S let T, € L(X1 NY1,Xo +Y>) be such that z — T,x is
holomorphic in S and continuous and bounded in S for every x € X1 NY,
with values in X9 +Yy. Moreover assume that t — Tyx € C(R; L(X7, X2)),
t — Tiipx € C(R;L(YI,YQ)) and that ||,I’it”L(X1,X2); ”T1—|—it||L(Y1,Y2) are
bounded by a constant independent of t.
Then, setting

Mo = sup || Titll o x,,x0)s M1 = sup | Tivitll vy va)
teR teR
for every 6 € (0,1) we have
—0 g0
||T9$”[X2,Y2]9 < M(} Ml ||$”[X1,Y1]9

so that Ty has an extension belonging to L([X1,Y1]g,[X2,Y2]g) (which we
still call Ty) satisfying

Tl L1 210 [a1ale) < Mo~ MY (2.1.3)
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Proof — The proof is just a modification of the proof of theorem 2.1.6.
Assume first that My and M; are positive. For every a € X1 NY; let
f € V(X1,Y7) be such that f(0) = a (see remark 2.1.5), and set

Mo

z—0
M1> T.f(z), z€S.

o) = (
Then g € F(X,,Y3) and
”g(it)HXz < M()l_eMlellf(it)”Xn

lg (L + it)lly, < My~ MY f(L+ it)lys

so that [|gl| 7(x,,v5) < M&_aMingH}'(Xl’Yl). Therefore Typa = g(0) € [X2, Ya]y,
and

1 Toallix, vy, < My M7 :a||f||y-'(X1,Y1),

inf
feEV(X1,Y1), f(0)

but by remark 2.1.5,

lallix;,vi16 1Nl 7(x1v1)5

inf
feEV(X1,Y1), f(0)=a
and the statement follows.
If either My or M vanishes, replace it by € in the definition of g, and
then let ¢ — 0. If both M, and M; vanish, define g by g(z) = T, f(z) and
follow the above arguments. B

Let us come back to theorem 2.1.6 and to its consequences. The same
proof of corollary 1.1.7 (through the equality [C,C]y = C with the same
norm) yields

Corollary 2.1.8 For every 6 € (0,1) we have

lyllx vy, < lyllsClllls-. vy e XnY. (2.1.4)

Therefore, [X,Y]g € Jp(X,Y). This means that (X,Y )y C [X,Y]p,
thanks to proposition 1.3.2. It is also true that [X,Y]s C (X,Y)go0; to
prove it we need the following lemma, which gives a Poisson formula for
holomorphic functions in a strip with values in Banach spaces.
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Lemma 2.1.9 For every bounded f : S — X which is continuous in S and
holomorphic in S we have

f(2) = fo(2) + fi(2), z=x+iy €S,

where
2) = e”( —t) sin(mx f(lt)
fo(z) /R ’ ( )sinz(mc) + (cos(mz) — exp(m(y — t)))? a
2) = [ "W gin(rz S+ i)
R = [ inten) i)+ exploly — 7
(2.1.5)

Sketch of the proof — Let first X = C. Then (2.1.5) may be obtained
using the Poisson formula for the unit circle,

o= o [ FE i i<

P e (. ’

(which holds for every fwhich is holomorphic in the interior and countinuous
up to the boundary), and the conformal mapping

L2
e

eTiz +,1:’

((2) = Zge #€8S,
which transforms S into the unit circle. If X is a general Banach space
(2.1.5) follows as usual, considering the complex functions z — (f(z), z') for
every ' € X', and applying (2.1.5) to each of them. ®

Proposition 2.1.10 For every 6 € (0,1), [X,Y]p € Ky(X,Y), that is
[X,Y]y C (X,Y)g,oo.

Proof — Let a € [X,Y]y. For every f € F(X,Y) such that f(0) = a split
a = fo(0) + f1(0) according to (2.1.5).
Note that for z = z + iy € S we have

1
0< / r(y—1t) g <t
e sin(mz) sin?(7rz) + (cos(mz) — exp(m(y — t)))?
0 < / eﬂ(y—t) Sil’l(ﬂ'l‘) 1 dt < 1.
R sin?(7z) + (cos(mz) + exp(n(y — t)))?
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Indeed, both kernels are positive so that both integrals are positive; moreover
if f is holomorphic in S, continuous and bounded in S and f = 1 on iR and
on 1+ 4R then f =1 in S, so that the sum of the integrals is 1.

Therefore for every z € S, fo(2) € X, ||fo(2)|lx < sup,cg |l f(i7)|lx, and
f1(z) €Y, ||fi(2)|ly <sup,eg ||f(1+i7)|y. Then for each t > 0 we get

Kt a) < | £o(@)x + A0y < sup [fGr)[x +Esup [[£(1+)lly-

The function g(z) = t=?f(z) is in F(X,Y), and ¢(f) = a. Applying the
above estimate to g we get

K(t,a) <sup || f(ir) | xt’ + tsup [ f(1+im)llyt"" < 26| fll 7 p)-
TER TER
Since f is arbitrary,
K(t,a) < 2t%|lallx vy,
and the statement follows. W

By corollary 2.1.8 and proposition 1.1.3, [X, Y]y € Jo(X,Y) N Kyp(X,Y).

This implies, through proposition 1.1.4, that [X, Y]y, C [X, Y]y, for 6; <
65 whenever Y C X.

This also allows to use the Reiteration Theorem to characterize the real
interpolation spaces between complex interpolation spaces. We get, for 0 <
01 <0 <1,0<0<1,1<p< o0,

([X7 Y]Gla [X7 Y]ez)ﬂ,p = (X7Y)(1—0)01+902,p'

Further reiteration properties are the following. Calderon ([13]) showed that
if one of the spaces X, Y is continuously embedded in the other one, or if
X, Y are reflexive and X NY is dense both in X and in Y, then

[[X, Yo, [X, Y]olo = [X, Y] (1-0)01 005
Lions ([30]) proved that if X and Y are reflexive, then for 0 < 6; < 6, < 1,
0<h<1,1<p<oo,
(X, Y0100 (X5 Y )050]0 = (X, Y ) (1-0)0, 4005 -

The question whether [X, Y]y coincides with some (X,Y )y, has no gen-
eral answer. We will see in the next chapter (sect. 3.4) that if X and Y are
Hilbert spaces then

[X7 Y]0 = (XaY)G,Qa 0<o<1,

but in the non hilbertian case there are no general rules. See next examples
2.1.11 and 2.1.12.
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2.1.1 Examples

Example 2.1.11 Let (Q, ) be a measure space with o-finite measure, and
let 1 <pg,p1 <00,0<8<1. Then

1 1-6 6

LPo(Q), LP1(Q)]g = LP(Q2), — = + —,

[LP°(€), L7 ()] (€2) 2= 0 m
and their norms coincide. (In the case py = 0o or py = 0o the statement is
correct if we set as usual 1/00 =0).

Proof — The proof follows the proof of the Riesz—Thorin theorem at the
beginning of the chapter.

We recall that the intersection LP0(€Q) N LP1(Q) is dense both in LP ()
and in [LPo(Q), LP1(Q)]y.

Let a € LPO(Q2) N LP (). We may assume without loss of generality that
llal|z» = 1. For z € S set

L=zt =) a(z)

F(6)(@) = lala) U7 S it € 9 afa) £0,

f)(x) =0, ifz €Q, a(z) =0.

Then f is continuous in .S and holomorphic in the interior of .S with values
in LPo(Q2) 4+ LP1(Q), and for each ¢t € R

|F(it)@)| = la(@)|%0, (| f @)z < llall7 =1,

P+ it) (@) = la(@)]7, I+ it)m <l =1,

Moreover, t +— f(it) is continuous with values in LP°(Q) and ¢ — f(1 + it)
is continuous with values in LP!(Q2). Therefore, f € F(LPO(2), LP1(Q2)) and
| fll7(zro,Le1y < 1. Since f(0) = a, then

lallizro,Leay, <1 = llallze.
To prove the opposite inequality we remark that

1=Mm=mﬁvamwwm;mmmmmMM:q
Q

For every b € LPo N L1 with |||, = 1 set, as before

B p’(ll%“ri) b(z) o .
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g(z)(x) =0, ifzx € Q, b(x) =0,
and define, for every f € F(LPo, LP') such that f(0) = a,

P = [ FE@g() @), = €.

Then F is holomorphic in the interior of S and continuous in S, so that the
maximum principle (see exercise 2, §2.1.3) implies that for every z € S it
holds
|F(2)| < max{sup |F(it)|,sup |F (1 + it)|}.
ter terR

But |F(it)| and |F(1 + 4t)| may be easily estimated:
[F(it)] < [1f@)zeollgG) by = 17 ) oo 1BI7 170 = 1£ (i) 0o

[F(L+ )] < f (U +it) o lg(L +a) ot

= || f(1 +it)|| IIblli,,//p1 = [l f(1 +it)|| w1,
so that

|F'(2)] < max{sup;eg [|f (i) Lro, supser |f (1 + it)[[ Lo }

<Nl 7zro,iery, 2 €S.

Therefore,

/Qa(x)b(a:)dx

Since b is arbitrary,

= F(O)] < lFl7zro,Ler)-

lalle < [ fllzLro,Lon)-

Since f is arbitrary,
lallze < llallizeo,Le1),-

Therefore the identity is an isometry between LP°N LP! with the LP norm
and LPONLP! with the [LP°, LP']y norm. Since LPON LP! is dense respectively
in P and in [LPo, LP']y, the statement follows. W

Example 2.1.12 For0<0<1,1<p<oo, méEN,

[LP(R"), W™ P (R")]g = H™OP(R").
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The proof is in [36, §2.4.2].
We recall that for s > 0

H*P(R") = {f € LP(R") : | fllger = IF 7" (1 + |2*)* 2 F fll» < 00},
where F is the Fourier transform. It is known that if s = & is integer then
HFP(R™) = WFP(RY), k€ N.

Moreover it is known that
By ,(R") C H*?(R") C By 5(R"), 1<p<2,
L o(R") C HP(R™) C By ,(R"), 2 <p < o0,
and the inclusions are strict if p # 2. See [36, §2.3.3]. Therefore
[LP(R™), WP (RM] # (LP(R™), W™ (R")),,

unless p = 2.

2.1.2 The theorems of Hausdorff-Young, Riesz—Thorin, Stein

Applying theorem 2.1.6 to the spaces X; = LPO(2), Xy = LP(A), Y1 =
LP1(Q), Yo = L9 (A) and recalling example 2.1.11 we get the Riesz—Thorin
theorem, as stated at the beginning of the chapter. However, the proof of
example 2.1.11 is modeled on the proof of the Riesz—Thorin theorem, so that
this has not to be considered an alternative proof.

An important application of the Riesz—Thorin theorem (or, equivalently,
of theorem 2.1.6 and example 2.1.11) is the theorem of Hausdorff and Young
on the Fourier transform in LP(R™). We set, for every f € L'(R"),

1

(F)k) = @2

/ e Xk £ () dx.
Rn

As easily seen, || Ffllp2 = ||f||z2 for every f € C§°(R™), so that F is canoni-
cally extended to an isometry (still denoted by F) to L?(R").

Theorem 2.1.13 If 1 < p < 2, F is a bounded operator from LP(R™) to
LY (R™), p' = p/(p — 1), and

1
P llwr ) = Gynaro-i72y
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Proof — Since || F||5p1 1) < (27r)~"/% and | FllL(z2y = 1, by the Riesz-
Thorin theorem F € L(LPé, L%) for every 6 € (0,1), pyp and gy being defined
by (2.0.1): pg =2/(1 +6), g9 = 2/(1 — 6) = pj. Moreover,

1 2/p—1
0 —0
||f||L(Lp9,Lpl9) < ||f||L(L17Lw)||f||};(L2) < <W> . (2.1.6)

The use of the Riesz—Thorin theorem may be avoided by using directly the
results of theorem 2.1.6 and of example 2.1.11: by theorem 2.1.6 F is a
bounded operator from [L', L%]y to [L>°, L?], for every 6 € (0, 1); by example
2.1.11, [LY, L?)g = LP?, py = 2/(1 + ), and [L>, L?]y = L%, g9 = 2/(1 — 0),
with identical norms. Therefore, (2.1.6) holds.

When 6 runs in (0,1), pg = 2/(1+0) runs in (1, 2), and the statement is
proved. H

A useful generalization of the Riesz-Thorin theorem is the Stein interpo-
lation theorem. It is obtained by applying theorem 2.1.7 to the interpolation
couples (LPo(Q), LP1(R2)), (L% (A), L9 (A)), using the characterization of ex-
ample 2.1.11.

Theorem 2.1.14 Let (2, ), (A,v) be o-finite measure spaces. Let py, p1,
q0, 1 € [1,00] and define as usual py, gy by
1 1-66 6 1 1-6 6

+ =

—, +—, 0<O<1.
Do Po p1 qo Q1

Assume that for every z € S, T, : LP°(Q) N LP () — LIP(A) + L9 (A) is a
linear operator such that

(i) for each f € LPo(Q2) N LPY(QY), z — T, f is holomorphic in the interior
of S and continuous and bounded in S with values in L1 (A)+ L9 (A);

(ii) for each f € LPO(Q2) N LP1(Q), t — Ty f is continuous and bounded in
R with values in LP(A), t — Ty f is continuous and bounded in R
with values in LI (A);

(iii) there are My, My > 0 such that for each f € LPO(Q2) N LP1(R),

Stlelﬂlg||T(t)f||qu(A) < Mol| £l zeo )5 ilelﬂlgHT(t)me ) < M| fllpe -
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Then for each 8 € (0,1) and for each f € LP°(Q) N LP(2) we have
1T f | Loo (n)y < My~ My,

Therefore, Ty may be extended to a bounded operator (which we still call Ty)
from LP9 () to L% (A), with py and qp defined in (2.0.1), and

1Tl L(zre (9,20 () < M0Mp.

Theorem 2.1.14 has a slightly sharper version, stated above, obtained
modifying the direct proof of the Riesz—Thorin theorem. We recall that if
(©, ) is a measure space, a simple function is a (finite) linear combination
of characteristic functions of measurable sets with finite measure.

Theorem 2.1.15 Let (2, 1), (A, v) be o-finite measure spaces. Assume that
for every z € S, T, is a linear operator defined in the set of the simple
functions on Q, with values into measurable functions on A, such that for
every couple of simple functions a : Q@ — C and b: A — C, the product T,a-b
18 integrable on A and

2 [ (D @ag@d).

1§ continuous and bounded in S, holomorphic in the interior of S.
Assume moreover that for some pj, q; € [1,+00], j = 0,1, we have

I Titall Lo (ay < Mollalleo(q)s [ T1+italla (a) < Mollallpe o), t € R,

for every simple function a. Then for each 6 € (0,1), Ty may be extended to
a bounded operator (which we still call Ty) from LP9(S2) to L% (A), with pg
and qg defined in (2.0.1), and

1Ty 2.(zre (), L9 (n)) < MOI_()Mf.

Proof — The proof is just a modification of the proof of the Riesz—Thorin
theorem. For every couple of simple functions a € L'(Q2), b € L'(A), we
apply the three lines theorem to the function

Pe) = [ T.0(:) 9() v(do



56 Chapter 2

where f and ¢ are defined as in the proof of the Riesz—Thorin theorem, i.e.

@) = lal@)P 5 5 2 iy e 0, aga) £0.

9(z)(z) = |b(z)[" " *o 7 b)) ifz € A, b(x) # 0,
9(z)(z) =0, ifz €A, bx)=0
We get
1(60)| = | [ @) @)b(e) v(do)| < MM allra@yllbl
so that

ITall oo (a) < My~ MY |lall 1o (1),

for every simple a defined in €. Since the set of such a’s is dense in LP¢(()
the statement follows. W

2.1.3 Exercises

1) The mazimum principle for functions defined on a strip. Let f: S +— X
be holomorphic in the interior of S, continuous and bounded in S. Prove
that for each { € S

£ (Ol < max{sup || f(@#)[|, sup [ f(1 + it)]]}.
teR teR

(Hint: for each ¢ € (0,1) let 2z be such that ||f(z0)|| > || f]lec(1—¢); consider
the functions fs5(z) = exp(d(z — 20)?)f(2), and apply the maximum principle
in the rectangle [0, 1] x [-M, M| with M large).

2) The three lines theorem. Let f : S — X be holomorphic the interior of S,
continuous and bounded in S. Show that
1FO)lx < (sup [ £(it)|x)" " (sup || f(1 +it)[[x)’, 0<O<1.

teiR teiR
This estimate implies that if f vanishes in 4R or in 1 4 ¢R then f vanishes
in S.
(Hint: apply the maximum principle of exercise 1 to ¢(z) = e f(z) and
then choose A properly).

3) Show that [X, X]y = X, with identical norms.
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Interpolation and domains of
operators

3.1 Operators with rays of minimal growth

Let X be a real or complex Banach space with norm || - ||. In this section we
consider a linear operator A : D(A) C X — X such that

p(A) D (0,00), IM: AR\, A)|px) < M, A> 0. (3.1.1)

Since p(A) is not empty, then A is a closed operator, so that D(A) is a
Banach space with the graph norm ||z||p(ay = |z[| + [|Az|. Moreover for
every m € N also A™ is a closed operator (see exercise 1, §3.2.1).

This section is devoted to the study of the real interpolation spaces
(X,D(A))pp, and, more generally, (X,D(A™))g,. Since the graph norm
of D(A™) is equivalent to the graph norm of D(B™), B = e*(A + wI) for
every t, w € R, the case of an operator B satisfying

p(B) D {Xe : X> Ao}, IM 1 AR, B)||x) < M, XA> X

for some 0 € [0,27), A\g > 0, may be easily reduced to this one. The halfline
r={Xe’? : X\ > Ao} is said to be a ray of minimal growth of the resolvent of
B. See [2, Def. 2.1].
Proposition 3.1.1 Let A satisfy (3.1.1). Then

(X, D(A)gp = {z € X : A= o(A) = N[ AR\, A)z|| € L2(0, +00)}

o7
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and the norms ||z||g, and

0o, = ll]l + Nl 22 0,400)

are equivalent.

Proof — Let z € (X,D(A))pp. Then if x = a4+ b with a € X, b € D(A),
for every A > 0 we have

MIIAR(A, A)zl| < NIAR(A, A)al| + M[|R(X, A) Ab|
< (M +1)M?||a]| + MM~V Ap|

< (M + DA (llall + A7 MIbllpea))

so that
MIAR, A)z|| < (M + DM KA 2).

With the changement of variables A — A~! we see that the right hand
side belongs to LY(0,00), with norm equal to (M + 1)|z|ls,. Therefore
©(\) = N||AR(\, A)z|| is in L2(0,00), and

lolls, < (M + 1lallo,.
Conversely, if ¢ € L£(0, 00), set for every A > 1
= AR\, A)x — AR(\, A)z,
so that
NEM\ T z) < N(JARMN, Azl + A7HARMN, A)zl pray)
= N (2] AR(\, A)z|| + || R(X, A)z]).

The right hand side belongs to LY(1, 00), with norm estimated by

v 1 1/p
2|5 —_—
lellsp + (=g )  llell <.

2[|2l5,00 + Mllz|l, p = oo.
It follows that t — ¢t~ K (t,x) € L£(0,1), and hence z € (X, D(A))g, and

lzllo.p < Cp(llzllg,p + llzl). m

The following notation is widely used.
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Definition 3.1.2 For 0 <6 <1, 1 <p< oo we set
Da(0,p) = (X, D(A))g,p-
For0< <1, keN,1<p<oo we set

DA(0+k,p) = {z € D(A¥) : A¥z € D4(0,p)},

||3U||DA(0+k,p) = ||zl + ||Ak$||DA(0,p),

that is, DA (0 + k,p) is the domain of the part of AF in DA(6,p).

From the definition we get easily
Corollary 3.1.3 For 0 <0< 1,1 <p < o0,
Da(6+1,p) = (D(A), D(A%))g,
and, more generally,

DA(0+ k,p) = (D(AF), D(A"F1)),.

Proof — It is sufficient to remark that (I — A)* is an isomorphism from
D(A*) to X, and also from D(A¥*1) to D(A). By the interpolation theorem
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1.1.6, it is an isomorphism between (D(A¥), D(A¥*1))y, and (X, D(A))g,,

and the statement follows. H

It is also important to characterize the real interpolation spaces between

X and D(A?), or more generally, between X and D(A™). The following

proposition is useful.

Proposition 3.1.4 Let A satisfy (3.1.1). Then D(A) € Jy,5(X,D(A%)) N

Ki/5(X,D(4%)).

