DIRICHLET BOUNDARY CONDITIONS
FOR ELLIPTIC OPERATORS WITH UNBOUNDED DRIFT

A. LUNARDI, G. METAFUNE, AND D. PALLARA

(Communicated by David S. Tartakoff)

Abstract. We study the realisation A of the operator $A = \Delta - \langle D\Phi, D\cdot \rangle$ in $L^2(\Omega, \mu)$ with Dirichlet boundary condition, where Ω is a possibly unbounded open set in \mathbb{R}^N, Φ is a semi-convex function and the measure $d\mu(x) = \exp(-\Phi(x)) \, dx$ lets A be formally self-adjoint. The main result is that $A : D(A) = \{ u \in H^2(\Omega, \mu) : A u \in L^2(\Omega, \mu) \cap H^1_0(\Omega, \mu) \} \rightarrow L^2(\Omega, \mu)$ is a dissipative self-adjoint operator in $L^2(\Omega, \mu)$.

1. Introduction

Second-order elliptic operators with unbounded coefficients in \mathbb{R}^N or in unbounded subsets of \mathbb{R}^N have been the object of several recent papers; see e.g. [2, 3, 8, 1, 9]. Since the very first studies it was apparent that operators of the type $Au = \text{Tr} Q(x) D^2 u(x) + \langle F(x) Du(x) \rangle$, without potential terms, are not well settled in L^p spaces with respect to the Lebesgue measure, unless the matrix Q and the vector F satisfy very severe restrictions, such as global Lipschitz continuity (see [9, 7]). It is much more natural and fruitful to work in suitably weighted L^p spaces; see [3, 8]. This is what we do in this paper. We consider the operator A defined by

$$ Au = \Delta u - \langle D\Phi, Du \rangle = e^{\Phi} \text{div} (e^{-\Phi} Du), $$

where $\Phi : \mathbb{R}^N \rightarrow \mathbb{R}$ is a C^2 semi-convex function, i.e., there is $\alpha \geq 0$ such that

$$ \Phi_\alpha(x) := \Phi(x) + \alpha|x|^2/2 \text{ is convex}, $$

or, equivalently, the matrix $D^2 \Phi(x) + \alpha I$ is nonnegative definite at each x. We emphasize that we do not assume any growth restriction on Φ or on its derivatives. The natural weight is then $\rho(x) = e^{-\Phi(x)}$ because, as it is easy to check, if Ω is any open set in \mathbb{R}^N,

$$ \int_\Omega A u v \, d\mu = - \int_\Omega \langle Du, Dv \rangle \, d\mu, \quad \forall u, v \in C_0^\infty(\Omega),$$

if $\mu(dx) = e^{-\Phi(x)} \, dx$, so that A is associated to a nice Dirichlet form and it is formally self-adjoint in $L^2(\Omega, \mu)$. The aim of this paper is to study the realisation of A in $L^2(\Omega, \mu)$ with Dirichlet boundary condition, i.e., the operator

$$ A : D(A) = \{ u \in H^2(\Omega, \mu) \cap H^1_0(\Omega, \mu) : Au \in L^2(\Omega, \mu) \} \rightarrow L^2(\Omega, \mu); \quad Au = A u. $$

Received by the editors April 19, 2004.

2000 Mathematics Subject Classification. Primary 35J70; Secondary 47D07.

Key words and phrases. Elliptic operators, boundary value problems, unbounded coefficients.
Note that for \(u \in H^2(\Omega, \mu) \), condition \(Au \in L^2(\Omega, \mu) \) is equivalent to requiring \(\langle D\Phi, Du \rangle \in L^2(\Omega, \mu) \). Our main result is that \(A \) is self-adjoint and dissipative, provided \(\partial \Omega \) is smooth enough and the normal derivative \(\partial \Phi/\partial n \) is bounded from above on \(\partial \Omega \). A lot of consequences then follow; see Section 3.

A natural approach to the study of \(A \) consists in defining an operator \(A_0 : C_c^\infty(\Omega) \to L^2(\Omega, \mu) \), \(A_0 u = Au \), in showing that \(A_0 \) is closable, and that its closure is self-adjoint and dissipative. But the problem of the characterisation of the domain of the closure still remains. So, we follow a more direct approach, solving the resolvent equation \(\lambda u - Au = f \) for all \(\lambda > 0 \) and \(f \in C_c^\infty(\Omega) \), which is dense in \(L^2(\Omega, \mu) \). Proving the existence of a solution to \(\lambda u - Au = f \) that vanishes on \(\partial \Omega \) is not hard, thanks to the regularity of the data. Estimates of its \(H^1(\Omega, \mu) \)-norm, and uniqueness of the solution in \(D(A) \), are easy consequences of the integration formula proved in Lemma 2.2 below. Estimating the second-order derivatives of \(u \) is much more delicate, and here the assumptions of semi-convexity and of upper boundedness of \(\partial \Phi/\partial n \) are used and play a fundamental role.

This paper is in some sense parallel to the paper \([3]\), where the operator \(A \) was studied in the whole space \(\mathbb{R}^N \) and in any convex regular open set \(\Omega \) with Neumann boundary condition. The conclusions of \([3]\) are similar to the ones of the present paper, but the assumptions on \(\Phi \) and \(\Omega \) are a bit different, i.e., \(\Phi \) is just convex, with no further regularity assumption, and \(\Omega \) is convex, too.

2. The domain of \(A \) with Dirichlet boundary condition

Throughout the paper we assume that \(\Omega \) is an open set in \(\mathbb{R}^N \) with sufficiently smooth (at least \(C^2 \)) boundary. By \(L^2(\Omega) \) and \(H^k(\Omega) \), \(k \in \mathbb{N} \), we mean the usual \(L^2 \) and Sobolev spaces with respect to the Lebesgue measure. The spaces \(H^k(\Omega, \mu) \), \(k = 1, 2 \), are defined as the set of all \(u \in H^k_{\text{loc}}(\Omega) \) such that the function \(u \) and its partial derivatives up to the order \(k \) belong to \(L^2(\Omega, \mu) \). They are Hilbert spaces with the standard inner products \(\langle u, v \rangle = \int_{\Omega} (uv + \sum |\alpha|=1 D^\alpha u D^\alpha v \chi_{\Omega}) \, dx \).

\(H^k_0(\Omega, \mu) \) is the subspace of \(H^k(\Omega, \mu) \) consisting of the functions with null trace on the boundary. By \(C^k_0(\mathbb{R}^N) \) we denote the space of bounded functions with bounded derivatives up to order \(k \). We say that \(\partial \Omega \) is uniformly \(C^k \) if there exist \(r > 0 \), \(m \in \mathbb{N} \) and a (at most countable) family \(\{ B_j = B_r(x_j), j \in J \} \) of balls covering \(\partial \Omega \) with at most \(m \) overlapping and \(C^k \)-diffeomorphisms \(\phi_j : B_j \to B_1(0) \) such that \(\phi_j(B_j \cap \Omega) = B_1(0) \cap \{ y_N > 0 \} \) and \(\sup_j \| \phi_j \|_{C^k} + \| \phi_j^{-1} \|_{C^k} < \infty \).

Lemma 2.1. \(C^\infty_0(\Omega) \) is dense in \(L^2(\Omega, \mu) \) and in \(H^1_0(\Omega, \mu) \).

Proof. Let \(u \in L^2(\Omega, \mu) \), or \(u \in H^1_0(\Omega) \). Let \(\theta : \mathbb{R}^N \to \mathbb{R} \) be a smooth function such that \(0 \leq \theta(x) \leq 1 \) for each \(x \), \(\theta \equiv 1 \) in \(B(0,1) \), \(\theta \equiv 0 \) outside \(B(0,2) \), and set \(u_n(x) = u(x)\theta(x/n) \). Then \(u_n \to u \) in \(L^2(\Omega, \mu) \). Indeed,

\[
\int_{\Omega} |u_n - u|^2 \, d\mu \leq \int_{\{ x \in \Omega : |x| \geq n \}} |u|^2 \, d\mu
\]

which goes to 0 as \(n \to \infty \). If \(u \in H^1_0(\Omega) \), then \(u_n \to u \) in \(H^1(\Omega, \mu) \), because \(Du_n(x) = \theta(x/n)Du(x) + D\theta(x/n)u(x)/n \). Since each \(u_n \) has bounded support, it may be approximated in \(L^2(\Omega) \) (respectively, in \(H^1(\Omega) \)) by a sequence of \(C^\infty_0(\Omega) \) functions. Such a sequence also approximates \(u_n \) in \(L^2(\Omega, \mu) \) (respectively, in \(H^1(\Omega, \mu) \)) because \(\mu \) is equivalent to the Lebesgue measure on each compact subset of \(\mathbb{R}^N \). \(\square \)
The realisation A of \mathcal{A} in $L^2(\Omega, \mu)$ with Dirichlet boundary condition is defined by (4). The following integration formulae will be very useful in what follows.

Lemma 2.2. Let $\psi \in H^1_0(\Omega, \mu)$, $u \in H^2(\Omega, \mu)$ be such that $Au \in L^2(\Omega, \mu)$. Then
\begin{equation}
\int_\Omega Au \psi \, d\mu = - \int_\Omega \langle Du, D\psi \rangle \, d\mu.
\end{equation}
More generally, if $\psi \in H^1(\Omega, \mu)$ and $u \in H^2(\Omega, \mu)$ is such that $Au \in L^2(\Omega, \mu)$, then
\begin{equation}
\int_\Omega Au \psi \, d\mu = - \int_\Omega \langle Du, D\psi \rangle \, d\mu + \int_{\partial\Omega} \frac{\partial u}{\partial n} \psi e^{-\Phi} \, d\sigma,
\end{equation}
where $d\sigma$ denotes the usual Lebesgue surface measure, the last integral is understood as $\lim_{R \to \infty} \int_{\partial\Omega} \frac{\partial u}{\partial n} \psi(\theta(x)/R) e^{-\Phi} \, d\sigma$, and θ is the function used in Lemma 2.1.

Proof. The proof of (4) is immediate if $\psi \in C^\infty_0(\Omega)$, and the statement follows by approximation in the general case. Equality (5) is obtained by approximating ψ by $\psi(x)\theta(x/R)$. \qed

Let us state a consequence of Lemma 2.2.