Proof — Let us prove that D(A) € J;5(X, D(A?)). For every z € D(A) it

holds
lim AR(\, A)z = lim R(\, A)Az +z = z.
A—00 A—00

Setting f (o) = oR(0, A)z for o > 0, we have

f'(0) = R(o,A)x — 0R(0, A) >z = R(0, A)(I — 0R(0,A))z = —R(0, A)* Az
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and f(4o00) = z, so that

£ — AR\, A) / R(o, A)? Azdo, A >0,
and if z € D(A?),

(o]
Az = MR\, A)z — / R(o, A)?A%zdo, A > 0.
A

Therefore,
M2
14z < MM + D] + —-[l4%], A > 0.
Taking the infimum for A € (0, 00) we get
1Azl < 2M (M +1)'2|l2||/?|A%|'2, = € D(4?), (3.1.2)

so that
1/2
1zl pay < Cllwlll/Qllévllp/Az), z € D(A?),

that is, D(A) € Jy j5(X, D(A2)).
Let us prove that D(A) € K;5(X, D(A?)). For every z € D(A) split «
as
z=—R(\ A)Az + AR(\, A)z, X >0,

where

M
|R(X, A)Az]| < 5zl
IAR(A, A)z| prazy = [IAR(A, A)z|| + [AAR(X, A) Az
< Mz]] + A(M + 1) || Az]|
so that setting ¢t = A 72
K(t,z, X, D(A%) < |R(t~'/2, A) Azl + t|t 2 R(t12, A)z|| p(azy
< M2 |2l pay + Mt|z|| + (M + 1)¢'/?|| Az, ¢
which implies that ¢ — K(t,z, X, D(A?)) is bounded in (0,1] by (2M +
1)||]| p(ay- Since it is bounded by [|lz|| in (1,00), then z € (X, D(A?))1/2,00

and
Izl (x,p(42)), p.0e < @M + D)zl pa)



Interpolation and domains of operators 61

But in general D(A) is not an interpolation space between X and D(A?).
As a counterexample we may take X = C(R), A = realization of 9/0z in X.
See example 1.3.3.

As a corollary of proposition 3.1.4 we get a useful characterization of
(X, D(4%)),p-

Proposition 3.1.5 Let A satisfy (3.1.1). Then for 0 # 1/2

(X, D(A%)gp = Da(20,p).

Proof — Taking into account that X belongs to Jo(X, D(A%))NKy(X, D(A?))
and D(A) belongs to JI/Q(X,D(A2)) N Kl/Q(X,D(A2)), and applying the
Reiteration Theorem with Ey = X, E; = D(A) we get

Da(a,p) = (X,D(A))ayp = (X, D(4?)) 0<a<l,

a/2,ps

and setting @ = 20 the statement follows for 0 < # < 1/2. Taking into
account that D(A?) belongs to Ji(X,D(A?)) N K1(X,D(A?)) and D(A)
belongs to JI/Q(X,D(AQ)) N K1/2(X,D(A2)), and applying the Reiteration
Theorem with Eq = D(A), E; = D(A?) we get

DA(CY + 1,]7) = (D(A)aD(AZ))a,p = (X7D(A2))(a+1)/2,pv 0<a<l,
and setting a + 1 = 26 the statement follows for 1/2 <0 < 1. n

Another characterization, which holds also for § = 1/2, is the following
one.

Proposition 3.1.6 Let A satisfy (3.1.1). Then for 0 <0 <1,1<p<o0
(X, D(4%)gp = {z € X : A G(A) = N[[(AR(X, 4))*z|| € LE(0,00)},

and the norms ||z||x p(az)),, and

o = llzll + ll¢]

|z L2(0,00)

are equivalent.
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Proof — The proof is very close to the proof of proposition 3.1.1. Let
z € (X,D(A4?%))pp. Thenifz = a+bwitha € X, b € D(A?), for every A > 0
we have

N(ARA, A))?z] < A[(AR(N, A))%all + X[ R(X, A)? A%
< (M + 12X [al] + M2X72]|A%0] < (M + 1)*X(Jlall + A~2[IBll p(a2)),

so that
AP(AR(N, A)) 2zl < (M + 1)°X¥ K (A2, 3).

We know that A" K (\,z) € L(0,00). With the change of variable ¢ = A =2
we get that X+ N K (A2, z) € L2(0, 00), with norm equal to 27/7|z||g.,.
Therefore (X)) = A\??||(AR()\, A))%z|| is in L2(0, 00), and

Izllg, < 27P(M +1)?||]lg.p-

(The formula is true also for p = oo if we set 1/00 = 0).
Conversely, if ¢ € L£(0,00), from the obvious identity

= XNR(\ A%z — 20 AR\, A)?z + A’R(\, A)?z,

where
AR, A)2x = A\ — A)AR(\, A)3x

= AR\, A)A2R(\, A)2z — AR(X, A)A2R(\, A)%z

we get
= (I —2AR(\, A)N2R(\, A)%z + (2AR(\, A) + ) A2R(\, A)?z, \ > 1,

where

(I = 2AR(X, A))N*R(A, A)*|| p(a2)
= (I = 2AR(\, A)NZR(N, A)2a|| + |[(I — 2AR(N, A))N2A2R(X, A)%a)
< (2M + 3)M2||z|| + (2M + 3)N2[|A2R(\, A)%z]|

and
[(2AR(X, A) + T)A2R(\, A)?z|| < (2M +1)||A2R(\, A)%z|).
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Therefore,

NPK (A% 2, X, D(A%))
< A([[(2AR(N, A) + D A?R(A, A)?x]
+A72(I = 2AR(N, A)) A2 R(X, A2l p(az))

< (AM + 4N A2R(\, A)2z|| + (2M + 3)M2X\29=2||z||.

The right hand side belongs to LE(1, c0), with norm estimated by

~ ) 1 >1/P
(43 + el + (20 + 2322 (=)l

which is true also for p = oo with the convention (1/00)Y/% = 1. Tt follows
that ¢ — t YK (t,z, X, D(A?)) € L£(0,1), and hence z € (X, D(A?))y,, and

2l (x,p(a2)),, < Coplllzllg, + llzl). m

Propositions 3.1.4 and 3.1.5 may be generalized as follows.

Proposition 3.1.7 Let A satisfy (3.1.1), and let r, m € N, r > m. Then
D(AT) € Jr/m(X7 D(Am)) N Kr/m(X7 D(Am))

Proposition 3.1.8 Let A satisfy (3.1.1), and let m € N. Then for 6 € (0,1)
such that dm ¢ N, and for 1 < p < o0

(X7 D(Am))e,p = DA(m97p)'

3.1.1 Two or more operators

Let us consider now two operators A : D(A) — X, B : D(B) — X, both
satisfying (3.1.1). Throughout the section we shall assume that A and B
commute, in the sense that

RO\, A)R(\,B) = R(\, B)R(\, A), X > 0.

It follows that D(A*B") = D(B"A*) for all natural numbers h, k, and that
AFBhg = B Ak for every x in D(AFB").
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Definition 3.1.9 For every m € N set

K™ = (N DAB™ ), |algm = |l +_I1A7B™ Iz]].
§=0 j=0

The main result of the section is the following.

Theorem 3.1.10 Let m € N, p € [1,00]| and 6 € (0,1) be such that mb is
not integer, and set k = [mf], o = {mb}. Then we have

(X,K™)p, ={z € K¥: AIB*¥ iz € Ds(0,p) N Dp(o,p), =0,...,k},
and the norms
z = |zl x,xm)q, 0
z = |2l + oo (147 B¥ 2|l p s (o.p) + 147 B¥ 2]l s (5.))
are equivalent.

The theorem will be proved in several steps. The first one is the case
m = 1.

Proposition 3.1.11 For every p € [1,00] and 6 € (0,1) we have
(X7K1)9,p = DA(eap) N DB(07P)7

and the norms
Izl (x,51)6,: 121 DAop) + 121 D5 0,p)
are equivalent.
Proof — The embedding (X, K1)y, C Da(6,p) N Dg(0,p) is obvious, since
K' = D(A) N D(B) is continuously embedded both in D(A) and in D(B).

Let z € Da(6,p) N Dp(0,p). We recall (see proposition 3.1.1) that the
functions

A= A AR, A)z||, A A BR(\, B)z||, A>0,

belong to L(0,00) and their norms are less than C||z|[p,9.5), Cllzllpy 0,
respectively.
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For every A > 0 set
v(\) = MR\, A)R(\, B)z, A >0, (3.1.3)
and split x = z — v(A\) + v(A). It holds
[o(A) — 2| < IAR(A, A)(AR(X, B)z — z)|| + [AR(A, A)z — x|
< M|[BR(A, B)z|| + [[AR(X, A)x|,

and
[oM [ r = o) + [[Av (M) + [[Bu(A)]]

< M?||z|| + AM||AR(\, A)z|| + AM||BR()\, B)z||.
Therefore, for A > 1
MKWz, X, K') <2MN(JJAR(A, A)z|| + | BR(A, B)a||) + MZX ||z,
so that A = MK (A1, 2, X, K') € L2(1, 0), with norm estimated by const.

(2l + Nzl pap) + 2l Dgop)- Then X = AKX\, z, X, K') € LE(0,1),
with the same norm, and the statement follows. W

As a second step we show that
Proposition 3.1.12 For every p € [1,00] and 6 € (0,1) we have
(K'Y, K%y, ={z € K': Az, Bx € D4(0,p) N Dp(0,p)}
=Da(0+1,p) N Dp(0 +1,p),
and the norms
T ||3U||(K1,K2)9,p,
z = lzll + 1Azl p o, + 142l Dy(0,p) + 1Bl DAco,p) + 1Bl Dy (6,0

o= ||zl pyo+1,p) T 1Tl Dy 041,p)

are equivalent.
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Proof — Let us prove the embeddings C. Since K' C D(A), K? C
D(A?) then (K',K?)p, C (D(A),D(A?))g, = Da(0 + 1,p). Similarly,
(K',K?)y, C Dp(0 + 1,p). It remains to show that each z € (K, K?)y,
is such that Az € Dp(0,p) and Bz € DA(6,p). For every a € K', b € K?
such that z = a + b we have

M| BR(\, B)Az|| < M||BR(\, B)Aal| + || BR()\, B) Ab||
< A(M +1)[|Aall + MY BAD|| < (M + DX (Jlall g +X7[b]l 2)
so that
M|BR(\, B)Az|| < (M + DN KO\ 2, KN K?), A>0.

It follows that M| BR(\, B)Az| € L2(0,00) with norm less or equal to
(M +1)[|z]|(x1,k2), - and the embedding C is proved.

The proof of the embedding {z € K' : Az, Bx € DA(6,p)NDg(0,p)} C
(K'Y, K 2)94, is similar to the corresponding proof in proposition 3.1.11, and
is omitted.

Let us prove that D(0 + 1,p) N Dg(0 + 1,p) C {z € K' : Az, Bx €
D4(6,p)NDp(0,p)}. We have only to show that if x € D4(0+1,p)NDp(6+
1,p) then Az € Dg(0,p) and Bx € D 4(6,p). Indeed, for each A > 0 we have

M| B2R(\, B)? Az||
< MHY B2R(M\, B)?R(\, A)Az|| + M ||B2R(\, B)2AR(\, A) Az ||
< NM(M +1)||BR(\, B)Bz|| + A (M + 1)2||AR(\, A) Az

so that A — M||B2R(\, B)?Az| € L%(0,00) with norm less or equal to
MM + )| Bz}, 9, + (M + 1)2||A$”*DA(9,;0)' Thanks to proposition 3.1.6,
Az € Dg2(6/2,p), which coincides with Dp (0, p) thanks to proposition 3.1.5.
So, Az € Dg(0,p) and [ Az|lpy0p) < CIZlDa011p) + 12l D5 041,p)- Sim-

ilarly, Bz € Da(0,p) and [|Bz|lp, ) < Clzllpgo+1p) + 1 D40+1,0))-
n

In the last part of the proof of proposition 3.1.12 we have shown that
ifz € Da(0+1,p) N Dp(0 + 1,p) then Az € Dp(0,p) and Bx € D4(0,p),
a sort of “mixed regularity” result. However it is not true in general that
D(A?) N D(B?) C D(AB).
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For instance, let A be the realization of 9/0z and let B be the realization
of 9/0y in X = C(R?). Then D4 (0 + 1,00) consists of the functions f € X
such that z — f(z,y) € CTY(R), uniformly with respect to y € R, and
similarly Dp(0 + 1,00) consists of the functions f € X such that y —
f(z,y) € C*t(R), uniformly with respect to z € R. Proposition 3.1.12
states that if f € Dg(6 4+ 1,00) N Dp(0 + 1,00) then df/dz € Dp(0,0),
that is it is Holder continuous also with respect to y, and df /0y € D 4(0, 00),
that is it is Holder continuous also with respect to . On the other hand, it
is known that in this example D(A%) N D(B?2) is not embedded in D(AB).

A similar proof yields

Proposition 3.1.13 For every k € N, p € [1,00] and 6 € (0,1) we have
(K, K*Yy, = {z € K*: ATB* 7z € Do(0,p) N Dp(0,p), j =0,....k}
and the norms
2l ik scrry o Nzl + 50 (147 B¥ Tl p ) + 1147 Bl by 0, )

are equivalent.

Next step conmsists in proving that K' belongs to J; /2(X, K?) and to
K, j5(X, K?).

Proposition 3.1.14

K' € J15(X,K*) N Ky j5(X, K?).

Proof — We already know that D(A) € J; 5(X, D(A?)) and that D(B) €
J1j2(X, D(B?)). Therefore there is C > 0 such that

lzll k1 < llzllpcay + 2zl pes)
< Clla 2 (el ey + ol P ipey) < C'llal il

D(A2 D(B2)

which means that K'! € J12(X, K?).
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To prove that K' € Ky 0(X, K?), for every z € K! we split again x =
x —v(A\) +v(A) for every A > 0, where v is the function defined in (3.1.3).
Then

[o(A) — =] < []ARA, AYAR(A, B)z — z)|| + |IAR(A, A)z — x|
= |IAR(\, A)R(X\, B) Bz|| + || R(\, A) Ax||
< AHM(M +1)||Ba|| + M| Az]),

and
oMz = o) + 1420 [ + [ABu(A)[| + [[ B> (M) ||

< M?|lz| +2M (M + 1)A(|Az|| + || Bz])).
Setting A = /2 we deduce that
tVPK (2, X, K?) < 72 (|lz = o2+ o)l k2)
< Ozl r + 72 |2])),

is bounded in (0,1). We know already that t — t /2K (t,z, X, K?) is
bounded in [1,00). Therefore K is in the class K, /2 between X and K 2,
|

Arguing similarly one shows that

Proposition 3.1.15 For every k € NU {0}, K" € J,o(K*F K*2)Nn
Ky jo(K*, K*2). More generally, KF*1 € J;  (K*, KF5)NK; i (KF, K*5).

The Reiteration Theorem and proposition 3.1.14 yield now
Proposition 3.1.16 Letp € [1,00], 8 € (0,1), 6 # 1/2. Then
(X, K?)gp = Da(20,p) N Dp(26,p),
and for 0 > 1/2 we have also
(X,K?)pp ={z € K': Az, Bz € DA(20 — 1,p) N Dp(20 — 1,p)},

with equivalence of the respective norms.
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Proof — For § < 1/2 we apply the Reiteration Theorem with ¥ = K2,
Ey = X, E; = K', and the statement follows from proposition 3.1.11.
For § > 1/2 we apply the Reiteration Theorem with Y = K%, Ey = K!,
E; = K?, and the statement follows from proposition 3.1.12. W

The above proposition is a special case of theorem 3.1.10, with m = 2.
Theorem 3.1.10 in its full generality may be proved by recurrence, arguing
similarly. See the exercises of §3.1.2.

The results and the procedures of this section are easily extended to the
case of a finite number of operators.

3.1.2 Exercises

1) Let A: D(A) C X — X satisfy (3.1.1). Prove that for every m € N, A™
is a closed operator. (Hint: use estimate (3.1.2)).

2) Prove proposition 3.1.7. Hint: to show that D(A") € K, ,,(X, D(A™))
prove preliminarly that D(A") € Ky () (D(A""1), D(A™)), using a pro-
cedure similar to the one of proposition 3.1.4, and then argue by reiteration.

3) Prove proposition 3.1.8.
4) Prove proposition 3.1.13.

5) Prove proposition 3.1.15. Hint: for the first statement, follow step by step
the proof of 3.1.14; for the second statement replace the function v(\) by
w(A) = AR(\, A)°R(\, B)*x.

6) Prove theorem 3.1.10 by recurrence on m, using the procedure of propo-
sition 3.1.16 and the results of propositions 3.1.13 and 3.1.15.

3.2 The case where A generates a semigroup

Let A: D(A) C X — X satisfy (3.1.1).

Due to the Hille-Yosida Theorem, if in addition D(A) is dense in X and
for every n € N||(AR(X, A))" ||L(x) < M, then A is the infinitesimal generator
of a strongly continuous semigroup 7'(¢), and the following representation
formula holds.

R(), A) = /O T e NT()dE, A 0. (3.2.1)
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Since AR(\, A) = AR(\, A) — I, then
[e.e]
AR(M A) = / AeM(T(t) — I)dt, A> 0. (3.2.2)
0

Proposition 3.2.1 Let A generate a semigroup T(t). Then
(X, D(A))gp ={z € X : t = y(t) =t °||T(t)z — x| € LE(0,00)}

and the norms ||z||g, and

I llg = 2l + 114l 2 (0,00)

are equivalent.
Proof — Recall that for every b € D(A) we have
t t
T(t)b— b= / AT (s)bds — / T(s)Abds, t> 0.
0 0
Let z € (X,D(A))gp. Thenifz =a+0bwitha € X, b € D(A), for every

t > 0 we have
T ()2 — || < t°(IT(t)a — all + | T(£)b - bl))
< (M + 1)lall + M Ab]) < (M + 1)t K (¢, 2).
Therefore (t) = t~||T(t)z — z|| € L£(0,00) and
2l < (M + 1)zl
Conversely, if 1 € LL(0, 00) let us use (3.2.2) to get
o —
)\GHAR()\,A)SUH < / )\0-1—1150—1—16—)\t”,Iv(t);9 :UH %’
0
that is, ¢ is the multiplicative convolution between the functions f(t) =
t'+le=t and (t) = 0| T(t)x — z||. Since f € L1(0,00) and 3 € LE(0,00),
then ¢ € L1(0,00) and ||l 12 (0,00) < I1£1|1(0,00) 1?12 (0,00)+ SO that

lzllg,, < T(O + Dllzllg,

and the statement follows. H
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Proposition 3.2.2 Under the assumptions of proposition 3.2.1, for every
0 € (0,1) and p € [1,00] we have

(X, D(A%))gp = {z € X : 1 4p(t) = t>||(T(¢) — I)*x|| € LE(0,00)}
and the norms ||z||g, and
lllg,p = 2] + 1]l 220,00
are equivalent.

Proof — Recall that for every b € D(A?) we have
t t ot
(T(t) — I)*b = (T'(t) — I)/ T(0)Abdo = / / T(s+ 0)A%bdsdo, t> 0,
0 0o Jo

so that
I(T'(¢) — I)*b|| < t*M|| A%

Let z € (X, D(A?))gp. Then if x = a + b with a € X, b € D(A?), for every
t > 0 we have

2T () = Dl < 20T ) = D?all + 1(T(E) — 1)bI])
< t2((M +1)?|lall + 2 M?|| A%0]))

so that
2T @) — 1)?z|| < (M + 1) 2K (%, 2).

Therefore ¢ (t) = t~2°||(T(¢) — I)2z|| € L2(0, 00) and
zllg,, < 277 (M + 1)%||z]l9,.

Conversely, let z be such that ¢(t) € L2(0,00). Then from (3.2.2) it
follows that

(AR(M, A))?z = /\2/ / AN (T (t + ) — T(t) — T(s) + I)ads dt

= 2)\? / T e ugy, / 2u(T(2u) —T(t) = T(2u —t) + I)zdt
0 0

_ o2 [T 2 B 2u
=2\ e (T (2u) — 2T (u) + Iz dt du
0
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The first integral is nothing but

[e.e]
4)\2/ ue” (T (u) — I)%zdu.
0

To rewrite the second one we note that

2u 2u
/ (2T (u) — T(t) — T(2u — £))dt — / (2T (u) — 2T(1))dt
0 0

_ </Ou+/ju>(2T(u) _2T(t))dt

_ /O T —t) - DTWdt+ [ 2T ) = T(t - u))dt

u

/2 (u—sds-l—/ 9T (u)(I — T(s))ds

- /OU(T(s) —I)(T(u— 8) — T(u))ds = —2 /Ou (T(s) — IV2T(u — 5)ds.

Therefore,

IN*(AR(X, A))%l| < 41(f % P) (V)| +2|(f * 1) (M),

where x stands for the multiplicative convolution and

flw) =22, i) = o [T — DPalds,

Let us remark now that the Hardy-Young inequality (A.3.1)(i) implies that
if a functlon 2z is such that ¢ — t=%2(¢) € L£(0,00) the same is true for its
mean v(t) =t~ [} z(s)ds, with

1

[t =t ()| L2 (0,00) < et D

It — t~%2(¢)

£(0,00)>

and this is easily seen to be true also for p = co. Therefore, 1;1 € LL(o,
and [[Y1llpp0,00) < (20 + 1)_1||¢||L13(0700). It follows that A — ¢(X)
A2 (AR(X, A))2z|| € LE(0, 00), and

1(0,00) (||¢||LP 0,00) T |41

o0)

2(0,00)) < Collzllo

= [l=llg

%(0,00) 7p — 0.ps

and the statement follows. H
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Remark 3.2.3 In the proof of proposition 3.2.1 we have not used the fact
that T'(t) is strongly continuous or that the domain of A is dense. The only
essential assumption is that 7'() is a semigroup such that ||7'(¢)||;(x) < M
and for A\ > 0 the operators

[e.e]
R(\) = /0 e (8)dt
are well defined and invertible. Indeed, in that case due to the semigroup
property R(A) satisfies the resolvent identity R(A)—R(u) = (u—A)R(A) R (1),
for A, 4 > 0. From the general spectral theory it follows that there exists a
unique closed operator A such that p(A) D (0,00) and R(\) = R(A, A), for
every A > 0. The results of propositions 3.2.1 and 3.2.2 hold also for such
semigroups.

The operator A may still be called generator of T'(t), even if it is the
infinitesimal generator in the usual sense if and only if T'(¢) is strongly con-
tinuous.

This is the case of the translations semigroups (7;(t)f)(z) = f(x + te;)
in X = C(R"), of the Gauss-Weierstrass semigroup

again in C(R"), of the Ornstein-Uhlenbeck semigroup

Kt—1/2y2
T() f(z) = (47rt)n/2(ileth)1/2 /R e gy

with Q > 0, B # 0 arbitrary n x n matrices,

1t *
K, = —/ e*BQesP ds,
tJo

both in C(R") and in BUC(R"), etc. None of these semigroups is strongly
continuous.

A useful embedding result in applications to PDE’s is the following.
Theorem 3.2.4 Let T(t) be a semigroup in X. Assume moreover that there
exists a Banach space E C X and m € N, 0 < <1, C > 0 such that

C
1T nx,m) < ek >0,
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and that t — T(t)z is measurable with values in E, for each x € X. Then
E € Jg(X,D(A™)), so that (X, D(A™))es,p C (X, E)gp, for every 0 € (0,1),
p € [1,00].

Proof — Let z € D(A™), A > 0 and set (Al — A)™z = y. Then z =
(R(X, A))™y so that

(_1)771—1 dm—l 1
L= = 1)1 a1 P Ay =

o0
m /0 G_ASSm_lT(S)y dS,

so that for every A > 0
CT(m(1 - p))

c < s . m(l-B)— mpB—m
lelle < ooy [ e syl = Sy
Crml_ﬁ mB—m - m m—r T AT “ mpB—r r
_((m(fl),))x 8 Z<r>>\ (1) ATz| < C' ST AT ATy,
: r=0 r=0

Let us recall that D(A") belongs to J,/,.(X, D(A™)) so that there is C'

such that [|z||par) < C||x||7b/am) ||a:||§(_r/m. Using such inequalities and then
ab < C(a? + ') with p = n/r, p' =r/(n —r) we get

lzlle < CX™P (A" [lull piam + [lull), A >0,
so that taking the minimum for A > 0

Izl < Clull =l oy

and the statement holds. W

3.2.1 Examples and applications. Schauder type theorems

Example 3.2.5 Let us apply propositions 3.2.1, 3.2.2 to the case X =
LP(R), 1 < p < oo, A: D(A) = W'P(R) — LP(R), Af = f'. Then T(t) is
the translations semigroup, T'(t) f(z) = f(z +t). Applying proposition 3.1.1
we get for 0 < 6 <1

(LP(R), W'P(R))g,p = Da(6,p)

={feLP: ttOf(+1) = fllp» € LE(0,00)} = WOP(R),



Interpolation and domains of operators 75

which we knew already (example 1.1.8), but this is an alternative proof.
Applying proposition 3.1.5 and recalling that D(A?) = W2P(R) we get for

0+1/2
(LP(R), W?P(R))g, = Da(20,p)

so that for 6 < 1/2
(LP(R), W?P(R))g,, = WP (R),
and for 8 > 1/2, by proposition 3.1.5,
(LP(R),W?P(R))g,, = {f € W'P: f' € Da(20 — 1,p)} = W*'¥(R).

For 6§ = 1/2 we need proposition 3.1.6: we get

(LP(R), WP (R))1 /2, =

={fell:t =t f(-+2t) = 2f(-+ 1)+ fllzr € LE(0,00)} = B} ,(R),
which coincides with W1?(R) only for p = 2.

Choosing X = C(R), A : D(A) = CY(R) — C(R), Af = f', we get,
recalling remark 3.2.3,

(C(R), C*(R))p,00 = C*(R), 0 #1/2,

(C(R)7 CQ(R))l/Q,oo =

x+2t) —2f(x +t)+ f(x
B RN CEa /(R K (R
which Zygmund called A} (R). It is easy to see that Lip(R) C A} (R), but the
converse is not true.

Example 3.2.6 Let A;, i =1,...,n be the realization of the partial deriva-
tive 9/0x; in C(R"), or in BUC(R"), or in LP(R"), 1 < p < oo. Each 4,
satisfies (3.1.1), with

+o00
(R(A7 Al)f)(x) = / e)\(xi_S)f(xb sy Ti—15 8, L1y - - - ,fEn)dS,
i
for A\ >0, f € X,z € R”, so that M =1 for every ¢, and R(X, 4;)R(\, A;) =
R(X, Aj)R(N, A;) for every i, j. We apply theorem 3.1.10 for those 6 such
that Om is not integer, fm =k + o0, k=[0m], 0 <o < 1.



76 Chapter 3

If X = C(R") (resp., X = BUC(R")) then K™ = C™(R") (resp., K™ =
BUC™(R™)). From the second part of proposition 3.1.1, or else from example
1.1.8 we know that Dy, (0,00) ={f € X : s — f(21,...,%i=1,8,Tit1,--.+Tn)
€ C?(R)}, so that

() Da, (0, 00) = C7(R™),
=1

From theorem 3.1.10 we get
(X, K™)poo ={f € K*: Df € C7(RM), |a| = k} = C™(R™).

Let now X = LP(R"), 1 < p < oo. From the second part of proposition
3.1.1 and also from example 1.1.8 we know that D4, (o,p) = {f € X : s —
f(xb sy Ti—15 8, Li41y - - - 75577,) € WU,p(R)}’ so that

n
(| Da;(0,p) = WIP(R").
i=1

From theorem 3.1.10 we get

(X, Km)e,p — (Lp,Wk’p)a,p
={f e WkP(R" : D*f € WoP(R"), |a| = k} = WI™P(R").

After such characterizations we are able to characterize other important
interpolation spaces by means of theorem 3.2.4.

Example 3.2.7 Let A be the realization of the Laplace operator A in X =
LP(R™), 1 <p<oo. Then for 0 <a <1

W*P(R") = Da(a/2,p), WOT2P(R") = Da(a/2 + 1,p).

If A is the realization of A in X = BUC(R"), in X = C(R") or in X =
L (R™), then

C%(R") = Da(a/2,00), C*T*(R") = Da(a/2+1,00).

Proof — The embeddings C are easy consequences of example 3.2.6. Indeed,
let X = LP(R"), 1 < p < oco. From example 3.2.6 we know that W*P(R") =
(LP(R™), W?P(R"™))qp. Since WP C D(A), then we have

WEP(R") = (LP(R"), W?P(R"))a/2p C Dalcr/2,p).
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Similarly, from example 3.2.6 we know that WeT2P(R") coincides with
(LP(R™), WP (R™)) (a42)/4,p- Since WHP(R™) C D(A?), then we have

Wot2e(RY) = (LP(R™), WP (R™)) (as2)/4

- (X7D(A2))(a+2)/4,p = DA(CY/2 + 17]7),

where the last equality follows from proposition 3.1.5.

The same proof works in the case X = BUC(R").

To prove the opposite inclusions we introduce the Gauss-Weierstrass
semigroup,

P(t)f(z) = W /Rn e_lz;f|2f(y)dy, t>0, z € R (3.2.3)

P(t) may be seen as a (strongly continuous) semigroup in X = LP(R"),
1 <p<ooorin X = BUC(R"). Its infinitesimal generator is the realization
of the Laplace operator in X.
It is easy to see that if 1 < p < 0o, P(t)f € C®°(R") for every f € LP(R"),
and that o
1D*P@) fllzr < 75 ees >0,

In particular,

1
PO e wivy < C<1 + m), t>0,
(3.2.4)
1 1 1
1P L(ze,wsry < C<1 +toapt gt W) t>0,
and similarly
1
POl mvesuc ey < C(1+ 575 ), 10
(3.2.5)

1 1 1
1P (BucEn),Bucs @) < C<1 taptit m) t>0.

Replacing P(t) by T(t) = P(t)e~! (the semigroup generated by A — I) we
get

C
1T (0 w1y < 75 >0,

C
T sz o < 0 £>0,
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and

C
1Tl BucEn),Buc ®r)) < e >0,

C
ITONLBucEn),pucs@n) < 55y t> 0.

Let X = LP(R"), 1 < p < oo. Since D(A) = D(A — I) then Dy(a/2,p) =
Da_r(a/2,p). Using theorem 3.2.4, with E = WYP(R?), m = 1, = 1/2,
we get

DA_[(Oé/2,p) = (X7 D(A - I))a/?,p C (Lp(]Rn)v Wl’p(Rn))a,;ﬂ = Wa,p(Rn).

Therefore,
WP(R") D Da(a/2,p).

Moreover, since D(A?) = D((A — I)?) then D4(a/2 + 1,p) = Da_r(a/2 +
1,p). Using again theorem 3.2.4, with E = W3P(R"), m = 2, § = 3/4, we
get

Da-1(a/2+1,p) = (X, D((A = I)*))(a42) /4

C (Lp(]Rn)’ W3’p(]Rn))(o<+2)/3,p = Wa+2,p(Rn),

the last equality following from example 3.2.6. Therefore,
WeF2P(R™) D Da(a/2 + 1,p),

and the first part of the statement is proved. The same procedure works in
the case X = BUC(R"), X =C(R"), X = L*(R"). 1

Remark 3.2.8 Note that the embeddings C hold for every operator A :
D(A) Cc LP(R") — LP(R™) such that D(A) D W?2P(R") and D(A?%) D
W4P(R") (respectively, A : D(A) C BUC(R") ~ BUC(R") such that
D(A) D BUC?*(R") and D(A%) D BUC*(R")), whereas the embeddings
D hold for every operator A : D(A) C LP(R™) — LP(R™) (respectively, A :
D(A) Cc BUC(R™) — BUC(R"™)) which generates a semigroup P(t) satisfy-
ing estimates (3.2.4) (respectively, (3.2.5)). For 1 < p < oco one could prove
the statement also using the known characterizations D(A) = W?2P(R"),
D(A?) = W*P(R™). However, such characterizations are not true for p = 1;
similarly, it is not true that if X = BUC(R") then D(A) = BUC?(R") and
D(A?) = BUC*(R").
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An important consequence of example 3.2.7 are the optimal regularity
theorems for the Laplace equation in Holder and in fractional Sobolev spaces.

Corollary 3.2.9 (i) (Schauder Theorem) Let u € C*(R") be such that Au €
C*(R™) with 0 < a < 1. Then u € C*2(R"), and

[ullcatr(@ny < Cl[ufloo + [[Aul[ce(m))-

(ii) Let u € W2P(R™) be such that Au € WP(R") with0 < a < 1,1 <p<
0o. Then u € Wat2P(R™), and

[ullwatzp@ny < Cllullze + [|Aullya.pgn))-
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Powers of positive operators

The powers (with real or complex exponents) of positive operators are im-

portant tools in the study of partial differential equations. The theory of

powers of operators is very close to interpolation theory, even if in general

the domain of a power of a positive operator is not an interpolation space.
Through the whole chapter X is a complex Banach space.

4.1 Definitions and general properties

Definition 4.1.1 A linear operator A : D(A) C X — X is said to be a
positive operator if the resolvent set of A contains (—o0,0] and there is
M > 0 such that

IR, A)l|Lx) < A<0. (4.1.1)

1+

Note that A is a positive operator iff (—o0,0) is a ray of minimal growth
for the resolvent R(\, A) and 0 € p(A). So, if A is a positive operator, then
— A satisfies (3.1.1) so that all the results of §3.1 are applicable.

Examples of unbounded positive operators are readily given: for instance,
the realization of the first order derivative with Dirichlet boundary condition
at x =0 in C([0,1]) or in LP(0,1), 1 < p < oo is positive. More generally, if
A is the generator of a strongly continuous or analytic semigroup 7'(¢) such
that | T'(t)|| < Me™“! for some w > 0, then —A is a positive operator. This
can be easily seen from the already mentioned resolvent formula

“R(=\,—A) = R(\, A) = / e NT(H)dt, A > —w.
0

81
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This section is devoted to the construction and to the main properties of
the powers A*  where z is an arbitrary complex number.

If A: X — X is a bounded positive operator the powers A* are readily
defined by

1 Y
A7 = ﬁ/ NR(\, A)d),

where 7 is any piecewise smooth curve surrounding o(A), avoiding (—o0, 0],
with index 1 with respect to every element of o(A). Several properties of A*
follow easily from the definition: for instance, z — A?* is holomorphic with
values in L(X); if z = k € Z then A? defined above coincides with A*; for
each z, w € C we have A7AY = AV A* = AT, (A71)? = A%, etc.

In the case where A is unbounded the theory is much more complicated.
To define A% we shall use an elementary but important spectral property,
stated in the next lemma.

Lemma 4.1.2 Let A be a positive operator. Then the resolvent set of A
contains the set

A={ eC: ReA<0, ImA| < (Re A +1)/M}U{reC: |A <1/M},

where M is the number in formula (4.1.1), and for every 6y € (0,arctan 1/M),
ro € (0,1/M) there is My > 0 such that

My
1+ Al

IR(A, A)|| <

for all X € C with |\ < 79, and for all A\ € C with Re A < 0 and
|Im A|/|Re A| < tan 6.

Proof — It is sufficient to recall that for every A\g € p(A) the resolvent set
p(A) contains the open ball centered at Ay with radius 1/||R(Ag, 4)||, and
that for |A — Xo| < 1/||R(Xo, 4)|| it holds

o

R(A,A) = (=1)"(A = Xo)"R(Xo, A)" .

n=0
The union of the balls centered at Ay € (—o0,0] with radius 1/||R(Xo, A)||
contains the set A, and the estimate follows easily. N

For § € (m/2,7), r > 0, let 7, ¢ be the curve defined by v, g = —’yﬁ% -

77572(3 + ’y,(a?z,, where 7571(),, fyf,?z are the half lines parametrized respectively by
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z=¢&e 2z =¢e " £ >r, and 75?% is the arc of circle parametrized by

z=reM, —0 < n < 6. See the figure.

T
//\

\\
///r

Fig. 1. The curve 7, ¢.

Now we are ready to define A% for Re z < 0 through a Dunford integral.

Definition 4.1.3 Fiz any r € (0,1/M), 6 € (7 — arctan1/M, x). For Re

a <0 set .
rp— / AR(A, A)dA. (4.1.2)
Yr,0

~ o

Since A — A*R(\, A) is holomorphic in A\ (—oo, 0] with values in L(X),
the integral is an element of L(X) independent of r and #. Writing down
the integral we get

A% = % / ¢ (—e®CTVR (e, A) + e POV R(ge™, A))de
™ Jr

(4.1.3)
ra+1

0
/ MOt R(re™, A)dn
2 J_p ’
for every r € (0,1/M), 6 € (m — arctan 1/M, 7).
Of course formula (4.1.3) may be reworked to get simpler expressions for
A®%. For instance, if —1 < Re @ < 0 we may let r — 0, 8 — 7 to get
sin(ma

A%z = —)/oofa(ff—i-A)_lxd{. (4.1.4)
0

™

Note that for every a > 0 and a € (—1,0) we have

a__sin(woz) oo g
el k3 (4.1.5)
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which agrees with (4.1.4) of course, and will be used later.

From the definition it follows immediately that the function z — A? is
holomorphic in the half plane Re z < 0, with values in L(X). Its behavior
near the imaginary axis is not obvious, but it is of great importance in the
developements of the theory and will be discussed in the next section.

Let us see some basic properties of the operators A%.

Proposition 4.1.4 The following statements hold true.

(i) For « = —n, n € N, the operator defined in (4.1.2) coincides with
A" = n-th power of the inverse of A.

(i) For Re a < —n, the range of A® is contained in the domain D(A"),

and
A"A% = A"y, ¢ e X.

(#ii) For Re a < 0 and x € D(A™), A%z € D(A™), and
A®A"x = A" A%,

(iv) For Re z1, Re 2o < 0 we have
AP A% = pARtEe

Proof — (i) Let a = —n. It is easy to see that

L AR AN = Tim —— [ AR, A)dd,

27 Sy, 4 k—oo 271 Jo,

[~
\//\

with v, as in figure.

Fig. 3. The curve ;.
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For every k € N the function A — R(A, A) is holomorphic in the bounded
region surrounded by «;. For every k € N we have

1 1 m—1
— [ XR(\, A)d\ = — d

270 ., (n—1)tdan—1 R, 4)

_ -n
[A=0 — A7

and letting k£ — oo,

1
— / ATPR(N, A)dr = A"
27‘-1 Yr, 6

(ii) Let n = 1, Re @ < —1. Then, since
INAR, A)|| = IA*(AR(, A) = D < (Mo + 1A,
the integral defining A® is in fact an element of L(X, D(A)), and

1 1 1
A— | XR\A)dN=-— [ IR\ A)dN— — [ A%\

27‘-2 Yr.,0 27T,L Yr,0 T Yr,0

But the last integral vanishes, so that A - A% = A*® and the statement is
proved for n = 1. The statement for any n follows arguing by recurrence.

Statement (iii) is obvious because A™ commutes with R(\, A) on D(A"),
and this implies that A" commutes with A% on D(A").

(iv) Let 61 < 0y < m, 1/M > 11 > 13 > 0, so that +y, g, is on the right
hand side of v;, g,. Then

1
PRy — /
(2mi)? Jy

NR(M, A)d) / w? R(w, A)dw

71,01 77‘2 00

dA dw

— 1 / A1 22 R()\, A) B R(wv A)
(27-(1)2 Yry,01 XVro,09 w — >\

71,01

w2

w— A

N1R(A, A)dA /

7r2 05

dw

1 A4
- 2/ w? R(w, A)dw d\

ro,00 Vrq,01

- / N2 R(A, A)dA = A2 @

Yrqi,01
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Statement (iv) of the proposition implies immediately that A* is one
to one. Indeed, if A’z = 0 and n € N is such that —n < Re z, then
A7 = AT * A%z = 0, so that £ = 0. Therefore it is possible to define A*
if Re a > 0 as the inverse of A=®. But in this way the powers A%, ¢t € R,
remain undefined. So we give a unified definition for Re a > 0.

Definition 4.1.5 Let 0 < Re a <n, n € N. We set
D(A%) ={z e X : A* "z € D(A")}, A% = A"A* "y,

From proposition 4.1.4 it follows that the operator A“ is independent of
n: indeed, if n, m > Re «, then A g = A" ™A* "z both for n < m
(by proposition 4.1.4(iv)) and for n > m (by proposition 4.1.4(ii)), so that
A" € D(A™) iff A"z € D(A™).

For a = 0 we get immediately A° = I. Moreover for Re a > 0 we get

D(A%) = A=(X); A% = (A1,

Indeed, A% "z € D(A™) iff there is y € X with A "2 = A "y. Such a
y is obviously unique, and A%x = y by definition. Moreover A™"A™%y =
AT*AY "y = A"z so that £ = A7 %y is in the range of A~ and A® =
(A=)~

Since A® has a bounded inverse, then it is a closed operator, so that
D(A%) is a Banach space endowed with the graph norm. Again, since A®
has a bounded inverse, its graph norm is equivalent to

z > || A%,

which is usually considered the canonical norm of D(A%).

If Re @« = 0, @ = it with ¢t € R, A" is the inverse of A~% in the sense
that for each x € D(A™), A%z € D(A~") and A="% A%z = x. Indeed, if = €
D(A™) then A"~z € D(A), and A%z = A(A"'z) by definition. Therefore
A1t gity, — A-1-t g . A1y — A. A1 A%- 10 — A. A 22 c D(A),
which implies that A%z € D(A™") and A=Az = .