Lemma 2.3. If $\partial \Omega$ is uniformly C^2 and $u \in H^2(\Omega, \mu)$ is such that $Au \in L^2(\Omega, \mu)$, then $\partial u/\partial n$ is in $L^2(\partial\Omega, \exp(-\Phi) \, d\sigma)$. Moreover, there exists $C > 0$ such that for every $\varepsilon \in (0, 1)$ the following estimate holds:
\begin{equation}
\int_{\partial\Omega} \left(\frac{\partial u}{\partial n} \right)^2 e^{-\Phi} \, d\sigma \leq \varepsilon \left(\| Au \|_{L^2(\Omega, \mu)}^2 + \| D^2 u \|_{L^2(\Omega, \mu)}^2 \right) + \frac{C}{\varepsilon} \| D u \|_{L^2(\Omega, \mu)}^2.
\end{equation}

Proof. It is sufficient to take $\psi = \langle Du, N \rangle$ in (5), where N is any C^1_0 extension to \mathbb{R}^N of the normal vector field n, and then to use the Hölder inequality. \qed

Lemma 2.2 implies that the operator A is symmetric. In the next theorem we prove that it is self-adjoint if Φ is smooth enough, and
\begin{equation}
\frac{\partial \Phi}{\partial n} \leq 0 \quad \text{on} \quad \partial \Omega.
\end{equation}

Theorem 2.4. Assume that $\partial \Omega \in C^3$ and that Φ satisfies (2) and (6). Then $(A, D(A))$ is self-adjoint and dissipative in $L^2(\Omega, \mu)$. Moreover, the map $u \mapsto \langle (D^2 \Phi) Du, Du \rangle$ is continuous from $D(A)$ to $L^1(\Omega, \mu)$.

Proof. We have to show that, for $\lambda > 0$ and $f \in L^2(\Omega, \mu)$, the equation $\lambda u - Au = f$ has a unique solution $u \in D(A)$. Uniqueness is an immediate consequence of Lemma 2.2, taking $\psi = u$ in (5). Concerning existence, we first assume that $f \in C^\infty_0(\Omega)$ and we show that there is a solution $u \in D(A)$ satisfying
\begin{equation}
(7)\begin{cases}
(a) & \| u \|_{L^2(\Omega, \mu)} \leq \frac{1}{\lambda} \| f \|_{L^2(\Omega, \mu)}, \\
(b) & \| D u \|_{L^2(\Omega, \mu)} \leq \frac{1}{\sqrt{\lambda}} \| f \|_{L^2(\Omega, \mu)}, \\
(c) & \| D^2 u \|_{L^2(\Omega, \mu)} + \| \langle D^2 \Phi_u \rangle Du, Du \|_{L^1(\Omega, \mu)} \leq \left(2 + \frac{\Omega}{\lambda} \right) \| f \|_{L^2(\Omega, \mu)},
\end{cases}
\end{equation}
where Φ_u is defined in (2). Using the Lax-Milgram lemma, we find $u \in H^1_0(\Omega, \mu)$ such that
\begin{equation}
\lambda \int_\Omega u \psi \, d\mu + \int_\Omega \langle Du, D\psi \rangle \, d\mu = \int_\Omega f \psi \, d\mu, \quad \forall \psi \in H^1_0(\Omega, \mu).
\end{equation}
By local elliptic regularity, \(u \in H^2_{loc}(\Omega) \) and \(\lambda u - Au = f \). In particular, \(Au \in L^2(\Omega, \mu) \). Again, by classical elliptic regularity,

\[
u \in C^{2,\beta}(\Omega \cap B(0, R)) \cap H^3(\Omega \cap B(0, R))
\]

for every \(R > 0 \) and \(\beta < 1 \).

Now we can prove (7). To prove estimates (a) and (b), we multiply the identity \(\lambda u - Au = f \) by \(u \), we integrate over \(\Omega \) and we use (4) to get

\[
\int_{\Omega} (\lambda u^2 + |Du|^2) \, d\mu = \int_{\Omega} fu \, d\mu \leq \|f\|_{L^2(\Omega, \mu)}\|u\|_{L^2(\Omega, \mu)}
\]

which implies that (a) and (b) hold. To prove (c) we differentiate the equation \(\lambda u - Au = f \) with respect to \(x_h, h + 1, \ldots, N \), and we get

\[
\lambda D_h u - \Delta(D_h u) + \langle D(D_h \Phi), Du \rangle + \langle D\Phi, D(D_h u) \rangle = D_h f,
\]

that is,

\[
\lambda D_h u - AD_h u + \sum_{k=1}^{N} D_{hk} \Phi D_k u = D_h f.
\]

Set \(\theta_R(x) = \theta(x/R) \). Multiplying by \(\theta_R^2 D_h u \), summing over \(h \), and integrating by parts, from (4) we get, since \(u \in H^3(\Omega \cap B(0, R)) \) for every \(R \),

\[
\int_{\Omega} \left\{ \theta_R^2 (\lambda |Du|^2 + |D^2u|^2 + \langle D^2\Phi Du, Du \rangle) + 2 \sum_{h=1}^{N} \theta_R \langle D(D_h u), D\theta_R \rangle D_h u \right\} \, d\mu = \int_{\partial \Omega} \theta_R^2 \sum_{h=1}^{N} \frac{\partial D_h u}{\partial n} D_h u \, e^{-\Phi} \, d\sigma + \int_{\Omega} \theta_R^2 \langle Df, Du \rangle \, d\mu.
\]

Since \(f \) has compact support, for \(R \) large enough \(\theta_R \equiv 1 \) on the support of \(f \). Using (4) again in the last integral, we write it as \(-\int_{\Omega} f(\lambda u - f) \, d\mu \). Thanks to the assumption \(D^2\Phi \geq -\alpha I \), we obtain

\[
\int_{\Omega} \theta_R^2 (\lambda |Du|^2 + |D^2u|^2 + \langle D^2\Phi u, Du \rangle) \, d\mu \leq \int_{\Omega} (\alpha \theta_R^2 |Du|^2 + CR^{-1} \theta_R |D^2u| |Du| + f(\lambda u - f)) \, d\mu
\]

\[
+ \int_{\partial \Omega} \theta_R^2 \langle (D^2 u)n, Du \rangle \, e^{-\Phi} \, d\sigma,
\]

for a suitable \(C > 0 \), independent of \(R \). Using (a) and (b) we get

\[
\int_{\Omega} (\alpha \theta_R^2 |Du|^2 + f(\lambda u - f)) \, d\mu \leq \left(2 + \frac{\alpha}{\lambda} \right) \|f\|^2_{L^2(\Omega, \mu)}.
\]

Moreover,

\[
\int_{\Omega} CR^{-1} \theta_R |D^2u| |Du| \, d\mu \leq \frac{C}{2R} \int_{\Omega} \theta_R^2 |D^2u|^2 \, d\mu + \frac{C}{2R} \int_{\Omega} |Du|^2 \, d\mu.
\]

Let us now show that the boundary integral in (8) is negative. Since \(u = 0 \) on \(\partial \Omega \), we have \(\langle Du, \tau \rangle = 0 \) and \(\langle (D^2u)n, \tau \rangle = 0 \) for every tangent vector \(\tau \) to \(\partial \Omega \). Then \(Du = (\partial u/\partial n)n \) and \(\langle (D^2u)n, Du \rangle = \langle (D^2u)n, (\partial u/\partial n)n \rangle \) at \(\partial \Omega \). Therefore
Assume that Theorem 2.5. (a), (b), and (c) hold. Hence
\[
\int_\partial \frac{\partial^2}{\partial n^2} u(n, Du) e^{-\Phi} d\sigma = \int_\partial \frac{\partial^2}{\partial n^2} \left(\frac{\partial u}{\partial n} \right)^2 e^{-\Phi} d\sigma \leq 0,
\]
thanks to (9). Thus, we have proved that
\[
\int_\Omega \left(1 - \frac{C}{2R} \right) \theta_R^2 |D^2 u|^2 + \theta_R^2 \langle (D^2 \Phi), Du, Du \rangle d\mu \leq \left(2 + \frac{\alpha}{\lambda} + \frac{C}{2R\lambda} \right) \|f\|^2_{L^2(\Omega, \mu)},
\]
and statement (c) follows by letting \(R \to \infty \).

The general case \(f \in L^2(\Omega, \mu) \) is easily handled by approximation. Let \((f_n) \subset C^\infty_0(\Omega) \) be such that \(f_n \to f \) in \(L^2(\Omega, \mu) \) and let \(u_n \in D(A) \) be such that \(\lambda u_n - Au_n = f_n \). The above estimates imply that the sequence \((u_n)\) converges to a function \(u \in H^2(\Omega, \mu) \) and it is readily seen that \(u \in D(A), \lambda u - Au = f \) and that (a), (b), and (c) hold.

Condition (9) can be relaxed assuming some more regularity on \(\partial \Omega \).

Theorem 2.5. Assume that \(\partial \Omega \subset C^3 \) and that it is uniformly \(C^2 \). Let \(\Phi \) be a \(C^2 \) function satisfying (2) and
\[
\frac{\partial \Phi}{\partial n} \leq k \text{ at } \partial \Omega,
\]
for some \(k \in \mathbb{R} \). Then \((A, D(A))\) is self-adjoint and dissipative in \(L^2(\Omega, \mu) \). Moreover, the map \(u \mapsto \langle (D^2 \Phi)Du, Du \rangle \) is continuous from \(D(A) \) to \(L^2(\Omega, \mu) \).

Proof. The proof is similar to the proof of Theorem 2.4. For \(f \in C^\infty_0(\Omega), \lambda > 0 \), let \(u \in H^1_0(\Omega, \mu) \) be the variational solution of the equation \(\lambda u - Au = f \). As in Theorem 2.4 we get estimates (7) (a), (b) and
\[
\frac{\partial}{\partial n} \left(\frac{\partial u}{\partial n} \right)^2 e^{-\Phi} d\sigma \leq \left(2 + \frac{\alpha}{\lambda} + \frac{C}{2R\lambda} \right) \|f\|^2_{L^2(\Omega, \mu)} + \int_\partial \frac{\partial^2}{\partial n^2} \left(\frac{\partial u}{\partial n} \right)^2 e^{-\Phi} d\sigma.
\]
The boundary integral does not exceed
\[
k \int_\partial \frac{\partial^2}{\partial n^2} \left(\frac{\partial u}{\partial n} \right)^2 e^{-\Phi} d\sigma,
\]
and it can be estimated as follows (see also Lemma 2.3).

Let us take \(\psi = \theta_R^2 (Du, N) \) in (4), where \(N \) is any \(C^1_b \) extension to \(\mathbb{R}^N \) of the normal vector field \(n \), so that, using Hölder inequality, we obtain for every \(0 < \varepsilon < 1 \)
\[
\int_\partial \frac{\partial^2}{\partial n^2} \left(\frac{\partial u}{\partial n} \right)^2 e^{-\Phi} d\sigma \leq \varepsilon (\|Au\|^2_{L^2(\Omega, \mu)} + \|\theta_R D^2 u\|^2_{L^2(\Omega, \mu)}) + \frac{C}{\varepsilon} \|Du\|^2_{L^2(\Omega, \mu)}.
\]
Since $Au = \lambda u - f$, writing the last inequality with $\varepsilon k \leq 1/2$ and combining it with (11) and with estimates (a), (b), we arrive at
\[
\int_\Omega \left(\frac{1}{2} - \frac{C}{2R} \right) \theta_R^2 |D^2 u|^2 \, d\mu + \int_\Omega \theta_R^2 \langle (D^2 \Phi_u) Du, Du \rangle \, d\mu \\
\leq \left(2 + \frac{\alpha}{\lambda} + \frac{C}{2R\lambda} + C_1 \right) \|f\|_{L^2(\Omega, \mu)},
\]
with C_1 independent of R. Letting $R \to \infty$ we obtain estimate (c) of Theorem 2.4 (with different constants), and from now on the proof follows the same lines as in Theorem 2.3.