But in general the operators A* are not bounded, see next example
4.2.1. However, they are closed operators, because A~1*% is bounded and
A is closed (see next exercise 6, §4.2.1). Therefore also D(A%) is a Banach
space under the graph norm.

From the definition it follows easily that for 0 < Re o« < n € N, the
domain D(A") is continuously embedded in D(A®): indeed for each z €
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D(A™), A* "z € D(A™) by proposition 4.1.4(iii), and A%z = A"A* "x =
A" Az so that ||[A%z| < ||A*™™|| ||A™z||. This property is generalized in
the next theorem.

Theorem 4.1.6 Let «, 5 € C be such that Re f < Re a. Then D(A%) C
D(AP), and for every x € D(A®),

APz = AP A%
Moreover for each x € D(A®), APz € D(A*P) and
AP APy = A%,

Conversely, if © € D(AP) and APz € D(A*P), then x € D(A%) and again
AP ABy = Ay,

Proof — The embedding D(A%) C D(AP) is obvious if Re § < 0; it has to
be proved for Re 3 > 0.

If € D(A%), A=tz € D(A") for n > Re a. Therefore A" Ay =
AP~ p=ntey € D(A™), thanks to proposition 4.1.4(iii), so that z € D(AP),
and APz = AnAB—ag—ntoy — AB—agoy Since AP~ is a bounded opera-
tor, ||A%z| < ||Aﬁ_a||L(X)||Aa:B||, and D(A?) is continuously embedded in
D(AP).

Let again z € D(A?%), and let n > max{Re a,Re (o — 5)}. Then

A—n—l—a—ﬁA,Bm — A—n—|—a—ﬁA,@—0¢AOéx = A""A%; € D(An)a

so that APz € D(A*8) and AP APr = A%
Let now z € D(AP) be such that A%z € D(A* ), and fix n > max{ Re
a, Re a — f}. Then

Ay = AOT P AT gy = AP AT AP = AT AT APy
is in D(A?"), so that © € D(A®) and A% = A?"A* 2"g = A*PAPz. m

The condition Re f < Re « is essential in the above theorem when Re
a > 0. In fact for every a > 0, t € R we have D(A%) = D(A**%) if and only
if A% is bounded. See exercise 2, §4.2.1.

Now we give some representation formulas for A%z when z € D(A®). We
consider first the case where 0 < Re a < 1. Taking n = 1 in the definition,
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we see that z € D(A®) if and only if A%~z € D(A). Letting r — 0 and
6 — 7 in the representation formula (4.1.3) for A% 1z we get

o [e.e]
Aty = M/ (e + A) T dt. (4.1.6)
U 0
Therefore x € D(A?) if and only if the integral [;° ¥ H(E1 + A) "tz d€ is in
the domain of A, and in this case

A%y = w A/OOO Ve + A)wde
1 (4.1.7)
= M) —a) A/o T+ Ao de,

which is the well-known Balakrishnan formula.
Another important representation formula holds for —1 < Re o < 1. The
starting point is again formula (4.1.3) for A%~'z. We let § — 7 and then we

integrate by parts in the integrals between r and oo, getting
sin(ma)

Avlyg = ——— /Oo T+ A)Pxdé —r

yye?

a$in(me) (rI +A) 'z

_ﬁ B ino in -1

e"*(re"I + A) "z dn
2 J_x

(with (sin(7wa))/(wa) replaced by 1 if @ = 0) and letting » — 0 we get (both

for Re a € (0,1) and for Re a € (—1,0])

1

a—1_,
A e = T

e GRS (118)

Therefore z € D(A®) if and only if the integral [7°¢%(¢1 + A) "2z d€ is in
the domain of A, and in this case

o — 1 o (6% —
A = T A/O £O(ET + A) 2 de. (4.1.9)

The most general formula of this type may be found as usual in the book
of Triebel: for n € NU{0}, m € N, —n < Re @ < m —n we have

I'(m)

A% =
” MNa+n)'(m—n—

o0
Amn / tt T+ A) " dt
«) 0
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for every z € D(A®). See [36, §1.5.1].

We already know that the domain D(A) is continuously embedded in
D(A®) for Re a € [0,1). With the aid of the representation formulas (4.1.7)
and (4.1.9) we are able to prove more precise embedding properties of D(A®).

Proposition 4.1.7 For0 < Re a < 1, D(A®) is in the class Jre o(X, D(A))
N Kge o(X, D(A)), i.e.

(X7D(A))Rea,1 C D(Aa) C (X’D(A))Rea,oo

Proof — The embedding (X, D(4))rea,1 C D(A®) is immediate, because
for £ >0

|AETHED + A) " a]| = €R T A(EL + A) x|
and for every z € (X, D(A))Req,1 the function & — R Y| A(A + £1) 71z is

in L1(0,00) thanks to proposition 3.1.1. Using the representation formula
(4.1.6) for A% 'z, we get A% 'z € D(A), i.e. z € D(A®) and by (4.1.7)

1 o0 1 4
A%| < —/ Reajga+entz =<0 .
” $|| = |F(Oé)F(]. — Ol)| 0 é || ( 5 ) ZL'” 6 = ||x”(X,D(A))Rea’1

Let now z € D(A®). Then z = A~ %y, with y = A%, so that by
proposition 3.1.1 and formula (4.1.8)

I/l (x,D(A)) Rew e < C(0) SUPAS AT YA(A + AT) "
)\ReaAQ(A + )\I)_l © 9
= C(a) supy~ Tl — o)l +0) /0 t*(A+tI) ydtH.

For every A > 0 we have

ARe «
0

o0
A2 (A4 AT / A+ D)2y dtH

< amea MY reaqnr 12y an
- 1+XJo Y

o0 M(M+1
+>\Rea(M+1)/ t—Rea ( + )

dt
i L

< Cllyl
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so that z € (X, D(A))Re a,00 and
]l x, D)) < 'yl = C'| A%z,

Rea,o00 —

which implies that D(A%) C (X, D(4))Rea,c0- B

Remark 4.1.8 Arguing similarly (using formula (4.1.9) instead of (4.1.7))
we see easily that for every ¢ € (0,1) and ¢t € R, (X,D(A)).,1 is con-
tained in D(A®). Indeed the function & — ||EPA(EI + A)~%z|| < M(1 +
)L AET + A)~z|| is in L'(0,00) for every z in (X, D(A))1, so that the
integral [5° E(ET+ A) 2z d¢ belongs to the domain of A. Therefore, for ev-
ery ¢ € (0,1) and p € [1,00], t € R, (X, D(A)),, is continuously embedded
in D(AM).

Remark 4.1.9 Let 0 < a < 1. It is possible to show that in its turn A% is

a positive operator, and that

Rovas) = L [ BEA) Lo (4.1.10)
270 Jy, g A — 2

(see exercise 5, §4.2.1). Using the above formula for the resolvent, one shows
that —A® is a sectorial operator. This may be surprising, since —A is not
necessarily sectorial. This also may help in avoiding mistakes driven by
“intuition”. Consider for instance the case where X = L2(0,7) and A is the
realization of —d?/dz? with Dirichlet boundary condition, i.e. A : D(A) =
H?(0,7)NHE(0,7), Au = —u". One could think that A'/? is a realization of
id/dx with some boundary condition, but this cannot be true because such
operators are not sectorial. See next example 4.3.9.

4.1.1 Powers of nonnegative operators

A part of the theory of powers of positive operators may be extended to
nonnegative operators.

Definition 4.1.10 A linear operato A : D(A) C X — X is said to be
nonnegative if the resolvent set of A contains (—o0,0) and there is M > 0
such that

o+ a1 <2 o

In other words, A is a nonnegative operator iff (—oo,0) is a ray of minimal
growth for the resolvent of A.
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An important example of nonnegative operator is the realization A of
—A (the Laplace operator) in LP(R™), 1 < p < oo. But A is not positive
because 0 € o(A). However if p < oo then A is one to one. See exercise 13,
§4.2.1.

If 0 € o(A) but A is one to one, it is still possible to define A% for —1 <
Re z < 1.

Let —1 < Re z < 1, z # 0, and define an operator B, on D(A) N R(A)
by

B,x =

= — +

sin(mz) (a: A lg
z 1+=z

™

(4.1.11)
1 %)
z+1 —14-1 z—1 -1
+/0£+(§I+A) A xdf—i—/l e+ A) A:pd§>

for each z € D(A) N R(A) (note that in the case where 0 € p(A), B,x
coincides with A*z since formula (4.1.11) is obtained easily from (4.1.9)).
Then one checks that B, : D(A) N R(A) — H is closable, and defines A* as
the closure of B,.

Another way to define A% for 0 < a < 1, even if A is not one to one, is
the following: for A > 0 one defines (A\I + A%)~! by

_sin(ra) [ ¢ »
= /0 N T IhEe cos(na) 1 ez T HA) TG (4112)

then one checks that R) is invertible for every A > 0 and RyR, = (R, —
Ry)/(A — p). Therefore there exists a unique closed operator B such that
Ry = (M + B)~! for A > 0, and we set A* = B. (Note that in the case
where 0 € p(A) the above formula for (A + A%)~! is correct because it is
obtained from (4.1.10) letting r — 0 and 6 — 7).

From the representation formula (4.1.12) it follows that

lim (A] + (e + AN = (AT + A%, in L(H),
E—r

which will be used in the proof of next lemma. In its turn, lemma 4.1.11
will be used in the proof of theorem 4.3.4.

Lemma 4.1.11 Let A: D(A) C X — X be any nonnegative densely defined
operator. Then D(A + eI)* = D(A%) for each o € [0,1], and there is C
independent of € such that

(A + el)®z — A%|| < Ce¥||z||, = € D(A%).
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Proof — For 0 < n < e, A+ €l and A + nl are positive operators. Using
the Balakrishnan formula for 0 < o < 1, we get
(A+e)r — (A+nl)*z =

sin(ma)

= T (=) [T+ T+ A€+ T+ A) e

0
+[ (A eD(E+ T+ ) = (A4 D) (€ + )T +4) Do)

for every x € D(A) and ¢ > 0. Therefore,
(A +el) — (A+nI) %

sin(ma)

! ((e — ) M? /;o £924¢ 4 2(1 + M) /05 5“‘1d§>
_ sin(ma) (ﬂMQ(;a—l + 2(1 ";M)(Sa) Iz

7r l-«a
for every x € D(A) and ¢ > 0. Taking § = (¢ — n) we get
(A +el)%z = (A+nl)%z|| < Cle)(e —n)*[|=].

Therefore, for every z € D(A) the function € — (A + €I)®z is uniformly
continuous, so that there exists the limit lim. ,o(A + eI)*z = Bz. Letting
1 — 0 in the above estimate we find

(A + eD)®z — Bz| < C(a)e?|z]. (4.1.13)

for each ¢ > 0, for each z € D(A). But D(A) is a core of (A + £I)%, that
is the closure of the restriction of (A + €I)* to D(A) is (A + eI)® itself:
indeed, for every y € D((A + I)®) the sequence y, = n(nl + A)~'y is in
D(A), y, = y and (A +el)%, = n(nl + A) YA+ el)% — (A+el)%y as
n — oo, because D(A) is dense. This implies that B is closable, its closure
B has domain D((A + eI)%), and inequality (4.1.13) holds also for B. So,
(A + el)®r — Br uniformly for € D(B), ||z|| < 1, and this implies that
(—00,0) C p(B), and (\I + (A+el)*)™t = (A\[+ B) ' as e — 0 in L(X).
Since (M + (A +€eI)®)~! — (M + AY) 7! then B = A%. =
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4.2 Operators with bounded imaginary powers

Let again A be a positive operator in a complex Banach space X. We know
that the operators A* are bounded if Re z < 0 and unbounded in general
if Re z > 0 (this is because D(A*) C (X, D(A))Rez,00 by proposition 4.1.7).
Moreover remark 4.1.8 tells us that for every ¢ € R, the domain D(A™) is not
very far from the underlying space X because all the interpolation spaces
(X, D(A))., are continuously embedded in D(A™). So, it is natural to ask
whether D(A") = X and A" is a bounded operator also for ¢+ # 0. The
general answer is “no”, as the following example shows.

Example 4.2.1 Let S be the shift operator, S(&1,&2,&3,...) = (0,&1,&9,...),
i X = ¢g = the space of all complex valued sequences &, such that lim, . &,
=0, endowed with the sup norm, and set A = (I—S)~'. Then A is a positive
operator, and for every t # 0, A" is unbounded.

Proof — It is easily seen that the domain of A is the subset of ¢y consisting
of the sequences ¢ = {¢,} such that > >°, &, = 0 (which is dense in ¢), and

A(61,8,83,...) = (6,4 + &, + &+ &3, ),

An easy computation shows that for A > 0

M+ A)! = I 1 i( A >k_15k
A+l (A+1)2 A+ ’

so that

IO + A) < — (1+— 1 fi(—ii->b4><<_ii_
DTS ICAD P I ey S3E T

which implies that A is a positive operator. Replacing in (4.1.2), for Re
a < 0, and then also for Re a = 0, we get

ala+ 1)52 N ala+1)(a+2)

3
5 i S+

A =T+ aS+

So, for o = it the n-th component of A%¢ is

it(it + 1)

it(it+1) ... (it +n—2)
5 +

gn + it gn—l + (n — 1)!

671—2 +

&1
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Fix any n € N and define a sequence £ € D(A) as follows:

1 1 2
énzov 671—1: Za fn—QZM7 671—3: Z(Zt+1)(lt+2),7
B (n—2)!
b= i(it+1)-...-(it+n—2)

while for k& > n & is arbitrary, subject only to |&| < 1 and Y 32, & = 0.
Then we get

; ; 11 1
1> 00 =1 1+ b 1)
1AEN > (A" )l = [t {14+ 5+ 5+ + —

while the norm of ¢ is 1. Letting n — oo we obtain SUP¢ep(A), [I¢]|=1 |A™E]]
= +400, so that A™ is unbounded. ®

Let us discuss the behavior of A% for Re z < 0, 2z close to the imaginary
axis. From the representation formula (4.1.4) we get easily, using (4.1.5),

gRez | sin(7z)|
mdg < MW’ Rez € (—1,0)
(4.2.1)
In particular, for real z = —a, with 0 < o < 1 we get ||A™%| < M, so that
|A=¢|| is bounded on the real interval (—1,0), and hence it is bounded on
any real interval (—a,0), a > 0. But in general ||A?|| may be unbounded in
other subsets Q of the left halfplane such that Q N iR # (). However, if the
operator A is bounded for ¢t € I C R and ||AY|| < C for every t € I, then

for z = —a + it we have

|A%) < — |sin(7rz)\/
™ 0

474 < A0 4% < MO, 0<a<1/2 tel

A sort of converse of the above considerations is in the next lemma. It
gives a simple (but hard to be checked) sufficient condition for A® to be
bounded.

Lemma 4.2.2 Let A be a positive operator with dense domain D(A). As-
sume that there are a set Q C {z € C: Re z < 0} and a constant C' > 0 such
that QN iR # 0 and ||A?|| < C for z € Q. Then for every t € R such that
it € Q, A" is a bounded operator and |A"|| < C.
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Proof — For every x € D(A) the function z — A*z is continuous for Re z <
1, so that lim, ; ,eq A%z = A%z. Since D(A) is dense and ||A?|| < C for
z € €, it follows that for every € X there exists the limit lim,_,;; ,cq A°z.
Denoting such a limit by Tz, we get ||Tz| < C||z||. Then A% is a closed
operator which coincides with the bounded operator T' on a dense subset.
This implies that A" = T so that A® is bounded. m

The most popular examples of positive unbounded operators with bounded
imaginary powers are m-accretive positive operators in Hilbert spaces, which
will be discussed in the next section. Self-adjoint positive operators belong
to this class. Another interesting example is the following.

Example 4.2.3 Let A : D(A) — X be any positive operator, and let 0 <
0 <1,1<p<oo. Then the parts of A in (X, D(A))g, and in (X,D(A))g
have bounded imaginary powers.

Proof — It is not hard to check (see exercise 1, §4.2.1) that the part of A
in any of the above spaces is still a positive operator.

First we consider the case p = co. Let Ag : D (6+1,00) — D4(0,00) be
the part of Ain D 4(6,00). We already know (remark 4.1.8) that D 4(0,00) =
(X,D(A))goo is contained in D(A™). Therefore for every = € D(6,00),
A%=1lg belongs to the domain D(A). To obtain an estimate for ||A%z| =
|A(A®~1z)|| we use the representation formula (4.1.8) for A* 'z,

1

AT = I‘(l—it)I‘(l-I—it)/o EAtenTod

sm mt

= / EHA+ €)% de,

which gives

[ A

IN

eﬂ't_e—ﬂt 00 M 0 .
o | mpagle A e a

Tt —t

e

< C()

— €

Izl x4,

We prove now that in fact A%~!z belongs to D4(6 + 1,00). We use again
the representation formula (4.1.8) for A*~'z, which implies that for every
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A>0
IN AN + A)LA(A L g)||

eﬂ't _ e—?‘l’t A
< S |Nor+ Ay / E0A(A + 1) 0 A(A + g[)—lxdgu
T 0
e?‘l’t _ e—ﬂ't oo .
5 MANT + A)7! / EVA+ NI AA+ €D e dgH
T A
671't _ e—?‘l’t M/\" (M + 1))\1—0 0 M)\—G
= om (A+1 =g tM+DA )memmmw
t__ —mt

e —e
< O ———lzllx.D())p

Therefore, A% 'z belongs to D4(f + 1,00), which is the domain of Ay in
DA(0,00). Tt follows that z is in the domain of AY, and

t__ e—?rt

. e/n'
IAG 2]l (x,0(4)).00 < Cﬂf”xH(X’D(A))G’OO'

The rest of the statement follows by interpolation: knowing that for
0 < 0; < 6 <1 the part of A% in (X, D(A))g, c and in (X, D(A))g, « is a
bounded operator, from theorem 1.1.6 it follows that for every 6 € (61,05)
the part of A in (X, D(A)),, and in (X, D(A))y is a bounded operator. M

Another important example follows from the so called “transference prin-
ciple”. See Coifman—Weiss [16].

Theorem 4.2.4 Let (Q, ) be a o-finite measure space, and let 1 < p < 00.
If A is a positive operator in LP(Q, i) such that ||(AM + A)~Y| < 1/X and
(M + A)~1 is positivity preserving for X > 0 (i.e. f(xz) > 0 a.e. implies
(M + A" f)(x) > 0 a.e), then the operators A* are bounded in LP(, ),
and there is C' > 0 such that

A% < C(1 4+ 2)e™/2, teR.

Let us come back to the general theory. Due to theorem 4.1.6, if the
operators A% are bounded for any ¢ in a small neighborhood of 0, then they
are bounded for every t € R. Moreover, if ||[A*| < C for —6 < t < §, then
there exists C’, v > 0 such that ||A%| < C"e!l for every ¢ € R.
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Lemma 4.2.5 Let A be a positive operator such that A" € L(X) for every
t € R, and t — ||AY| is locally bounded. Then for every = € D(A) the
function z — A%z is continuous in the closed halfplane Re z < 0.

Proof — If z € D(A) then z — A%z is holomorphic for Re z < 1, so that it
is obviously continuous for Re z < 0. We have already remarked that (4.2.1)
implies ||A%|| < M for —1/2 < a < 0, so that for z = a+if, —1/2 < a <0,
we get .

|AZ|| < M|A%.

In particular, for every ¢ € R and 7 > 0 small enough the norm ||4* — A%||

is bounded in the half circle {z : |z —it|] < r, Re z < 0}, by a constant

independent of z. It follows that for every z € D(A), lim,_,; A%z = Az,
|

Note that if z ¢ D(A) the function z — A%z cannot be continuous in the
halfplane Re z < 0. Indeed by proposition 4.1.7, A*z € (X, D(A))-Rez,00
for —1 < Re 2z < 0, and (X, D(A))_Re .00 i contained in D(A).

The family of operators {A : t € R} plays an important role also in the

interpolation properties of the domains D(A?).

Theorem 4.2.6 Let A be a positive operator with dense domain such that
for every t € R A" € L(X), and there are C, v > 0 such that

|4 < celll) ¢ e
Then for 0 < Rea < Re 8
[D(A%), D(A%)]g = D(AC0et95),

Proof — Thanks to theorem 4.1.6 we may assume that @ = 0 without
loss of generality. Moreover since A* is bounded for every ¢t € R, then
D(AP) = D(AR®P) for Re B > 0. See exercise 2, §4.2.1. So we may also
assume that S € (0, 0c0).