\[\square\]

Remark 2.6. If $D^2 \Phi$ is bounded from above, then the mapping $u \mapsto \langle (D^2 \Phi) Du, Du \rangle$ is bounded from $H^1(\Omega, \mu)$ to $L^1(\Omega, \mu)$ and the last statement of Theorems 2.4 and 2.5 is obvious. But, if $D^2 \Phi$ is not bounded, the statement is not obvious, and it will be used in the next section to obtain a quantitative Poincaré inequality.

We end this section by showing that $D(A)$ can be strictly contained in $H^2(\Omega, \mu) \cap H^1_0(\Omega, \mu)$.

Example 2.7. We construct a convex function $\phi : [0, \infty) \to \mathbb{R}$ such that $e^{-\phi}$ and $x^2e^{-\phi}$ are in $L^1(0, \infty)$ but $\phi^2 e^{-\phi} \notin L^1(0, \infty)$. Then $u(x) = x$ belongs to $H^2(\mu) \cap H^1_0(\mu)$ but not to $D(A)$. For simplicity, ϕ will be nonsmooth, however, smooth versions are easily obtained using straightforward arguments.

Let $0 = a_1 < b_1 < a_2 < b_2 < \cdots$ be points in $[0, \infty)$ such that $b_j - a_j = 1$. Set $1/l_j = a_{j+1} - b_j$, $l_1 = 1$ and define $\phi' = 1$ in (a_1, b_1), $\phi' = l_j$ in (b_j, a_{j+1}) and $\phi' = l_{j-1}$ in (a_j, b_j). We have to choose $1 = l_1 < l_2 < \cdots$ in such a way that ϕ satisfies the properties above. First observe that ϕ is convex, $\phi' \geq 1$, hence $\phi(x) \geq x$ and then $e^{-\phi}, x^2e^{-\phi} \in L^1(0, \infty)$. Moreover, if $x \in (b_j, a_{j+1})$, then $\phi(x) \leq j + 1 + \sum_{i=1}^{j-1} l_i$ and therefore
\[
\int_{b_j}^{a_{j+1}} \phi'^2 e^{-\phi} \, dx \geq l_j^2 \exp(-j + 1 + \sum_{i=1}^{j-1} l_i) \geq l_j \exp(-(j + 1 + \sum_{i=1}^{j-1} l_i)).
\]
Choosing (inductively) $l_j = e^{(j+1+\sum_{i=1}^{j-1} l_i)}$ the above integral is bigger than 1, hence, summing over j, ϕ'^2 does not belong to $L^1(\mu)$.

3. Further properties of A

Under the assumptions of either Theorem 2.4 or Theorem 2.5, since the operator A is self-adjoint and dissipative in $L^2(\Omega, \mu)$, it is the infinitesimal generator of an analytic contraction semigroup $T(t)$ in $L^2(\Omega, \mu)$. In this section we prove further properties of $T(t)$ and of A.

The characterisation of the domain of $(-A)^{1/2}$ is a standard consequence of the integration formula (11), as the following proposition shows. Recall that the norm in $H^1_0(\Omega, \mu)$ is given by $\|u\|_{H^1_0(\Omega, \mu)} = \|u\|_{L^2(\Omega, \mu)} + \|Du\|_{L^2(\Omega, \mu)}$.

Proposition 3.1. The domain of $(-A)^{1/2}$ is $H^1_0(\Omega, \mu)$. Therefore, the restriction of $T(t)$ to $H^1_0(\Omega, \mu)$ is an analytic semigroup in $H^1_0(\Omega, \mu)$.

Proof. Any $u \in D((-A)^{1/2})$ is the $L^2(\Omega, \mu)$-limit of a sequence of functions $u_n \in D(A) \subset H^1_0(\Omega, \mu)$ which is a Cauchy sequence with respect to the norm $\|u\|_{L^2} + \langle -Au, u \rangle_{L^2}$. From (11) it follows that (Du_n) is a Cauchy sequence in $L^2(\Omega, \mu)$,
hence \(u \in H^1_0(\Omega, \mu) \). Conversely, let \(u \in H^1_0(\Omega, \mu) \) and let \(u_n \in C_0^\infty(\Omega) \subset D(A) \) converge to \(u \) in \(H^1(\Omega, \mu) \). Formula (\ref{eq:Cauchy}) implies that \((u_n)\) is a Cauchy sequence in \(D((-A)^{1/2}) \), hence \(u \in D((-A)^{1/2}) \).

Corollary 3.2. Under the assumptions of either Theorem 2.3 or Theorem 2.5, \(T(t) \) is a symmetric Markov semigroup, that is, a semigroup of self-adjoint positivity preserving operators in \(L^2(\Omega, \mu) \) that satisfy \(\|T(t)f\|_\infty \leq \|f\|_\infty \) for each \(f \in L^2(\Omega, \mu) \cap L^\infty(\Omega, \mu) \) and \(t > 0 \).