Let = € D(A%), and set

flz)= T =087 < Rez < 1.

Let us prove that f € F(X, D(A?)). f is obviously holomorphic in the strip
Re z € (0,1) and continuous up to Re z = 1 with values in X. Since D(A)
is dense in X, f is also continuous up to Re z = 0 with values in X. Indeed,
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A~ (=0By — A=2B A% s and we know from lemma 4.2.5 that w — A%y is

continuous with values in X for Re w < 0 for every y € D(A) = X. Similarly,
t — f(1 4 it) is continuous with values in D(AP). f is also bounded, since

”A_(Z—e)ﬂx“ = ||A—ﬁlmzA—ﬁRezA9,3x” < ”A—,BRez” Ce'yﬁ|lmz|||A6ﬁz”
Therefore, f € F(X,D(A)). Since f(6) = z, then z € [XaD(Aﬁ)]a and
1zl x,p(a5), < max{sup, et 0% A—(it=0)B |

24(1-0)? g—(1+it—0

SUPter ||e_t )’8$||D(AB)}

< 'A% ).

It follows that D(A%) is continuously embedded in [X, D(A%)]y.
Conversely, let z € D(AP), and let f € F(X, D(A?)) be such that f(§) =
x.
The function

F(z) = =0 A5 f(2),

is continuous with values in X both for Re z = 0 and for Re z = 1, and we
have

sup [[F(it)|| < supe™" " Ce? M sup || £(it)l| < O'|fllrex,prasy),  (42:2)
ter ter teRrR

sup || F(1+it)]| < supe™" =0 Cer M sup | AP f(1+it)|| < C'| fll2(x,p(a2y):
teR teR teR ’

(4.2.3)
so that F' is bounded with values in X for Re z = 0 and for Re z = 1. If
F would be holomorphic in the interior of S and continuous in .S, we could
apply the maximum principle to get “||A%z| < C'l| fll #x,p(apy)”- But in
general F' is not even defined in the interior of S, because f has values in
X and not in the domain of some power of A. So we have to modify this
procedure.

By remark 2.1.5,

Il x,pasy, = E{Ifllzx,paey : f € VX, D(AP)), f(6) = x}.
So, let f € V(X, D(AP)) be such that f() = x. The function

F(z) =DA% f(2), 0<Rez<1,
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is now welll defined and holomorphic for Re z € (0,1), continuous with
values in X up to Re z = 0, Re z = 1, and bounded with values in X. By
the maximum principle (see exercise 1, §2.1.1),

1A% 2] = 1| £(0)] < max{sup;ep [ F(it), supye [|F(1+it)|}

< O fllex,peasy)s

where the last inequality follows from estimates (4.2.2) and (4.2.3).
Taking the infimum over all the f € V(X, D(A?)) such that f(0) = z we
get
1A% 2] < C'l2llix, peasy,, = € D(A%).

Since D(AP) is dense in [X, D(AP)]y it follows that [X, D(AP)]y is continu-
ously embedded in D(A%). m

4.2.1 Exercises

In exercises 1-9, A is a positive operator in general Banach space X.

1) Let Y be any interpolation space between X and D(A). Prove that the
part of A in Y is a positive operator.

2) Let Re a > 0, t € R. Show that D(A%) = D(A*"") with equivalence of
the norms if and only if A% is bounded.

3) Prove that (4.1.8) holds for —1 < Re a < 1.

4) Show that for Re @ > 1, Re o ¢ N, D(A®) belongs to Jire o (D(ARe ),
D(ARealt1)) and to K(re o) (D(ARe D), D(ARe el+1)) where {Re o} and
[Re a] are the fractional part and the integral part of Re «, respectively.

5) Prove that for every a > 0, A% is a positive operator, and that

Ry A0y = - [ EBEA Lo
271 Jy, g A — 2

6) Prove that if A : D(A) C X — X is a linear closed operator, and B :
X — X is a linear bounded operator, then C : D(C) = {z € X : Bz €
D(A)} — X, Cz = ABz, is a closed operator. (This is used to check that
A" is a closed operator for each ¢ € R).
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7) Prove that if t, s € R and z € D(A*) N D(A"*+5)) then A%z € D(A™)
and A% Ay = Ait+s) g,

8) Improve the estimate of proposition 4.2.3 showing that for each <
arctan 1/M there is C such that

| A" < ce™PIH | ¢ e R,

Hint: instead of using formula (4.1.9), modify formula (4.1.3) for A% !z
letting only » — 0 and leaving 0 < arctan1/M fixed.

9) Prove that A~! is a nonnegative operator, and that for 0 < Re a < 1
AT = (A_l)a.

10) Let A be a densely defined nonnegative operator such that R(A) is
dense in X. Show that R(A) N D(A) is dense in X, and that the operators
B, : D(A)NR(A) — X defined in (4.1.11) are closable.

11) Let A be a nonnegative one to one operator, and set A, = (e[ + A)(cA+
I)~! for e > 0. Show that (i) p(A.) D (—o0,0], (ii) (M +A4.) "t — (A[+A)~!
for A > 0, Acx — z for x € D(A), A-'z — A~z for x € R(A) as e — 0,
(iii) A2z — A%z for x € D(A) N R(A) as € — 0.
12) Let A be a positive operator in a Hilbert space H. Show that for each
a € C, (A*)® = (A%)*, so that if « is real, then (A*)® = (A%)*.
13) Prove that the realization A of —A in LP(R"), 1 < p < oo, is a nonneg-
ative operator. Prove that if p < oo A is one to one, and that if p = oo the
kernel of A consists of the constant functions.

Hint: denoting by T'(t) the Gauss-Weierstrass semigroup, use the esti-
mate ||D;T(t)|| ey < C/V1 to show that if Af = 0 then D;f = D;/T(t)f
vanishes for every i = 1,...,n, so that f is constant.

4.2.2 The sum of two operators with bounded imaginary
powers

We consider now two positive operators, A : D(A) C X — X, B: D(B) C
X — X, having bounded imaginary powers and such that

4% < Ml ||BY| < Me2H | teR. (4.2.4)
We also assume that A and B commute in the resolvent sense,

RO\ A)R(u, B) = R(u, B)R(\, A), A, u < 0. (4.2.5)
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Our assumptions imply immediately (through formula (4.1.2)) that A*B* =
B™ A* for Re w, Re z < 0 and also (less immediately but easily) for Re w,
Re 2 < 0.

We shall study the closability and the invertibility of the operator A+ B,
following the approach of Dore and Venni [18].

Proposition 4.2.7 Let A, B be positive operators satisfying (4.2.4) and
(4.2.5). Assume in addition that y4 + v < m and that D(A) or D(B) is
dense in X. Then A+ B : D(A) N D(B) is closable, and its closure A+ B

is invertible with inverse S given by

dz (4.2.6)

1 a-+1i00 A—sz—l 1 a-+1i00 Bz—lA—z
%), =

—_—dz = —
—ico  SIN(72) 21 Jo—ico sin(mz)

with any a € (0,1). Moreover, S is a left inverse of A+ B.

Proof — Since y4 +vp < 7 the norm of the operator A=?B*~!/sin(72) in
the integral decays exponentially as [Im z| — oco. Therefore S is a bounded
operator, and since z — A~?B*~!/sin(nz) is holomorphic in the strip Re
z € (0,1), S is independent of a € (0,1).

The proof is in three steps: (i) we show that S is a left inverse of A + B;
(ii) we show that if D(A) (resp. D(B)) is dense, then for every ¢ € (0,1)
S maps D(A'=%) (resp. D(B'~%)) to D(A) N D(B) and (A + B)Sz = z for
each z € D(A'~¢) (resp. = € D(B'~%)); (iii) using steps (i) and (ii) we show
in a standard way that A + B is closable and S = A + B
(i) For every xz € D(A) N D(B) it holds

1 a+ioco Bz—lAl—z A—%B?
S(A:L“—i—B:B):—/ ( ® Sv)dz

2i Ja—ico sin(7z) sin(7z)
1 [oa—ldico BZA=2y 1 [oticc A=ZB%y

= ——./ —Q———az —/ —F dz.
2i Ja—1—ico sin(mz) 2i Ja—ico sin(mz)

The function g : @ = {z € C: —1 < Re 2 < 1} — X defined by

B*A %z, —1<Rez<0,
9(z) =
A7*B%*z, 0<Rez<1,

is holomorphic in the strips —1 < Re 2 < 0, 0 < Re z < 1 and continuous
up to the imaginary axis (see exercise 2, §4.2.3). Therefore it is holomorphic



102 Chapter 4

in the whole strip Q. It follows that z — g¢(z)/sin(nz) is holomorphic in
2\ {0}. Moreover it has a simple pole at z = 0, with residue z/m, and it
decays exponentially, uniformly for —1 < Re z < 1, as | Im 2| — oco. It
follows that

S(A+ B)z = WRBS( g(z) ,0) =z

sin(7z)

(ii) Assume for instance that that D(A) is dense. Fix z € D(A!'~¢), with
0 < € < 1 and choose a = ¢ in the definition of §. The function z +—
A'7*B*~1g/sin(rz) is well defined because B*~! maps D(A'~¢) = D(A'~?)
into itself, and it is integrable over ¢ + iR, since

HAl—sz—le _ ||AE_ZBZ_1A1_ESU|| < Ce(’YA+’yB)|Imz|||A1—5$”‘
Therefore, Sz € D(A) and

1— , — —
ASz = /aﬂoo AT*B r dz = l /aﬂoo —Bz_ A dz.
2 sin(7z) 2i ; sin(7z)
To show that Sz belongs also to D(B), we remark that the function z —
B*~'A=%x/sin(rz) is holomorphic for e — 1 < Re z < 1, z # 0, continuous
up to Re z = ¢ — 1 (because D(A) is dense, see lemma 4.2.5), and it decays
exponentially as [Im z| — oco. Therefore, we may shift the vertical line Re
z=a to Re z=¢e — 1 in the definition of S, to get

1 e—1-+ioc0 z2—1 A—2 Bz—lA—z
Sy — _./ g—“dz+ﬂRes(_7z’0>
2i Je—1—ico  sin(mz) sin(7z)

1 e—1+i00 Bz—lA—z
= — / 756 dz + B~ 'z.
2i Je—1—ico  sin(mz)

As easily seen, the integral defines an element of D(B). Therefore Sz €
D(B) and

BSz = dz +

1 e—1+ico B2 A—%y
%/g_l_ioo sin(7z)

1 e+i00 Bz—lAl—z
/ xdz-l—x:—ASa:-l-x.

2 Jeino  sin(mz)
(iii) Let us show that A+ B is closable. Let 2, € D(A) N D(B) be such that
xn =0, (A+ B)z, — y as n — 0o. Since S is a left inverse of A + B then

0= nlgloloxn = nlgréo S(A+ B)z, = Sy.
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Since A~'y € D(A) C D(A'~¢) for each ¢ > 0, then by step (i) SA~'y €
D(A) N D(B) and

Aly=(A+B)SA 'y =(A+ B)A™ 1Sy =0,

so that y = 0 and A + B is closable.

As a last step we prove that A + B is invertible and its inverse is S. If
x € D(A + B) there is a sequence z,, € D(A) N D(B) such that z,, = x and
(A+ B)zp, > A+ Bz as n — oco. Then

T = Jl)ngoxn = nh_g)loS(A + B)z, = SA + Buz,

which means that S is a left inverse of A+ B. Now for z € X let z,, €
D(A) be such that z,, - = as n — oo. By step (ii) Sz, € D(A) N D(B),
lim, oo Sz, = Sz and lim, (A + B)Sz, = lim,_, ©, = 2. This implies
that Sz € D(A+ B) and A + B Sz = z, so that S is also a right inverse of
A+B. 1

Under the assumptions of proposition 4.2.7 the operator A + B is not
closed in general. If we knew that A+ B is closed, it would follow that A+ B
is invertible with bounded inverse. In the next proposition we use this fact
to get information on the resolvent set of a positive operator with bounded
imaginary powers.

Proposition 4.2.8 Let A be a positive operator with bounded imaginary
powers, satisfying .
1A% < cerall |t em.

If 0 < v4 < m, the resolvent set of A contains the sector {\ € C: |arg (A —
)| <m—"7a}.

Proof — We apply proposition 4.2.7 to the operators A, B = —M\I for
every X in the sector. If —\ = pe'® with p > 0, € (—x,7), then | B¥| =
I(=N)*I|| = e7%, so that yp = @ = arg (—\). Since D(B) = X and
A+ B = A — )\ is closed, the statement follows from proposition 4.2.7. H

Under a further suitable assumption on the space X, the conditions of
proposition 4.2.7 are sufficient for A + B to be closed. Such assumption has
several equivalent formulations.

The “geometric” formulation is the following: there exists a symmetric
function ¢ : X x X — R which is convex in each variable, such that ¢(0,0) >
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0, and ((z +y) < ||z + y|| whenever ||z]] < 1 < |ly||. In this case the space
X is said to be (-convex.

The “probabilistic” formulation is the following: there are p € (1,00),
C > 0 such that for every probability space (2, F, P) and for every martin-
gale {uy : @ — X} with respect to any filtration {F}, for each choice of
er € {—1,1}, and for each n € N we have

n n

1> enlur — wk—1) sy < CIIY_ (ur — we—1) Lo x)
k=0 k=0

(where we set u_1 = 0). In this case X is said to be a UMD space, or to
have the property of unconditionality of martingale differences.

The formulation which is useful here is the following: for some p € (1, c0)
and € > 0, the truncated Hilbert transform

(H-f)(t) = %/|y|>8 Lty_ v dy, tER

is a bounded operator from LP(R; X) to itself. Then it is possible to show
that this is true for every p € (1,00) and ¢ > 0. Moreover for each f €
LP(R; X) there exists the limit

lim H,. f

e—=0
in LP(R; X) and a.e. pointwise. Such a limit is denoted by Hf and it is
called the Hilbert transform of f.

Equivalence of the above properties is not trivial. Bourgain [6] showed
that any UMD space has the Hilbert transform property. The converse was
proved by Burkholder [11], who also proved in [10] that X is (-convex iff it
is a UMD space.

Theorem 4.2.9 Let X be a (-convez space, and let A, B be densely defined®)
positive operators in X satisfying the assumptions of proposition 4.2.7. Then
A+ B:D(A)ND(B) — X is closed, and 0 € p(A + B).

Proof — After proposition 4.2.7, we have only to show that S maps X into
D(A) N D(B). This obviously implies that S is a right inverse of A + B,
since by proposition 4.2.7 S is a right inverse of A + B. Again by proposition

'Every ¢-convex space X is reflexive, and therefore by [27] all positive operators in X
are densely defined.



Powers of positive operators 105

4.2.7, S is a left inverse of A + B. Therefore S is the inverse of A + B and
0€p(A+ B).
Let us show that S maps X into D(B). For 0 < ¢ < 1/2 we have

Sz

1 A—sz—l
[ A,

where I'; is the curve {is: |s| > e} U {z € C: |z| = ¢}, Re z > 0, oriented
with increasing imaginary part. So,

Sr o= - / ABY L / el et gty g
2 J|s|>e sin(mis) 2 J_x/2 sin(meet?)

sin(7z)

= Il,s + I2,5-

Since D(A) is dense, I, goes to B~1x/2 as ¢ — 0. Moreover I; . is in D(B)
for every e. We reach our goal if we show that I; . converges in D(B) as
€ — 0, i.e. if Bl converges in X as € — 0. Indeed, in that case we have

Sz =B lz/2+ lim I, . € D(B).
E—r

Let us split BI; . into the sum

1 AT Bis 1 A~is Bis
Bl = .—.xds—l-—/ _ xds
" 2 )js>1 sin(mis) 2 Je<is|<1 - mis

1 L 1 1
+—/ A_Zsstx( - — — —,)ds
2 Je<ys|<1 sin(wis)  mis

The first term is independent of ¢, the third one is easily seen to converge as
¢ — 0 because 1/(sin(mis)) — 1/(mis) is bounded. The second term is equal
to 1/(2:¢)H. f(0) where

f(s) = x(-1,1)(5)A®B "z, s€R.
Since f € LP(R; X) for each p > 1 and X is (-convex, the truncated Hilbert
transform of f converges in X for almost every ¢ € R. Let us prove that 0

is one of such #’s. Fix once and for all ¢ € (0, 1) such that H.f(¢) converges.
Then

. Ait—s) Bi(s—1) ;.
H 0 ZA—ztht/ e
" (H)(0) P

_ t—1 Ai(t—s) Ri(s—t) t+1 Ai(t—s) Ri(s—t)
(/ f(t S)ds-l—/ A B xds—/ A B xds)
Is|>e 1

s 1 s s

ds= A""B™
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converges as € — 0. This concludes the proof that Sz € D(B). In the same
way one shows that Sz € D(A), and the statement follows. W

The main application — at least, from our point of view — of the theorem
of Dore and Venni is to evolution equations in a {-convex space X,

u(t) + Au(t) = f(t), 0<t<T,
(4.2.7)

with f € LP(0,T;X) for some p € (1,00), T > 0. Here we assume that
A : D(A) C X — X is a positive operator having bounded imaginary

powers, and '
| A% < ceralsl s eR.

Then it is not hard to see that the operator A defined by
A:LP(0,T;D(A)) — X =LP(0,T; X), (Af)(t) = Af(t)
is positive and has bounded imaginary powers, given of course by
(A“F)(t) = A"f(t), sER, fE X,

and .
A% < Ceralsl s e R

It is also possible to show that the operator
B:D(B)={f e W' (0,T;X) : f(0) =0} X, (Bf)(t) = /(1)
is positive and has bounded imaginary powers, satisfying the estimate
1B < C(1+ [s|?)e™*1/2, s € R.

See [18]. Therefore, if y4 < m/2 it is possible to apply theorem 4.2.9 to
equation (4.2.7), seen as the equation in X

Au+ Bu = f,

getting that for every f € LP(0,T; X) problem (4.2.7) has a unique solution
u € WP(0,T; X) N LP(0,T; D(A)), which depends continuously on f.

For instance, if A is the realization of —A in LP(Q), 1 < p < oo, with
Dirichlet boundary condition:

D(A) = W?P(Q) N WP (), Au= —Au,
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Q being an open bounded set in R"™ with regular boundary, then A is a
positive operator with bounded imaginary powers, and y4,7/2 due to [34].
We get that for each f € LP((0,T) x Q) the problem

ur(t,x) = Au(t,z) + f(t,z), 0<t<T, x €Q,
u(t,z) =0, 0<t<T, z€dQ,
u(0,z) =0, z €4,

has a unique solution u € W]}’Q((O,T) x ), i.e. u, uy, Djju € LP((0,T) x Q).

4.2.3 Exercises

1) Let A, B be two positive operators with bounded imaginary powers,
satisfying (4.2.5). Show that A*BY = B"A? for Re z, Re w < 0. Show
that for Re z < 0, A* maps D(B) into itself, and A* Bx = BA*z for each

x € D(B). Show that for Re z < 0, A* maps D(B) into itself.

2) Let A, B be two positive operators with bounded imaginary powers,
satisfying (4.2.4) and (4.2.5). Show that for every z € D(A) N D(B) the
functions z — B*A %z, —1 < Re 2 <0, and z — A7*B?z, 0 < Re z < 1,
are continuous (this is used in the proof of proposition 4.2.7).

4.3 M-accretive operators in Hilbert spaces

Throughout this section H is a complex Hilbert space, and A : D(A) C H —
H is a linear operator satisfying

D(A) = H, p(A)D (=00,0), [[A+A)7Y<1/A A>0.  (4.3.1)

Therefore, A is a nonnegative operator. Moreover it satisfies the resolvent es-
timate with constant M = 1, and this is not a mere notational simplification
but it is a crucial assumption.

Due to the Hille-Yosida theorem, assumption (4.3.1) is equivalent to the
hypothesis that — A be the infinitesimal generator of a contraction semigroup
e~ 4. Therefore, for each x € D(A),

A,
Re(—Ax,x):%i_r)%Re(e f T z) <o.
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Any operator B : D(B) C H — H satisfing
Re (Bz,z) >0, = € D(B)

is called accretive. Therefore, A is accretive.

It is possible to show that A is m-accretive (maximal accretive), in the
sense that it has no proper accretive extension, and conversely, any closed
m-accretive operator satisfies (4.3.1). So, operators satisfying (4.3.1) are
often referred in the literature as m-accretive operators.

It is easy to see that A satisfies (4.3.1) iff A* does. Moreover, if A satisfies
(4.3.1) and it is one to one, then the range of A is dense in H.

We shall follow the approach of Kato [25, 26] to study the imaginary
powers of A and the relationship between the domains of A% and (A*)“.

First we consider m-accretive bounded operators satisfying in addition

Re (Az,z) > §||z||?, = € H. (4.3.2)

for some 0 > 0. The case of unbounded operators will be reduced to this
one, through the use of the Yosida approximations nA(nl + A)~!.

Assumption (4.3.2) implies that the resolvent set of A contains (—o0, ),
and ||(A + A)71| < (A +6)7 ! for every A > 0. Therefore A is a positive
bounded operator, so that for each z € C the complex powers A* are defined
by

1
zZ __ z
A= o /7A R(\, A)d), (4.3.3)

where v is any regular curve surrounding o(A) with index 1 with respect to
every point of o(A), and avoiding (—oo,0]. Moreover we have

(A%)* = (4")T, a€eC.

See exercise 12, §4.2.1.
We will need the following lemma.

Lemma 4.3.1 Let A be a bounded m-accretive operator satisfying (4.3.2).
Then for real B € [—1,1], AP satisfies

Re (A%z,z) > 6%||z||2, 0<pB <1, z € H, (4.3.4)

Re (A7z,z) > (3| A7) |l«|*, ~1<p <0, z € H. (4.3.5)
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Proof — For 0 < 8 < 1 we use the Balakrishnan formula (4.1.7), which
implies

(40, 0) = S [ 61 (e + ), )i
Recalling that

Re(A(ET + A)~ 'z, z) = Re((I — £(6I + A) ™Yz, )

> Jlall? — €1((E1 + A) o, 2 a2 — =]

§+0
T
= 5l
we obtain, through (4.1.5),
8 dsin(zp) [ &7t 81112
(Az,z) > [[z]|“dg = 67 ||,

- T o &+9
i.e. (4.3.4) holds. Moreover,
Re(A™ 'z, z) = Re(A™ 2z, AA z) > §)|A7 z||2 > 6| A 72|z ||%,

so that (4.3.5) holds for 5 = —1. But using again the representation formula
(4.3.3) we see easily that

AP =AY P gec,

so that (4.3.5) holds for every f € [-1,0]. R

Theorem 4.3.2 Let A: H — H be a bounded operator. Assume that there
exists § > 0 such that (4.5.2) holds. Then for each o € [0,1/2) and for each
x€H

1(A) %z < call A%, [[A%[| < call(A%)%],

with ¢ = tanw(1 + 2a) /4. Moreover,

1AM < elf/2, te R,
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Proof — Let us introduce the “real part” and the “imaginary part” of A®

defined by
a *\Q
O G0
24

(6% Y07
g AT ()
2
1.e.

A® = Hy + Ky, (A*)® = H, —iK,.

Then for every z € H
|Hox||? — | Koz]|* = Re (A%, (A")%z) = Re (A**%a, z).

If —1/2 < Re a < 1/2, then A%t still satisfies (4.3.2) with & replaced by
8o = min{0%, (6||A||72)*} thanks to lemma 4.3.1. Therefore,

| Hoz|* > | Koz + dallzl|, = € H. (4.3.6)

This implies that H, is one to one. Since H = (A% + (4*)%)/2, and A*
satisfies the assumptions of the theorem, also H} is one to one. Therefore
H, is invertible, and since ||Kyy|| < |[|[Hayl| for every y because of (4.3.6),
then ||[KoH, 'z|| < ||HoH, 'z|| = ||z|| for each x, so that

|Ko H Y <1, =1/2<Rea<1/2.

Now we improve this estimate applying the maximum principle to the func-
tion
Ko H!

O[H@(OZ) = W’

~1/2<Rea <1/2.

Such a function is holomorphic in the whole strip (even at o = 0, because
Ky = 0) and bounded with values in L(H); moreover |tan(wa/2)| = 1 if
Re a = £1/2 so that ||®(«)|| < 1 on the boundary of the strip. Therefore
|®(cr)]] <1 for each « in the strip, i.e.

|KoH | < tan(ma/2), —1/2 <Rea < 1/2. (4.3.7)

This is an important improvement of || K, H; || < 1, because |tan(ra/2)| <
1 for |Re a| < 1/2, so that I +iK,H;"' is invertible with bounded inverse.
Since A® = H, +iK,, (A*)* = H, —iK,, we get for |Re o] < 1/2

1+ | tan(mwa/2)|
1 —|tan(ma/2)]

(A A~ = |[(I—iKoHy ) (I +iKo Hy ) 71| < - (4338
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Therefore for real a € [0,1/2)

1 + tan(ma/2)

N (1 + 20)
[1(A%)%z]| < 1 —tan(ra/2) B

A%z|| =t
4| = tan T

[A%z]|, =€ H,
and we get a similar inequality exchanging A with A*. So, the first statement
is proved.

Moreover, taking a = —it with real ¢, in (4.3.8) we get

||A—it$”2 — ((A*)itA_it:lZ,:lZ) < 1+ |tan(7”’t/2)|

2 _ ot 2

and the last statement follows. W

Theorem 4.3.2 is the starting point to show several properties of the
powers of general m-accretive operators. The first property concerns the
equivalence of the domains D(A%), D((A*)%) for 0 < a < 1/2. But we need
a preliminary lemma.

Lemma 4.3.3 Let A: D(A) C H — H satisfy (4.3.1). For every n € N set
A -1
JIp = <I+ E) =n(nl + A)~L.

Then J,, is a bounded nonnegative operator, and for every o € [0, 1]
[ Ta1 <1,

lim JYz =2, =€ H.
n—oo

Proof — As easily seen, for every A > 0 AI +J, is invertible with (bounded)
inverse

A+ J,) " = (I + A)(n(A+1) +24)7 %

For every € > 0 the operator I + €A is positive. The representation
formula (4.1.6) gives

(I+A/n)=® = w /OOO £l + T+ A/n)~de,

where ||(¢ + 1+ A/n)~ Y| < 1/(€ + 1), so that due to (4.1.5)
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It follows (see exercise 9, §4.2.1)
I(Z + A/n)= ) = I((T+ A/n)~H) " = 1] < 1,

and by the dominated convergence theorem

. o 1 e . sin(ma) [ ¢
nlggo,]n:z:—nlggo(f—f-A/n) z = lim - ) ET1

zdé =z, x€ H. 1
Theorem 4.3.4 Let A : D(A) C H — H be any m-accretive operator.
Then for every o € [0,1/2), D(A%) = D((A*)*) and for each x in the
common domain

(1 + 20) (1 + 20)
4 4

Proof — We know already (theorem 4.3.2) that the statement is true if A
is bounded and satisfies (4.3.2) for some § > 0. As a second step, we prove
that the statement is true if A satisfies (4.3.1) and 0 € p(A). Then it will
follow easily that the statement is true in the general case.

Let 0 € p(A). Let us consider the Yosida approximations,

1(A%)%z]| < tan [A%]], [[A%]| < tan 1(A%)%x]].

Ap = AJ, =nA(nI+ A~ neN

It is not hard to see that the operators A, are bounded (with ||A4,| < n),
m-accretive (with (E1+A,) "' = n?/(n+£)2(n&/(n+&)I+A) " +1/(n+¢)),
and satisfy (4.3.2) since

1 1
(An$7$> = (AJnl'a E(nl + A)Jn$> = <AJn5U7Jn5U> + E||An$”2

and A, is invertible, with A,;' = A~! 4+ I'/n. Therefore by theorem 4.3.2 we

have

(1+20)

* s
1(A7)%] < tan 1A%,

(4.3.9)

(14 2a)

[ A% < tan 1A

for every n € N.

Note that since I + A/n is a positive operator, then (I + A/n)~% is well
defined for every a > 0, and by exercise 9, §4.2.1, (I + A/n)~* = J¢ for
0 < a < 1. Therefore,

Jo = (A714,)% = 42472 = A=*A2,

n
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as it is easy to check. Therefore for every x € D(A%), J%z € D(A?), and we
have
Aje = A%Jre = JiA%, 0<a <L

Now we use lemma 4.3.3, which states that |[J2| <1, and lim,,_, J8z =z
for each z. We get

(i) |4S2]| < [|A%2]|, (i4) lim A%z = A%, =€ D(A%).  (43.10)

Using (4.3.9) for 0 < o < 1/2 and then (4.3.10)(i) we get

(1 + 20) (1 + 20)

1(47)% ]| < tan [A7z] < tan A%l (4.3.11)
so that the sequence (A)%z is bounded for each z € D(A®). Moreover, for

every y € D(A%) we have, due to (4.3.10)(ii),
((47)%2,y) = (2, AJy) — (z,A%), n — oo.

Since D(A®) is dense in H (because D(A) is dense and D(A%) D D(A)), and
I[(A})*z|| is bounded thanks to (4.3.11), then (A} )%z converges weakly to
some w € H. Such a w satisfies (w,y) = (z, A%y) for every y € D(A%), and
this implies that z € D((A%)*) = D((A*)%) and w = (A*)®z. Therefore, the
domain of A® is contained in the domain of (A*)®. Exchanging the roles of
A and A* we get that D(A%) = D((A*)%), and lim, o (A})%*z = (A%)%z
for each x in the common domain. Letting n — oo in (4.3.11), and in the
similar estimate with A* in the place of A, we get the claimed estimates.
Now we consider the case where 0 € o(A). For each ¢ > 0 the operator
A+ eI satisfies (4.3.1) and 0 belongs to its resolvent set, so D((A +eI)%) =
D((A* +el)®) for 0 < a < 1/2, and for every z in the common domain we

have
(1 + 2a)

(A" +el)%z|| < tan (A +el)z],

(1 4 2a)

(A +el)z| < tan (A" + el)%z|.

By lemma 4.1.11, D((A + eI)*) = D(A?%) and (A + eI)%z — A%z for each
x € D(A®), and the same holds with A replaced by A*. Letting ¢ — 0 the
statement follows. W

Let us consider now the imaginary powers A, ¢t € R.
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Theorem 4.3.5 Assume that A : D(A) C H — H is m-accretive and that
0 € p(A). Then the imaginary powers A%, t € R, are bounded operators, and

1AM < el/2, te R

Proof — Theorem 4.3.2 implies that the statement is true if A is bounded
and satisfies (4.3.2).

Next step is to show that the statement is true if A is bounded, m-
accretive and one to one. This is done considering the operators A+ eI with
¢ > 0, which satisfy (4.3.2) with § = ¢, and letting ¢ — 0. Indeed, since
(A+elr — x and (I + A+el) 'z — (A+el) 'z for each x € H, and
(A+el)" 'z — A7z for each + € R(A) as ¢ — 0, we may let ¢ — 0 in
formula (4.1.11) getting

| A% ]) = tim (A + eD)i'z] < V2], te R,
E—r

Since A™ is closed, we may conclude that D(A®) = H and ||A"| < e™lt/2
for every t € R.

The fact that (A +el)"'z — A~z for each z € R(A) as e — 0 may be
proved as follows: from the equality

A((A+e)ly— Ay +e((A+el)ty — A7 ly) = —ey,
which holds for each y € H, we obtain
IA((A +eD) ™y — A7) |2 + (A +eD) "y — A7yl < 2l

so that 0 = lim. o A((A+el)~ly— A~ ly) = lim._,o(A+el) 1Ay — A~ Ay,
i.e. lim,_,o(A +el)"'z = A~ 'z for every z = Ay in the range of A.

In the final step we consider a general m-accretive operator A with 0 €
p(A). Therefore A~! is bounded, m-accretive and one to one. It is not hard
to see that

At =(AH7" teRr

But we already know that (A~1)~% is bounded, with norm not exceeding
e™t/2. The statement follows. W
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4.3.1 Self-adjoint operators in Hilbert spaces

Here H is again a complex Hilbert space, and A : D(A) C H — H is a
positive definite self-adjoint operator. A self-adjoint operator is said to be
positive if there is § > 0 such that

(Az,z) > d||z||?, = € D(A). (4.3.12)

Lemma 4.3.6 If A is a self-adjoint operator satifying (4.5.12), then p(A)
contains (—o00,0) and

1
IR A < =, A<d. (4.3.13)

Proof — Let A < d, z € D(A). Then

I(AT = A)z||* = |(A = 8)z + (3T — A)a||?

= (A —=0)?||z]|? +2(\ — 0)(z, 6z — Ax) + ||(6] — A)z||?,

so that
[(AI = A)z||> > (A= 6)||z|]*, (4.3.14)

and therefore Al — A is one to one. We prove that it is also onto, showing
that its range is both closed and dense in H. Let z, € D(A) be such that
Az, — Az, converges. From the inequality (4.3.14) we get

I = A)(@n = 2m) | > (A = 0)?[|lz — z|®, n, mEN,

so that z, is a Cauchy sequence, Az, is a Cauchy sequence, and Az, is a
Cauchy sequence. Then zx,, and Az, converge; let x, y be their limits. Since
A is self-adjoint, then it is closed (we recall that each adjoint operator is
closed), so that z € D(A), Az =y, and Az, — Az, converges to Az — Ax €
Range (AI — A). Therefore, the range of A\ — A is closed.

Let y be orthogonal to the range of (Al — A). Then for each z € D(A)
we have (y,\z — Az) = 0, so that y € D(A*) = D(A) and \y — A%y =
Ay — Ay = 0. Since AI — A is one to one, it follows y = 0. Therefore, the
range of (A — A) is dense.

Let us estimate |R(\, A)||. For z € H, let u = R(A\,A)z. From the
equality (z,u) = (Au — Au,u) it follows (z,u) < (A — 0)|lul|? <0, so that

(6 = Mlull® < Kz, u)| < Nl full
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which implies ||[R(\, A)| < (6 —A\)"L. =

In this case it is possible to define the powers A% for z € C through the
spectral decomposition of A.

Theorem 4.3.7 Let A : D(A) C H be a self-adjoint operator. There ex-
ists a unique family of projections Ey € L(H), A € R, with the following
properties:

(’L) E)\Eu = EME)\ =FE), < EP«’ for A < p,
(i) limy_yg+ Exp4x = Exx, \€ R, z € H,
(Ml) limy_,_o Fhz =0, lim/\—H—oo Exx=z,x € H,

such that

+o0 +o0
D(A) = {z € H: / M| Brz|? < o0, Az :/ pdE,z, € D(A).
—0o0 —00
The above integrals are meant as improper integrals of Stieltjes integrals
(note that A — |[Exz||? = (E\z,z) is nonnegative and nondecreasing). The
family {E) : A € R} is called the spectral resolution or spectral decomposi-
tion of A. See e.g. [33, Ch. VIII, sect. 120-121].
If f: R — C is continuous, the operator f(A) is defined by

DAY = e s [ IOl Bl < oo}

(f(A)z,y) = / prd(B,x,y), =€ D(f(A)), y € H.

—00

It is possible to show (see [33, Ch. IX, sect. 126-128]) that for every A € p(A)

we have
+o0 1

(R(\, A)z,y) = / d(E,z.y), y e H,

—infty A— M
and that this definition agrees with the usual definition in the case where f
is a power with integer exponent, i.e.

“+o0o
DA ={zeH: / Ak Eyz|? < o0, k€7,

“+o0o
(AFz,y) = / prd{Eyz,y), k€L, z € D(AF), yeH.

—0o0
More generally, this definition agrees with the definition of the powers
A* for any z € C.
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Theorem 4.3.8 For every z € C we have

+o0o
D(A*) = {z € H: ||A%|? = / ARG By|? < oo}, (4.3.15)
0
and
“+o0o
Ao = / NedEyz, x € D(A%). (4.3.16)
0
Proof — Let Re z < 0. Then
1
A= — [ XNR(\ A)dx
211 Vrb
1 1 o 1 e
_/ )\2/ A, d\ — _/ d dE,
2mi )y o A—p 0 2mi )y, A—p
o0
:/ pdE,,
0

and the statement holds for Re z < 0. If Re 2 > 0 let n > Re 2z, n € N. By
definition, z € D(A?) if and only if

“+00o
Ay — / NdByz € D(A™).
0

For each y € H,y € D(A") iff [;"° 4>"d||E,y||?> < co. Therefore, z € D(A?)
iff

+oo 9 B 9 +o0 9 00 _ 9
| B A = [, [ B

+00 o +00
| [T B = [ i B < oo

and in this case

“+0o0 “+0o0
(A, y) = /0 yrd, /0 N By, By
= [ wd, [T 3By = [ wdu(Bey).

The function E) is constant on each interval contained in the resolvent
set of A. In the case of a positive operator the spectrum of A is contained
in (0,00), so that all the above integrals are in fact integrals over (0, c0).
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It follows from the definition that if f is bounded, then f(A) is a bounded
operator, with norm not exceeding || f||co. If A satisfies (4.3.12), then o(A) C
[6,+00), so that defining f(\) = A for A > 6 and extending f to a con-
tinuous bounded function to the whole R, we obtain that A% is a bounded
operator, and ||A*| < 1, for every real t.

Example 4.3.9 Let Q be a bounded open set with C? boundary, and let
H = L?(Q), A: D(A) = H?(Q) N H(Q), Au = —Au. Tt is well known
that o(A) consists of a sequence of positive eigenvalues, each of them with
finite dimensional eigenspace, and there exists an orthonormal basis of H
consisting of eigenfunctions of A. Denoting such a basis by {e,}nen and
denoting by A, the eigenvalue with eigenfunction e,, we have

Eyu = Z (u, epn)en.

n: Ap <A

For every a with positive real part, the domain of A% consists of those
u € L%(Q) such that

00
Z )\%Realun|2 < 00,
n=1

where u,, = (u, ey), and

o
A% = Z Apunen, u€ D(A%).

n=1

Moreover, {e,/v/A, : n € N} is an orthonormal basis of H{ (), with
respect to the scalar product (Du, Dv) = [, u(z)v(z)dz (see e.g. [8, §IX.8]).
In the particular case Q = (0, ) it is easy to see that

en(x) = \/2/78in(n$), Ap = n.

Therefore, u € D(A) = H?(0,7) N H (0, 7) iff -°°, n*|u,|? < 0o, and Au =
3% nPuye,. Taking a = 1/2, we get u € D(AY?) iff 3%, n?|u,|* < oo,
that is iff u € HJ(0,7), and AY?u = %0 | nuge,.

Let us come back to the general theory. If A satisfies (4.3.12), (4.3.15)-
(4.3.16) could be taken as a definition of A*, and all the properties of A*
could be deduced, without invoking any result of the previous sections. For
instance, it follows immediately that for every x € D(A?%) the function z —
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A%z is holomorphic in the halfplane Re z < Re a, that D(A*) depends only
on Re z, and if Re z; < Re zp then D(A*') D D(A*).

Most important, it is clear from (4.3.15) that for every t € R, A is a
bounded operator, and ||A*|| < 1. Thanks to theorem 4.2.6, this implies that
[D(A%), D(AP)]g = D(A0-92+98) for 0 < Re o < Re 8. Moreover, these
spaces coincide also with (D(A"‘),D(Aﬁ))a,g, as the next theorem 4.3.11
shows. For its proof we need a lemma.

Lemma 4.3.10 Let L : D(L) C H be a self-adjoint positive operator. Then
iL generates a strongly continuous group of contractions e’ in H.

Proof — Let us prove that the resolvent set of 7L contains R \ {0}.

Since L is self-adjoint, then (Lz,z) € R for each z € D(L), so that Re
(iLz,z) = 0 for each x € D(L) = D(iL). This implies that for every A > 0,
M — iL and —AI — iL are one to one, and |[(A —iL)"'z| < ||z||/), for
each € (A —iL)(H), ||(M +iL) x| < ||z||/), for each x € (A +iL)(H).
Indeed for A > 0, z € X, setting y = R(\, L)z we have

Alyll? < ReAllyll* — Re (iLy,y) = Re (z,y) < || [|y]

so that |ly[| = [|R(A, iL)x|| < [lz]|/A.

To prove that A\l —¢L and —\I — ¢L are onto it is enough to check that
their ranges are dense in H. Let y be orthogonal to the range of A\ — iL,
then (Az — iLz,y) = 0 for each x € D(L), so that

y € DAL — (L)*), My — (iL)*y = Ay +iLy = 0,

so that y = 0. It follows that the range of Al—:¢L is dense in H. Similarly one
shows that the range of AI +iL is dense in H. Consequently, R\ {0} C p(iL)
and ||[R(\,7L)|| < 1/A, and this implies the statement. W

Theorem 4.3.11 Let a, f € C with Re a > 0, Re § > 0. Then for every
6 e (0,1)

[D(A%), D(AP)]g = (D(A), D(AP))g2 = D(AU-Dt05),
Proof — It is sufficient to prove that for real 5 > 0
(H, D(A%))g0 = D(A%)

and the general statement will follow by interpolation and reiteration.
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Since AP is in its turn a positive self-adjoint operator, iA® generates a
strongly continuous group of operators

T(t) = ¢4’ te R

By proposition 3.2.1 (H, D(A'B))gg consists of the elements x such that ¢ —
Y(t) =t T (t)z — z|| € L2(0,00). We have

o)
2 _ —20 2
192200y = [ £ 2IT O = al?F

oo_ o0 18 dt 0 ooeit/\ﬂ_12dt
= [Te [T —apamars = [ [ . L) Bel?