Proof. Since \(A \) is self-adjoint, each \(T(t) \) is self-adjoint. To prove that each \(T(t) \) preserves positivity and that it is a contraction in \(L^\infty \), we use the Beurling-Deny criterion; see e.g. [3] Theorems 1.3.2, 1.3.3.

As \(D((-A)^{1/2}) = H^1_0(\Omega, \mu) \), then \(u \in D((-A)^{1/2}) \) implies \(|u| \in D((-A)^{1/2}) \), and

\[
\|(-A)^{1/2}(|u|)^2\| = \int_\Omega |D(|u|)|^2 d\mu \leq \int_\Omega |Du|^2 d\mu = \|(-A)^{1/2}u\|^2,
\]

so that \(T(t) \) is positivity-preserving for all \(t > 0 \). Again, since \(D((-A)^{1/2}) = H^1_0(\Omega, \mu) \), if \(0 \leq u \in D((-A)^{1/2}) \), then \(u \wedge 1 \in D((-A)^{1/2}) \), and

\[
\|(-A)^{1/2}(u \wedge 1)^2\| = \int_\Omega |D(u \wedge 1)|^2 d\mu \leq \int_\Omega |Du|^2 d\mu = \|(-A)^{1/2}u\|^2.
\]

This implies that \(\|T(t)f\|_\infty \leq \|f\|_\infty \) for each \(f \in L^2(\Omega, \mu) \cap L^\infty(\Omega, \mu) \). \(\square \)

Another immediate consequence of the integration formula (\ref{eq:Cauchy}) is that \(A \) is injective: if \(u \in D(A) \) and \(Au = 0 \), then \(Au \cdot u = 0 \), and integrating over \(\Omega \) we obtain \(Du = 0 \) so that \(u \) is constant on each connected component of \(\Omega \); since \(u \) vanishes at \(\partial \Omega \), then \(u = 0 \).

A natural question is now whether 0 is in the resolvent set of \(A \). This is true if \(D(A) \) is compactly embedded in \(L^2(\Omega, \mu) \), because in this case the spectrum of \(A \) consists of a sequence of isolated eigenvalues. But in general \(D(A) \) is not compactly embedded in \(L^2(\Omega, \mu) \), as the following counterexample shows.

Example 3.3. Let \(\varphi : \mathbb{R} \to \mathbb{R} \) be any convex \(C^2 \) function such that \(\varphi(x) = x \) for \(x \geq 0 \). Set \(\Phi(x, y) = \varphi(x) + y^2 \), and let \(\Omega \) be the half-plane \(\{(x, y) \in \mathbb{R}^2 : y > 0\} \). Then \(D(A) \) is not compactly embedded in \(L^2(\Omega, \mu) \).

Proof. Let \(\theta \in C_0^\infty(0, \infty) \) be such that \(\int_0^\infty (\theta(y))^2 \exp(-y^2) dy = 1 \), and set for each \(n \in \mathbb{N}, n \geq 3 \),

\[
u_n(x, y) = \frac{x^n}{\sqrt{(2n)!}} \theta(y), \quad x, y \geq 0, \quad u_n(x, y) = 0 \text{ otherwise.}
\]

Since \(d\mu = \exp(-\varphi(x) - y^2) dx dy \), then \(\|u_n\|_{L^2(\Omega, \mu)} = 1 \) for each \(n \). Moreover,

\[
D_x u_n(x, y) = \frac{n x^{n-1}}{\sqrt{(2n)!}} \theta(y), \quad D_y u_n(x, y) = \frac{x^n}{\sqrt{(2n)!}} \theta'(y), \quad x > 0,
\]

\[
D_{xx} u_n(x, y) = \frac{n(n-1)x^{n-2}}{\sqrt{(2n)!}} \theta(y), \quad D_{yy} u_n(x, y) = \frac{x^n}{\sqrt{(2n)!}} \theta''(y), \quad x > 0,
\]

and every derivative vanishes for \(x \leq 0 \). Therefore, \(u_n \in D(A) \) and \(\|Au_n\|_{L^2(\Omega, \mu)} \) is bounded by a constant independent of \(n \). But no subsequence may converge in
Assume that \(s \) satisfies an additional (mild) nonoscillation condition. In the next proposition we show that the answer is positive if \(\Phi \) satisfies an additional (mild) nonoscillation condition.

Proposition 3.4. Assume that \(\Phi \in C^2(\mathbb{R}^N) \) satisfies \(\Delta \Phi \leq a|D\Phi|^2 + b \) for some \(a < 1, b \in \mathbb{R} \). Then the map \(u \mapsto |D\Phi|u \) is bounded from \(H^1_0(\Omega, \mu) \) to \(L^2(\Omega, \mu) \). If, in addition, \(|D\Phi| \to \infty \) at infinity, the embedding of \(H^1_0(\Omega, \mu) \) (hence that of \(D(A) \)) in \(L^2(\Omega, \mu) \) is compact.