Oo|€iT—1|2 208 2 B..112
=/, WdT ; AP Exz|]® = C|| A7,

so that (H, D(A?))go = D(AP?), with equivalence of the norms. W
An important corollary about interpolation in Hilbert spaces follows.

Corollary 4.3.12 Let Hy, Hy be Hilbert spaces, with Hy C Hy, Hy dense
in Hy. Then for every 6 € (0,1),

[Hi, Hs)pg = (Hy, Ha)g o

Proof — It is known (see e.g. [33, Ch. VIII, sect. 124]) that there exists a
self-adjoint positive operator A in H; such that D(A) = Hs. The statement
is now a consequence of theorem 4.3.11. N
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Analytic semigroups and
interpolation

Throughout the chapter X is a complex Banach space, and A: D(A) C X —
X is a sectorial operator, that is there are constants w € R, 8 € (7/2,7),
M > 0 such that

(i) p(A)D Spw={A€C: A #w,larg(A —w)| < B},

(5.0.1)

(@) IR A)llnx) < VA€ Spw-

M
A = wl
(5.0.1) allows us to define a semigroup e*4 in X, by means of the Dunford
integral

1
et = —/ e R\, A)dX, t >0,
271-2 w-{—fynn

where r > 0, n € (7/2,3), and 7, is the curve {\ € C: Jarg\| =17, |[A\| > r}
U {X € C: Jarg\| <, |A| = r}, oriented counterclockwise. We also set
O =1

It is possible to show that the function ¢ +— e’ is analytic in (0, +o0)
with values in L(X) (in fact, with values in L(X, D(A™)) for every m), so
that e'4 is called analytic semigroup generated by A. One sees easily that

for £ € X there exists lim;_,q ez if and only if z € D(A) (and in this case
the limit is ). Therefore et is strongly continuous if and only if D(A) is
dense in X. Tn any case e/t € L(X, D(A™)) for every t > 0 and m € N, and

d™/dtmett = AmetA for t > 0. Moreover there are constants M, > 0 such

A

121
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that
(@) llelnxy < Moe, t>0,
(5.0.2)
(b) [[t"(A = wD) e | xy < Mye®', ¢>0.
Note that for every z € X and 0 < s < t, the function o — ez is in

Cl([s,t]; X) N C([s,t]; D(A)), so that
t t
ey — e’y = / Ae’xdo = A/ e ado.
S S

The same is true also for s = 0, in the sense specified by the following lemma.

Lemma 5.0.13 For every x € X and t > 0, the integral f(f esAxds belongs
to D(A), and

t
A/ e Ards = ez — 1.
0
If in addition the function s — Ae’*x belongs to L'(0,t; X), then

t
ey —p = / AesAxds.
0

Other properties of sectorial operators and analytic semigroups may be
found in [32, Ch. 2].

5.1 Characterization of real interpolation spaces

Throughout the section we denote by My, M; two constants such that
le"lex) < Mo, [[tAet || x) < My, for every ¢ € (0, 1].

Since A is sectorial, the operator A — wl satisfies the assumptions of
chapter 3, and we may use the results of §3.1 to characterize the interpolation
spaces (X, D(A™))g,p-

Another characterization, which is very useful in abstract parabolic prob-
lems, was found by Butzer and Berens (see e.g. [12]) for m = 1.

Proposition 5.1.1 For0 <6< 1,1 <p< oo we have
(X, D(A))gp = {z € X : p(t) = t'||Ae" || € L2(0,1)},

and the norms || - ||(X,D(A))e,p and

z = [lzll + el e o)

are equivalent.
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Proof — For every z € (X,D(A))gp, let a € X, b € D(A) be such that
z =a+0b. Then

t1_9||AetAx|| < t1_9||AetAa,H + t1_9||AetAbH

< t7 M |lal| 4 t* 0 Mo || Ab|| < max{Mo, M1}t~ (||all + t[|b]l p(a))
so that
79| Aet 2| < max{Moy, My}t K (t,z, X, D(A)),

which implies that ¢ € L£(0, 1) with norm not exceeding { Mo, M }|z||(x,p(a))
max {Mg, Ml}
Conversely, if ¢ € LE(0,1) write z as

0,p

t
= (z— ) + ez = —/ Atz ds + ez, 0<t< 1.
0

Since t'7Y||AetAz| € L£(0,1) the same is true for t!=%(t), where v is the
mean value v(t) = ¢! fot | Aesz||ds, thanks to corollary A.3.1, and

B ot 1
s 0oz = [ [t < Glebizon

L2(0,1)
Moreover,
ez peay = Nl || + || Al < Molla|| + =+ e (2).
Therefore
: A
0K (40, X, D(W) < 7 [ 1Al ds + =My Jal + (o),
0
so that t =YK (t,z, X, D(A)) € L%(0,1), with norm not exceeding C(||z| +

llell 22 (0,1y)- We recall that it belongs to L%(1, 00), with norm not exceeding
Cllz||. Therefore, z € (X, D(A))p,p, and the statement follows. W

Proposition 5.1.1 has the following generalization.
Proposition 5.1.2 For 0 <6< 1,1 <p< oo we have
(X, D(A™))g, = {5 € X & p(t) = t"1-D | Ame 5] € 12(0,1)},

and the norms | - ||(x p(amy), , and

z = |lz] + llemllze o)

are equivalent.



124 Chapter 5

Sketch of the proof — Let m = 2. The embedding C may be proved as
in proposition 5.1.1, splitting

tm(l_e)AmetAx — tm(l—G)AmetAa + tm(l—&)AmetAb

if £ = a4+ b. Also the idea of the proof of the other embedding is similar,
but now instead of the kernel Ae’4z we have to use sA%e34x: we have

t t g
/ sA%e*Ar ds :/ s—Ae* Az ds
0 o ds
¢
= / AeSAx ds + tAetd s = 2 — etz + Az,
0
For every ¢t € (0,1) we split z as
t
= / sA%e*Ards + et — tAett .
0

Since t'72%||tA%e!4 x| € LE(0,1) the same is true for t'=20y(t), where v is
the mean value v(t) = t~! f(f ||sA%2es4z||ds. Therefore

t g(t) =% /Ot |sA2es4z||ds € LP(0,1).
So,
FOR (2,2, X, D(A2)) < t—20< /0 A2 A ads + £2]]et s — tAetAxllD(A2)>
< g(t) + 2720 (Mo + M) ||z]| + || A% x]| + 2M, [| A%/ 2]
and t 2K (t?,z, X, D(A?)) € L£(0,1), with norm less than C(ll2llrr o) +
|z||). Then t°K(t,z, X, D(A?)) € L%(0,1), again with norm less than

C'(llp2llLr(0,1) + Iz]]), and the statement follows for m = 2.

If m is arbitrary the procedure is similar, with the kernel s
replacing sA%e*4z. m

m_lAmBSA:E

In the case where Om is not integer, proposition 5.1.2 may be deduced
from proposition 3.1.8 and proposition 5.1.1.
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5.2 Generation of analytic semigroups by interpo-
lation

In this section we shall use interpolation to check that certain operators are
sectorial in suitable functional spaces.

Theorem 5.2.1 Let Y be any interpolation space between X and D(A).
Then the part of A in'Y, that is the operator

AY:D(AY)HY: D(AY)Z{yED(A)AyEY}a Ay’ysz

18 sectorial in Y.

In particular, for every 6 € (0,1), 1 < p < o0o. the parts of A in D4(0,p),
in Dy(0), and in [X,D(A)]y are sectorial operators. Similarly, for every
k € N the part of A in D4(0 + k,p) is sectorial in D A(6 + k, p).

Proof — Let A € Sg,,. Since R(\, A) commutes with A on D(A), then
IR\, A)ll(pcay) < M/|X — w|. By interpolation it follows that R(\, A) €
L(Y) and ||R(A, A)|[ vy £ M/|X — wl, and the statement follows. W

In the next theorem we use the Stein interpolation theorem to prove
generation of analytic semigroups in LP spaces.

Theorem 5.2.2 Let (2, ;1) be a o-finite measure space, and let T (t) : L?(2)+
L>®(Q) — L2(2) + L>®(Q) be a semigroup such that its restriction to L*(Q)
is a bounded analytic semigroup in L*(Q) and its restriction to L>®(2) is a
bounded semigroup in L*° (). Then the restriction of T'(t) to LP(2) is a
bounded analytic semigroup in LP(QY), for every p € (2,00).

Proof — Let 6y € (0,7/2) and M > 0 be such that T'(¢) has an ana-
lytic extension to the sector X9 = {z € C : z # 0, |arg z| < 6y}, and
1T (2)|L(z2) < M for every z € g, [|T(t)||1(z) < M for every ¢ > 0.

Let S be the strip {z € C : Re z € [0,1]}. For every » > 0 and 6 €
(—6p,00) define a function h : S — ¥y by

h(z) = re?12) ) 2 € 8,
and define a family of operators ©, € L(L?) by

©, =T(h(z)), z€S.
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Then z — O, is continuous and bounded in S, holomorphic in the interior
of S, with values in L(L?). Consequently, if a is a simple function on Q and
b is a simple function on A, the function

o /A (©,0) ()b(z)v(dx)

is continuous and bounded in S, holomorphic in the interior of S. If Rez =1,
h(z) = re? ™% is a positive real number, so that ©, € L(L>). Moreover

sup [|©;tl|p(z2) < M, sup [|O14it|l p(rey < M.
terR tER

By the Stein interpolation theorem 2.1.15, applied with pg = qo = 2, p1 =
g1 = +oo, for every s € (0,1) the operator ©, has an extension in L(LP)
with p = 2/(1 — s), and ||Os||zry < M. Note that since s runs in (0,1),
then p runs in (2,00). O is nothing but T'(re®®=5)). Since r and 6 are
arbitrary, for every z # 0 with |argz| < 6p(1 — s) = 200/p T(z) € L(LP),
with norm less or equal to M.

Let us show that z — T'(z) is holomorphic in the sector ¥, = {z # 0 :
larg z| < 260y /p} with values in L(LP) (for the moment we know only that it
is bounded).

Let f € LP, g € L¥, and let f, € LP N L2, g, € L” N L2, be such
that f, — f in L?, g, — g in L. Then the functions z — (T'(2)fn,gn) are
holomorphic in ¥9 D ¥, and converge to (T'(z) f, g) uniformly in ¥, because
|T(2)||(z»y is bounded in %,. Therefore z — (T'(2)f,g) is holomorphic in
Yp,. This implies that z — T'(z) is holomorphic with values in L(LP). &

Theorem 5.2.2 may be easily generalized as follows: if a semigroup 7'(t)
is analytic in LP° and bounded in LP! then it is analytic in L? for every p
in the interval with endpoints py and p;. But the most common situation is
po = 2, p1 = oo. For instance, if

n
Au = 2 Di(a;j(z)Dju)(z), = €R",
ij=1
where the coefficients a;; are in H. (R") and

n

Z al](x)flgj > 07 €, 6 € Rna

i.j=1
then the realization of A in L?(R™) generates an analytic bounded semigroup
in L?(R™), whose restriction to L>°(R") is a bounded semigroup in L>®(R").
The proof may be found in the book of Davies [17, Ex. 3.2.11].
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5.3 Regularity in abstract parabolic equations

Throughout the section we fix T' > 0 and we set

My = sup |[t"ARe"Y|(x), keNU{0}, (5.3.1)
0<t<T+1

and, for a € (0,1),

Mio = sup |tF"*A%eY 1 b, (aco)x) K EN. (5.3.2)
0<t<T+1

Let f:[0,T] — X, and ug € X. Cauchy problems of the type

u'(t) = Au(t) + f(t), 0<t<T,
(5.3.3)
u(0) = wug

are called abstract parabolic problems, since the most known examples of
sectorial operators are the realizations of elliptic differential operators in the
usual functional Banach spaces (LP spaces, spaces of continuous or Holder
continuous functions in R™ or in open sets of R", etc.).

In this section we will see some optimal regularity results for (5.3.3)
involving the interpolation spaces D 4(6,p). To begin with, we need some
notation and general results about abstract parabolic problems.

Definition 5.3.1 Let T > 0, let f : [0,T] — X be a continuous function,
and let ug € X. Then:

(i) A function u € C1([0,T]; X) N C([0,T); D(A)) is said to be a strict
solution of (5.3.3) in the interval [0,T] if u'(t) = Au(t) + f(¢) for each
t €1[0,T], and u(0) = ug.

(ii) A function u € C*((0,T]; X) N C((0,T); D(A)) N C([0,T]; X) is said
to be a classical solution of (5.3.3) in the interval [0,T] if u'(t) =
Au(t) + f(t) for each t € (0,T], and u(0) = uo.

From definition 5.3.1 it follows easily that if problem (5.3.3) has a strict
solution then

uo € D(A), Aug+ f(0) € D(A), (5.3.4)
and if problem (5.3.3) has a classical solution, then
uo € D(A). (5.3.5)

Moreover, any strict solution is also classical.
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Proposition 5.3.2 Let f € C([0,T],X), and let ug € D(A). If u is a
classical solution of (5.8.3), then it is given by the wvariation of constants
formula

t
ult) = eug + / A (s)ds, 0<t<T. (5.3.6)
0

Proof — Let u be a classical solution of (5.3.3) in [0, 7], and let ¢ € (0, 7.
Since u € C1((0,T]; X) N C([0,T]; X) N C((0,T]; D(A)), then u(t) belongs
to D(A) for 0 < t < T, the function

v(s) = eI y(s), 0< s <t
belongs to C([0,t]; X) N C((0,t), X), and
v(0) = eug, (1) = u(t),

v (s) = — A=)y (s) + et/ (5) = e (s), 0< s <t

Then, for 0 < 2e < t,

v(t—e) —v(e) = /t_6 =941 (5)ds,

€

so that letting e — 0 we get

o) ~v(0) = [ e p(s)as,

0

and the statement follows. W

Proposition 5.3.2 implies that the classical solution of (5.3.3) is unique.
Therefore the strict solution is unique. Unfortunately, in general the function
defined by (5.3.6) is not a classical or a strict solution of (5.3.3). It is called
mild solution of (5.3.3). The first term ¢ — e*dug is OK: it is a classical
solution of w' = Aw, w(0) = ug if ug € D(A), it is a strict solution if

ug € D(A), Aug € D(A). The difficulties come from the second term,

t
v(t) = / =) f(s)ds, 0<t<T.
0

Its regularity properties are stated in the next proposition.
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Proposition 5.3.3 Let f € L>®(0,T;X). Then, for every a € (0,1), v €
C([0,T); X) N C([0,T]; D(c, 1)). More precisely, it belongs to C*=([0, T;
D4(a, 1)), and there is C independent of f such that

vl cr-a (0,773 Du(a,1)) < Cllf oo (0,1x)- (5.3.7)

Proof — Due to estimate (5.3.1), with k = 0, v satisfies
t
o) < Mo [ 17 lds < MoT|| o, 0<E<T. (5:3.8)

Since ||etA||L(X) and ||tetA||L(X7D(A)) are bounded in (0,7, by interpolation
there is Ky, > 0 such that ||etA||L(X7DA(a,1)) < Koot @ for 0 <t < T.
Similarly, since ||tAetA||L(X) and ||t2AetA||L(X7D(A)) are bounded in (0,77,
by interpolation there is K; , > 0 such that ||AetA||L(X,DA(a,1)) < Kot ot
for0<t<T.

Therefore, s +— ||e(t_s)A||L(X7DA(a’1)) belongs to L'(0,t) for every t €
(0,7]. Then v(t) belongs to D (e, 1) for every a € (0,1), and

10O 4sa,1) < Koall =) T fll oo o) (5.3.9)

Moreover, for 0 < s <t < T,

v(t) —v(s) = /Os (e(t_”)A - e(s_”)A) flo)do + /:e(t_”)Af(a)do

s t—o t
= / do Ae™ f(o)dT +/ et~ f(0)do,
0 s s

—0

which implies

s t—o
[0() = v paar) < Kra [ do [ 77 2dr 1]
§—0

) (1= )
a

(5.3.10)
so that v is (1 — «)-Holder continuous with values in D4(a,1). Estimate
(5.3.7) follows now from (5.3.9) and (5.3.10). W

Kl,a
a(l —a) + 1-—

+K0,a/8t(t — )% || fllee < (
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The estimates for v(t) blow up as a — 1. In fact it is possible to show
that in general v is not Lipschitz continuous with values in X, nor bounded
with values in D(A).

Next lemma is useful because it cuts half of the job in showing that a
mild solution is classical or strict.

Lemma 5.3.4 Let f € C([0,T]; X), let ug € D(A), and let u be the mild
solution of (5.3.3). The following conditions are equivalent.

(a) we C((0,T]; D(A)),

(b) u e CH(0,T]; X),

(c) u is a classical solution of (5.3.3).

Moreover the following conditions are equivalent.

(a') uwe C([0,T]; D(4)),

(v') w e CH([0,T]; X),

(c') u is a strict solution of (5.3.3).
Proof — Of course, (c) is stronger than (a) and (b). Let us show that
if either (a) or (b) holds, then w is a classical solution. Since ug € D(A),

then ¢ — e*4ug belongs to C([0,T); ) We know already that u belongs to
C([0,T); X). Moreover the integral [} u(s)ds belongs to D(A), and

—uo—i-A/ ds+/f ds, 0<t<T. (5.3.11)

Indeed, for every t € [0,T] we have

t t ¢ s

/u(s)ds = /eSAuods+/ ds/ els—o)A
0 0 0 0
t ¢ t

= /eSAuods+/da/ els—0)A
0 0 o

By lemma 5.0.13, the integral [* e~ A f(a)ds = [~ ™ f(0)dr is in D(A),
and

A / ' o) f(o)ds = (=4 1) f(0) € L*(0,t).
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Therefore the integral [} u(s)ds belongs to D(A), and
t
A/ s)ds = € UO—U(]+/((t DA _1)f(o)do, 0<t<T,
0

so that (5.3.11) holds.
From (5.3.11) we infer that for every ¢, h such that ¢, t + h € (0,71,

h) — t+h t+h
ult+h) —u®) _ —A/ s)ds + — / f(s (5.3.12)
h h
Since f is continuous at ¢, then
1tk
E%EA F(s)ds = f(1). (5.3.13)

Let (a) hold. Then Aw is continuous at ¢, so that
1 i+h 1 rtth

]llli)% EA ) u(s)ds = ’111_1% 5 Au(s)ds = Aul(t).

By (5.3.12) and (5.3.13) we get now that u is differentiable at the point ¢,
with u'(t) = Au(t) + f(t). Since both Au and f are continuous in (0,77,
then u' too is continuous, and u is a classical solution.

Let now (b) hold. Since u is continuous at ¢, then

1 [t
’111_1% E/t u(s)ds = u(t).

On the other hand, by (5.3.12) and (5.3.13), there exists the limit
1 [tth
lim A E/ w(s)ds | = ' (t) — f(b).
t

Since A is a closed operator, then u(t) belongs to D(A), and Au(t) = u'(t) —
f(%). Since both v’ and f are continuous in (0,77, then also Au is continuous
in (0,77, so that u is a classical solution.

The equivalence of (a'), (¢'), (¢) may be proved in the same way. W

Now we are ready to prove regularity results for (5.3.3).
Let u be the mild solution of (5.3.3), and set u = u; + ug, where

ui(t) = /Ote“_s“(f(s) — f(t))ds, 0<t<T,
(5.3.14)

t
ug(t) = ettug +/ DA f(t)ds, 0<t<T.
0
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Theorem 5.3.5 Let 0 < a < 1, f € C*([0,T],X), uwo € X, and let
u be the mild solution of (5.3.8). Then u belongs to C%([e,T],D(A)) N
C*e([e,T), X) for every e € (0,T), and

(i) if ug € D(A), then u is a classical solution of (5.3.3);

(i) if ug € D(A) and Aug + f(0) € D(A), then u is a strict solution of
(5.3.3), and there is C such that

lwllero,m,x) + lulleqor,piayy < CUIfllea(qom,x) + llwollpay);
(5.3.15)

(i11) if ug € D(A) and Aug+ f(0) € Dy(a,00), then both u' and Au belong
to C*([0,T],X), u’ belongs to B([0,T]; Da(c, 00)), and there is C such

that
lwllera o, x) + 1Au|l oo, x) + 1% | B(j0,77,D.4(a,00))
(5.3.16)
< C(If e o,m,x) + lluoll peay + 1 Auo + £(0)l b 4 (a,00))-
Proof — Thanks to lemma 5.3.4, to prove statements (i) and (ii) it is

sufficient to show that u belongs to C'((0,7]; D(A)) in the case where ug €
D(A), and to C([0,T]; D(A)) in the case where ug € D(A) and Aug + f(0)
€ D(A). We know already by proposition 5.3.3 that u € C%([¢,T]; X) for
every ¢ € (0,7), and that v € C([0,T]; X) if up € D(A). So we have to
study Au.

Let u; and uy be defined by (5.3.14). Then u,(t) € D(A) for t > 0,

ug(t) € D(A) for t > 0, and

(1) Am@%=/uéh”ﬂﬂ$—f@»@,0§t§T
0 (5.3.17)

(i) Aug(t) = Aettug + (M —1)f(t), 0<t<T.
If ug € D(A), then (5.3.17)(ii) holds also for ¢t = 0.
Let us show that Auy is Holder continuous in [0,7]. For 0 < s <t < T

Aur(t) — Aw(s) = [

0

S

A (elt=04 = =4 (£(0) = f(s))do
t (5.3.18)
et — et (f(s) = f(1)) + / AelDA(f(0) = f(t))do,
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so that, since A(elt=)4 — els=0)A) = [177 A2e7Aqr

Ay () — Auy (s)]| < Mo /O (s — o) / _:T—er do [floe
t
+2My(t — 8)*[f]ca + M1/ (t—o0)* do [f]ce
(5.3.19)
s t—o
< M2/0 dU/_ 797247 [f]ca + (2Mo + Mya™ ) (t — 5)%[f]ce

My M .
< <m+2M0+ i) (t —s)*flce-

Therefore, Au; is a-Holder continuous in [0, 7]. Moreover, Aus is obviously

a-Holder continuous in [e,T]: hence, if ug € D(A), then v € C([0,7T],X)
and Au € C((0,T]; X), so that, by Lemma 5.3.4, u is a classical solution of
(5.3.3), and statement (i) is proved.

If ug € D(A) we have

Aus(t) = e (Aug + f(0)) + A (£(8) = f(0)) = f(1), 0<t<T, (53.20)

so that if Aug + f(0) € D(A) then Augy is continuous also at ¢ = 0, and
statement (ii) follows.

In the case where Az + f(0) € Da(w,00), from (5.3.20) we get, for
0<s<t<T,

[ Auz(t) — Auz(s)|| < [|(e" =€) (Aug + £(0))]

Hle = e () = O] + 1 = DB = ()]
t
< [ 1A 1010030 14t + £0) .0

t
+ 5% A/ "o
S

[flee + (Mo + 1)(t — 8)*[flca
L(X)

< 1 Ay 4+ F(O)| gt — ) + <% Mot 1) (=)o
(5.3.21)
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so that also Aus is Holder continuous, and the estimate

lwllcrtao,m;x) + 1Al o o0,77:x)

< CIf leeqo,m,x) + lluollpeay + 1 Auo + £(0) D 4 (a,00))

follows easily.
Let us estimate [[u'(t)|| p 4 (a,00)- For 0 <t < T we have, by (5.3.17),

u'(t) = /OtAe(t_s)A(f(S) — f(1))ds + €4 (Aug + £(0)) + e (f(2) — £(0)),
so that for 0 < ¢ <1

€12 Ak A/ (1) < [ / A2 (£ () — 1 (1))ds
0

+H[|€1 2 A (Aug + f(0))] + (1€ AeFOA(f(2) — £(0))]]
< Mot [ 8)7(0 4 € - )P [flco

0
+Mo[Aug + (0)]p 4 (as00) T M1ET(E + €)1 [f]ce

< MQ/OOOUO‘(U +1)7?do [f]ce + Mo[Aug + £(0)]ps (a,00) + Mi[f]ce.

(5.3.22)
Therefore, ||u'(t)||p, (a,00) is bounded in [0, 7], and the proof is complete. W

Theorem 5.3.6 Let 0 < o < 1, ug € X, f € C([0,T]; X) N B([0,T7;
Da(a,0)), and let u be the mild solution of (5.3.3). Then u € C*((0,T]; X)
N C((0,T7); D(A)), and v € B([e,T); Da(a + 1,00)) for every e € (0,T).
Moreover, the following statements hold.

(i) if uop € D(A), then u is a classical solution;

(i) if ug € D(A), Aug € D(A), then u is a strict solution;

(111) if ug € Da(a+1,00), then u' and Au belong to C([0,T]; X) N B([0,T];
D s(a,)), Au belongs to C*([0,T); X), and there is C' such that

41| B(10,77: 4 (as00)) T 1A% B([0,17;D 4 (0,00)) T+ [ AUl (0,77;x)

< C(If11B(0,11;Da(ay00)) F w0l D A(at1,00))-
(5.3.23)
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Proof — Let us consider the function v. We are going to show that it is the
strict solution of

v'(t) = Av(t) + f(t), 0<t<T, v(0)=0, (5.3.24)

and moreover v" and Av belong to B([0,T]; Da(a, )), Av € C*([0,T]; X),
and there is C such that

1" 1 B(j0,17;D.4 (0,00)) + 1AV B([0,77;D 4 (,00)) T+ 1AVl ce (0,77, %)
(5.3.25)

< Clf N B(0,79;0 4 (,00))
For 0 <¢ < T, v(t) belongs to D(A), and

t _ TM
40Ol < Mia [ (6= 9 ds [ flnDatwonn = oWl B(Da(aco):
(5.3.26)
Moreover, for 0 < & < 1,
t
¢ttt av(e)] =1 | [ A2+ () ds
0
t
< M2,a§1_a/0 (t+ &= 5)*2ds| f | (0,11 Da(cr00)) < (5.3.27)

MQ,a
11—«

£ 1l B(j0,77;D 4 (,00))

so that Av is bounded with values in D4(«,00). Let us show that Av is
Holder continuous with values in X: for 0 < s <t < T we have

| Av(t) — Av(s)|| < HA /O ’ (=4 — =94) f(0)do

t s t—o
+HA/ = f(o)do| < Mz,a/o dU/ T72dT || £ 1 B((0,77:D 4 (a,00)
S S—0

t
My [ (6= 0 do |1 F om0 a0
S

M2,a Ml,a o
= <Oé(1 — a) + a ) (t - S) ”f“B([O,T];DA(a,OO)),

(5.3.28)
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so that Av is a-Holder continuous in [0,7]. Estimate (5.3.25) follows now
from (5.3.26), (5.3.27), (5.3.28). Moreover, thanks to Lemma 5.3.4, v is a
strict solution of (5.3.24).

Let us consider now the function ¢ — et4uy.

If ug € D(A), t — eug is the classical solution of w' = Aw, t >
0, w(0) = ug. If ug € D(A) and Aug € D(A) it is a strict solution. If z €
D(a+1,00), it is a strict solution, moreover it belongs to B([0,T]; Da(a+
1,00)) N C*([0,T); D(A)). Summing up, the statement follows. ®

5.4 Applications to regularity in parabolic PDE’s
Consider the problem

uy(t, ) = Au(t,x) + f(t,.’I?), 0<t<T, z€R",
(5.4.1)
’U,(O,.’I?) = 'U'O("B): S Rn?

where f and ug are continuous and bounded functions. We read it as an
abstract Cauchy problem of the type (5.3.3) in the space X = C(R") with
the sup norm, setting u(t) = u(t,-) and f(¢) = f(¢,-). A is the realization of
the Laplace operator A in X. It is the generator of the Gauss-Weierstrass
analytic semigroup defined by (3.2.3). Note that the domain of A,

D(A) = {¢ € C(R™) : Ay (in the sense of distributions) € C(R")}

= {p € C(R") N WP (R")Vp > 1: Ap € C(R™)}

C

contains properly C?(R"). However, we already know that for 0 < § < 1,

0+1/2
Da(9,00) = C*(R"), Du(6+1,00) = CHT2(R").

For every f: [0,T] x R" — C set f(t) = f(¢,-), 0 <t <T. The following
statements are easy to be checked.

(i) f:[0,T] — X is continuous iff f is continuous, bounded, and for every
to € [O7T] limt—>to SUPgern |f(t,:l?) - f(t0755)| =0;

(i) if 0 < a < 1, fe C*([0,T); X) iff f is continuous, bounded, and
SUP,£4, pern | (8, 2) — f(s,2)|/|t — 5| < oo;
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(iii) if 0 < a < 1, a # 1/2, f € B([0,T]; D (v, 00)) iff f(t,-) € C2*(R™)
for every t, and SUpOStST ||f(t, ‘)||C2a(Rn) < oQ.

So, we may apply theorems 5.3.5 and 5.3.6. Theorem 5.3.5 gives

Theorem 5.4.1 Let 0 < o < 1, a # 1/2, and let f : [0,T] x R" — C
be continuous, bounded, such that f(-,x) € C*([0,T]) for each z € R"
and supgepn || f ()|l e o) < 00. Let ug € D(A) be such that Aug +
f(0,:) € C?**(R™). Then problem (5.4.1) has a unique solution u such that
u, ug, Au are continuous, bounded, and sup,cpn ||ui(:, )| ca (o) < o0,

SUPgern ||AU('737)||C’°‘([O,T]) < 00, SUPyc(o, T)ern [l (2, ')||C2a(Rn) < 0.
Applying theorem 5.3.6 gives

Theorem 5.4.2 Let 0 < a < 1,  # 1/2, and let f : [0,T] x R™ — C be

uniformly continuous, bounded, and such that supc(o 1111 f (¢, )l o2e n) < 00

Let ug € C***2(R™). Then problem (5.4.1) has a unique solution u such that
u, ug, Au are uniformly continuous, bounded, and supyco 1y [|ut(t, )|l c2e @) <
00, supyefo, 7 | Dijuu(t, )|l c2a mny < 00, sUPzepn |Au(-, @) ca (o,r7) < 0.

Putting together theorems 5.3.5 and 5.3.6 we get the Ladyzhenskaja—
Solonnikov—Ural’ceva theorem (see [29] for a completely different proof).
For simplicity we consider only the case 0 < a < 1/2. It is convenient to
adopt the usual notation: we denote by C%2%([0,T] x R") the space of the
bounded functions f such that

[f(t,2) = f(s,9)]

sup < o0
t#s, xF#Yy |t - Sla + |:L‘ - y|2a ’

and we denote by C1t2+22([0, T] x R") the space of the bounded functions
f with bounded f;, D;;f, such that f;, D;;f are in C*?%([0,T] x R"). It is
possible to see that this implies that the space derivatives D;f are (1/2+ «)-
Holder continuous with respect to ¢, with Holder constant independent of
T.

Theorem 5.4.3 (Ladyzhenskaja—Solonnikov-Ural’ceva) Let 0 < a < 1/2
and let f € C*22([0,T] x R"), ug € C?*T2(R™). Then problem (5.4.1) has
a unique solution u € C1+2+22([0, T] x R").
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Proof — Almost all follows from patching together the results of the above
two theorems. It remains to show that the space derivatives D;;u are time
a-Hoélder continuous. To this aim we use the fact that C?(R") belongs to
the class Ji_, between C?%(R") and C?*2%(R™) (see the exercises of chapter
1). Moreover, since [|u(t,+)||¢2a(wny is bounded in [0,T7], then ¢ — wu(t,-)
is Lipschitz continuous with values in C?%(R"), with Lipschitz constant
Supg< <7 |[ut(o, )| c2e. So, for 0 < s <t < T we have

lu(t,-) = u(s, ez < Cllult, ) = uls, ) Igea lult, ) = uls, )l 2%

< CO((t = s) supg<per lue(o, ) |2 )* (28UPgepo 7 [u(o, ) [ o2e2a) '~

<C'(t—s)”
and the statement follows. H

This procedure works also if the Laplacian is replaced by any uniformly
elliptic operator with regular and bounded coefficients. Indeed it is known
that the realization A of such an operator in C'(R™) is sectorial, and that
Da(a,00) = C?**(R"), Da(a + 1,00) = C?*FT2(R?) for a # 1/2. But the
proofs of this properties are not trivial; they rely on the Stewart’s theorem
[35] which, in its turn, is based on the Agmon-Douglis—Nirenberg theorem
[3]. See [32, Ch. 3].



Appendix A

The Bochner integral

A.1 Integrals over measurable real sets

We recall here the few elements of Bochner integral theory that are used in
these notes. Extended treatments, with proofs, may be found in the books
[7], [37].

X is any real or complex Banach space. We consider the usual Lebesgue
measure in R, and we denote by M the o-algebra consisting of all Lebesgue
measurable subsets of R. If A C R, x, denotes the characteristic function of
the set A.

Definition A.1.1 A function f : R — X is said to be simple if there are
neN, z,.,z, € X, Ay,.., A, € M, with meas A; < oo and A;NA; =0
for i # 4, such that

n
i=1

If I € M, a function f : I — X is said to be Bochner measurable if there is
a sequence of simple functions {f,} such that

nll)ngo fn(t) = f(t) for almost all ¢t € I.

It is easy to see that every continuous function is measurable.
If f=>71zix, isasimple function we set

/ f(t)dt = Zn:svi measA;. (A.1.1)
® i=1
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Definition A.1.2 Let f: R— X. f is said to be Bochner integrable if there
is a sequence of simple functions {fn,} converging to f almost everywhere,
such that

Jim [ () = F(©) 1t = 0.

Then nw— [, fn(t)dt is a Cauchy sequence in X. We set

/ F(H)dt = lim / Falt)dt. (A.1.2)

n—o0

Arguing as in the case X = R, one sees that [, f(¢)dt is independent of the
choice of the sequence {f,}. If f is defined on a measurable set, the above
definition can be extended as follows.

Definition A.1.3 IfI € M and f : I — X, f is said to be integrable over
1 if the extension f defined by

x = f(t), iftel
f(t){ —0,  iftel

1s integrable. In this case we set

/f(t)dtz/f(t)dt. (A.1.3)
I R

If I = (a,b), with —oo < a < b < 400, we set as usual

b a b
st = [ odn [ sode=- [ s
(a,b) a b a
A simple criterion for establishing whether a function is integrable is
stated in the following proposition.

Proposition A.1.4 Let I € M, and let f : I — X. Then f is integrable
if and only if f is measurable and t — || f(t)|| is Lebesgue integrable on I.
Moreover,

H/If(t)dtH S/Illf(t)lldt. (A.1.4)
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From the definition it follows easily that if Y is another Banach space and
A € L(X,Y), then for every integrable f : I — X the function Af : I —» Y
is integrable, and

/IAf(t)dt: A/If(t)dt.

In particular, if ¢ € X' then for every integrable f : I — X the function
t— (f(t),p) is integrable, and

([ 1@dee) = [ (70,00

It follows that for every couple of integrable functions f, g it holds

J s +ng@yat=x [ 1)+ [ gyat, ¥apec
Another important commutativity property is the following one.

Proposition A.1.5 Let X, Y be Banach spaces, and let A : D(A) C X —
Y be a closed operator. Let I € M, let f : I — X be an integrable function
such that f(t) € D(A) for almost allt € I, and Af : I — Y is integrable.
Then the integral [; f(t)dt belongs to D(A), and

A/If(t)dyz/IAf(t)dt.

A.2 [P and Sobolev spaces

On the set of all measurable functions on I we define the equivalence relation
f~g<= f(t) =g(t) for almost allt € I. (A.2.1)

Definition A.2.1 L'(I; X) is the set of all equivalence classes of integrable
functions f : I — X, with respect to the equivalence relation (A.2.1).

Since no confusion will arise, in the sequel we shall identify the equivalence
class [f] € L' (I; X) with the function f itself. We define a norm on L!(I, X)
by setting

£y = [ 1F Ol (A22)

We define now the spaces LP(I; X) for p > 1.
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Definition A.2.2 Let p € (1,+00], and I € M. LP(I;X) is the set of all
equivalence classes of measurable functions f : I — X ,with respect to the
equivalence relation (A.2.1), such that t — ||f(¢)|| belongs to LP(I).

LP(I; X) is endowed with the norm

1/p
ey = ([ 15 @IPde) ™ itp < oc (223

1fl[Lee(r;x) = ess sup {[If(#)] - £ € I} (A.2.4)

Arguing as in the case X = R, it is not difficult to see that for 1 < p < oo,
the space LP(I; X) is complete.

In the following, if there is no danger of confusion, we shall write | f||,
instead of || f{|zr(7,x)-

To introduce the Sobolev space WP (a,b; X) we need a lemma.

Lemma A.2.3 Let p € [1,00). Then the operator
LO : D(LO) = Cl([a'7b];X) = Lp(avb;X)7 LOf = fl

is preclosed in LP(a,b; X), that is the closure of its graph is the graph of a
closed operator.

Definition A.2.4 Let L : D(L) C LP(a,b; X) be the closure of the operator
Lg defined in Lemma (A.2.3). We set

WP (a,b; X) = D(L)

and we endow it with the graph norm. For every f € W'P(a,b; X), Lf is
said to be the strong derivative of f, and we denote it by f'.

In other words, f € WYP(a,b; X) if and only if there is a sequence {f,} C
C'([a,b]; X) such that f, — f in LP(a,b; X) and f, — g in LP(a,b; X), and
in this case g = f'. Moreover we have

£l (apx) = I 1o @psx) + 1 I peapx) VF € WHP(a,b; X).

Since L is a closed operator, then WP (a, b; X) is a Banach space.
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Let f € WbP(a,b; X), and let {f,} C C*([a,b]; X) be such that f, — f
and f] — f'in LP(a,b; X). From the equality

¢
Ful) = £a(s) = [ fi(o)do (4.25)
we get, integrating with respect to s in (a,b) and letting n — oo,
b t
ft)= 5 i - </a f(s)ds +/a (0 — a)f’(a)da), a.e.in (a, b).

Therefore, WP (a,b; X) is continuously embedded in C([a,b]; X). Letting
n — oo in (A.2.5) we get also

5016 = [ oo

Sometimes it is easier to deal with weak (or distributional) derivatives,
defined as follows.

Definition A.2.5 Let f € LP(a,b; X). A function g € L'(a,b; X) is said
to be the weak derivative of f in (a,b) if

b b
/a Ft) (Bt = — / d(D)p(t)dt, Vo € C(a,b).

It can be shown that weak and strong derivatives do coincide. More
precisely, the following proposition holds.

Proposition A.2.6 Let f € W'P(a,b; X). Then f is weakly differentiable,
and ' is the weak derivative of f.

Conversely, if f € LP(a,b; X) admits a weak derivative g € LP(a,b; X),
then f € WYP(a,b; X), and g = f'.

A.3 Weighted LP spaces

Let I be an interval contained in (0,4+00). For 1 < p < oo we denote by
LE(I) the space of the LP functions in I with respect to the measure dt/t,
endowed with its natural norm

+00 de\ P
Pl = ([ @S itp<oo,
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Il fll oo (ry = ess supyer | f(2)]-

Dealing with L% spaces, the Hardy-Young inequalities are often more
useful than the Holder inequality. They hold for every positive measurable
function ¢ : (0,a) —» R, 0 < a < oo, and every @ > 0, p > 1. See [23,
p.245-246].

o [ () d [t

7 —aP Jo S ( )

A3l
a a ds\P dt 1 re ds
i ap ) 2 ap P
(i) /Ot </t90(8)3> T S ), el

The measure m(dt) = dt/t is the Haar measure of the multiplicative
group Ry. So, it is invariant under multiplication: m(A4) = m(AA), for
every measurable A C Ry and A > 0, and (|| 17 (0,00) = [[2(A) || £ (0,00)-

For every a # 0 the space L{(0,00) is invariant under the change of
variable ¢ +— t®, in the sense that ¢ € L{(0,00) iff t = ©(t*) € LL(0,00),
and

lell 2 0,00) = Il Pl = ()]

(This is obviously true also for p = oo, with the usual convention 1/00 = 0).
In particular, for « = —1 we get an isometry:

L£(0,00)

lell e 0,000 = It = 90(75_1)”1:1;(0,00)-

Moreover, the change of variable ¢ +— ¢! is an isometry also between
LE(1,00) and L(0,1).

If X is any Banach space and 1 < p < oo the space LY(I; X) is the set
of all Bochner measurable functions f : I — X, such that ¢ — || f(¢)|x is in
LE(I). Tt is endowed with the norm

/]

In chapters 1 and 3 we have used the following consequence of inequality

(A.3.1)(0).

LE(I;X) = ||t = ||f(t)”X| LE(I)

Corollary A.3.1 Let u be a function such that t — ug(t) = t%u(t) belongs
to LE(0,a; X), with 0 < a <00, 0< 0 <1 and 1 < p < oo. Then also the

mean value Lot
v(t) = ;/ u(s)ds, t>0 (A.3.2)
0
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has the same property, and setting vg(t) = t?v(t) we have

1

||’l)9| L2(0,a;X) (A33)
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