Proof. Since \(C_0^\infty(\Omega) \) is dense in \(H^1_0(\Omega, \mu) \) it is sufficient to show that

\[
|||D\Phi|||_{L^2(\Omega, \mu)} \leq C||u||_{H^1(\Omega, \mu)}
\]

for some \(C > 0 \) and every \(u \in C_0^\infty(\Omega, \mu) \). Integrating by parts and using Young’s inequality we get for every \(\varepsilon > 0 \) and for a suitable \(C_\varepsilon \)

\[
\int_{\Omega} |u|^2 |D\Phi|^2 \, d\mu = - \int_{\Omega} |u|^2 (D\Phi, De^{-\Phi}) \, dx
\]

\[
= \int_{\Omega} |u|^2 \Delta \Phi e^{-\Phi} \, dx + 2 \int_{\Omega} u(D\Phi, Du) e^{-\Phi} \, dx
\]

\[
\leq (a + \varepsilon) \int_{\Omega} |u|^2 |D\Phi|^2 \, d\mu + C_\varepsilon \int_{\Omega} |Du|^2 \, d\mu + b \int_{\Omega} |u|^2 \, d\mu.
\]

Choosing \(\varepsilon \) such that \(a + \varepsilon < 1 \), the first statement follows. Concerning the second one, we observe that for each \(\varepsilon > 0 \) there is \(R > 0 \) such that \(|D\Phi| \geq 1/\varepsilon \) in \(\Omega \setminus B(0, R) \). Hence for every \(u \) in the unit ball \(B \) of \(H^1_0(\Omega) \) we have

\[
\frac{1}{\varepsilon^2} \int_{\Omega \setminus B(0, R)} |u|^2 \, d\mu \leq \int_{\Omega \setminus B(0, R)} |u|^2 |D\Phi|^2 \, d\mu \leq C^2.
\]

Since the embedding of \(H^1(\Omega \cap B(0, R)) \) into \(L^2(\Omega \cap B(0, R)) \) is compact, we can find \(\{f_1, \ldots, f_k\} \subset L^2(\Omega \cap B(0, R)) \) such that the balls \(B(f_i, \varepsilon) \subset L^2(\Omega \cap B(0, R)) \) cover the restrictions of the functions of \(B \) to \(\Omega \cap B(0, R) \). Denoting by \(\tilde{f}_i \) the zero-extension of \(f_i \) to the whole of \(\Omega \), it follows that \(B \subset \bigcup_{i=1}^k B(\tilde{f}_i, (C + 1)\varepsilon) \), and the proof is complete.

The compactness of the resolvent is a consequence of the logarithmic Sobolev inequality

\[
\int_{\Omega} u^2 \log(|u|) \, d\mu \leq \frac{1}{\omega} \int_{\Omega} |Du|^2 \, d\mu + ||u||^2_{L^2(\Omega, \mu)} \log(||u||_{L^2(\Omega, \mu)}),
\]

for all \(u \in H^1_0(\Omega, \mu) \) and some \(\omega > 0 \) (where we set \(0 \log 0 = 0 \)).

In what follows we give sufficient conditions for the validity of (12).
Proposition 3.5. Let us denote by $\lambda(x)$ the smallest eigenvalue of the matrix $D^2\Phi(x)$. Then:

(i) if $\lambda(x) \geq \omega_0$ for all $x \in \mathbb{R}^N$ then (12) holds with $\omega = \omega_0$;

(ii) if $\liminf_{|x| \to \infty} \lambda(x) > 0$, then (12) holds for some $\omega > 0$.

Proof. (i) Let $u \in H_0^1(\Omega, \mu)$ and extend u outside Ω by setting $u(x) = 0$ for $x \notin \Omega$. Then the extension is in $H^1(\mathbb{R}^N, \nu)$, where $d\nu(x) = c \exp(-\Phi(x)) \, dx$, $c^{-1} = \int_{\mathbb{R}^N} \exp(-\Phi) \, dx \geq 1$. By [3], for each $u \in H^1(\mathbb{R}^N, \nu)$ we have

\[
\int_{\mathbb{R}^N} |u|^2 \log |u| \, d\nu \leq \frac{1}{\omega_0} \int_{\mathbb{R}^N} |Du|^2 \, d\nu + \|u\|^2_{L^2(\mathbb{R}^N, \nu)} \log(\|u\|_{L^2(\mathbb{R}^N, \nu)}).
\]

Since u vanishes outside Ω we easily get

\[
\int_{\Omega} |u|^2 \log |u| \, d\mu \leq \frac{1}{\omega_0} \int_{\Omega} |Du|^2 \, d\mu + \|u\|^2_{L^2(\Omega, \mu)} \left(\frac{1}{2} \log c + \log(\|u\|_{L^2(\Omega, \mu)}) \right)
\]

and (12) follows since $c \leq 1$.

(ii) The proof is similar to (i), using [11] Theorem 1.3 instead of [3].

\[\square\]

Corollary 3.6. Under the assumptions of Proposition 3.5, $H_0^1(\Omega, \mu)$ is compactly embedded in $L^2(\Omega, \mu)$. Therefore, $\sup \sigma(A) < 0$. Moreover $T(t)$ maps $L^2(\Omega, \mu)$ into $L^{q(t)}(\Omega, \mu)$ with $q(t) = 1 + e^{\omega t}$, and

\[(13) \quad \|T(t)f\|_{L^{q(t)}(\Omega, \mu)} \leq \|f\|_{L^2(\Omega, \mu)}, \quad t > 0, \quad f \in L^2(\Omega, \mu).
\]

Proof. Let B be the unit ball of $H_0^1(\Omega, \mu)$. Inequality (12) yields the existence of a positive constant C such that $\int_{\Omega} |u|^2 \, d\mu \leq C$ for every $u \in B$. Given $t \geq 1$, let $E = \{u \leq t\}$. Then for $R > 0$

\[
\int_{\Omega \setminus B(0, R)} |u|^2 \, d\mu \leq \int_{\Omega \setminus B(0, R)} t^2 \, d\mu + \frac{1}{\log t} \int_{\Omega \setminus B(0, R)} |u|^2 \log |u| \, d\mu
\]

\[
\leq t^2 \mu(\Omega \setminus B(0, R)) + \frac{C}{\log t}
\]

hence, given $\epsilon > 0$, there exists $R > 0$ such that $\int_{\Omega \setminus B(0, R)} |u|^2 \, d\mu \leq \epsilon$ for every $u \in B$. As in Proposition 3.4 this proves that $H_0^1(\Omega, \mu)$ is compactly embedded in $L^2(\Omega, \mu)$. The fact that $T(t)$ maps $L^2(\Omega, \mu)$ into $L^{q(t)}(\Omega, \mu)$, as well as estimate (13), follow from [3] 6.

\[\square\]

A necessary and sufficient condition in order that 0 be in the resolvent of A is that the Poincaré inequality holds, i.e.,

\[(14) \quad \int_{\Omega} |u|^2 \, d\mu \leq \frac{1}{\omega} \int_{\Omega} |Du|^2 \, d\mu, \quad u \in H_0^1(\Omega, \mu),
\]

for some $\omega > 0$. More precisely, since A is self-adjoint, then $\langle (-A - \omega I)u, u \rangle \geq 0$ for each $u \in D(A)$ if and only if $\sigma(A + \omega I) \subset (-\infty, 0]$. In other words, (14) holds for each $u \in D(A)$ (or, equivalently, for each $u \in H_0^1(\Omega, \mu) = D((-A)^{1/2})$) if and only if $\sigma(A) \subset (-\infty, -\omega]$. In this case we have

\[(15) \quad \|T(t)f\|_{L^2(\Omega, \mu)} \leq e^{-\omega t} \|f\|_{L^2(\Omega, \mu)}, \quad t > 0, \quad f \in L^2(\Omega, \mu).
\]

Indeed, for each $t > 0$ and $f \in L^2(\Omega, \mu)$,

\[\frac{d}{dt} \|T(t)f\|^2 = \int_{\Omega} 2AT(t)f \cdot T(t)f \, d\mu = -2\|DT(t)f\|^2 \leq -2\omega\|T(t)f\|^2.
\]
If $\Omega = \mathbb{R}^N$, the Poincaré inequality for functions having zero mean is a consequence of the logarithmic Sobolev inequality (in which case $D(A)$ is compactly embedded in $L^2(\Omega, \mu)$) and the constant ω in (14) is the same as in (12); see [10]. This is not true in our setting; see Example 3.9 below. However, in the next proposition we show how to get an explicit estimate of ω in (14) when (6) holds.

Proposition 3.7. Assume that (6) holds and that there exists $\omega_0 > 0$ such that the map $x \mapsto \Phi(x) - \omega_0|x|^2/2$ is convex. Then (14) holds with $\omega = \omega_0$.

Proof. We have only to show that $\sigma(A) \subset (-\infty, -\omega_0]$. Corollary 3.6 yields that the resolvent of A is compact, hence $\sigma(A)$ consists of eigenvalues. If $\lambda u - Au = 0$ for some $\lambda \in \mathbb{R}$ and $0 \neq u \in D(A)$, we write (8) with $f = 0$ and let $R \to \infty$. Since the boundary integral is nonpositive and $D^2\Phi \geq \omega_0 I$ we get $(\lambda + \omega_0) \int_{\Omega} |Du|^2 \leq 0$. Since u is not a constant, then $Du \neq 0$ and $\lambda \leq -\omega_0$. This concludes the proof. \qed

Let us again consider Example 3.3 and show that, in general, the Poincaré inequality does imply that the embedding $D(A) \subset L^2(\Omega, \mu)$ is compact.

Example 3.8. We use the same notation as in Example 3.3. Proposition 3.7 applied to the one-dimensional function $y \mapsto y^2$, $y > 0$, yields

$$\int_0^\infty |u(x,y)|^2 e^{-y^2} dy \leq \frac{1}{2} \int_0^\infty |D_y u(x,y)|^2 e^{-y^2} dy, \quad \text{a.e. } x \in \mathbb{R}, \; u \in H^1(\Omega, \mu).$$

Multiplying by $e^{-\phi(x)}$ and integrating with respect to $x \in \mathbb{R}$, we deduce

$$\int_{\Omega} |u(x,y)|^2 d\mu \leq \frac{1}{2} \int_{\Omega} |D_y u(x,y)|^2 d\mu$$

so that the Poincaré inequality holds, even if $D(A)$ is not compactly embedded in $L^2(\Omega, \mu)$, as we have shown in Example 3.3.

If assumption (6) is replaced by the boundedness of $\partial \Phi/\partial n$ at $\partial \Omega$ and still $\Phi(x) - \omega^2 |x|^2$ is convex, the constant ω in (14) may also depend on the constant k in (10), as we show in the following example.

Example 3.9. Let $N = 1$ and let $Au = u'' - xu'$ be the Ornstein-Uhlenbeck operator. Here $\Phi(x) = x^2/2$, hence $D^2\Phi \equiv 1$ and (12) holds with $\omega = 1$. Let $\Omega_a = (-\infty, a)$ and set $u(x) = a - x$. Then $u \in D(A)$ and

$$\int_{-\infty}^a |u'|^2 d\mu \left(\int_{-\infty}^a |u|^2 d\mu\right)^{-1} \to 0$$

as $a \to \infty$. This shows that the spectrum of A in $L^2(\Omega_\alpha, \mu)$ is not contained in $(-\infty, -1]$ for large α, hence the constant ω in (14) is smaller than 1.

References

